-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmamba_sys.py
1320 lines (1101 loc) · 51.9 KB
/
mamba_sys.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import time
import math
import copy
from functools import partial
from typing import Optional, Callable
import timm
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from einops import rearrange, repeat
from timm.models.layers import DropPath, trunc_normal_
from fvcore.nn import FlopCountAnalysis, flop_count_str, flop_count, parameter_count
DropPath.__repr__ = lambda self: f"timm.DropPath({self.drop_prob})"
# import mamba_ssm.selective_scan_fn (in which causal_conv1d is needed)
try:
from mamba_ssm.ops.selective_scan_interface import selective_scan_fn, selective_scan_ref
except:
pass
# an alternative for mamba_ssm
try:
from selective_scan import selective_scan_fn as selective_scan_fn_v1
from selective_scan import selective_scan_ref as selective_scan_ref_v1
except:
pass
def flops_selective_scan_ref(B=1, L=256, D=768, N=16, with_D=True, with_Z=False, with_Group=True, with_complex=False):
"""
u: r(B D L)
delta: r(B D L)
A: r(D N)
B: r(B N L)
C: r(B N L)
D: r(D)
z: r(B D L)
delta_bias: r(D), fp32
ignores:
[.float(), +, .softplus, .shape, new_zeros, repeat, stack, to(dtype), silu]
"""
import numpy as np
# fvcore.nn.jit_handles
def get_flops_einsum(input_shapes, equation):
np_arrs = [np.zeros(s) for s in input_shapes]
optim = np.einsum_path(equation, *np_arrs, optimize="optimal")[1]
for line in optim.split("\n"):
if "optimized flop" in line.lower():
# divided by 2 because we count MAC (multiply-add counted as one flop)
flop = float(np.floor(float(line.split(":")[-1]) / 2))
return flop
assert not with_complex
flops = 0 # below code flops = 0
if False:
...
"""
dtype_in = u.dtype
u = u.float()
delta = delta.float()
if delta_bias is not None:
delta = delta + delta_bias[..., None].float()
if delta_softplus:
delta = F.softplus(delta)
batch, dim, dstate = u.shape[0], A.shape[0], A.shape[1]
is_variable_B = B.dim() >= 3
is_variable_C = C.dim() >= 3
if A.is_complex():
if is_variable_B:
B = torch.view_as_complex(rearrange(B.float(), "... (L two) -> ... L two", two=2))
if is_variable_C:
C = torch.view_as_complex(rearrange(C.float(), "... (L two) -> ... L two", two=2))
else:
B = B.float()
C = C.float()
x = A.new_zeros((batch, dim, dstate))
ys = []
"""
flops += get_flops_einsum([[B, D, L], [D, N]], "bdl,dn->bdln")
if with_Group:
flops += get_flops_einsum([[B, D, L], [B, N, L], [B, D, L]], "bdl,bnl,bdl->bdln")
else:
flops += get_flops_einsum([[B, D, L], [B, D, N, L], [B, D, L]], "bdl,bdnl,bdl->bdln")
if False:
...
"""
deltaA = torch.exp(torch.einsum('bdl,dn->bdln', delta, A))
if not is_variable_B:
deltaB_u = torch.einsum('bdl,dn,bdl->bdln', delta, B, u)
else:
if B.dim() == 3:
deltaB_u = torch.einsum('bdl,bnl,bdl->bdln', delta, B, u)
else:
B = repeat(B, "B G N L -> B (G H) N L", H=dim // B.shape[1])
deltaB_u = torch.einsum('bdl,bdnl,bdl->bdln', delta, B, u)
if is_variable_C and C.dim() == 4:
C = repeat(C, "B G N L -> B (G H) N L", H=dim // C.shape[1])
last_state = None
"""
in_for_flops = B * D * N
if with_Group:
in_for_flops += get_flops_einsum([[B, D, N], [B, D, N]], "bdn,bdn->bd")
else:
in_for_flops += get_flops_einsum([[B, D, N], [B, N]], "bdn,bn->bd")
flops += L * in_for_flops
if False:
...
