forked from google/gemmlowp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmulti_thread_gemm.h
692 lines (600 loc) · 24 KB
/
multi_thread_gemm.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
// Copyright 2015 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// multi_thread_gemm.h: Multi-threaded GEMM entry point.
// Readers note: To understand this file, it is useful to first
// read and understand the much simpler single_thread_gemm.h.
#ifndef GEMMLOWP_INTERNAL_MULTI_THREAD_GEMM_H_
#define GEMMLOWP_INTERNAL_MULTI_THREAD_GEMM_H_
#include <vector>
#include "single_thread_gemm.h"
namespace gemmlowp {
// On X86 and ARM platforms we enable a busy-wait spinlock before waiting on a
// pthread conditional variable. In order to implement that correctly we need
// to put some explicit memory load/store barriers.
#if defined(GEMMLOWP_ALLOW_INLINE_ASM) && !defined(GEMMLOWP_NO_BUSYWAIT) && \
(defined(GEMMLOWP_ARM) || defined(GEMMLOWP_X86))
#define GEMMLOWP_USE_BUSYWAIT
const int kMaxBusyWaitNOPs = 32 * 1000 * 1000;
#define GEMMLOWP_NOP "nop\n"
#define GEMMLOWP_STRING_CONCAT_4(X) X X X X
#define GEMMLOWP_NOP4 GEMMLOWP_STRING_CONCAT_4(GEMMLOWP_NOP)
#define GEMMLOWP_NOP16 GEMMLOWP_STRING_CONCAT_4(GEMMLOWP_NOP4)
#define GEMMLOWP_NOP64 GEMMLOWP_STRING_CONCAT_4(GEMMLOWP_NOP16)
inline int Do256NOPs() {
asm volatile(GEMMLOWP_NOP64);
return 64;
}
#undef GEMMLOWP_STRING_CONCAT_4
#undef GEMMLOWP_NOP256
#undef GEMMLOWP_NOP64
#undef GEMMLOWP_NOP16
#undef GEMMLOWP_NOP4
#undef GEMMLOWP_NOP
inline void WriteBarrier() {
#if defined(_MSC_VER)
MemoryBarrier();
#elif defined(GEMMLOWP_ARM_32)
asm volatile("" ::: "memory");
#elif defined(GEMMLOWP_ARM_64)
asm volatile("dmb ishst" ::: "memory");
#elif defined(GEMMLOWP_X86)
asm volatile("sfence" ::: "memory");
#else
#error "Unsupported architecture for WriteBarrier."
#endif
}
inline void ReadBarrier() {
#if defined(_MSC_VER)
MemoryBarrier();
#elif defined(GEMMLOWP_ARM_32)
asm volatile("" ::: "memory");
#elif defined(GEMMLOWP_ARM_64)
asm volatile("dmb ishld" ::: "memory");
#elif defined(GEMMLOWP_X86)
asm volatile("lfence" ::: "memory");
#else
#error "Unsupported architecture for ReadBarrier."
#endif
}
#endif
// Waits until *var != initial_value.
//
// Returns the new value of *var. The guarantee here is that
// the return value is different from initial_value, and that that
// new value has been taken by *var at some point during the
// execution of this function. There is no guarantee that this is
// still the value of *var when this function returns, since *var is
// not assumed to be guarded by any lock.
//
// First does some busy-waiting for a fixed number of no-op cycles,
// then falls back to passive waiting for the given condvar, guarded
// by the given mutex.
//
// The idea of doing some initial busy-waiting is to help get
// better and more consistent multithreading benefits for small GEMM sizes.
// Busy-waiting help ensuring that if we need to wake up soon after having
// started waiting, then we can wake up quickly (as opposed to, say,
// having to wait to be scheduled again by the OS). On the other hand,
// we must still eventually revert to passive waiting for longer waits
// (e.g. worker threads having finished a GEMM and waiting until the next GEMM)
// so as to avoid permanently spinning.
