This repository has been archived by the owner on May 9, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathAnalytic_components.py
542 lines (396 loc) · 19.3 KB
/
Analytic_components.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
from openmdao.main.api import Component, VariableTree
from openmdao.lib.datatypes.api import Array, Bool, Float, VarTree
import numpy as np
from Parameters import FLORISParameters
import time
class floris_adjustCtCp(Component):
""" Adjust Cp and Ct to yaw if they are not already adjusted """
parameters = VarTree(FLORISParameters(), iotype='in')
def __init__(self, nTurbines):
print 'entering adjustCtCp __init__ - analytic'
super(floris_adjustCtCp, self).__init__()
# Explicitly size input arrays
self.add('Ct_in', Array(np.zeros(nTurbines), iotype='in', dtype='float', \
desc='Thrust coefficient for all turbines'))
self.add('Cp_in', Array(np.zeros(nTurbines), iotype='in', dtype='float', \
desc='power coefficient for all turbines'))
self.add('generator_efficiency', Array(np.zeros(nTurbines), iotype='in', dtype='float', \
desc='generator efficiency of all turbines'))
self.add('yaw', Array(np.zeros(nTurbines), iotype='in', desc='yaw of each turbine'))
# Explicitly size output arrays
self.add('Ct_out', Array(np.zeros(nTurbines), iotype='out', dtype='float', \
desc='Thrust coefficient for all turbines'))
self.add('Cp_out', Array(np.zeros(nTurbines), iotype='out', dtype='float', \
desc='power coefficient for all turbines'))
def execute(self):
print 'entering adjustCtCP - analytic'
# print 'CTcorrected is', self.parameters.CTcorrected
# print 'CPcorrected is', self.parameters.CPcorrected
Ct = self.Ct_in
Cp = self.Cp_in
nTurbines = np.size(Ct)
yaw = self.yaw*np.pi/180.
# CTcorrected = self.parameters.CTcorrected
# CPcorrected = self.parameters.CPcorrected
# pP = self.parameters.pP
# print 'before', Ct, Cp
# print 'yaw in adjust = ', yaw
# print 'Ct in adjust = ', Ct
if self.parameters.FLORISoriginal:
ke = 0.065
keCorrCT = 0.0
# ignore these for now
# keCorrTI = 0.0
# keCorrHR = 0.0
# keCorrHRTI = 0.0
keCorrArray = 0.0
kd = 0.15
# kdCorrDirection = 0.0
me = np.array([-0.5, 0.22, 1.0])
MU = np.array([0.5, 1.0, 5.5])
pP = 1.88
useWakeAngle = False
initialWakeDisplacement = 4.5
bd = -0.01
useaUbU = True
aU = 5.0
bU = 1.66
adjustInitialWakeDiamToYaw = False
else:
# rename inputs and outputs
ke = self.parameters.ke
keCorrCT = self.parameters.keCorrCT
keCorrTI = self.parameters.keCorrTI
keCorrHR = self.parameters.keCorrHR
keCorrHRTI = self.parameters.keCorrHRTI
keCorrArray = self.parameters.keCorrArray
kd = self.parameters.kd
kdCorrYawDirection = self.parameters.kdCorrYawDirection
me = self.parameters.me
MU = self.parameters.MU
initialWakeDisplacement = self.parameters.initialWakeDisplacement
useWakeAngle = self.parameters.useWakeAngle
initialWakeAngle = self.parameters.initialWakeAngle
bd = self.parameters.bd
useaUbU = self.parameters.useaUbU
aU = self.parameters.aU
bU = self.parameters.bU
adjustInitialWakeDiamToYaw = self.parameters.adjustInitialWakeDiamToYaw
pP = self.parameters.pP
baselineCT = self.parameters.baselineCT
baselineTI = self.parameters.baselineTI
keSaturation = self.parameters.keSaturation
CTcorrected = self.parameters.CTcorrected
CPcorrected = self.parameters.CPcorrected
axialIndProvided = self.parameters.axialIndProvided
if not CTcorrected:
# print Ct.size, yaw.size
self.Ct_out = Ct*np.cos(yaw)*np.cos(yaw)
dCt_dCt = np.eye(nTurbines)*np.cos(yaw)*np.cos(yaw)
dCt_dyaw = np.eye(nTurbines)*(-2.*Ct*np.sin(yaw)*np.cos(yaw))*np.pi/180.