"""
for i in range(u.shape[2]):
x = deltaA[:, :, i] * x + deltaB_u[:, :, i]
if not is_variable_C:
y = torch.einsum('bdn,dn->bd', x, C)
else:
if C.dim() == 3:
y = torch.einsum('bdn,bn->bd', x, C[:, :, i])
else:
y = torch.einsum('bdn,bdn->bd', x, C[:, :, :, i])
if i == u.shape[2] - 1:
last_state = x
if y.is_complex():
y = y.real * 2
ys.append(y)
y = torch.stack(ys, dim=2) # (batch dim L)
"""
if with_D:
flops += B * D * L
if with_Z:
flops += B * D * L
if False:
...
"""
out = y if D is None else y + u * rearrange(D, "d -> d 1")
if z is not None:
out = out * F.silu(z)
out = out.to(dtype=dtype_in)
"""
return flops
def selective_scan_flop_jit(inputs, outputs):
# xs, dts, As, Bs, Cs, Ds (skip), z (skip), dt_projs_bias (skip)
assert inputs[0].debugName().startswith("xs") # (B, D, L)
assert inputs[2].debugName().startswith("As") # (D, N)
assert inputs[3].debugName().startswith("Bs") # (D, N)
with_Group = len(inputs[3].type().sizes()) == 4
with_D = inputs[5].debugName().startswith("Ds")
if not with_D:
with_z = inputs[5].debugName().startswith("z")
else:
with_z = inputs[6].debugName().startswith("z")
B, D, L = inputs[0].type().sizes()
N = inputs[2].type().sizes()[1]
flops = flops_selective_scan_ref(B=B, L=L, D=D, N=N, with_D=with_D, with_Z=with_z, with_Group=with_Group)
return flops
class PatchEmbed2D(nn.Module):
r""" Image to Patch Embedding
Args:
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None, **kwargs):
super().__init__()
if isinstance(patch_size, int):
patch_size = (patch_size, patch_size)
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
x = self.proj(x).permute(0, 2, 3, 1)
if self.norm is not None:
x = self.norm(x)
return x
class PatchMerging2D(nn.Module):
r""" Patch Merging Layer.
Args:
input_resolution (tuple[int]): Resolution of input feature.
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x):
B, H, W, C = x.shape
SHAPE_FIX = [-1, -1]
if (W % 2 != 0) or (H % 2 != 0):
print(f"Warning, x.shape {x.shape} is not match even ===========", flush=True)
SHAPE_FIX[0] = H // 2
SHAPE_FIX[1] = W // 2
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
if SHAPE_FIX[0] > 0:
x0 = x0[:, :SHAPE_FIX[0], :SHAPE_FIX[1], :]
x1 = x1[:, :SHAPE_FIX[0], :SHAPE_FIX[1], :]
x2 = x2[:, :SHAPE_FIX[0], :SHAPE_FIX[1], :]
x3 = x3[:, :SHAPE_FIX[0], :SHAPE_FIX[1], :]
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
x = x.view(B, H//2, W//2, 4 * C) # B H/2*W/2 4*C
x = self.norm(x)
x = self.reduction(x)
return x
# class PatchExpand(nn.Module):
# def __init__(self, dim, dim_scale=2, norm_layer=nn.LayerNorm):
# super().__init__()
# # self.dim = dim
# self.dim_scale = dim_scale
# self.conv = nn.Conv2d(dim, dim // dim_scale, 1, 1, 0, bias=False)
# # # Assuming dim_scale is 2, which means increasing spatial dimensions by a factor of 2
# # if dim_scale == 2:
# # self.pixel_shuffle = nn.PixelShuffle(upscale_factor=2)
# # # Adjusting the number of channels after pixel shuffle
# # self.adjust_channels = nn.Conv2d(dim // 4, dim // dim_scale, kernel_size=1, stride=1, padding=0, bias=False)
# # else:
# # # If no scaling is needed, use an identity mapping
# # self.pixel_shuffle = nn.Identity()
# # self.adjust_channels = nn.Identity()
# # self.norm = norm_layer(dim // dim_scale)
# def forward(self, x):
# # Pixel shuffle expects the input in the format (B, C, H, W)
# x = rearrange(x, 'b h w c -> b c h w')
# if self.dim_scale == 2:
# x = F.interpolate(x, scale_factor=self.dim_scale, mode='bilinear', align_corners=True)
# x = self.conv(x)
# # else:
# # x = F.interpolate(x, scale_factor=self.dim_scale, mode='bilinear', align_corners=True)
# x = rearrange(x, 'b c h w -> b h w c')
# return x
class PatchExpand(nn.Module):
