-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbat.py
666 lines (568 loc) · 21 KB
/
bat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
from abc import ABC
from abc import abstractmethod
import time
import torch
import torch.nn.functional as F
import torch_geometric as pyg
from torch_geometric.utils import to_undirected
from utils import seed_everything
class BaseGraphAugmenter(ABC):
"""
Abstract base class for graph data augmentation strategies.
Methods:
- init_with_data(self, data)
Initialize the augmenter with graph data.
- augment(self, model, x, edge_index)
Perform graph augmentation.
- adapt_labels_and_train_mask(self, y: torch.Tensor, train_mask: torch.Tensor)
Adapt labels and training mask after augmentation.
"""
@abstractmethod
def init_with_data(self, data: pyg.data.Data):
"""
Initialize the augmenter with graph data.
Parameters:
- data: pyg.data.Data
Graph data used for initialization.
"""
pass
@abstractmethod
def augment(
self, model: torch.nn.Module, x: torch.Tensor, edge_index: torch.Tensor
):
"""
Perform graph augmentation.
Parameters:
- model: torch.nn.Module
Graph neural network model.
- x: torch.Tensor
Input features of the graph nodes.
- edge_index: torch.Tensor
Edge indices of the graph.
Returns:
- augmented_x: torch.Tensor
Augmented node features.
- augmented_edge_index: torch.Tensor
Augmented edge indices.
- runtime_info: dict
Additional runtime information from the augmentation process.
"""
pass
@abstractmethod
def adapt_labels_and_train_mask(self, y: torch.Tensor, train_mask: torch.Tensor):
"""
Adapt labels and training mask after augmentation.
Parameters:
- y: torch.Tensor
Original node labels.
- train_mask: torch.Tensor
Original training mask.
Returns:
- adapted_y: torch.Tensor
Adapted node labels.
- adapted_train_mask: torch.Tensor
Adapted training mask.
"""
pass
class DummyAugmenter(BaseGraphAugmenter):
"""
A dummy graph augmenter for demonstration purposes.
Methods:
- __init__(self)
Initializes the DummyAugmenter instance.
- init_with_data(self, data)
Initializes the augmenter with graph data.
- augment(self, model, x, edge_index)
Performs dummy graph augmentation.
- adapt_labels_and_train_mask(self, y: torch.Tensor, train_mask: torch.Tensor)
Adapts labels and training mask after dummy augmentation.
"""
def __init__(self) -> None:
"""
Initializes the DummyAugmenter instance.
"""
super().__init__()
def init_with_data(self, data: pyg.data.Data):
"""
Initializes the augmenter with graph data.
Parameters:
- data: pyg.data.Data
Graph data used for initialization.
Returns:
- self: DummyAugmenter
"""
return self
def augment(
self, model: torch.nn.Module, x: torch.Tensor, edge_index: torch.Tensor
):
"""
Performs dummy graph augmentation.
Parameters:
- model: torch.nn.Module
Graph neural network model.
- x: torch.Tensor
Input features of the graph nodes.
- edge_index: torch.Tensor
Edge indices of the graph.
Returns:
- augmented_x: torch.Tensor
Augmented node features.
- augmented_edge_index: torch.Tensor
Augmented edge indices.
- runtime_info: dict
Additional runtime information from the dummy augmentation process.
"""
return (
x,
edge_index,
{
"time_aug(ms)": 0.0,
"node_ratio(%)": 100.0,
"edge_ratio(%)": 100.0,
},
)
def adapt_labels_and_train_mask(self, y: torch.Tensor, train_mask: torch.Tensor):
"""
Adapts labels and training mask after dummy augmentation.
Parameters:
- y: torch.Tensor
Original node labels.
- train_mask: torch.Tensor
Original training mask.
Returns:
- adapted_y: torch.Tensor
Adapted node labels.
- adapted_train_mask: torch.Tensor
Adapted training mask.
"""
return y, train_mask
class BatAugmenter(BaseGraphAugmenter):
"""
Balanced Topological (BAT) augmentation for graph data.
Parameters:
- mode: str, optional (default: "bat1")
The augmentation mode. Must be one of ["dummy", "bat0", "bat1"].
- 'dummy': no augmentation.
- 'bat0': BAT with 0th order posterior likelihood estimation, linear to #nodes.
- 'bat1': BAT with 1st order posterior likelihood estimation, linear to #edges
and generally performs better (recommended).
- random_state: int or None, optional (default: None)
Random seed for reproducibility.
Methods:
- __init__(self, mode: str = "bat1", random_state: int = None)
Initializes the BatAugmenter instance.
- init_with_data(self, data: pyg.data.Data)
Initializes the augmenter with graph data.
- augment(self, model, x, edge_index)
Performs topology-aware graph augmentation.