//
template <typename T>
T WaitForVariableChange(volatile T* var, T initial_value, pthread_cond_t* cond,
pthread_mutex_t* mutex) {
#ifdef GEMMLOWP_USE_BUSYWAIT
// If we are on a platform that supports it, spin for some time.
{
int nops = 0;
// First, trivial case where the variable already changed value.
T new_value = *var;
if (new_value != initial_value) {
ReadBarrier();
return new_value;
}
// Then try busy-waiting.
while (nops < kMaxBusyWaitNOPs) {
nops += Do256NOPs();
new_value = *var;
if (new_value != initial_value) {
ReadBarrier();
return new_value;
}
}
}
#endif
// Finally, do real passive waiting.
pthread_mutex_lock(mutex);
T new_value;
while ((new_value = *var) == initial_value) {
pthread_cond_wait(cond, mutex);
}
assert(new_value != initial_value);
pthread_mutex_unlock(mutex);
return new_value;
}
// A BlockingCounter lets one thread to wait for N events to occur.
// This is how the master thread waits for all the worker threads
// to have finished working.
class BlockingCounter {
public:
BlockingCounter() : count_(0), initial_count_(0) {
pthread_cond_init(&cond_, nullptr);
pthread_mutex_init(&mutex_, nullptr);
}
~BlockingCounter() {
pthread_cond_destroy(&cond_);
pthread_mutex_destroy(&mutex_);
}
// Sets/resets the counter; initial_count is the number of
// decrementing events that the Wait() call will be waiting for.
void Reset(std::size_t initial_count) {
pthread_mutex_lock(&mutex_);
assert(count_ == 0);
initial_count_ = initial_count;
count_ = initial_count_;
pthread_mutex_unlock(&mutex_);
}
// Decrements the counter; if the counter hits zero, signals
// the thread that was waiting for that, and returns true.
// Otherwise (if the decremented count is still nonzero),
// returns false.
bool DecrementCount() {
pthread_mutex_lock(&mutex_);
assert(count_ > 0);
count_--;
#ifdef GEMMLOWP_USE_BUSYWAIT
WriteBarrier();
#endif
if (count_ == 0) {
pthread_cond_signal(&cond_);
}
bool retval = count_ == 0;
pthread_mutex_unlock(&mutex_);
return retval;
}
// Waits for the N other threads (N having been set by Reset())
// to hit the BlockingCounter.
void Wait() {
ScopedProfilingLabel label("BlockingCounter::Wait");
while (count_) {
#ifdef GEMMLOWP_USE_BUSYWAIT
ReadBarrier();
#else
// This is likely unnecessary, but is kept to ensure regressions are not
// introduced.
#ifndef _WIN32
asm volatile("" ::: "memory");
#endif
#endif
const std::size_t count_value = count_;
if (count_value) {
WaitForVariableChange(&count_, count_value, &cond_, &mutex_);
}
}
}
private:
pthread_cond_t cond_;
pthread_mutex_t mutex_;
std::size_t count_;
std::size_t initial_count_;
};
// A workload for a worker.
struct Task {
Task() : local_allocator(nullptr) {}
virtual ~Task() {}
virtual void Run() = 0;
Allocator* local_allocator;
};
// A worker thread.
class Worker {
public:
enum class State {
ThreadStartup, // The initial state before the thread main loop runs.
Ready, // Is not working, has not yet received new work to do.
HasWork, // Has work to do.
ExitAsSoonAsPossible // Should exit at earliest convenience.
