-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathextract_cells.py
181 lines (151 loc) · 6.45 KB
/
extract_cells.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# import libraries
import cv2 as cv
import numpy as np
import matplotlib as mpl
from os import listdir
import os
from os.path import isfile, join
mpl.rcParams['image.cmap'] = 'gray'
mypath, intersections, verticalLines, horizontalLines, binaryImgs, Cells, EnglishName, Code, StudentName, Numbers, outputs = "SingleInput", "Intersections/", "verticalLines/", "horizontalLines/", "binaryImgs/", "Cells/", "Cells/EnglishName/", "Cells/Code/", "Cells/StudentName/", "Cells/1", "outputs/"
def getLines(binaryImg, x):
# Kernel Length
kernelLength = np.array(binaryImg).shape[1] // x
# Vertical Kernel (1 x kernelLength)
verticalKernel = cv.getStructuringElement(cv.MORPH_RECT, (1, kernelLength))
# Horizontal Kernel (kernelLength x 1)
horizontalKernel = cv.getStructuringElement(
cv.MORPH_RECT, (kernelLength, 1))
# Apply erosion then dilation to detect vertical lines using the vertical kernel
erodedImg = cv.erode(binaryImg, verticalKernel, iterations=3)
verticalLinesImg = cv.dilate(erodedImg, verticalKernel, iterations=3)
# Apply erosion then dilation to detect horizontal lines using the horizontal kernel
erodedImg = cv.erode(binaryImg, horizontalKernel, iterations=3)
horizontalLinesImg = cv.dilate(erodedImg, horizontalKernel, iterations=3)
return verticalLinesImg, horizontalLinesImg
def getIntersections(pixels):
intersections = {}
for i in range(pixels.shape[0]):
for j in range(pixels.shape[1]):
if pixels[i][j] != 0:
if i in intersections:
intersections[i].append((i, j))
else:
intersections[i] = []
intersections[i].append((i, j))
keys = list(intersections.keys())
uniqueKeys = []
uniqueKeys.append(keys[0])
for i in range(1, len(keys), 1):
if (keys[i] - keys[i - 1] > 20):
uniqueKeys.append(keys[i])
rows = []
for i in uniqueKeys:
rows.append(intersections[i])
finalIntersections = []
index = 0
for row in rows:
finalIntersections.append([])
finalIntersections[index].append(row[0])
for i in range(1, len(row), 1):
if (row[i][1] - row[i - 1][1] > 20):
finalIntersections[index].append(row[i])
index += 1
return finalIntersections
def houghLines(img, type):
lines = cv.HoughLinesP(img.astype(np.uint8), 0.5, np.pi/180, 100,
minLineLength=0.25*min(img.shape[0], img.shape[1]), maxLineGap=10)
hough_lines_out = np.zeros(img.shape)
for line in lines:
x1, y1, x2, y2 = line[0]
if (type == "vertical"):
cv.line(hough_lines_out, (x1, 0),
(x2, img.shape[0]), (255, 255, 255), 1)
else:
cv.line(hough_lines_out, (0, y1),
(img.shape[1], y2), (255, 255, 255), 1)
return hough_lines_out
def runGetIntersections(imgPath):
img = cv.imread(imgPath, 0)
# thresholding
(thresh, binaryImg) = cv.threshold(
img, 128, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
binaryImg = 255 - binaryImg
verticalLinesImg, horizontalLinesImg = getLines(binaryImg, x=10)
verticalLinesImg = houghLines(verticalLinesImg, "vertical")
horizontalLinesImg = houghLines(horizontalLinesImg, "horizontal")
return binaryImg, verticalLinesImg, horizontalLinesImg, cv.bitwise_and(verticalLinesImg, horizontalLinesImg)
def runGetCells(img, intersections):
cells = {}
intersections = np.array(intersections)
height = img.shape[0]
width = img.shape[1]
columnsCount = intersections.shape[1] - 1
createDirs(columnsCount)
for col in range(columnsCount):
cells[col] = []
for row in range(intersections.shape[0] - 1):
x_min = intersections[row][col][0]
x_max = intersections[row + 1][col][0]
y_min = intersections[row][col][1]
y_max = intersections[row][col + 1][1]
cell = img[x_min:x_max, y_min:y_max]
border = int(np.ceil(width / 200))
if (col <= 2):
cell[0:(border-2), 0:width] = 0
cell[-(border-2):height, 0:width] = 0
cell[0:height, 0:border] = 0
cell[0:height, -(border//2)+1:width] = 0
else:
cell[0:border, 0:width] = 0
cell[-border:height, 0:width] = 0
cell[0:height, 0:border] = 0
cell[0:height, -border:width] = 0
cells[col].append(cell)
labels = ["Cells/Code/", "Cells/StudentName/", "Cells/EnglishName/"]
for i in range(columnsCount - 3):
labels.append("Cells/" + str(i + 1) + "/")
for key in range(len(labels)):
for i in range(len(cells[key])):
img = cells[key][i]
if(labels[key] == "Cells/1/"):
img = cv.resize(cells[key][i], (200, 100))
img = cv.resize(img, None, fx=3, fy=3,
interpolation=cv.INTER_CUBIC)
cv.imwrite(labels[key] + chr(i+97) + ".jpg", img)
return columnsCount
def createDirs(count):
if(not os.path.exists(Cells)):
os.makedirs(Cells)
if(not os.path.exists(EnglishName)):
os.makedirs(EnglishName)
if(not os.path.exists(Code)):
os.makedirs(Code)
if(not os.path.exists(StudentName)):
os.makedirs(StudentName)
if(not os.path.exists(Numbers)):
os.makedirs(Numbers)
for i in range(count - 4):
if(not os.path.exists(Cells + str(i + 2))):
os.makedirs(Cells + str(i + 2))
if(not os.path.exists(outputs)):
os.makedirs(outputs)
# if(not os.path.exists(verticalLines)):
# os.makedirs(verticalLines)
# if(not os.path.exists(horizontalLines)):
# os.makedirs(horizontalLines)
# if(not os.path.exists(intersections)):
# os.makedirs(intersections)
# if(not os.path.exists(binaryImgs)):
# os.makedirs(binaryImgs)
def runExtractCells():
files = [f for f in listdir(mypath) if isfile(join(mypath, f))]
for fileName in files:
img, vertical, horizontal, result_image = runGetIntersections(
mypath + "/" + fileName)
positions = getIntersections(result_image)
count = runGetCells(img, positions)
# cv.imwrite(verticalLines + fileName, vertical)
# cv.imwrite(horizontalLines + fileName, horizontal)
# cv.imwrite(intersections + fileName, result_image)
# cv.imwrite(binaryImgs + fileName, img)
return count