- adapt_labels_and_train_mask(self, y, train_mask)
Adapts labels and training mask after augmentation.
- info(self)
Prints information about the augmenter.
- predict_proba(model, x, edge_index, return_numpy=False)
Computes predicted class probabilities using the model.
- edge_sampling(edge_index, edge_sampling_proba, random_state=None)
Performs edge sampling based on probability.
- get_group_mean(values, labels, classes)
Computes the mean of values within each class.
- get_virtual_node_features(x, y_pred, classes)
Computes virtual node features based on predicted labels.
- get_connectivity_distribution_sparse(y_pred, edge_index, n_class, n_node, n_edge)
Computes the distribution of neighbor labels for each node.
- get_node_risk(self, y_pred_proba, y_pred)
Computes node risk based on predicted class probabilities.
- estimate_node_posterior_likelihood(self, y_pred_proba, y_neighbor_distr)
Computes posterior likelihood for each node and class.
- get_virual_link_proba(self, node_posterior, y_pred)
Computes virtual link probabilities based on node posterior likelihood.
"""
MODE_SPACE = ["dummy", "bat0", "bat1"]
def __init__(
self,
mode: str = "bat1",
random_state: int = None,
):
"""
Initializes the BatAugmenter instance.
Parameters:
- mode: str, optional (default: "bat1")
The augmentation mode. Must be one of ["dummy", "bat0", "bat1"].
- random_state: int or None, optional (default: None)
Random seed for reproducibility.
"""
super().__init__()
# parameter check
assert mode in self.MODE_SPACE, f"mode must be one of {self.MODE_SPACE}"
assert (
isinstance(random_state, int) or random_state is None
), "random_state must be an integer or None"
self.mode = mode
self.random_state = random_state
self.init_flag = False
def init_with_data(self, data: pyg.data.Data):
"""
Initializes the augmenter with graph data.
Parameters:
- data: pyg.data.Data
The graph data.
Raises:
- AssertionError: If data is not a pyg.data.Data object or lacks required attributes.
Returns:
- self: BatAugmenter
"""
assert isinstance(data, pyg.data.Data), "data must be a pyg.data.Data object"
assert hasattr(data, "train_mask"), "data must have 'train_mask' attribute"
assert hasattr(data, "val_mask"), "data must have 'val_mask' attribute"
assert hasattr(data, "test_mask"), "data must have 'test_mask' attribute"
# initialization
x, edge_index, train_mask, y_train, device = (
data.x,
data.edge_index,
data.train_mask,
data.y[data.train_mask],
data.x.device,
)
classes, train_class_counts = y_train.unique(return_counts=True)
self.classes = classes
self.train_class_counts = train_class_counts
# basic stats
self.n_node = x.shape[0]
self.n_edge = edge_index.shape[1]
self.n_class = len(classes)
self.y_virtual = classes
self.y_train = y_train
self.train_mask = train_mask
self.train_class_weights = train_class_counts / train_class_counts.max()
self.empty_edge_index = torch.zeros(2, 0, dtype=torch.long, device=device)
self.dummy_runtime_info = {
"time_aug(ms)": 0.0,
"time_unc(ms)": 0.0,
"time_risk(ms)": 0.0,
"time_neighbor_distr(ms)": 0.0,
"time_gen(ms)": 0.0,
"time_sim(ms)": 0.0,
"node_ratio(%)": 100.0,
"edge_ratio(%)": 100.0,
}
self.device = device
self.init_flag = True
return self
def augment(
self, model: torch.nn.Module, x: torch.Tensor, edge_index: torch.Tensor
):
"""
Performs topology-aware graph augmentation.
Parameters:
- model: torch.nn.Module
The model used for prediction.
- x: torch.Tensor
Node features.
- edge_index: torch.Tensor
Edge indices.
Returns:
- x_aug: torch.Tensor
Augmented node features.
- edge_index_aug: torch.Tensor
Augmented edge indices.
- info: dict
Augmentation information.