def __init__(self, dim, dim_scale=2, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.dim_scale = dim_scale
# Assuming dim_scale is 2, which means increasing spatial dimensions by a factor of 2
if dim_scale == 2:
self.pixel_shuffle = nn.PixelShuffle(upscale_factor=2)
# Adjusting the number of channels after pixel shuffle
self.adjust_channels = nn.Conv2d(dim // 4, dim // dim_scale, kernel_size=1, stride=1, padding=0, bias=False)
else:
# If no scaling is needed, use an identity mapping
self.pixel_shuffle = nn.Identity()
self.adjust_channels = nn.Identity()
self.norm = norm_layer(dim // dim_scale)
def forward(self, x):
# Pixel shuffle expects the input in the format (B, C, H, W)
x = rearrange(x, 'b h w c -> b c h w')
if self.dim_scale == 2:
x = self.pixel_shuffle(x)
x = self.adjust_channels(x)
# Convert back to the original format for normalization
x = rearrange(x, 'b c h w -> b h w c')
x = self.norm(x)
return x
# class PatchExpand(nn.Module):
# def __init__(self, dim, dim_scale=2, norm_layer=nn.LayerNorm):
# super().__init__()
# self.dim = dim
# self.expand = nn.Linear(
# dim, 2*dim, bias=False) if dim_scale == 2 else nn.Identity()
# self.norm = norm_layer(dim // dim_scale)
# def forward(self, x):
# x = self.expand(x)
# B, H, W, C = x.shape
# x = rearrange(x, 'b h w (p1 p2 c)-> b (h p1) (w p2) c', p1=2, p2=2, c=C//4)
# x= self.norm(x)
return x
# class FinalPatchExpand_X4(nn.Module):
# def __init__(self, dim, dim_scale=4, norm_layer=nn.LayerNorm):
# super().__init__()
# # self.dim = dim
# # self.dim_scale = dim_scale
# # # Assuming dim_scale is 2, which means increasing spatial dimensions by a factor of 2
# # if dim_scale == 4:
# # self.pixel_shuffle = nn.PixelShuffle(upscale_factor=4)
# # # Adjusting the number of channels after pixel shuffle
# # self.adjust_channels = nn.Conv2d(dim // 16, dim, kernel_size=1, stride=1, padding=0, bias=False)
# # else:
# # # If no scaling is needed, use an identity mapping
# # self.pixel_shuffle = nn.Identity()
# # self.adjust_channels = nn.Identity()
# # self.norm = norm_layer(dim)
# def forward(self, x):
# x = rearrange(x, 'b h w c -> b c h w')
# x = F.interpolate(x, scale_factor=4, mode='bilinear', align_corners=True)
# x = rearrange(x, 'b c h w -> b h w c')
# return x
class FinalPatchExpand_X4(nn.Module):
def __init__(self, dim, dim_scale=4, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.dim_scale = dim_scale
self.expand = nn.Linear(dim, 16*dim, bias=False)
self.output_dim = dim
self.norm = norm_layer(self.output_dim)
def forward(self, x):
x = self.expand(x)
B, H, W, C = x.shape
x = rearrange(x, 'b h w (p1 p2 c)-> b (h p1) (w p2) c', p1=self.dim_scale, p2=self.dim_scale, c=C//(self.dim_scale**2))
x= self.norm(x)
return x
class SS2D(nn.Module):
def __init__(
self,
d_model,
d_state=16,
# d_state="auto", # 20240109
d_conv=3,
expand=0.5,
dt_rank="auto",
dt_min=0.001,
dt_max=0.1,
dt_init="random",
dt_scale=1.0,
dt_init_floor=1e-4,
dropout=0.,
conv_bias=True,
bias=False,
device=None,
dtype=None,
**kwargs,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.d_model = d_model
self.d_state = d_state
# self.d_state = math.ceil(self.d_model / 6) if d_state == "auto" else d_model # 20240109
self.d_conv = d_conv
self.expand = expand
self.d_inner = int(self.expand * self.d_model)
self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank
self.in_proj = nn.Linear(self.d_model, self.d_inner * 2, bias=bias, **factory_kwargs)
self.conv2d = nn.Conv2d(
