forked from a16z-infra/ai-getting-started
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpgvector.sql
40 lines (38 loc) · 1.16 KB
/
pgvector.sql
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
-- Reference: https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabase#create-a-table-and-search-function-in-your-database
-- Visit Supabase blogpost for more: https://supabase.com/blog/openai-embeddings-postgres-vector
-- Enable the pgvector extension to work with embedding vectors
create extension vector;
-- Create a table to store your documents
create table documents (
id bigserial primary key,
content text, -- corresponds to Document.pageContent
metadata jsonb, -- corresponds to Document.metadata
embedding vector(1536) -- 1536 works for OpenAI embeddings, change if needed
);
-- Create a function to search for documents
create function match_documents (
query_embedding vector(1536),
match_count int DEFAULT null,
filter jsonb DEFAULT '{}'
) returns table (
id bigint,
content text,
metadata jsonb,
similarity float
)
language plpgsql
as $$
#variable_conflict use_column
begin
return query
select
id,
content,
metadata,
1 - (documents.embedding <=> query_embedding) as similarity
from documents
where metadata @> filter
order by documents.embedding <=> query_embedding
limit match_count;
end;
$$;