"""
assert self.init_flag, "init_with_data() must be called before augment()"
# for reproducibility (constant seed will led to non-diverse sampling results)
if self.random_state is not None:
self.random_state += 1
train_mask = self.train_mask
# do nothing if mode is 'dummy'
if self.mode == "dummy":
return (x, edge_index, self.dummy_runtime_info)
# initialization
start_time = time.time()
y_pred_proba = self.predict_proba(model, x, edge_index)
y_pred = y_pred_proba.argmax(axis=1)
y_pred[train_mask] = self.y_train
# compute node_risk and virtual link probability
node_risk = self.get_node_risk(y_pred_proba, y_pred)
start_time_sim = time.time()
if self.mode == "bat0":
y_neighbor_distr = None
self.time_neighbor_distr = 0.0
else:
y_neighbor_distr = self.get_connectivity_distribution_sparse(
y_pred, edge_index, self.n_class, self.n_node, self.n_edge
)
node_posterior = self.estimate_node_posterior_likelihood(
y_pred_proba, y_neighbor_distr
)
virtual_link_proba = self.get_virual_link_proba(node_posterior, y_pred)
time_cost_sim = time.time() - start_time_sim
start_time_gen = time.time()
# assign link probability w.r.t node risk
virtual_link_proba *= node_risk.reshape(-1, 1)
# sample virtual edge_index w.r.t given probability
virtual_adj = virtual_link_proba.T.to_sparse().coalesce()
edge_index_candidates, edge_sampling_proba = (
virtual_adj.indices(),
virtual_adj.values(),
)
virtual_edge_index = self.edge_sampling(
edge_index_candidates, edge_sampling_proba, self.random_state
)
virtual_edge_index[
0
] += self.n_node # adjust index to match original node index
virtual_edge_index = to_undirected(virtual_edge_index)
# compute virtual node features
x_virtual = self.get_virtual_node_features(x, y_pred, self.classes)
time_cost_gen = time.time() - start_time_gen
# concatenate results
time_cost = time.time() - start_time
x_aug = torch.concat([x, x_virtual])
edge_index_aug = torch.concat([edge_index, virtual_edge_index], axis=1)
info = {
"time_aug(ms)": time_cost * 1000,
"time_unc(ms)": self.time_unc_comp * 1000,
"time_risk(ms)": self.time_risk_comp * 1000,
"time_sim(ms)": time_cost_sim * 1000,
"time_neighbor_distr(ms)": self.time_neighbor_distr * 1000,
"time_gen(ms)": time_cost_gen * 1000,
"node_ratio(%)": x_aug.shape[0] / x.shape[0] * 100,
"edge_ratio(%)": edge_index_aug.shape[1] / edge_index.shape[1] * 100,
}
return x_aug, edge_index_aug, info
def adapt_labels_and_train_mask(self, y: torch.Tensor, train_mask: torch.Tensor):
"""
Adapts labels and training mask after augmentation.
Parameters:
- y: torch.Tensor
Original labels.
- train_mask: torch.Tensor
Original training mask.
Returns:
- new_y: torch.Tensor
Adapted labels.
- new_train_mask: torch.Tensor
Adapted training mask.
"""
if self.mode == "dummy":
return y, train_mask
new_y = torch.concat([y, self.y_virtual])
new_train_mask = torch.concat(
[train_mask, torch.ones_like(self.y_virtual).bool()]
)
return new_y, new_train_mask
def info(self):
"""
Prints information about the augmenter.
"""
print(
f"BatAugmenter(\n"
f" mode={self.mode},\n"
f" n_node={self.n_node},\n"
f" n_edge={self.n_edge},\n"
f" n_class={self.n_class},\n"
f" classes={self.classes.cpu()},\n"
f" train_class_counts={self.train_class_counts.cpu()},\n"
f" train_class_weights={self.train_class_weights.cpu()},\n"
f" device={self.device},\n"
f")"
)
@staticmethod
def predict_proba(
model: torch.nn.Module,
x: torch.Tensor,
edge_index: torch.Tensor,
return_numpy: bool = False,
):
"""
Computes predicted class probabilities using the model.
Parameters:
- model: torch.nn.Module
The model used for prediction.
- x: torch.Tensor
Node features.
- edge_index: torch.Tensor
Edge indices.
- return_numpy: bool, optional (default: False)
Whether to return the probabilities as a numpy array.
Returns:
- pred_proba: torch.Tensor or numpy.ndarray
Predicted class probabilities.
"""
model.eval()
with torch.no_grad():
logits = model.forward(x, edge_index)
pred_proba = torch.softmax(logits, dim=1).detach()
if return_numpy:
pred_proba = pred_proba.cpu().numpy()
return pred_proba
@staticmethod
def edge_sampling(
edge_index: torch.Tensor,
edge_sampling_proba: torch.Tensor,
random_state: int = None,
):
"""
Performs edge sampling based on probability.
Parameters:
- edge_index: torch.Tensor
Edge indices.
- edge_sampling_proba: torch.Tensor
Edge sampling probabilities.
- random_state: int or None, optional (default: None)
Random seed for reproducibility.
Returns:
- sampled_edge_index: torch.Tensor
Sampled edge indices.
"""
assert edge_sampling_proba.min() >= 0 and edge_sampling_proba.max() <= 1
seed_everything(random_state)
edge_sample_mask = torch.rand_like(edge_sampling_proba) < edge_sampling_proba
return edge_index[:, edge_sample_mask]
@staticmethod
def get_group_mean(
values: torch.Tensor, labels: torch.Tensor, classes: torch.Tensor
):
"""
Computes the mean of values within each class.
