forked from DivadNojnarg/outstanding-shiny-ui
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgoing-further-webdev.Rmd
1054 lines (858 loc) · 38.5 KB
/
going-further-webdev.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Shiny and modern web development {#going-further-webdev}
## Motivations
Adapting an external HTML template to R requires time, effort and competent people. As an example, it took me about two years to get `{shinyMobile}` on the road, definitely not a compatible timeline for more urgent projects that have to be released under weeks.
What if, instead, we decided to handle the UI part with usual web languages like HTML, JS and CSS, thereby avoiding the time-consuming HTML to R conversion and input binding creation?
Theoretically, any front-end web developer could take care of creating the user interface. There already exists HTML templates for [Shiny](https://shiny.rstudio.com/articles/templates.html), allowing you to leverage any existing HTML skeleton. The result may be literally stunning, as shown during the latest Shiny [contest](https://nz-stefan.shinyapps.io/commute-explorer-2/?_ga=2.70875408.1031573581.1632613467-748932920.1610966288) and illustrated in Figure \@ref(fig:htmlTemplate-app). However, from a modern web development point of view, there are nowadays much more suited tools to build and maintain applications like React and webpack from the previous chapter.
```{r htmlTemplate-app, echo=FALSE, fig.cap='Commute explorer app, Shiny Contest winner 2021.', out.width='100%'}
knitr::include_graphics("images/going-further/htmlTemplate-app.png")
```
Eventually, the above approach would permit the R developers, that are most of the time not UI design experts, to focus on the __business logic__ and improve the code base quality. On the other hand, the web developers could focus on building the user interface with their favorite web tools and preparing the link with the R part, without necessarily having a deep knowledge of R.
This chapter may be of interest to any company leveraging Shiny and having people with different programming backgrounds, who wish to better work together around that same technology.
In the following, I'll show you how you may seamlessly leverage Shiny and some modern web dev tools like JSX, ES6, webpack and external JS viz libraries.
## State of the art
Let's make a list of all requirements for such a project. Since we are working with both web languages and R, we may select `{packer}` [@R-packer], which briefly allows us to use `webpack`, a JavaScript __bundler__, in any R project. Moreover, we seek a robust R __package__ template structure for Shiny, which is a perfect task for `{golem}`. As for the icing on the cake, `{packer}` offers a plug and play function to set up a `{golem}` project with `webpack`, through `packer::scaffold_golem()`.
::: {.noteblock data-latex=""}
An excellent introduction exposing how to maintain robust JavaScript code inside a Shiny project, featuring webpack and NPM, may be found in _JavaScript for R_ (https://book.javascript-for-r.com/webpack-intro.html) by John Coene [@coene2021javascript].
:::
To install `{packer}` and `{golem}`, we run:
```{r, eval=FALSE}
# CRAN
install.packages(c("packer", "golem"))
# development version
remotes::install_github("JohnCoene/packer")
remotes::install_github("ThinkR-open/golem")
```
## About the project
### Topic
We are going to develop an ordinary differential equation (ODE) solver app for the Van der Pol oscillator, whose equations may be found below:
\begin{equation}
\begin{cases}
\dot{x}=y,\\
\dot{y}=\mu (1-x^2)y-x.
\end{cases}
\end{equation}
Importantly, we don't really focus on the scientific content, and the app will, be very simple regarding its features. As shown above, there is only one parameter namely $\mu$, which we will vary to see its influence on the whole system.
### Initialize the project
We assume that the R developer is the first to set up the project, even though, in theory, both can do.
```{r, eval=FALSE}
golem::create_golem("vdpMod")
```
We then call the specific `{packer}` function to set up a `{golem}`-compatible structure:
```{r, eval=FALSE}
packer::scaffold_golem()
```
You should end up with the file structure depicted in Figure \@ref(fig:vdpMod-init).
```{r vdpMod-init, echo=FALSE, fig.cap='vdpMod project initialization with {golem} and {packer}.', out.width='50%', fig.align='center'}
knitr::include_graphics("images/going-further/vdpMod-init.png")
```
The structure is basically the same provided by `{golem}` with addition of extra files for JS code management by `{packer}`. This is the same principle shown in Chapters \@ref(workflow-charpente) and \@ref(going-further-reactR). Let's pause here for the R setup and continue later in this chapter.
::: {.noteblock data-latex=""}
With the latest `{packer}` version, you may get a plug and play Framework7 project by running `packer::scaffold_golem(framework7 = TRUE)`.
