-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathxlnxfull_2018_3.v
923 lines (868 loc) · 31.2 KB
/
xlnxfull_2018_3.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
////////////////////////////////////////////////////////////////////////////////
//
// Filename: xlnxfull.v
//
// Project: WB2AXIPSP: bus bridges and other odds and ends
// {{{
// Purpose: To test the formal tools on an AXI4 (full) core that is "known"
// to work. (Only this one doesn't, but at least that was my
// initial purpose.) Most of this code comes directly from Vivado's core
// generator--starting at the end of this comment block and going down
// directly to the initial statements before the `ifdef FORMAL block at
// the bottom. I have made superficial adjustments to Xilinx's code: I
// swapped spaces for tabs, I removed any white space at the ends of
// lines, I fixed any spelling errors that I noticed in the comments, added
// the default_nettype, added initial statements (just before the ifdef
// FORMAL) for things that should've had them in the first place, etc.
// I may have even swapped an always @(somevalue) for an always @(*), but
// that's as far as I've gone.
// }}}
// I was surprised to learn that this core passed, and would always pass,
// a Xilinx VIP check as is. It does not pass a formal verification check.
//
// Creator: Vivado, 2018.3
// {{{
////////////////////////////////////////////////////////////////////////////////
//
`default_nettype none // Added to the raw demo
`timescale 1 ns / 1 ps
// }}}
module xlnxfull_2018_3 #(
// Users to add parameters here
// User parameters ends
// Do not modify the parameters beyond this line
// Width of ID for for write address, write data, read address and read data
parameter integer C_S_AXI_ID_WIDTH = 1,
// Width of S_AXI data bus
parameter integer C_S_AXI_DATA_WIDTH = 32,
// Width of S_AXI address bus
parameter integer C_S_AXI_ADDR_WIDTH = 6,
// Width of optional user defined signal in write address channel
parameter integer C_S_AXI_AWUSER_WIDTH = 0,
// Width of optional user defined signal in read address channel
parameter integer C_S_AXI_ARUSER_WIDTH = 0,
// Width of optional user defined signal in write data channel
parameter integer C_S_AXI_WUSER_WIDTH = 0,
// Width of optional user defined signal in read data channel
parameter integer C_S_AXI_RUSER_WIDTH = 0,
// Width of optional user defined signal in write response channel
parameter integer C_S_AXI_BUSER_WIDTH = 0
) (
// Users to add ports here
// User ports ends
// Do not modify the ports beyond this line
// Global Clock Signal
input wire S_AXI_ACLK,
// Global Reset Signal. This Signal is Active LOW
input wire S_AXI_ARESETN,
// Write Address ID
input wire [C_S_AXI_ID_WIDTH-1 : 0] S_AXI_AWID,
// Write address
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_AWADDR,
// Burst length. The burst length gives the exact number of transfers in a burst
input wire [7 : 0] S_AXI_AWLEN,
// Burst size. This signal indicates the size of each transfer in the burst
input wire [2 : 0] S_AXI_AWSIZE,
// Burst type. The burst type and the size information,
// determine how the address for each transfer within the burst is calculated.
input wire [1 : 0] S_AXI_AWBURST,
// Lock type. Provides additional information about the
// atomic characteristics of the transfer.
input wire S_AXI_AWLOCK,
// Memory type. This signal indicates how transactions
// are required to progress through a system.
input wire [3 : 0] S_AXI_AWCACHE,
// Protection type. This signal indicates the privilege
// and security level of the transaction, and whether
// the transaction is a data access or an instruction access.
input wire [2 : 0] S_AXI_AWPROT,
// Quality of Service, QoS identifier sent for each
// write transaction.
input wire [3 : 0] S_AXI_AWQOS,
// Region identifier. Permits a single physical interface
// on a slave to be used for multiple logical interfaces.
input wire [3 : 0] S_AXI_AWREGION,
// Optional User-defined signal in the write address channel.
// input wire [C_S_AXI_AWUSER_WIDTH-1 : 0] S_AXI_AWUSER,
// Write address valid. This signal indicates that
// the channel is signaling valid write address and
// control information.
input wire S_AXI_AWVALID,
// Write address ready. This signal indicates that
// the slave is ready to accept an address and associated
// control signals.
output wire S_AXI_AWREADY,
// Write Data
input wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_WDATA,
// Write strobes. This signal indicates which byte
// lanes hold valid data. There is one write strobe
// bit for each eight bits of the write data bus.
input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] S_AXI_WSTRB,
// Write last. This signal indicates the last transfer
// in a write burst.
input wire S_AXI_WLAST,
// Optional User-defined signal in the write data channel.