dCt_dCp = np.zeros((nTurbines, nTurbines))
dCt = np.hstack((dCt_dCt, dCt_dCp, dCt_dyaw))
else:
self.Ct_out = Ct
dCt_dCt = np.eye(nTurbines, nTurbines)
dCt_dCp = np.zeros((nTurbines, nTurbines))
dCt_dyaw = np.zeros((nTurbines, nTurbines))
dCt = np.hstack((dCt_dCt, dCt_dCp, dCt_dyaw))
if not CPcorrected:
self.Cp_out = Cp*np.cos(yaw)**pP
dCp_dCp = np.eye(nTurbines, nTurbines)*np.cos(yaw)**pP
dCp_dyaw = np.eye(nTurbines, nTurbines)*(-Cp*pP*np.sin(yaw)*np.cos(yaw)**(pP-1.0))*np.pi/180.
dCp_dCt = np.zeros((nTurbines, nTurbines))
dCp = np.hstack((dCp_dCt, dCp_dCp, dCp_dyaw))
else:
self.Cp_out = Cp
dCp_dCp = np.eye(nTurbines, nTurbines)
dCp_dCt = np.zeros((nTurbines, nTurbines))
dCp_dyaw = np.zeros((nTurbines, nTurbines))
dCp = np.hstack((dCp_dCt, dCp_dCp, dCp_dyaw))
self.J = np.vstack((dCt, dCp))
def list_deriv_vars(self):
return ('Ct_in', 'Cp_in', 'yaw'), ('Ct_out', 'Cp_out')
def provideJ(self):
return self.J
class floris_windframe(Component):
""" Calculates the locations of each turbine in the wind direction reference frame """
# original variables
parameters = VarTree(FLORISParameters(), iotype='in')
verbose = Bool(False, iotype='in', desc='verbosity of FLORIS, False is no output')
# flow property variables
wind_speed = Float(iotype='in', units='m/s', desc='free stream wind velocity')
wind_direction = Float(iotype='in', units='deg', desc='wind direction using direction to, in deg. ccw from east')
def __init__(self, nTurbines, resolution):
print 'entering windframe __init__ - analytic'
super(floris_windframe, self).__init__()
# Explicitly size input arrays
self.add('turbineX', Array(np.zeros(nTurbines), iotype='in', \
desc='x positions of turbines in original ref. frame'))
self.add('turbineY', Array(np.zeros(nTurbines), iotype='in', \
desc='y positions of turbines in original ref. frame'))
# variables for verbosity
self.add('Ct', Array(np.zeros(nTurbines), iotype='in'))
self.add('Cp', Array(np.zeros(nTurbines), iotype='in', \
desc='power coefficient for all turbines'))
self.add('axialInduction', Array(np.zeros(nTurbines), iotype='in', dtype='float', \
desc='axial induction of all turbines'))
self.add('yaw', Array(np.zeros(nTurbines), iotype='in', \
desc='yaw of each turbine'))
# variables for testing wind speed at various locations
self.add('ws_position', Array(np.zeros(resolution*resolution), iotype='in', units='m', \
desc='position of desired measurements in original ref. frame'))
# Explicitly size output arrays
self.add('wsw_position', Array(np.zeros(resolution*resolution), iotype='out', units='m', \
desc='position of desired measurements in wind ref. frame'))
# for testing purposes only
self.add('turbineXw', Array(np.zeros(nTurbines), iotype='out', units='m', \
desc='x coordinates of turbines in wind dir. ref. frame'))
self.add('turbineYw', Array(np.zeros(nTurbines), iotype='out', units='m', \
desc='y coordinates of turbines in wind dir. ref. frame'))
def execute(self):
print 'entering windframe - analytic'
if self.parameters.FLORISoriginal:
ke = 0.065
keCorrCT = 0.0
# ignore these for now
# keCorrTI = 0.0
# keCorrHR = 0.0
# keCorrHRTI = 0.0
keCorrArray = 0.0
kd = 0.15
# kdCorrYawDirection = 0.0 # ignored for now
me = np.array([-0.5, 0.22, 1.0])
MU = np.array([0.5, 1.0, 5.5])
pP = 1.88
useWakeAngle = False
initialWakeDisplacement = 4.5
bd = -0.01
useaUbU = True
aU = 5.0
bU = 1.66
adjustInitialWakeDiamToYaw = False
else:
# rename inputs and outputs
ke = self.parameters.ke
keCorrCT = self.parameters.keCorrCT
keCorrTI = self.parameters.keCorrTI
keCorrHR = self.parameters.keCorrHR
keCorrHRTI = self.parameters.keCorrHRTI
keCorrArray = self.parameters.keCorrArray
kd = self.parameters.kd
kdCorrYawDirection = self.parameters.kdCorrYawDirection
me = self.parameters.me
MU = self.parameters.MU
initialWakeDisplacement = self.parameters.initialWakeDisplacement
useWakeAngle = self.parameters.useWakeAngle
initialWakeAngle = self.parameters.initialWakeAngle
bd = self.parameters.bd
useaUbU = self.parameters.useaUbU
aU = self.parameters.aU
bU = self.parameters.bU
adjustInitialWakeDiamToYaw = self.parameters.adjustInitialWakeDiamToYaw
pP = self.parameters.pP
baselineCT = self.parameters.baselineCT
baselineTI = self.parameters.baselineTI
keSaturation = self.parameters.keSaturation
CTcorrected = self.parameters.CTcorrected
CPcorrected = self.parameters.CPcorrected
axialIndProvided = self.parameters.axialIndProvided
Vinf = self.wind_speed
windDirection = self.wind_direction*np.pi/180.0
#variables to satisfy verbosity
axialInd = self.axialInduction
Cp = self.Cp
Ct = self.Ct
yaw = self.yaw*np.pi/180
if self.verbose:
np.set_printoptions(formatter={'float': '{: 0.3f}'.format})
print "wind direction %s deg" % [windDirection*180.0/np.pi]
print "free-stream wind speed %s" % Vinf