:::
### UI design
The UI will contain a slider input to change $\mu$, as well as two plots, one for the solutions `x` and `y` and another for the __phase plan__ analysis, including the vector field and a simple trajectory from a chosen initial condition. In short, phase plan analysis allows us to __qualitatively__ study a non-linear system, that is, determine:
- What are the __steady states__ (state for which the system does not change in time).
- The nature of the steady states (stable, unstable).
- Whether there are __bifurcations__ (change in number of steady states and stability).
- ... This is just wonderful, believe me!
After knowing all those details, we may easily predict, given an initial condition, how the system will react to any external perturbation. If you want to know more, this [book](https://www.springer.com/gp/book/9780387952239) is a good starting point.
To build the user interface, we selected the [Framework7](https://framework7.io/) template, already mentioned in Chapter \@ref(mobile-shiny-intro) since we want this app to be optimized for __mobile__ platforms. Besides, as `{shinyMobile}` does not implement all its features yet, this will also allow us to fully exploit the Framework7 API. The graphic output part will be handled by [echartsjs](https://echarts.apache.org/en/index.html), offering quite amazing vector field outputs, as depicted [here](https://echarts.apache.org/examples/en/editor.html?c=flowGL-noise&gl=1&theme=dark).
### R business logic
Before designing the app and diving into the reactivity, let's first think about the business logic. On the server side, we want to write the model equations, create a function to solve it, compute the vector field... in a `.R/model.R` script. The first step is to store the equations. As it is a two-dimension ODE system, we can use a simple vector:
```{r}
vdp_equations <- c(
"Y",
"p['mu'] * (1 - X^2) * Y - X"
)
```
Equations are solved with the `{deSolve}` package [@R-deSolve], whose performances are enough for this example. (For more complex examples, users may switch to compiled code with Fortran, C or C++, `{deSolve}` providing a convenient API for compiled code.)
```{r}
solve_model <- function(Y0, t, model, parms) {
deSolve::ode(y = Y0, times = t, model, parms)
}
```
`Y0` refers to the initial condition, `t` is the time for which we integrate, `model` contains the equations and `parms` is a vector of parameters. Importantly, `{deSolve}` requires the model to be written as follows (`t` being the time, `y` a 2D vector and `p` a parameter vector), returning the value of `x` and `y` in a list:
```{r}
vdp <- function(t, y, p) {
with(as.list(y), {
dX <- eval(parse(text = vdp_equations[1]))
dY <- eval(parse(text = vdp_equations[2]))
list(c(X=dX, Y=dY))
})
}
```
From there, calling `solve_model()` will return a vector containing our solutions at each time step:
```{r}
solve_model(
Y0 = c(X = 1, Y = 1),
t = seq(0, 1, .1),
vdp,
c(mu = 0.1)
)
```
It is therefore straightforward to plot __solutions__. However, this output does not tell use anything about the __vector field__. Below is the code used to generate it. `mag` represents the speed along trajectories resulting from a linear combination of the vertical speed and the horizontal speed components, respectively `dy` and `dx`. It is obtained after applying the Pythagorean theorem:
\begin{equation}
mag = \sqrt{dx^2 + dy^2}
\end{equation}
We will use it later to set up appropriate color code in the JS code:
```{r}
build_phase_data <- function(xgrid, ygrid, p) {
vectors <- expand.grid(x = xgrid, y = ygrid)
X <- vectors$x
Y <- vectors$y
vectors$dx <- eval(parse(text = vdp_equations[1]))
vectors$dy <- eval(parse(text = vdp_equations[2]))
vectors$mag <- sqrt(
vectors$dx * vectors$dx +
vectors$dy * vectors$dy
)
vectors
}
```
```{r}
grid <- seq(-10, 10)
phase_plan <- build_phase_data(grid, grid, c(mu = 1))
# Original is 441 rows, we provide a subset
phase_plan[1:5, ]
```
We obtain a matrix indicating for each `(X,Y)` in the grid what the vertical and horizontal speed are, respectively `dX` and `dY`, as well as the resulting speed, `mag`, thereby allowing us to draw the [phase plan](https://en.wikipedia.org/wiki/Phase_plane).
