forked from upul/Semantic_Segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_utils.py
143 lines (110 loc) · 5.48 KB
/
model_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import tensorflow as tf
import numpy as np
vgg_weights = np.load('./pretrained_weights/vgg16_weights.npz')
def conv_layer(parent, kernel_name, bias_name, name):
"""
This simple utility function create a convolution layer
and applied relu activation.
:param parent:
:param kernel_name: Kernel weight tensor
:param bias: Bias tensor
:param name: Name of this layer
:return: Convolution layer created according to the given parameters.
"""
with tf.variable_scope(name) as scope:
kernel_weights = _get_kernel(kernel_name)
init = tf.constant_initializer(value=kernel_weights, dtype=tf.float32)
kernel = tf.get_variable(name="weights", initializer=init, shape=kernel_weights.shape)
conv = tf.nn.conv2d(parent, kernel, [1, 1, 1, 1], padding='SAME')
bias = _get_bias(bias_name)
init = tf.constant_initializer(value=bias, dtype=tf.float32)
biases = tf.get_variable(name="biases", initializer=init, shape=bias.shape)
conv_with_bias = tf.nn.bias_add(conv, biases)
conv_with_relu = tf.nn.relu(conv_with_bias, name=scope.name)
return conv_with_relu
def max_pool_layer(parent, kernel, stride, name, padding='SAME'):
max_pool = tf.nn.max_pool(parent, ksize=kernel, strides=stride, padding=padding, name=name)
return max_pool
def fully_collected_layer(parent, name, dropout, num_classes=2):
with tf.variable_scope(name) as scope:
if name == 'fc_1':
kernel = _reshape_fc_weights('fc6_W', [7, 7, 512, 4096])
conv = tf.nn.conv2d(parent, kernel, [1, 1, 1, 1], padding='SAME')
bias = _get_bias('fc6_b')
output = tf.nn.bias_add(conv, bias)
output = tf.nn.relu(output, name=scope.name)
return tf.nn.dropout(output, dropout)
if name == 'fc_2':
kernel = _reshape_fc_weights('fc7_W', [1, 1, 4096, 4096])
conv = tf.nn.conv2d(parent, kernel, [1, 1, 1, 1], padding='SAME')
bias = _get_bias('fc7_b')
output = tf.nn.bias_add(conv, bias)
output = tf.nn.relu(output, name=scope.name)
return tf.nn.dropout(output, dropout)
if name == 'fc_3':
initial = tf.truncated_normal([1, 1, 4096, num_classes], stddev=0.0001)
kernel = tf.get_variable('kernel', initializer=initial)
conv = tf.nn.conv2d(parent, kernel, [1, 1, 1, 1], padding='SAME')
initial = tf.constant(0.0, shape=[num_classes])
bias = tf.get_variable('bias', initializer=initial)
return tf.nn.bias_add(conv, bias)
raise RuntimeError('{} is not supported as a fully connected name'.format(name))
def upsample_layer(bottom, shape, n_channels, name, upscale_factor, num_classes=2):
kernel_size = 2 * upscale_factor - upscale_factor % 2
stride = upscale_factor
strides = [1, stride, stride, 1]
with tf.variable_scope(name):
output_shape = [shape[0], shape[1], shape[2], num_classes]
filter_shape = [kernel_size, kernel_size, n_channels, n_channels]
weights = _get_bilinear_filter(filter_shape, upscale_factor)
deconv = tf.nn.conv2d_transpose(bottom, weights, output_shape,
strides=strides, padding='SAME')
bias_init = tf.constant(0.0, shape=[num_classes])
bias = tf.get_variable('bias', initializer=bias_init)
dconv_with_bias = tf.nn.bias_add(deconv, bias)
return dconv_with_bias
def preprocess(images):
mean = tf.constant([123.68, 116.779, 103.939], dtype=tf.float32, shape=[1, 1, 1, 3], name='mean')
return images - mean
def skip_layer_connection(parent, name, num_input_layers, num_classes=2, stddev=0.0005):
with tf.variable_scope(name) as scope:
initial = tf.truncated_normal([1, 1, num_input_layers, num_classes], stddev=stddev)
kernel = tf.get_variable('kernel', initializer=initial)
conv = tf.nn.conv2d(parent, kernel, [1, 1, 1, 1], padding='SAME')
bias_init = tf.constant(0.0, shape=[num_classes])
bias = tf.get_variable('bias', initializer=bias_init)
skip_layer = tf.nn.bias_add(conv, bias)
return skip_layer
def _get_kernel(kernel_name):
kernel = vgg_weights[kernel_name]
return kernel
def _reshape_fc_weights(name, new_shape):
w = vgg_weights[name]
w = w.reshape(new_shape)
init = tf.constant_initializer(value=w,
dtype=tf.float32)
var = tf.get_variable(name="weights", initializer=init, shape=new_shape)
return var
def _get_bias(name):
bias_weights = vgg_weights[name]
return bias_weights
def _get_bilinear_filter(filter_shape, upscale_factor):
kernel_size = filter_shape[1]
if kernel_size % 2 == 1:
centre_location = upscale_factor - 1
else:
centre_location = upscale_factor - 0.5
bilinear = np.zeros([filter_shape[0], filter_shape[1]])
for x in range(filter_shape[0]):
for y in range(filter_shape[1]):
value = (1 - abs((x - centre_location) / upscale_factor)) * (
1 - abs((y - centre_location) / upscale_factor))
bilinear[x, y] = value
weights = np.zeros(filter_shape)
for i in range(filter_shape[2]):
weights[:, :, i, i] = bilinear
init = tf.constant_initializer(value=weights,
dtype=tf.float32)
bilinear_weights = tf.get_variable(name="decon_bilinear_filter", initializer=init,
shape=weights.shape)
return bilinear_weights