};
explicit Worker(BlockingCounter* counter_to_decrement_when_ready)
: task_(nullptr),
state_(State::ThreadStartup),
counter_to_decrement_when_ready_(counter_to_decrement_when_ready) {
pthread_cond_init(&state_cond_, nullptr);
pthread_mutex_init(&state_mutex_, nullptr);
pthread_create(&thread_, nullptr, ThreadFunc, this);
}
~Worker() {
ChangeState(State::ExitAsSoonAsPossible);
pthread_join(thread_, nullptr);
pthread_cond_destroy(&state_cond_);
pthread_mutex_destroy(&state_mutex_);
}
// Changes State; may be called from either the worker thread
// or the master thread; however, not all state transitions are legal,
// which is guarded by assertions.
void ChangeState(State new_state) {
ScopedProfilingLabel label("Worker::ChangeState");
pthread_mutex_lock(&state_mutex_);
assert(new_state != state_);
switch (state_) {
case State::ThreadStartup:
assert(new_state == State::Ready);
break;
case State::Ready:
assert(new_state == State::HasWork ||
new_state == State::ExitAsSoonAsPossible);
break;
case State::HasWork:
assert(new_state == State::Ready ||
new_state == State::ExitAsSoonAsPossible);
break;
default:
abort();
}
state_ = new_state;
pthread_cond_signal(&state_cond_);
if (state_ == State::Ready) {
counter_to_decrement_when_ready_->DecrementCount();
}
pthread_mutex_unlock(&state_mutex_);
}
// Thread entry point.
void ThreadFunc() {
ScopedProfilingLabel label("Worker::ThreadFunc");
RegisterCurrentThreadForProfiling();
ChangeState(State::Ready);
// Thread main loop
while (true) {
// Get a state to act on
// In the 'Ready' state, we have nothing to do but to wait until
// we switch to another state.
State state_to_act_upon = WaitForVariableChange(
&state_, State::Ready, &state_cond_, &state_mutex_);
// We now have a state to act on, so act.
switch (state_to_act_upon) {
case State::HasWork:
// Got work to do! So do it, and then revert to 'Ready' state.
assert(task_);
task_->Run();
task_ = nullptr;
ChangeState(State::Ready);
break;
case State::ExitAsSoonAsPossible:
return;
default:
abort();
}
}
}
static void* ThreadFunc(void* arg) {
static_cast<Worker*>(arg)->ThreadFunc();
return nullptr;
}
// Called by the master thead to give this worker work to do.
// It is only legal to call this if the worker
void StartWork(Task* task) {
assert(!task_);
task->local_allocator = &local_allocator_;
task_ = task;
#ifdef GEMMLOWP_USE_BUSYWAIT
WriteBarrier();
#endif
assert(state_ == State::Ready);
ChangeState(State::HasWork);
}
private:
// The underlying thread.
pthread_t thread_;
// The task to be worked on.
Task* task_;
// The condition variable and mutex guarding state changes.
pthread_cond_t state_cond_;
pthread_mutex_t state_mutex_;
// The state enum tells if we're currently working, waiting for work, etc.
State state_;
// Each thread had a local allocator so they can allocate temporary
// buffers without blocking each other.
Allocator local_allocator_;
// pointer to the master's thread BlockingCounter object, to notify the
// master thread of when this worker switches to the 'Ready' state.
BlockingCounter* const counter_to_decrement_when_ready_;
};
// A very simple pool of workers, that only allows the very
// specific parallelization pattern that we use here:
// a fixed number of workers can be given work, and one then
// waits for all of them to finish.
//
// See MultiThreadGemmContextBase for how other WorkersPool implementations can
// be used. Note that in those implementations, StartWorker can be free to
// ignore the <index> value; that is, the caller of WorkersPool does not rely on
// <index> to order tasks with equal <index>.
class WorkersPool {
public:
WorkersPool() {}
~WorkersPool() {
for (auto w : workers_) {
delete w;
}
}
void Execute(const std::vector<Task*>& tasks) {
assert(tasks.size() >= 1);
// One of the tasks will be run on the current thread.
std::size_t workers_count = tasks.size() - 1;
CreateWorkers(workers_count);
assert(workers_count <= workers_.size());
counter_to_decrement_when_ready_.Reset(workers_count);
int n = 0;
std::for_each(tasks.begin(), --tasks.end(),
[this, &n](Task* task) { workers_[n++]->StartWork(task); });
// Execute the remaining workload immediately on the current thread.