The last step is to create a main wrapper that will call `solve_model()` and `build_phase_data()` at once. Remember that on the UI side, we generate two outputs, the time series and the phase portrait. The first one requires data obtained from `solve_model()`. The second one requires a subset of `solve_model()` output and `build_phase_data()`. Since `solve_model()` returns a matrix, we convert it to a `data.frame`, easier to handle on the JS side:
```{r}
generate_model_data <- function(model, pars, grid) {
model_output <- solve_model(
Y0 = c(X = 1, Y = 1),
t = seq(0, 100, .1),
model,
pars
)
# time series (x = f(t), y = f(t))
data <- data.frame(model_output)
modelData <- list(t = data$time, X = data$X, Y = data$Y)
# phase plan
trajectoryData <- data[, c("X", "Y")]
names(trajectoryData) <- NULL
phaseData <- build_phase_data(grid, grid, pars)
names(phaseData) <- NULL
# return data
list(
lineData = modelData,
phaseData = jsonlite::toJSON(phaseData, pretty = TRUE),
trajectoryData = jsonlite::toJSON(
trajectoryData,
pretty = TRUE
)
)
}
```
This is basically all we need. I highly encourage you not to dive into __reactivity__ first, as this is significantly harder to debug. This way, you can
design unit tests for these functions without having to handle the Shiny machinery.
### Add Shiny
Now that the business logic is safe, we describe what we must do on the server side. Remember that the original idea is to have a slider, which we can move to see what impact $\mu$ has on the whole system.
In the main `.R/app_server.R` script, we set a reactive expression containing the vector of parameters (here we only have one, but you may imagine adding more later):
```{r, eval=FALSE}
pars <- reactive({
req(input$mu)
c(mu = input$mu)
})
```
Then, we add an `observeEvent()` listening to any change in `pars()`, triggered as a result of a UI action, that is, a slider input change. Inside, we generate the model data with `generate_model_data()` and send them to JS through the websocket with `session$sendCustomMessage`:
```{r, eval=FALSE}
observeEvent(pars(), {
session$sendCustomMessage(
"model-data",
generate_model_data(vdp, pars(), seq(-10, 10))
)
})
```
That's all folks! I hope you start to realize the benefits of extracting the business logic out of Shiny. For more complex apps, we recommend you start developing modules and not put the whole code inside `.R/app_server.R`.
This is all what the R developer would have to do:
- Write the business logic.
- Add reactivity and send data to JS.
- Talk to the JS developer about what inputs should be on the UI side ...
Now let's see what happens on the front-end side.
### Create the interface
This is where the front-end developers come in to play and believe me, there is quite some work for them.
#### Setup dev JS dependencies
The first thing is to continue with the package setup to add development libraries necessary for building the JS code.
For now, those dependencies are listed in `./package.json` and only cover `webpack`:
```{r, echo=FALSE, results='asis'}
js_code <- '"devDependencies": {
"webpack": "^5.53.0",
"webpack-cli": "^4.8.0",
"webpack-merge": "^5.8.0"
}'
code_chunk_custom(js_code, "js")
```
Since we'll be using quite modern JS syntay (ES6) and some JSX, we have to install __Babel__ that will compile our code to a JS code that all web browsers can understand.
```{r, eval=FALSE}
packer::npm_install(
c(
"babel",
"babel-loader",
"@babel/core",
"@babel/preset-env"
),
scope = "dev"
)
```
As we depend on Framework7 and echartsjs, we install them as production dependencies (needed by the app):
```{r, eval=FALSE}
packer::npm_install(
c(
"framework7",
"echarts",
"echarts-gl"
),
scope = "prod"
)
```
You should obtain this JSON:
```{r, echo=FALSE, results='asis'}
js_code <- '"devDependencies": {
"@babel/core": "^7.15.5",
"@babel/preset-env": "^7.15.6",
"babel": "^6.23.0",
"babel-loader": "^8.2.2",
"webpack": "^5.53.0",
"webpack-cli": "^4.8.0",
"webpack-merge": "^5.8.0"
},
"dependencies": {
"echarts": "^5.2.1",
"echarts-gl": "^2.0.8",
"framework7": "^6.3.4"
}'
code_chunk_custom(js_code, "js")
```
We modify the `./srcjs/config/loader.json` to include the required loaders for `js`, `jsx` and `css` files. For css, `{packer}` exposes a functions, `use_loader_rule()`:
```{r, eval=FALSE}
use_loader_rule(
c("style-loader", "css-loader"),
test = "\\.css$"
)
```
which gives:
```{r, echo=FALSE, results='asis'}
js_code <- '[
{
"test": "\\.css$",
"use": [
"style-loader",
"css-loader"
]
}
]'
code_chunk_custom(js_code, "js")
```
Interestingly, Framework7 allows you to write JSX code without the need to import React. This is very convenient but requires adding an extra [loader](https://www.npmjs.com/package/framework7-loader), as well as a Babel React component (you may imagine designing a `use_loader_framework7()` function ...):
```{r, eval=FALSE}
use_loader_rule(
"framework7-loader",
test = "\\.(f7).(html|js|jsx)$",
use = list("babel-loader", "framework7-loader")
)
packer::npm_install("@babel/preset-react", scope = "dev")
```
```{r, echo=FALSE, results='asis'}
js_code <- '[
// ... style loader ...