in_channels=self.d_inner,
out_channels=self.d_inner,
groups=self.d_inner,
bias=conv_bias,
kernel_size=d_conv,
padding=(d_conv - 1) // 2,
**factory_kwargs,
)
self.channel_attention = ChannelAttentionModule(self.d_inner)
self.spatial_attention = SpatialAttentionModule()
self.act = nn.SiLU()
self.x_proj = (
nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs),
nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs),
nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs),
nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs),
)
self.x_proj_weight = nn.Parameter(torch.stack([t.weight for t in self.x_proj], dim=0)) # (K=4, N, inner)
del self.x_proj
self.dt_projs = (
self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, **factory_kwargs),
self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, **factory_kwargs),
self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, **factory_kwargs),
self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, **factory_kwargs),
)
self.dt_projs_weight = nn.Parameter(torch.stack([t.weight for t in self.dt_projs], dim=0)) # (K=4, inner, rank)
self.dt_projs_bias = nn.Parameter(torch.stack([t.bias for t in self.dt_projs], dim=0)) # (K=4, inner)
del self.dt_projs
self.A_logs = self.A_log_init(self.d_state, self.d_inner, copies=4, merge=True) # (K=4, D, N)
self.Ds = self.D_init(self.d_inner, copies=4, merge=True) # (K=4, D, N)
self.forward_core = self.forward_core_windows
# self.forward_core = self.forward_corev0_seq
# self.forward_core = self.forward_corev1
self.out_norm = nn.LayerNorm(self.d_inner)
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
self.dropout = nn.Dropout(dropout) if dropout > 0. else None
@staticmethod
def dt_init(dt_rank, d_inner, dt_scale=1.0, dt_init="random", dt_min=0.001, dt_max=0.1, dt_init_floor=1e-4, **factory_kwargs):
dt_proj = nn.Linear(dt_rank, d_inner, bias=True, **factory_kwargs)
# Initialize special dt projection to preserve variance at initialization
dt_init_std = dt_rank**-0.5 * dt_scale
if dt_init == "constant":
nn.init.constant_(dt_proj.weight, dt_init_std)
elif dt_init == "random":
nn.init.uniform_(dt_proj.weight, -dt_init_std, dt_init_std)
else:
raise NotImplementedError
# Initialize dt bias so that F.softplus(dt_bias) is between dt_min and dt_max
dt = torch.exp(
torch.rand(d_inner, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min))
+ math.log(dt_min)
).clamp(min=dt_init_floor)
# Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
inv_dt = dt + torch.log(-torch.expm1(-dt))
with torch.no_grad():
dt_proj.bias.copy_(inv_dt)
# Our initialization would set all Linear.bias to zero, need to mark this one as _no_reinit
dt_proj.bias._no_reinit = True
return dt_proj
@staticmethod
def A_log_init(d_state, d_inner, copies=1, device=None, merge=True):
# S4D real initialization
A = repeat(
torch.arange(1, d_state + 1, dtype=torch.float32, device=device),
"n -> d n",
d=d_inner,
).contiguous()
A_log = torch.log(A) # Keep A_log in fp32
if copies > 1:
A_log = repeat(A_log, "d n -> r d n", r=copies)
if merge:
A_log = A_log.flatten(0, 1)
A_log = nn.Parameter(A_log)
A_log._no_weight_decay = True
return A_log
@staticmethod
def D_init(d_inner, copies=1, device=None, merge=True):
# D "skip" parameter
D = torch.ones(d_inner, device=device)
if copies > 1:
D = repeat(D, "n1 -> r n1", r=copies)
if merge:
D = D.flatten(0, 1)
D = nn.Parameter(D) # Keep in fp32
D._no_weight_decay = True
return D
def forward_core_windows(self, x: torch.Tensor, layer=1):
return self.forward_corev0(x)
if layer == 1:
return self.forward_corev0(x)