print "axial induction turbines %s" % axialInd
print "C_P turbines %s" % Cp
print "C_T turbines %s" % Ct
print "yaw turbines %s" % yaw
# get turbine positions and velocity sampling positions
# position = self.position
# turbineX = position[:, 0]
# turbineY = position[:, 1]
turbineX = self.turbineX
turbineY = self.turbineY
# print turbineX, turbineY
if self.ws_position.any():
velX = self.ws_position[:, 0]
velY = self.ws_position[:, 1]
else:
velX = np.zeros([0, 0])
velY = np.zeros([0, 0])
# convert to downwind-crosswind coordinates
rotationMatrix = np.array([(np.cos(-windDirection), -np.sin(-windDirection)),
(np.sin(-windDirection), np.cos(-windDirection))])
# print 'rotation matrix = ', rotationMatrix
turbineLocations = np.dot(rotationMatrix, np.array([turbineX, turbineY]))
# print turbineLocations
self.turbineXw = np.zeros(turbineX.size)
self.turbineYw = np.zeros(turbineX.size)
# print self.turbineXw
self.turbineXw = turbineLocations[0]
self.turbineYw = turbineLocations[1]
#print 'windframe.turbineX = %s' %self.turbineX
if velX.size > 0:
locations = np.dot(rotationMatrix, np.array([velX, velY]))
velX = locations[0]
velY = locations[1]
self.wsw_position = np.array([velX, velY])
#print 'wsw_position in windframe is:', self.wsw_position
#print 'ws_position in windframe is:', self.ws_position
# print self.turbineXw
def list_deriv_vars(self):
"""specifies the inputs and outputs where derivatives are defined"""
return('turbineX', 'turbineY'), ('turbineXw', 'turbineYw')
def provideJ(self):
#print 'entering windframe - provideJ'
n = np.size(self.turbineX)
windDirection = self.wind_direction*np.pi/180
dturbineXw_dturbineX = np.zeros([n, n])
dturbineXw_dturbineY = np.zeros([n, n])
dturbineYw_dturbineX = np.zeros([n, n])
dturbineYw_dturbineY = np.zeros([n, n])
for i in range(0, n):
dturbineXw_dturbineX[i, i] = np.cos(-windDirection)
dturbineXw_dturbineY[i, i] = -np.sin(-windDirection)
dturbineYw_dturbineX[i, i] = np.sin(-windDirection)
dturbineYw_dturbineY[i, i] = np.cos(-windDirection)
JturbineXw = np.concatenate((dturbineXw_dturbineX, dturbineXw_dturbineY), 1)
JturbineYw = np.concatenate((dturbineYw_dturbineX, dturbineYw_dturbineY), 1)
J = np.concatenate((JturbineXw, JturbineYw), 0)
return J
class AEP(Component):
AEP = Float(iotype='out', units='kW', desc='total annual energy output of wind farm')
def __init__(self, nDirections):
super(AEP, self).__init__()
self.add('power_directions', Array(np.zeros(nDirections), iotype='in', units='kW', desc='vector containing \
the power production at each wind direction ccw from north'))
self.add('windrose_frequencies', Array(np.zeros(nDirections), iotype='in', desc='vector containing \
the weighted frequency of wind at each direction ccw from east using \
direction too'))
# do not use these for any gradient calculations, only for output
self.add('power_directions_out', Array(np.zeros(nDirections), iotype='out', units='kW', desc='vector containing \
the power production at each wind direction ccw from north', deriv_ignore=True))
def execute(self):
#print 'in AEP'
# locally name input values
power_directions = self.power_directions
windrose_frequencies = self.windrose_frequencies
# number of hours in a year
hours = 8760.0
# calculate approximate AEP
AEP = sum(power_directions*windrose_frequencies)*hours
# promote AEP result to class attribute
self.AEP = AEP
self.power_directions_out = power_directions
#print 'AEP %s' % self.AEP
def list_deriv_vars(self):
# return ('power_directions',), ('AEP', 'power_directions_out')
return ('power_directions',), ('AEP',)
def provideJ(self):
#print 'entering AEP - provideJ'
# create local variables
windrose_frequencies = self.windrose_frequencies
ndirs = np.size(windrose_frequencies)
# number of hours in a year
hours = 8760.0
# calculate the derivative of outputs w.r.t. each wind direction
dAEP_dpower = np.ones(ndirs)*windrose_frequencies*hours
J = np.array([dAEP_dpower])
return J
class dist_const(Component):
parameters = VarTree(FLORISParameters(), iotype='in')
def __init__(self, nTurbines):
#print 'entering dist_const __init__'
super(dist_const, self).__init__()
# Explicitly size input arrays
self.add('turbineX', Array(np.zeros(nTurbines), iotype='in', \
desc='x coordinates of turbines in wind dir. ref. frame'))
self.add('turbineY', Array(np.zeros(nTurbines), iotype='in', \
desc='y coordinates of turbines in wind dir. ref. frame'))
# Explicitly size output array
self.add('separation', Array(np.zeros((nTurbines-1.)*nTurbines/2.), iotype='out', dtype='float', \
desc='spacing of all turbines in the wind farm'))
def execute(self):
#print 'in dist const'
turbineX = self.turbineX
turbineY = self.turbineY
nTurbines = turbineX.size
separation = np.zeros((nTurbines-1.)*nTurbines/2.)