{
"test": "\\.(f7).(html|js|jsx)$",
"use": [
"babel-loader",
"framework7-loader"
]
}
]'
code_chunk_custom(js_code, "js")
```
Alternatively, you can copy the `./package.json` from [here](https://github.com/RinteRface/shinyComponent/tree/07ef8216c5803147691d95343ef6639a0e1ecf2f) to get exactly the same package versions I used when I initialized this project and call `packer::npm_install()` to pull the dependencies and install them for the project.
We create a `./.babelrc` script providing some configuration for Babel to handle JSX. Within the terminal, we call `touch .babelrc` and add it the following code:
```{r, echo=FALSE, results='asis'}
js_code <- '{
"presets": [
"@babel/preset-env",
"@babel/preset-react"
]
}'
code_chunk_custom(js_code, "js")
```
We can ultimately bundle our JS code and check whether the app starts:
```{r, eval=FALSE}
packer::bundle()
devtools::load_all()
run_app()
```
```{r vdpMod-basic-app, echo=FALSE, fig.cap='vdpMod basic app.', fig.align='center', out.width='100%'}
knitr::include_graphics("images/going-further/vdpMod-basic-app.png")
```
#### Basic R UI skeleton
The package configuration is successful but we still have to modify the `./R/app_ui.R` to be consistent with the Framework7 expectations. According to what is required in the [documentation](https://framework7.io/docs/app-layout.html), the `body` must contain a tag with an id, followed by the `index.js` JS code (obtained after compilation with `{packer}`). The order is important, as not following it will break the app:
```{r, eval=FALSE}
app_ui <- function(request, title = NULL) {
tagList(
# Leave this function for adding external resources
golem_add_external_resources(title),
# Your application UI logic
tags$body(
div(id = "app"),
tags$script(src = "www/index.js")
)
)
}
```
Note that we also have to consider meta tags in the header to handle the viewport, mobile platforms... This is done inside `golem_add_external_resources()`. Besides, we had to comment out the `bundle_resources()` call since it would have added the dependencies in the head, before the app tag, which is not consistent with the Framework7 requirements:
```{r, eval=FALSE}
golem_add_external_resources <- function(title){
add_resource_path(
'www', app_sys('app/www')
)
tags$head(
favicon(),
tags$meta(charset = "utf-8"),
tags$meta(
name = "viewport",
content = "width=device-width, initial-scale=1,
maximum-scale=1, minimum-scale=1, user-scalable=no,
viewport-fit=cover"
),
tags$meta(
name = "apple-mobile-web-app-capable",
content = "yes"
),
tags$meta(name = "theme-color", content = "#2196f3"),
tags$title(title)
# removed code
)
}
```
This is all of what we need on the R UI side since most of the code will be written in JSX.
#### Create the app layout in JS
We have the R logic, the R/UI skeleton, but a few steps remain such as initializing the app as discussed in section \@ref(mobile-initialization).
Everything happens in the `./srcjs/index.js` script. For now it should be like below:
```{r, echo=FALSE, results='asis'}
js_code <- "import { message } from './modules/message.js';
import 'shiny';
// In shiny server use:
// session$sendCustomMessage('show-packer', 'hello packer!')
Shiny.addCustomMessageHandler('show-packer', (msg) => {
message(msg);
});"
code_chunk_custom(js_code, "js")
```
which is a placeholder provided by `{packer}`. While we don't need it,
note how we may seamlessly import functions from one script to another with just an `import` statement followed by the function name and the script path. We'll use this syntax all over the place. What do we need now? We import `Framework7` required for the app initialization in `new Framework7({...})`:
```{r, echo=FALSE, results='asis'}
js_code <- "import 'shiny';
// Import Framework7
import Framework7 from 'framework7';"
code_chunk_custom(js_code, "js")
```
Then, we import the css, whose assets are located under `./node_modules/framework7` and as shown in Figure \@ref(fig:vdpMod-framework7-resources). To capture all CSS, we'll point to `framework7/framework7-bundle.min.css` (bundle usually corresponds to all components):
```{r, echo=FALSE, results='asis'}
js_code <- "import 'shiny';
// Import Framework7
import Framework7 from 'framework7';
// Import Framework7 Styles
import 'framework7/framework7-bundle.min.css';"
code_chunk_custom(js_code, "js")
```
```{r vdpMod-framework7-resources, echo=FALSE, fig.cap='Framework7 assets in node modules.', out.width='50%', fig.align='center'}
knitr::include_graphics("images/going-further/vdpMod-framework7-resources.png")
```
The way we imported Framework7 does not provide any other component. To lighten the JS code, Framework7 has a modular organisation, thereby consisting of importing only what we require. According to Figure \@ref(fig:vdpMod-framework7-resources), those components are located in `framework7/esm/components/<COMPONENT_NAME>/<SCRIPT.js>`
If you remember correctly, we seek a slider widget to update the model parameter value. Moreover, it's always nice to notify the user when the new results are available, so let's do it with a toast:
```{r, echo=FALSE, results='asis'}
js_code <- "// ... Other imports ...