downsampled_4 = F.avg_pool2d(x, kernel_size=2, stride=2)
processed_4 = self.forward_corev0(downsampled_4)
processed_4 = processed_4.permute(0, 3, 1, 2)
restored_4 = F.interpolate(processed_4, scale_factor=2, mode='nearest')
restored_4 = restored_4.permute(0, 2, 3, 1)
if layer == 2:
output = (self.forward_corev0(x) + restored_4) / 2.0
downsampled_8 = F.avg_pool2d(x, kernel_size=4, stride=4)
processed_8 = self.forward_corev0(downsampled_8)
processed_8 = processed_8.permute(0, 3, 1, 2)
restored_8 = F.interpolate(processed_8, scale_factor=4, mode='nearest')
restored_8 = restored_8.permute(0, 2, 3, 1)
output = (self.forward_corev0(x) + restored_4 + restored_8) / 3.0
return output
# B C H W
num_splits = 2 ** layer
split_size = x.shape[2] // num_splits # Assuming H == W and is divisible by 2**layer
# Use unfold to create windows
x_unfolded = x.unfold(2, split_size, split_size).unfold(3, split_size, split_size)
x_unfolded = x_unfolded.contiguous().view(-1, x.size(1), split_size, split_size)
# Process all splits at once
processed_splits = self.forward_corev0(x_unfolded)
processed_splits = processed_splits.permute(0, 3, 1, 2)
# Reshape to get the splits back into their original positions and then permute to align dimensions
processed_splits = processed_splits.view(x.size(0), num_splits, num_splits, x.size(1), split_size, split_size)
processed_splits = processed_splits.permute(0, 3, 1, 4, 2, 5).contiguous()
processed_splits = processed_splits.view(x.size(0), x.size(1), x.size(2), x.size(3))
processed_splits = processed_splits.permute(0, 2, 3, 1)
return processed_splits
# num_splits = 2 ** layer
# split_size = x.shape[2] // num_splits # Assuming H == W and is divisible by 2**layer
# outputs = []
# for i in range(num_splits):
# row_outputs = []
# for j in range(num_splits):
# sub_x = x[:, :, i*split_size:(i+1)*split_size, j*split_size:(j+1)*split_size].contiguous()
# processed = self.forward_corev0(sub_x)
# row_outputs.append(processed)
# # Concatenate all column splits for current row
# outputs.append(torch.cat(row_outputs, dim=2))
# # Concatenate all rows
# final_output = torch.cat(outputs, dim=1)
return final_output
def forward_corev0(self, x: torch.Tensor):
self.selective_scan = selective_scan_fn
B, C, H, W = x.shape
L = H * W
K = 4
x_hwwh = torch.stack([x.view(B, -1, L), torch.transpose(x, dim0=2, dim1=3).contiguous().view(B, -1, L)], dim=1).view(B, 2, -1, L)
xs = torch.cat([x_hwwh, torch.flip(x_hwwh, dims=[-1])], dim=1) # (b, k, d, l)
x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs.view(B, K, -1, L), self.x_proj_weight)
# x_dbl = x_dbl + self.x_proj_bias.view(1, K, -1, 1)
dts, Bs, Cs = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=2)
dts = torch.einsum("b k r l, k d r -> b k d l", dts.view(B, K, -1, L), self.dt_projs_weight)
xs = xs.float().view(B, -1, L) # (b, k * d, l)
dts = dts.contiguous().float().view(B, -1, L) # (b, k * d, l)
Bs = Bs.float().view(B, K, -1, L) # (b, k, d_state, l)
Cs = Cs.float().view(B, K, -1, L) # (b, k, d_state, l)
Ds = self.Ds.float().view(-1) # (k * d)
As = -torch.exp(self.A_logs.float()).view(-1, self.d_state) # (k * d, d_state)
dt_projs_bias = self.dt_projs_bias.float().view(-1) # (k * d)
out_y = self.selective_scan(
xs, dts,
As, Bs, Cs, Ds, z=None,
delta_bias=dt_projs_bias,
delta_softplus=True,
return_last_state=False,
).view(B, K, -1, L)
assert out_y.dtype == torch.float
inv_y = torch.flip(out_y[:, 2:4], dims=[-1]).view(B, 2, -1, L)
wh_y = torch.transpose(out_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)
invwh_y = torch.transpose(inv_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)