// input wire [C_S_AXI_WUSER_WIDTH-1 : 0] S_AXI_WUSER,
// Write valid. This signal indicates that valid write
// data and strobes are available.
input wire S_AXI_WVALID,
// Write ready. This signal indicates that the slave
// can accept the write data.
output wire S_AXI_WREADY,
// Response ID tag. This signal is the ID tag of the
// write response.
output wire [C_S_AXI_ID_WIDTH-1 : 0] S_AXI_BID,
// Write response. This signal indicates the status
// of the write transaction.
output wire [1 : 0] S_AXI_BRESP,
// Optional User-defined signal in the write response channel.
// output wire [C_S_AXI_BUSER_WIDTH-1 : 0] S_AXI_BUSER,
// Write response valid. This signal indicates that the
// channel is signaling a valid write response.
output wire S_AXI_BVALID,
// Response ready. This signal indicates that the master
// can accept a write response.
input wire S_AXI_BREADY,
// Read address ID. This signal is the identification
// tag for the read address group of signals.
input wire [C_S_AXI_ID_WIDTH-1 : 0] S_AXI_ARID,
// Read address. This signal indicates the initial
// address of a read burst transaction.
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_ARADDR,
// Burst length. The burst length gives the exact number of transfers in a burst
input wire [7 : 0] S_AXI_ARLEN,
// Burst size. This signal indicates the size of each transfer in the burst
input wire [2 : 0] S_AXI_ARSIZE,
// Burst type. The burst type and the size information,
// determine how the address for each transfer within the burst is calculated.
input wire [1 : 0] S_AXI_ARBURST,
// Lock type. Provides additional information about the
// atomic characteristics of the transfer.
input wire S_AXI_ARLOCK,
// Memory type. This signal indicates how transactions
// are required to progress through a system.
input wire [3 : 0] S_AXI_ARCACHE,
// Protection type. This signal indicates the privilege
// and security level of the transaction, and whether
// the transaction is a data access or an instruction access.
input wire [2 : 0] S_AXI_ARPROT,
// Quality of Service, QoS identifier sent for each
// read transaction.
input wire [3 : 0] S_AXI_ARQOS,
// Region identifier. Permits a single physical interface
// on a slave to be used for multiple logical interfaces.
// input wire [3 : 0] S_AXI_ARREGION,
// Optional User-defined signal in the read address channel.
// input wire [C_S_AXI_ARUSER_WIDTH-1 : 0] S_AXI_ARUSER,
// Write address valid. This signal indicates that
// the channel is signaling valid read address and
// control information.
input wire S_AXI_ARVALID,
// Read address ready. This signal indicates that
// the slave is ready to accept an address and associated
// control signals.
output wire S_AXI_ARREADY,
// Read ID tag. This signal is the identification tag
// for the read data group of signals generated by the slave.
output wire [C_S_AXI_ID_WIDTH-1 : 0] S_AXI_RID,
// Read Data
output wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_RDATA,
// Read response. This signal indicates the status of
// the read transfer.
output wire [1 : 0] S_AXI_RRESP,
// Read last. This signal indicates the last transfer
// in a read burst.
output wire S_AXI_RLAST,
// Optional User-defined signal in the read address channel.
// output wire [C_S_AXI_RUSER_WIDTH-1 : 0] S_AXI_RUSER,
// Read valid. This signal indicates that the channel
// is signaling the required read data.
output wire S_AXI_RVALID,
// Read ready. This signal indicates that the master can
// accept the read data and response information.