// Install F7 Components using .use() method on class:
import Range from 'framework7/esm/components/range/range.js';
import Toast from 'framework7/esm/components/toast/toast.js';
Framework7.use([Range, Toast]);"
code_chunk_custom(js_code, "js")
```
For the layout, we selected the main App component template, documented [here](https://framework7.io/docs/router-component.html#main-app-component). Overall, it offers a better way to organize the app code in different component modules, the `App` being the top-level component:
```{r, echo=FALSE, results='asis'}
js_code <- "// ... Other imports ...
import App from './components/app.f7.jsx';
let app = new Framework7({
el: '#app',
theme: 'ios',
// specify main app component
component: App
});"
code_chunk_custom(js_code, "js")
```
`el` targets the app tag `id` defined in `./R/app_ui.R`. If you ever have to change it, don't forget to replace it in both places. The `component` slot hosts the `App`, which has to be defined. We assume it is created in a `./srcjs/components/app.f7.jsx`, `.` being the root of the `srcjs` folder. Interestingly, it has the `.jsx` extension, the JSX syntax being very convenient to mix HTML and JavaScript code in the same file. It is crucial to name the files `<name>.f7.jsx` as it will allow the Framework7 loader to work properly. Practically, a template file will always look the same. We export the main component as a function that may have some parameters. Each component must return a __render__ function containing some tags. Below is a `./srcjs/components/list.f7.jsx` example:
```{r, echo=FALSE, results='asis'}
jsx_code <- "export default () => {
const ListItem = (props) => {
return (
<li>{props.title}</li>
)
}
return () => (
<ul>
<ListItem title=\"Item 1\" />
<ListItem title=\"Item 2\" />
</ul>
)
}"
code_chunk_custom(jsx_code, "jsx")
```
You may even split the code into more small pieces; below we assume `list-item.f7.jsx` is in the same directory as the main component:
```{r, echo=FALSE, results='asis'}
jsx_code <- "// list-item.f7.jsx
export default (props) => {
return () => <li>{props.title}</li>;
}"
code_chunk_custom(jsx_code, "jsx")
```
```{r, echo=FALSE, results='asis'}
jsx_code <- "import ListItem from './list-item.f7.jsx';
export default () => {
return () => (
<ul>
<ListItem title=\"Item 1\" />
<ListItem title=\"Item 2\" />
</ul>
)
}"
code_chunk_custom(jsx_code, "jsx")
```
We define the preliminary main app component in `./srcjs/components/app.f7.jsx`, the layout being composed of a `navbar` (top), a `toolbar` (bottom) and the page content, as already discussed in section \@ref(framework7-layouts):
```{r, echo=FALSE, results='asis'}
jsx_code <- 'export default (props, context) => {
const title = \'Hello World\';
const content = \'App content\';
return () => (
<div id="app">
<div class="view view-main view-init safe-areas">
<div class="page">
<div class="navbar">
<div class="navbar-bg"></div>
<div class="navbar-inner">
<div class="title">{title}</div>
</div>
</div>
<div class="toolbar toolbar-bottom">
<div class="toolbar-inner">
<a href="#" >Link 1</a>
<a href="#" >Link 2</a>
</div>
</div>
<div class="page-content">
{content}
</div>
</div>
</div>
</div>
)
}'
code_chunk_custom(jsx_code, "jsx")
```
`props` are elements passed to the component (see section \@ref(react-map)) and `context` is an object containing [helpers](https://framework7.io/docs/router-component.html#component-context), such as:
- `$f7` refers to app instance.
- `$update` to programmatically re-render the component.
Once done, we run and preview the app according to Figure \@ref(fig:vdpMod-basic-app-2). We are slowly getting there!