y = out_y[:, 0] + inv_y[:, 0] + wh_y + invwh_y
y = torch.transpose(y, dim0=1, dim1=2).contiguous().view(B, H, W, -1)
y = self.out_norm(y).to(x.dtype)
return y
def forward_corev0_seq(self, x: torch.Tensor):
self.selective_scan = selective_scan_fn
B, C, H, W = x.shape
L = H * W
K = 4
x_hwwh = torch.stack([x.view(B, -1, L), torch.transpose(x, dim0=2, dim1=3).contiguous().view(B, -1, L)], dim=1).view(B, 2, -1, L)
xs = torch.cat([x_hwwh, torch.flip(x_hwwh, dims=[-1])], dim=1) # (b, k, d, l)
x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs.view(B, K, -1, L), self.x_proj_weight)
# x_dbl = x_dbl + self.x_proj_bias.view(1, K, -1, 1)
dts, Bs, Cs = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=2)
dts = torch.einsum("b k r l, k d r -> b k d l", dts.view(B, K, -1, L), self.dt_projs_weight)
xs = xs.float().view(B, -1, L) # (b, k * d, l)
dts = dts.contiguous().float().view(B, -1, L) # (b, k * d, l)
Bs = Bs.float().view(B, K, -1, L) # (b, k, d_state, l)
Cs = Cs.float().view(B, K, -1, L) # (b, k, d_state, l)
Ds = self.Ds.float().view(-1) # (k * d)
As = -torch.exp(self.A_logs.float()).view(-1, self.d_state) # (k * d, d_state)
dt_projs_bias = self.dt_projs_bias.float().view(-1) # (k * d)
out_y = []
for i in range(4):
yi = self.selective_scan(
xs[:, i], dts[:, i],
As[i], Bs[:, i], Cs[:, i], Ds[i],
delta_bias=dt_projs_bias[i],
delta_softplus=True,
).view(B, -1, L)
out_y.append(yi)
out_y = torch.stack(out_y, dim=1)
assert out_y.dtype == torch.float
inv_y = torch.flip(out_y[:, 2:4], dims=[-1]).view(B, 2, -1, L)
wh_y = torch.transpose(out_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)
invwh_y = torch.transpose(inv_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)
y = out_y[:, 0] + inv_y[:, 0] + wh_y + invwh_y
y = torch.transpose(y, dim0=1, dim1=2).contiguous().view(B, H, W, -1)
y = self.out_norm(y).to(x.dtype)
return y
def forward_corev1(self, x: torch.Tensor):
self.selective_scan = selective_scan_fn_v1
B, C, H, W = x.shape
L = H * W
K = 4
x_hwwh = torch.stack([x.view(B, -1, L), torch.transpose(x, dim0=2, dim1=3).contiguous().view(B, -1, L)], dim=1).view(B, 2, -1, L)
xs = torch.cat([x_hwwh, torch.flip(x_hwwh, dims=[-1])], dim=1) # (b, k, d, l)
x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs.view(B, K, -1, L), self.x_proj_weight)
# x_dbl = x_dbl + self.x_proj_bias.view(1, K, -1, 1)
dts, Bs, Cs = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=2)
dts = torch.einsum("b k r l, k d r -> b k d l", dts.view(B, K, -1, L), self.dt_projs_weight)
# dts = dts + self.dt_projs_bias.view(1, K, -1, 1)
xs = xs.view(B, -1, L) # (b, k * d, l)
dts = dts.contiguous().view(B, -1, L) # (b, k * d, l)
Bs = Bs.view(B, K, -1, L) # (b, k, d_state, l)
Cs = Cs.view(B, K, -1, L) # (b, k, d_state, l)
As = -torch.exp(self.A_logs.float()).view(-1, self.d_state) # (k * d, d_state)
Ds = self.Ds.view(-1) # (k * d)
dt_projs_bias = self.dt_projs_bias.view(-1) # (k * d)
# print(self.Ds.dtype, self.A_logs.dtype, self.dt_projs_bias.dtype, flush=True) # fp16, fp16, fp16
out_y = self.selective_scan(
xs, dts,
As, Bs, Cs, Ds,
delta_bias=dt_projs_bias,
delta_softplus=True,
).view(B, K, -1, L)
assert out_y.dtype == torch.float16
inv_y = torch.flip(out_y[:, 2:4], dims=[-1]).view(B, 2, -1, L)
wh_y = torch.transpose(out_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)
invwh_y = torch.transpose(inv_y[:, 1].view(B, -1, W, H), dim0=2, dim1=3).contiguous().view(B, -1, L)
y = out_y[:, 0].float() + inv_y[:, 0].float() + wh_y.float() + invwh_y.float()
y = torch.transpose(y, dim0=1, dim1=2).contiguous().view(B, H, W, -1)