k = 0
for i in range(0, nTurbines):
for j in range(i+1, nTurbines):
separation[k] = np.sqrt((turbineX[j]-turbineX[i])**2+(turbineY[j]-turbineY[i])**2)
k += 1
self.separation = separation
def list_deriv_vars(self):
return ('turbineX', 'turbineY'), ('separation',)
def provideJ(self):
#print 'entering dist const - provideJ'
tictot = time.time()
turbineX = self.turbineX
turbineY = self.turbineY
nTurbines = turbineX.size
J = np.zeros(((nTurbines-1.)*nTurbines/2., 2*nTurbines))
k = 0
for i in range(0, nTurbines):
for j in range(i+1, nTurbines):
J[k, j] = (turbineX[j]-turbineX[i])*((turbineX[j]-turbineX[i])**2+(turbineY[j]-turbineY[i])**2)**(-0.5)
J[k, i] = (turbineX[i]-turbineX[j])*((turbineX[j]-turbineX[i])**2+(turbineY[j]-turbineY[i])**2)**(-0.5)
J[k, j+nTurbines] = (turbineY[j]-turbineY[i])*((turbineX[j]-turbineX[i])**2 +
(turbineY[j]-turbineY[i])**2)**(-0.5)
J[k, i+nTurbines] = (turbineY[i]-turbineY[j])*((turbineX[j]-turbineX[i])**2 +
(turbineY[j]-turbineY[i])**2)**(-0.5)
k += 1
toctot = time.time()
#print 'done %s' % (toctot-tictot)
return J
class hull_const(Component):
def __init__(self, nVertices, nTurbines):
super(hull_const, self).__init__()
# Explicitly size input arrays
self.add('AX', Array(np.zeros(nVertices), iotype='in'))
self.add('AY', Array(np.zeros(nVertices), iotype='in'))
self.add('b', Array(np.zeros(nVertices), iotype='in'))
self.add('turbineX', Array(np.zeros(nTurbines), iotype='in', \
desc='x coordinates of turbines in wind dir. ref. frame'))
self.add('turbineY', Array(np.zeros(nTurbines), iotype='in', \
desc='y coordinates of turbines in wind dir. ref. frame'))
# Explicitly size output array
# (vector with positive elements if turbines outside of hull)
self.add('inout', Array(np.zeros(nVertices*nTurbines), iotype='out'))
def execute(self):
#print 'in hull const'
tictot = time.time()
AX = self.AX
AY = self.AY
b = self.b
turbineX = self.turbineX
turbineY = self.turbineY
nTurbines = turbineX.size
J = hull_const_J(AX, AY, nTurbines)
self.inout = (np.dot(J, np.concatenate((turbineX,turbineY))) - np.tile(b, (1,nTurbines))).flatten()
toctot = time.time()
#print 'done %s' % (toctot-tictot)
def list_deriv_vars(self):
return ('turbineX', 'turbineY',), ('inout',)
def provideJ(self):
#print 'in hull const - provide J'
tictot = time.time()
AX = self.AX
AY = self.AY
b = self.b
nTurbines = self.turbineX.size
J = hull_const_J(AX, AY, nTurbines)
toctot = time.time()
#print 'done %s' % (toctot-tictot)
return J
def hull_const_J(AX, AY, nTurbines):
J = np.concatenate((np.kron(np.eye(nTurbines),AX).transpose(),np.kron(np.eye(nTurbines),AY).transpose()),1)
return J