input wire S_AXI_RREADY
);
// AXI4FULL signals
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_awaddr;
reg axi_awready;
reg axi_wready;
reg [1 : 0] axi_bresp;
// reg [C_S_AXI_BUSER_WIDTH-1 : 0] axi_buser;
reg axi_bvalid;
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_araddr;
reg axi_arready;
reg [C_S_AXI_DATA_WIDTH-1 : 0] axi_rdata;
reg [1 : 0] axi_rresp;
reg axi_rlast;
// reg [C_S_AXI_RUSER_WIDTH-1 : 0] axi_ruser;
reg axi_rvalid;
// aw_wrap_en determines wrap boundary and enables wrapping
wire aw_wrap_en;
// ar_wrap_en determines wrap boundary and enables wrapping
wire ar_wrap_en;
// aw_wrap_size is the size of the write transfer, the
// write address wraps to a lower address if upper address
// limit is reached
wire [31:0] aw_wrap_size ;
// ar_wrap_size is the size of the read transfer, the
// read address wraps to a lower address if upper address
// limit is reached
wire [31:0] ar_wrap_size ;
// The axi_awv_awr_flag flag marks the presence of write address valid
reg axi_awv_awr_flag;
//The axi_arv_arr_flag flag marks the presence of read address valid
reg axi_arv_arr_flag;
// The axi_awlen_cntr internal write address counter to keep track of beats in a burst transaction
reg [7:0] axi_awlen_cntr;
//The axi_arlen_cntr internal read address counter to keep track of beats in a burst transaction
reg [7:0] axi_arlen_cntr;
reg [1:0] axi_arburst;
reg [1:0] axi_awburst;
reg [7:0] axi_arlen;
reg [7:0] axi_awlen;
//local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH
//ADDR_LSB is used for addressing 32/64 bit registers/memories
//ADDR_LSB = 2 for 32 bits (n downto 2)
//ADDR_LSB = 3 for 42 bits (n downto 3)
localparam integer ADDR_LSB = (C_S_AXI_DATA_WIDTH/32)+ 1;
localparam integer OPT_MEM_ADDR_BITS = 3;
localparam integer USER_NUM_MEM = 1;
//----------------------------------------------
//-- Signals for user logic memory space example
//------------------------------------------------
wire [OPT_MEM_ADDR_BITS:0] mem_address;
// wire [USER_NUM_MEM-1:0] mem_select;
reg [C_S_AXI_DATA_WIDTH-1:0] mem_data_out[0 : USER_NUM_MEM-1];
genvar i;
genvar j;
genvar mem_byte_index;
// I/O Connections assignments
assign S_AXI_AWREADY = axi_awready;
assign S_AXI_WREADY = axi_wready;
assign S_AXI_BRESP = axi_bresp;
// assign S_AXI_BUSER = axi_buser;
assign S_AXI_BVALID = axi_bvalid;
assign S_AXI_ARREADY = axi_arready;
assign S_AXI_RDATA = axi_rdata;
assign S_AXI_RRESP = axi_rresp;
assign S_AXI_RLAST = axi_rlast;
// assign S_AXI_RUSER = axi_ruser;
assign S_AXI_RVALID = axi_rvalid;
assign S_AXI_BID = S_AXI_AWID;
assign S_AXI_RID = S_AXI_ARID;
assign aw_wrap_size = (C_S_AXI_DATA_WIDTH/8 * (axi_awlen));
assign ar_wrap_size = (C_S_AXI_DATA_WIDTH/8 * (axi_arlen));
assign aw_wrap_en = ((axi_awaddr & aw_wrap_size) == aw_wrap_size)? 1'b1: 1'b0;
assign ar_wrap_en = ((axi_araddr & ar_wrap_size) == ar_wrap_size)? 1'b1: 1'b0;
// Implement axi_awready generation
// axi_awready is asserted for one S_AXI_ACLK clock cycle when both
// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is
// de-asserted when reset is low.
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_awready <= 1'b0;
axi_awv_awr_flag <= 1'b0;
end
else
begin
if (~axi_awready && S_AXI_AWVALID && ~axi_awv_awr_flag && ~axi_arv_arr_flag)
begin
// slave is ready to accept an address and
// associated control signals
axi_awready <= 1'b1;
axi_awv_awr_flag <= 1'b1;
// used for generation of bresp() and bvalid
end
else if (S_AXI_WLAST && axi_wready)
// preparing to accept next address after current write burst tx completion
begin
axi_awv_awr_flag <= 1'b0;
end
else
begin
axi_awready <= 1'b0;
end
end
end
// Implement axi_awaddr latching
// This process is used to latch the address when both
// S_AXI_AWVALID and S_AXI_WVALID are valid.