y = self.out_norm(y).to(x.dtype)
return y
def forward(self, x: torch.Tensor, layer=1, **kwargs):
B, H, W, C = x.shape
xz = self.in_proj(x)
x, z = xz.chunk(2, dim=-1) # (b, h, w, d)
z = z.permute(0, 3, 1, 2)
z = self.channel_attention(z) * z
z = self.spatial_attention(z) * z
z = z.permute(0, 2, 3, 1).contiguous()
x = x.permute(0, 3, 1, 2).contiguous()
x = self.act(self.conv2d(x)) # (b, d, h, w)
y = self.forward_core(x, layer)
y = y * F.silu(z)
out = self.out_proj(y)
if self.dropout is not None:
out = self.dropout(out)
return out
class VSSBlock(nn.Module):
def __init__(
self,
hidden_dim: int = 0,
drop_path: float = 0,
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
attn_drop_rate: float = 0,
d_state: int = 16,
layer: int = 1,
**kwargs,
):
super().__init__()
factor = 2.0
d_model = int(hidden_dim // factor)
self.down = nn.Linear(hidden_dim, d_model)
self.up = nn.Linear(d_model, hidden_dim)
self.ln_1 = norm_layer(d_model)
self.self_attention = SS2D(d_model=d_model, dropout=attn_drop_rate, d_state=d_state, **kwargs)
self.drop_path = DropPath(drop_path)
self.layer = layer
def forward(self, input: torch.Tensor):
input_x = self.down(input)
input_x = input_x + self.drop_path(self.self_attention(self.ln_1(input_x), self.layer))
x = self.up(input_x) + input
return x
class VSSLayer(nn.Module):
""" A basic Swin Transformer layer for one stage.
Args:
dim (int): Number of input channels.
depth (int): Number of blocks.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
"""
def __init__(
self,
dim,
depth,
attn_drop=0.,
drop_path=0.,
norm_layer=nn.LayerNorm,
downsample=None,
use_checkpoint=False,
d_state=16,
**kwargs,
):
super().__init__()
self.dim = dim
self.use_checkpoint = use_checkpoint
self.blocks = nn.ModuleList([
VSSBlock(
hidden_dim=dim,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer,
attn_drop_rate=attn_drop,
d_state=d_state,
# expand=0.25,
)
for i in range(depth)])
if True: # is this really applied? Yes, but been overriden later in VSSM!
def _init_weights(module: nn.Module):
for name, p in module.named_parameters():
if name in ["out_proj.weight"]:
p = p.clone().detach_() # fake init, just to keep the seed ....
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
self.apply(_init_weights)
if downsample is not None:
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
else:
self.downsample = None
def forward(self, x):
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
if self.downsample is not None:
x = self.downsample(x)
return x
class VSSLayer_up(nn.Module):
""" A basic Swin Transformer layer for one stage.
Args:
dim (int): Number of input channels.
depth (int): Number of blocks.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
Upsample (nn.Module | None, optional): Upsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
"""
def __init__(
self,
dim,
depth,
attn_drop=0.,
drop_path=0.,
norm_layer=nn.LayerNorm,
upsample=None,
use_checkpoint=False,
d_state=16,
layer=1,
**kwargs,
):
super().__init__()
self.dim = dim
self.use_checkpoint = use_checkpoint
print('layer: ', layer, ' dstate: ', d_state)
self.blocks = nn.ModuleList([
VSSBlock(
hidden_dim=dim,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer,
attn_drop_rate=attn_drop,
d_state=d_state,
# expand=1.0,
layer=layer,
)
for i in range(depth)])
if True: # is this really applied? Yes, but been overriden later in VSSM!
def _init_weights(module: nn.Module):
for name, p in module.named_parameters():
if name in ["out_proj.weight"]:
p = p.clone().detach_() # fake init, just to keep the seed ....