Task* task = tasks.back();
task->local_allocator = &main_thread_task_allocator_;
task->Run();
// Wait for the workers submitted above to finish.
counter_to_decrement_when_ready_.Wait();
// Cleanup tasks (best to do this from the same thread that allocated
// the memory).
std::for_each(tasks.begin(), tasks.end(), [](Task* task) { delete task; });
}
private:
// Ensures that the pool has at least the given count of workers.
// If any new worker has to be created, this function waits for it to
// be ready.
void CreateWorkers(std::size_t workers_count) {
if (workers_.size() >= workers_count) {
return;
}
counter_to_decrement_when_ready_.Reset(workers_count - workers_.size());
while (workers_.size() < workers_count) {
workers_.push_back(new Worker(&counter_to_decrement_when_ready_));
}
counter_to_decrement_when_ready_.Wait();
}
// copy construction disallowed
WorkersPool(const WorkersPool&) = delete;
// The workers in this pool. They are owned by the pool:
// the pool creates workers and destroys them in its destructor.
std::vector<Worker*> workers_;
// The BlockingCounter used to wait for the workers.
BlockingCounter counter_to_decrement_when_ready_;
// For N-threaded operations, we will use only N-1 worker threads
// while the last task will be run directly on the main thread.
// It will then use this main_thread_task_allocator_; having a
// dedicated allocator for that (separate from the base allocator_)
// allows to use the same code for all tasks regardless of which
// thread they run on.
Allocator main_thread_task_allocator_;
};
// The task we use to implement a multi-threaded Gemm: a block of the
// RHS has been packed by the master thread; each worker thread
// then has to pack a block of the LHS and accumulate the Gemm of these
// packed LHS and RHS blocks.
template <typename KernelFormat, typename InputScalar, typename OutputScalar,
typename BitDepthParams, MapOrder LhsOrder, MapOrder RhsOrder,
MapOrder ResultOrder, typename LhsOffset, typename RhsOffset,
typename OutputPipelineType, typename GemmContextType>
struct GemmWithPackedRhsTask : Task {
typedef PackedSideBlock<typename KernelFormat::Lhs> PackedLhs;
typedef PackedSideBlock<typename KernelFormat::Rhs> PackedRhs;
GemmWithPackedRhsTask(GemmContextType* _context, const KernelBase& _kernel,
const MatrixMap<const InputScalar, LhsOrder>& _lhs,
const PackedRhs& _packed_rhs,
MatrixMap<OutputScalar, ResultOrder>* _result,
const MatrixBlockBounds& _result_block,
const LhsOffset& _lhs_offset,
const RhsOffset& _rhs_offset,
const BlockParams& _block_params,
const OutputPipelineType& _output_pipeline)
: context(_context),
kernel(_kernel),
lhs(_lhs),
packed_rhs(_packed_rhs),
result(*_result),
result_block(_result_block),
lhs_offset(_lhs_offset),
rhs_offset(_rhs_offset),
block_params(_block_params),
output_pipeline(_output_pipeline) {}
void Run() override {
ScopedProfilingLabel label("GemmWithPackedRhsTask");
const int rows = result_block.rows;
const int cols = result_block.cols;
const int depth = lhs.cols();
PackedLhs packed_lhs(Side::Lhs, local_allocator, block_params);
PackedResult packed_result(local_allocator, block_params);
local_allocator->Commit();
for (int c = 0; c < cols; c += block_params.l2_cols) {
int cs = std::min(block_params.l2_cols, cols - c);
for (int r = 0; r < rows; r += block_params.l2_rows) {
int rs = std::min(block_params.l2_rows, rows - r);
PackLhs(&packed_lhs, lhs.block(r, 0, rs, depth));
Compute(kernel, block_params, &packed_result, packed_lhs, packed_rhs,
depth);
auto curr_result_block = MatrixBlockBounds(
result_block.start_row + r, result_block.start_col + c, rs, cs);
UnpackResult<KernelFormat>(
&result, curr_result_block, packed_result, depth,
packed_lhs.sums_of_each_slice(), packed_rhs.sums_of_each_slice(),
lhs_offset.block(curr_result_block.start_row, rs),
rhs_offset.block(curr_result_block.start_col, cs), output_pipeline);
}
}
local_allocator->Decommit();
}
const GemmContextType* context;
const KernelBase& kernel;
const MatrixMap<const InputScalar, LhsOrder> lhs;
const PackedRhs packed_rhs;
MatrixMap<OutputScalar, ResultOrder> result;
const MatrixBlockBounds result_block;
const LhsOffset& lhs_offset;
const RhsOffset& rhs_offset;
const BlockParams& block_params;
const OutputPipelineType& output_pipeline;
};
// This base class for multi-threading allows subclasses to implement their own
// workers_pool() method. See MultiThreadGemmContext below for an example;
// any other implementation of workers_pool() must return an object with the
// same public methods as WorkersPool.