```{r, eval=FALSE}
packer::bundle()
devtools::load_all()
run_app()
```
```{r vdpMod-basic-app-2, echo=FALSE, fig.cap='vdpMod basic app with main app component template.', out.width='40%', fig.align='center'}
knitr::include_graphics("images/going-further/vdpMod-basic-app-2.png")
```
We add the slider component that is going to drive the model computation inside `./srcjs/components/vdp.f7.jsx`, leveraging the Framework7 range widget described [here](https://framework7.io/docs/range-slider.html#range-slider-auto-initialization). To lighten the JS code, we decide to rely on the auto-initialized widget. All attributes are stored in `data-<ATTR>` format and the `range-slider-init` class ensures to get the widget properly initialized. The range is inserted in a block container for a better display. We finally bind it to an [event](https://framework7.io/docs/range-slider.html#app-and-range-slider-instance-events) listening to any value change so that we can assign a Shiny input value and use it on the R side:
```{r, echo=FALSE, results='asis'}
jsx_code <- "const VdpWidget = (props, { $f7, $update}) => {
// Handle range change for ODE model computation
const getRangeValue = (e) => {
const range = $f7.range.get(e.target);
Shiny.setInputValue(range.el.id, range.value);
$update();
};
return () => (
<div>
<div class=\"block-title\">Parameter value (mu)</div>
<div class=\"block\">
<div
class=\"range-slider range-slider-init\"
data-min=\"0\"
data-min=\"0\"
data-max=\"2\"
data-step=\"0.1\"
data-label=\"true\"
data-value=\"0.1\"
data-scale=\"true\"
data-scale-steps=\"2\"
data-scale-sub-steps=\"10\"
id=\"mu\"
onrangeChange={(e) => getRangeValue(e)}
></div>
</div>
</div>
)
}
export { VdpWidget };"
code_chunk_custom(jsx_code, "jsx")
```
Inside `./srcjs/components/app.f7.jsx`, we import the newly designed component and replace `{content}`:
```{r, echo=FALSE, results='asis'}
jsx_code <- "import VdpWidget from './vdp.f7.jsx';
export default (props) => {
const title = 'Hello World';
return () => (
<div id=\"app\">
<div class=\"view view-main view-init safe-areas\">
<div class=\"page\">
<!-- Navbar -->
<!-- Toolbar -->
<div class=\"page-content\">
<VdpWidget label=\"Van der Pol Model\"/>
</div>
</div>
</div>
</div>
)
}"
code_chunk_custom(jsx_code, "jsx")
```
On the R side, you may add this in the server code to track the range value:
```{r, eval=FALSE}
observeEvent(input$mu, {
print(input$mu)
})
```
After recompiling, this gives us Figure \@ref(fig:vdpMod-basic-app-3).
```{r vdpMod-basic-app-3, echo=FALSE, fig.cap='vdpMod basic app with range slider.', out.width='40%', fig.align='center'}
knitr::include_graphics("images/going-further/vdpMod-basic-app-3.png")
```
You'll notice that `input$mu` only exists after the range is dragged. To give it an initial value, we design an additional function, `initializeVdpWidget` located in `./srcjs/components/vdp.f7.jsx`, taking the app instance as parameter. Inside, we listen to the `shiny:connected` and create `input$mu` giving it the initial range value. We finally export the new function:
```{r, echo=FALSE, results='asis'}
js_code <- "const initializeVdpWidget = (app) => {
$(document).on('shiny:connected', () => {
// Init vals for ODE model computation
Shiny.setInputValue(
'mu',
parseFloat($('#mu').attr('data-value'), 10),
{priority: 'event'}
);
});
}
export { VdpWidget, initializeVdpWidget };"
code_chunk_custom(js_code, "js")
```
Inside `./srcjs/components/app.f7.jsx`, we update our import field, passing an extra parameter `$f7`, which captures the app instance required by `initializeVdpWidget`:
```{r, echo=FALSE, results='asis'}
js_code <- "import { VdpWidget, initializeVdpWidget } from './vdp.f7.jsx';
export default (props, { $f7 }) => {
initializeVdpWidget($f7);
// ... unchanged ...
}"
code_chunk_custom(js_code, "js")
```
Congratulations, we are now ready to move to the last part about creating the visualization.