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
self.apply(_init_weights)
if upsample is not None:
self.upsample = PatchExpand(dim, dim_scale=2, norm_layer=nn.LayerNorm)
else:
self.upsample = None
def forward(self, x):
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
if self.upsample is not None:
x = self.upsample(x)
return x
class ConvBNReLU(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, norm_layer=nn.BatchNorm2d, bias=False):
super(ConvBNReLU, self).__init__(
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias,
dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2),
norm_layer(out_channels),
nn.ReLU6()
)
class Conv(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, bias=False):
super(Conv, self).__init__(
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias,
dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2)
)
class AuxHead(nn.Module):
def __init__(self, in_channels=64, num_classes=8):
super().__init__()
self.conv = ConvBNReLU(in_channels, in_channels)
self.drop = nn.Dropout(0.1)
self.conv_out = Conv(in_channels, num_classes, kernel_size=1)
def forward(self, x, h, w):
feat = self.conv(x)
feat = self.drop(feat)
feat = self.conv_out(feat)
feat = F.interpolate(feat, size=(h, w), mode='bilinear', align_corners=False)
return feat
class BasicConv(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, stride, bias=True, norm=False, relu=True, transpose=False):
super(BasicConv, self).__init__()
if bias and norm:
bias = False
padding = kernel_size // 2
layers = list()
if transpose:
padding = kernel_size // 2 -1
layers.append(nn.ConvTranspose2d(in_channel, out_channel, kernel_size, padding=padding, stride=stride, bias=bias))
else:
layers.append(
nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding, stride=stride, bias=bias))
if norm:
layers.append(nn.BatchNorm2d(out_channel))
if relu:
layers.append(nn.ReLU(inplace=True))
self.main = nn.Sequential(*layers)
def forward(self, x):
return self.main(x)
class AFF(nn.Module):
def __init__(self, in_channel, out_channel):
super(AFF, self).__init__()
self.conv = nn.Sequential(
BasicConv(in_channel, out_channel, kernel_size=1, stride=1, relu=True),
BasicConv(out_channel, out_channel, kernel_size=3, stride=1, relu=False)
)
def forward(self, x1, x2, x4):
x = torch.cat([x1, x2, x4], dim=1)
return self.conv(x)
class ChannelAttentionModule(nn.Module):
def __init__(self, in_channels, reduction=4):
super(ChannelAttentionModule, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc = nn.Sequential(
nn.Conv2d(in_channels, in_channels // reduction, 1, bias=False),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels // reduction, in_channels, 1, bias=False)
)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.fc(self.avg_pool(x))
max_out = self.fc(self.max_pool(x))
out = avg_out + max_out
return self.sigmoid(out)
class SpatialAttentionModule(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttentionModule, self).__init__()
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
x = torch.cat([avg_out, max_out], dim=1)
x = self.conv1(x)
return self.sigmoid(x)
class FusionConv(nn.Module):
def __init__(self, in_channels, out_channels, factor=4.0):
super(FusionConv, self).__init__()
dim = int(out_channels // factor)
self.down = nn.Conv2d(in_channels, dim, kernel_size=1, stride=1)
self.conv_3x3 = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1)
self.conv_5x5 = nn.Conv2d(dim, dim, kernel_size=5, stride=1, padding=2)
self.conv_7x7 = nn.Conv2d(dim, dim, kernel_size=7, stride=1, padding=3)
self.spatial_attention = SpatialAttentionModule()
self.channel_attention = ChannelAttentionModule(dim)
self.up = nn.Conv2d(dim, out_channels, kernel_size=1, stride=1)
self.down_2 = nn.Conv2d(in_channels, dim, kernel_size=1, stride=1)
def forward(self, x1, x2, x4):
x_fused = torch.cat([x1, x2, x4], dim=1)
x_fused = self.down(x_fused)
x_fused_c = x_fused * self.channel_attention(x_fused)
x_3x3 = self.conv_3x3(x_fused)
x_5x5 = self.conv_5x5(x_fused)
x_7x7 = self.conv_7x7(x_fused)
x_fused_s = x_3x3 + x_5x5 + x_7x7
x_fused_s = x_fused_s * self.spatial_attention(x_fused_s)
x_out = self.up(x_fused_s + x_fused_c)
return x_out
class DownFusion(nn.Module):