class MultiThreadGemmContextBase : public SingleThreadGemmContext {
public:
void set_max_num_threads(int n) { max_num_threads_ = n; }
int max_num_threads() const { return max_num_threads_; }
protected:
// The maximum number of worker threads to use (including
// the master thread).
// The default value 1 means single-threading. That is the default
// because gemmlowp's primary target is mobile hardware, where thermal
// constraints usually mean that it may not be realistic to use more
// than 1 CPU core even if multiple cores are present.
// The special value 0 means try to detect the number of hardware threads.
// Note: this assumes that all CPU cores are equivalent. That assumption
// is defeated on big.LITTLE ARM devices, where we have no API to query
// the number of big cores (which is typically what we would want to use,
// leaving aside above-mentioned thermal issues). That is the other reason
// why the best compromise here is to let max_num_threads_ default to 1,
// so users who want multi-threading have to make the decision of how many
// threads to use by themselves.
int max_num_threads_ = 1;
};
class MultiThreadGemmContext : public MultiThreadGemmContextBase {
public:
WorkersPool* workers_pool() { return &workers_pool_; }
private:
// The workers pool used by MultiThreadGemm. Making
// this part of the context allows it to be persistent,
// avoiding recreating threads on every Gemm.
WorkersPool workers_pool_;
};
// Determines how many threads should be used for a given Gemm
// operation.
template <int KernelRows>
inline int HowManyThreads(int max_num_threads, int rows, int cols, int depth) {
// Early-exit in the default case where multi-threading is disabled.
if (max_num_threads == 1) {
return 1;
}
// Determine the maximum number of threads.
int max_count = GetHardwareConcurrency(max_num_threads);
// Basic calculation: take into account max pool size, and
// how many rows we have to feed our kernel.
// The motivation for an absolute minimum number of rows per thread,
// potentially higher than KernelRows, is that very thin thread workload
// currently defeat assumptions of the AddMod generator, resulting
// in substantial bias in TestWithRealData on 24 threads.
// Ideally, the AddMod generator should be aware of global (r,c) coordinates
// so as to be independent of the number of threads.
static const int AbsoluteMinRowsPerThread = 16;
static const int MinRowsPerThread = KernelRows > AbsoluteMinRowsPerThread
? KernelRows
: AbsoluteMinRowsPerThread;
int thread_count = std::min(max_count, CeilQuotient(rows, MinRowsPerThread));
// At this point for small products we already have thread_count==1 so
// we can avoid doing more work; otherwise, we still want to check
// that the cubic size (rows*cols*depth) is big enough to keep
// workers_ busy.
if (thread_count > 1) {
// Empirically determined value.
static const std::uint64_t min_cubic_size_per_thread = 64 * 1024;
// We can only multiply two out of three sizes without risking overflow
const std::uint64_t cubic_size =
std::uint64_t(rows) * std::uint64_t(cols) * std::uint64_t(depth);
thread_count =
std::min(thread_count, int(cubic_size / min_cubic_size_per_thread));
if (thread_count < 1) {
thread_count = 1;
}
}
assert(thread_count > 0 && thread_count <= max_count);
return thread_count;
}
// The main multi-threaded Gemm function.