Parameters:
- values: torch.Tensor
Values to compute the mean of.
- labels: torch.Tensor
Labels corresponding to values.
- classes: torch.Tensor
Classes for which to compute the mean.
Returns:
- new_values: torch.Tensor
Mean values for each class.
"""
new_values = torch.zeros_like(values)
for i in classes:
mask = labels == i
new_values[mask] = values[mask].mean()
return new_values
@staticmethod
def get_virtual_node_features(x: torch.Tensor, y_pred: torch.Tensor, classes: list):
"""
Computes virtual node features based on predicted labels.
Parameters:
- x: torch.Tensor
Node features.
- y_pred: torch.Tensor
Predicted labels.
- classes: list
Unique classes in the dataset.
Returns:
- virtual_node_features: torch.Tensor
Virtual node features for each class.
"""
return torch.stack([x[y_pred == label].mean(axis=0) for label in classes])
def get_connectivity_distribution_sparse(
self,
y_pred: torch.Tensor,
edge_index: torch.Tensor,
n_class: int,
n_node: int,
n_edge: int,
):
"""
Computes the distribution of connectivity labels.
Parameters:
- y_pred: torch.Tensor
Predicted labels.
- edge_index: torch.Tensor
Edge indices (sparse).
- n_class: int
Number of classes.
- n_node: int
Number of nodes.
- n_edge: int
Number of edges.
Returns:
- neighbor_y_distr: torch.Tensor
Normalized connectivity label distribution.
"""
start_time = time.time()
device = y_pred.device
edge_dest_class = torch.zeros(
(n_edge, n_class), dtype=torch.int, device=device
).scatter_(
1, y_pred[edge_index[1]].unsqueeze(1), 1
) # [n_edges, n_class]
neighbor_y_distr = (
torch.zeros((n_node, n_class), dtype=torch.int, device=device)
.scatter_add_(
dim=0,
index=edge_index[0].repeat(n_class, 1).T,
src=edge_dest_class,
)
.float()
) # [n_nodes, n_class]
# row-wise normalization
neighbor_y_distr /= neighbor_y_distr.sum(axis=1).reshape(-1, 1)
neighbor_y_distr = neighbor_y_distr.nan_to_num(0)
self.time_neighbor_distr = time.time() - start_time
return neighbor_y_distr
def get_node_risk(self, y_pred_proba: torch.Tensor, y_pred: torch.Tensor):
"""
Computes node risk based on predicted probabilities.
Parameters:
- y_pred_proba: torch.Tensor
Predicted class probabilities.
- y_pred: torch.Tensor
Predicted labels.
Returns:
- node_risk: torch.Tensor
Node risk scores.
"""
# compute node pred
start_time = time.time()
node_unc = 1 - y_pred_proba.max(axis=1).values
self.time_unc_comp = time.time() - start_time
# compute class-aware relative pred
node_unc_class_mean = self.get_group_mean(node_unc, y_pred, self.classes)
node_risk = (node_unc - node_unc_class_mean).clip(min=0)
# calibrate node risk w.r.t class weights
node_risk *= self.train_class_weights[y_pred]
self.time_risk_comp = time.time() - start_time
return node_risk
def estimate_node_posterior_likelihood(
self, y_pred_proba: torch.Tensor, y_neighbor_distr: torch.Tensor
):
"""
Estimates node posterior likelihood for each class.
Parameters:
- y_pred_proba: torch.Tensor
Predicted class probabilities.
- y_neighbor_distr: torch.Tensor
Connectivity label distribution.
Returns:
- node_posterior: torch.Tensor
Node posterior likelihood.
"""
mode = self.mode
if mode == "bat0":
node_posterior = y_pred_proba
elif mode == "bat1":
node_posterior = y_neighbor_distr
else:
raise NotImplementedError
return node_posterior
def get_virual_link_proba(self, node_posterior: torch.Tensor, y_pred: torch.Tensor):
"""
Computes virtual link probabilities based on node posterior likelihood.
Parameters:
- node_posterior: torch.Tensor
Node posterior likelihood.
- y_pred: torch.Tensor
Predicted labels.
Returns:
- virtual_link_proba: torch.Tensor
Virtual link probabilities.
"""
# set likelihood to current predicted class as 0
node_posterior *= 1 - F.one_hot(y_pred, num_classes=self.n_class)
node_posterior = node_posterior.clip(min=0)
# row-wise renormalize
node_posterior /= node_posterior.sum(axis=1).reshape(-1, 1)
virtual_link_proba = node_posterior.nan_to_num(0)
return virtual_link_proba