#### Plot model data with echartsjs
As stated above, we leverage echarts and echarts-gl to plot the model results. Like for other dependencies, we have to import them, specifically in the `./srcjs/components/vdp.f7.jsx` component:
```{r, echo=FALSE, results='asis'}
js_code <- "// Import plotting library
import * as echarts from 'echarts';
import 'echarts-gl';"
code_chunk_custom(js_code, "js")
```
To work properly, [echarts](https://echarts.apache.org/handbook/en/get-started/) requires a setup of an HTML empty container in the DOM with height and width in pixels, as well as an __id__. I recommend using percentage for width so as to fill the entire parent container:
```{r, echo=FALSE, results='asis'}
html_code <- '<div id="my-plot" style="width:100%; min-height:400px;"></div>'
code_chunk_custom(html_code, "html")
```
On the JS side, we instantiate the plot and set the options list to give it a title, set the axis labels and add the time series:
```{r, echo=FALSE, results='asis'}
js_code <- "myChart = echarts.init(document.getElementById('my-plot'));
myChartOptions = {
title: { text: 'Plot title' },
legend: { data:[...] },
xAxis: { data: ...},
yAxis: { type: ... },
series: [
{
name: ...,
type: ...,
data: ...
},
// other data
]
};
myChart.setOption(myChartOptions);"
code_chunk_custom(js_code, "js")
```
Obviously, many more options exist, but this is enough for this example.
We edit the `VdpWidget` render function to include the time series plot of model solution, below the range slider:
```{r, echo=FALSE, results='asis'}
jsx_code <- "const VdpWidget = (props, { $f7, $update}) => {
// ... unchanged ...
const plotStyle = {
width: '100%',
minHeight: '400px'
}
return () => (
<div>
<div class=\"block-title\">{props.label}</div>
<div class=\"block block-strong text-align-center\">
<p>The below model is computed by R!</p>
<!-- range slider block -->
</div>
<div class=\"card card-outline\">
<div class=\"card-content card-content-padding\">
<div id=\"line-plot\" style={plotStyle}></div>
</div>
</div>
</div>
)
}"
code_chunk_custom(jsx_code, "jsx")
```
The initialization happens once, that's why we include it inside the existing `shiny:connect` event listener in the `initializeVdpWidget` function. Notice how we make the plot responsive to any viewport change, by calling the echarts `resize` method when the window is resized:
```{r, echo=FALSE, results='asis'}
js_code <- "const initializeVdpWidget = (app) => {
let linePlot;
$(document).on('shiny:connected', () => {
// ... unchanged ...
// prepare echarts plots
linePlot = echarts.init(document.getElementById('line-plot'));
});
// Resize plot, responsive
$(window).on('resize', function(){
linePlot.resize();
});
};"
code_chunk_custom(js_code, "js")
```
The next step is to recover the model data sent from R with the `session$sendCustomMessage("model-data", ...)` in `./R/app_server.R`. We create a dedicated message handler on the JS side still in `initializeVdpWidget`. As a reminder, since we send a list from R, items are accessed with `message.<FIELD>` in JS:
```{r, echo=FALSE, results='asis'}
js_code <- "const initializeVdpWidget = (app) => {
// ... shiny:connected ...
// Recover ODE data from R
let lineData, linePlotOptions;
Shiny.addCustomMessageHandler(
'model-data', (message) => {
lineData = message.lineData;
});
}"
code_chunk_custom(js_code, "js")
```
We set the plot options. For the time-series chart, we'll display the solution X (`lineData['X']`) and Y (`lineData['Y']`) as a function of time (`lineData['t']`). The plot type is `line`:
```{r, echo=FALSE, results='asis'}
js_code <- "const initializeVdpWidget = (app) => {
// ... shiny:connected ...
Shiny.addCustomMessageHandler(
'model-data', (message) => {
// ... recover data ...
// set options
linePlotOptions = {
title: {
text: 'Time series plot'
},
legend: { data: ['X', 'Y'] },
xAxis: { data: lineData['t'] },
yAxis: { type: 'value' },
series: [
{
name: 'X',
type: 'line',
data: lineData['X']
},
{
name: 'Y',
type: 'line',
data: lineData['Y']
}
]
};
// use configuration item and data specified to show chart
linePlot.setOption(linePlotOptions);
});
}"
code_chunk_custom(js_code, "js")
```
We finally leverage the Framework7 toast API to send a message to the user, telling the model is up-to-date:
```{r, echo=FALSE, results='asis'}
js_code <- "const initializeVdpWidget = (app) => {
Shiny.addCustomMessageHandler(
'model-data', (message) => {
// ... plot config ...
// Notify plot update
app.toast.create({
text: 'Model successfuly computed',
closeTimeout: 2000,
}).open();
});
}"
code_chunk_custom(js_code, "js")
```
After rebuilding the JS code, you should get Figure \@ref(fig:vdpMod-basic-app-4).