// To understand it, first read the code of SingleThreadGemm().
// The parallelization scheme used here is to have this master function
// pack a block of RHS and then start worker threads to pack a block of LHS
// each, and accumulate the corresponding products.
template <typename KernelFormat, typename InputScalar, typename OutputScalar,
typename BitDepthParams, MapOrder LhsOrder, MapOrder RhsOrder,
MapOrder ResultOrder, typename LhsOffset, typename RhsOffset,
typename OutputPipelineType, typename GemmContextType>
void MultiThreadGemm(GemmContextType* context, const KernelBase& kernel,
const MatrixMap<const InputScalar, LhsOrder>& lhs,
const MatrixMap<const InputScalar, RhsOrder>& rhs,
MatrixMap<OutputScalar, ResultOrder>* result,
const LhsOffset& lhs_offset, const RhsOffset& rhs_offset,
const OutputPipelineType& output_pipeline) {
ScopedProfilingLabel label("gemmlowp::MultiThreadGemm");
assert(lhs.cols() == rhs.rows());
int rows = result->rows();
int cols = result->cols();
int depth = lhs.cols();
// zero sizes should have been caught earlier and early-returned.
assert(rows > 0);
assert(cols > 0);
assert(depth > 0);
// The case of rows<cols should have been caught earlier and transposed.
assert(rows >= cols);
const int thread_count = HowManyThreads<KernelFormat::kRows>(
context->max_num_threads(), rows, cols, depth);
if (thread_count == 1) {
return SingleThreadGemm<KernelFormat, InputScalar, OutputScalar,
BitDepthParams>(context, kernel, lhs, rhs, result,
lhs_offset, rhs_offset,
output_pipeline);
}
assert(thread_count > 1);
// Simple 1:1 mapping of tasks to physical cores, which is very important
// to getting good multithreaded performance, specially for not-very-large
// GEMMs, and especially on Android.
const int task_count = thread_count;
Allocator* allocator = context->allocator();
auto* workers_pool = context->workers_pool();
BlockParams block_params;
block_params.Init<KernelFormat>(
rows, cols, depth, task_count, context->l1_bytes_to_use(),
context->l2_bytes_to_use(), context->l2_rhs_factor());
PackedSideBlock<typename KernelFormat::Rhs> packed_rhs(Side::Rhs, allocator,
block_params);
allocator->Commit();
// We loop over large blocks of the RHS.
for (int c = 0; c < cols; c += block_params.l2_cols) {
int cs = std::min(block_params.l2_cols, cols - c);
// Pack a large block of the RHS.
PackRhs(&packed_rhs, rhs.block(0, c, depth, cs));
// Give work to each worker.
std::vector<Task*> tasks;
int next_start_row = 0;
for (int n = 0; n < task_count; ++n) {
int start_row = next_start_row;
next_start_row = std::min(
rows, RoundUp<KernelFormat::kRows>(rows * (n + 1) / task_count));
int block_rows = next_start_row - start_row;
auto lhs_block = lhs.block(start_row, 0, block_rows, depth);
typedef GemmWithPackedRhsTask<KernelFormat, InputScalar, OutputScalar,
BitDepthParams, LhsOrder, RhsOrder,
ResultOrder, LhsOffset, RhsOffset,
OutputPipelineType, GemmContextType>
TaskType;
tasks.push_back(
new TaskType(context, kernel, lhs_block, packed_rhs, result,
MatrixBlockBounds(start_row, c, block_rows, cs),
lhs_offset, rhs_offset, block_params, output_pipeline));
}
// Execute the work on the workers (and partially on this thread).
workers_pool->Execute(tasks);
}
allocator->Decommit();
}
} // namespace gemmlowp
#endif // GEMMLOWP_INTERNAL_MULTI_THREAD_GEMM_H_