forked from jcjohnson/cnn-benchmarks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_cnn_benchmarks.py
56 lines (44 loc) · 1.62 KB
/
run_cnn_benchmarks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os, json, itertools, random, argparse
DEFAULT_MODELS = ','.join([
'models/alexnet/alexnet.t7',
'models/vgg16/vgg16.t7',
'models/vgg19/vgg19.t7',
'models/googlenet/googlenet-v1.t7',
'models/resnets/resnet-18.t7',
'models/resnets/resnet-34.t7',
'models/resnets/resnet-50.t7',
'models/resnets/resnet-101.t7',
'models/resnets/resnet-152.t7',
'models/resnets/resnet-200.t7',
])
parser = argparse.ArgumentParser()
parser.add_argument('--gpus', default='0')
parser.add_argument('--models', default=DEFAULT_MODELS)
parser.add_argument('--batch_sizes', default='16')
parser.add_argument('--use_cudnns', default='0,1')
parser.add_argument('--output_dir', default='outputs')
def main(args):
factors = {
'gpu': [int(g) for g in args.gpus.split(',')],
'model_t7': args.models.split(','),
'batch_size': [int(b) for b in args.batch_sizes.split(',')],
'use_cudnn': [int(c) for c in args.use_cudnns.split(',')],
}
base_command = 'th cnn_benchmark.lua'
output_jsons = set()
for vals in itertools.product(*factors.values()):
lua_args = dict(zip(factors.keys(), vals))
while True:
lua_args['output_json'] = '/%d.json' % random.randint(1, 100000)
rand_id = random.randint(1, 1000000)
lua_args['output_json'] = os.path.join(args.output_dir, '%d.json' % rand_id)
if lua_args['output_json'] not in output_jsons: break
output_jsons.add(lua_args['output_json'])
command = base_command
for k, v in lua_args.iteritems():
command = '%s -%s %s' % (command, k, v)
print command
os.system(command)
if __name__ == '__main__':
args = parser.parse_args()
main(args)