```{r vdpMod-basic-app-4, echo=FALSE, fig.cap='vdpMod basic app with time series output.', out.width='40%', fig.align='center'}
knitr::include_graphics("images/going-further/vdpMod-basic-app-4.png")
```
#### Exercise: add the phase portrait
Based on the example shown [here](https://echarts.apache.org/examples/en/editor.html?c=flowGL-noise&gl=1&theme=dark), you'll have to add the phase portrait chart to the current application.
1. In `VdpWidget`, add the card container that will hold the phase plan, right after the time-series card. The plot will have the `phase-plot` id:
```{r, echo=FALSE, results='asis'}
jsx_code <- "const VdpWidget = (props, { $f7, $update}) => {
// ... getRangeValue ...
// ... plotStyle ...
return () => (
<div>
<div class=\"block-title\">{props.label}</div>
<div class=\"block block-strong text-align-center\">
<p>The below model is computed by R!</p>
<!-- range slider block -->
</div>
<!-- line plot -->
TO ADD
</div>
)
}"
code_chunk_custom(jsx_code, "jsx")
```
2. In `initializeVdpWidget`, inside the `shiny:connected` event listener,
initialize the new `phasePlot` instance. Fill in the `...`.
```{r, echo=FALSE, results='asis'}
js_code <- "const initializeVdpWidget = (app) => {
let linePlot, ...;
$(document).on('shiny:connected', () => {
// ... Init vals for ODE model computation ...
// ... Time series plot init ...
... = echarts.init(document.getElementById(...));
});
// ...
}"
code_chunk_custom(js_code, "js")
```
3. Ensure it is properly resized by adding an entry to the `resize` event listener. Fill in the `...`.
```{r, echo=FALSE, results='asis'}
js_code <- "const initializeVdpWidget = (app) => {
//... shiny:connected ...
$(window).on('resize', function(){
linePlot.resize();
....resize();
});
}"
code_chunk_custom(js_code, "js")
```
4. In `initializeVdpWidget`, after the `linePlotOptions`, create a new
`phasePlotOptions` object containing the plot title. Fill in the `...`.
```{r, echo=FALSE, results='asis'}
js_code <- "const initializeVdpWidget = (app) => {
// ... shiny:connected ...
// ... resize plots ...
let lineData, linePlotOptions, phasePlotOptions,
phaseData, trajectoryData;
Shiny.addCustomMessageHandler(
'model-data', (message) => {
lineData = message.lineData;
phaseData = message.phaseData;
trajectoryData = message.trajectoryData;
... = {
title: {
text: 'Phase plot'
},
xAxis: {
type: 'value'
},
yAxis: {
type: 'value'
}
}
});
}"
code_chunk_custom(js_code, "js")
```
Since we plot Y against X (it was X and Y against time in the previous plot), we add two entries to the previous configuration.
5. The first layer is a flow GL chart showing particles movement in the vector field. The chosen __type__ `flowGL` entry ensures we utilize the proper chart module. We pass the `phaseData` recovered from the R side. Other properties are responsible for controlling the particle appearance like the speed, size and transparency. You may try with different values to see what happens in the plot. Fill in the `...`.
```{r, echo=FALSE, results='asis'}
js_code <- "phasePlotOptions = {
// ... title, axis ...
series: [
{
type: ...,
data: ...,
particleDensity: 64,
particleSize: 5,
particleSpeed: 4,
supersampling: 4,
particleType: 'point',
itemStyle: {
opacity: 0.5
}
},
// Other series
]
}"
code_chunk_custom(js_code, "js")
```
6. How do we control the flow-chart visual aspect? As a reminder, `phaseData` is a matrix with five columns, the last one being a measure of the flow speed. Ideally, we would like to set up a scale representing different speeds. This is where we introduce the __visualMap__ property, which exposes multiple sub-properties like:
- `show` to display a scale.
- `min` and `max` to set the color grid.
- `dimension` is the column of data used to apply colors (here `mag`).
- `inRange.color` defines a color palette for all values in the range. The provided examples default to eleven predefined colors.
`min` and `max` are determined as per below calculation. Fill in the `...`.
```{r, echo=FALSE, results='asis'}
js_code <- "let magMin = Infinity;
let magMax = -Infinity;
for (let i = 0; i < message.phaseData.length; i++) {
let magTemp = message.phaseData[i][4];
magMax = Math.max(..., ...);
magMin = Math.min(..., ...);
}"
code_chunk_custom(js_code, "js")
```
```{r, echo=FALSE, results='asis'}
js_code <- "phasePlotOptions = {
visualMap: {
show: false,