-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathdataloader.py
65 lines (52 loc) · 2.16 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import os
import numpy as np
from PIL import Image
from torch.utils.data import Dataset as BaseDataset
class Dataset(BaseDataset):
"""CamVid Dataset. Read images, apply augmentation and preprocessing transformations.
Args:
images_dir (str): path to images folder
masks_dir (str): path to segmentation masks folder
class_values (list): values of classes to extract from segmentation mask
augmentation (albumentations.Compose): data transfromation pipeline
(e.g. flip, scale, etc.)
preprocessing (albumentations.Compose): data preprocessing
(e.g. noralization, shape manipulation, etc.)
"""
CLASSES = [0]
# CLASSES = ['background', 'face', 'righteyebrow', 'lefteyebrow', 'righteye', 'lefteye',
# 'nose', 'upperlip', 'lowerlip', 'hair', 'rightear', 'leftear', 'neck', 'none', 'sticker']
def __init__(
self,
images_dir,
masks_dir,
classes=None,
augmentation=None,
preprocessing=None,
):
self.ids = os.listdir(images_dir)
self.images_fps = [os.path.join(images_dir, image_id) for image_id in self.ids]
self.masks_fps = [os.path.join(masks_dir, image_id) for image_id in self.ids]
print("Got : {:>15}".format(len(classes)))
print("Name : {:>15}".format(str(classes)))
self.augmentation = augmentation
self.preprocessing = preprocessing
def __getitem__(self, i):
# read data
# import pdb
# pdb.set_trace()
image = np.array(Image.open(self.images_fps[i]))
mask = np.array(Image.open(self.masks_fps[i]))
mask = [mask[:, :, 1] / 255]
mask = np.stack(mask, axis=-1).astype("float")
# apply augmentations
# if self.augmentation:
# sample = self.augmentation(image=image, mask=mask)
# image, mask = sample['image'], sample['mask']
# apply preprocessing
if self.preprocessing:
sample = self.preprocessing(image=image, mask=mask)
image, mask = sample["image"], sample["mask"]
return image, mask
def __len__(self):
return len(self.ids)