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_awaddr <= 0;
axi_awlen_cntr <= 0;
axi_awburst <= 0;
axi_awlen <= 0;
end
else
begin
if (~axi_awready && S_AXI_AWVALID && ~axi_awv_awr_flag)
begin
// address latching
axi_awaddr <= S_AXI_AWADDR[C_S_AXI_ADDR_WIDTH - 1:0];
axi_awburst <= S_AXI_AWBURST;
axi_awlen <= S_AXI_AWLEN;
// start address of transfer
axi_awlen_cntr <= 0;
end
else if((axi_awlen_cntr <= axi_awlen) && axi_wready && S_AXI_WVALID)
begin
axi_awlen_cntr <= axi_awlen_cntr + 1;
case (axi_awburst)
2'b00: // fixed burst
// The write address for all the beats in the transaction are fixed
begin
axi_awaddr <= axi_awaddr;
//for awsize = 4 bytes (010)
end
2'b01: //incremental burst
// The write address for all the beats in the transaction are increments by awsize
begin
axi_awaddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] <= axi_awaddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] + 1;
//awaddr aligned to 4 byte boundary
axi_awaddr[ADDR_LSB-1:0] <= {ADDR_LSB{1'b0}};
//for awsize = 4 bytes (010)
end
2'b10: //Wrapping burst
// The write address wraps when the address reaches wrap boundary
if (aw_wrap_en)
begin
axi_awaddr <= (axi_awaddr - aw_wrap_size);
end
else
begin
axi_awaddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] <= axi_awaddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] + 1;
axi_awaddr[ADDR_LSB-1:0] <= {ADDR_LSB{1'b0}};
end
default: //reserved (incremental burst for example)
begin
axi_awaddr <= axi_awaddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] + 1;
//for awsize = 4 bytes (010)
end
endcase
end
end
end
// Implement axi_wready generation
// axi_wready is asserted for one S_AXI_ACLK clock cycle when both
// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is
// de-asserted when reset is low.
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_wready <= 1'b0;
end
else
begin
if (~axi_wready && S_AXI_WVALID && axi_awv_awr_flag)
begin
// slave can accept the write data
axi_wready <= 1'b1;
end
//else if (~axi_awv_awr_flag)
else if (S_AXI_WLAST && axi_wready)
begin
axi_wready <= 1'b0;
end
end
end
// Implement write response logic generation
// The write response and response valid signals are asserted by the slave
// when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted.
// This marks the acceptance of address and indicates the status of
// write transaction.
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_bvalid <= 0;
axi_bresp <= 2'b0;
// axi_buser <= 0;
end
else
begin
if (axi_awv_awr_flag && axi_wready && S_AXI_WVALID && ~axi_bvalid && S_AXI_WLAST )
begin
axi_bvalid <= 1'b1;
axi_bresp <= 2'b0;
// 'OKAY' response
end
else
begin
if (S_AXI_BREADY && axi_bvalid)
//check if bready is asserted while bvalid is high)
//(there is a possibility that bready is always asserted high)
begin
axi_bvalid <= 1'b0;
end
end
end
end
// Implement axi_arready generation
// axi_arready is asserted for one S_AXI_ACLK clock cycle when
// S_AXI_ARVALID is asserted. axi_awready is
// de-asserted when reset (active low) is asserted.
// The read address is also latched when S_AXI_ARVALID is
// asserted. axi_araddr is reset to zero on reset assertion.
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_arready <= 1'b0;
axi_arv_arr_flag <= 1'b0;
end
else
begin
if (~axi_arready && S_AXI_ARVALID && ~axi_awv_awr_flag && ~axi_arv_arr_flag)
begin
axi_arready <= 1'b1;
axi_arv_arr_flag <= 1'b1;
end
else if (axi_rvalid && S_AXI_RREADY && axi_arlen_cntr == axi_arlen)
// preparing to accept next address after current read completion
begin
axi_arv_arr_flag <= 1'b0;
end
else
begin
axi_arready <= 1'b0;
end
end
end
// Implement axi_araddr latching
//This process is used to latch the address when both
//S_AXI_ARVALID and S_AXI_RVALID are valid.
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_araddr <= 0;
axi_arlen_cntr <= 0;
axi_arburst <= 0;
axi_arlen <= 0;
axi_rlast <= 1'b0;
// axi_ruser <= 0;
end
else
begin
if (~axi_arready && S_AXI_ARVALID && ~axi_arv_arr_flag)
begin
// address latching
axi_araddr <= S_AXI_ARADDR[C_S_AXI_ADDR_WIDTH - 1:0];
axi_arburst <= S_AXI_ARBURST;
axi_arlen <= S_AXI_ARLEN;
// start address of transfer
axi_arlen_cntr <= 0;
axi_rlast <= 1'b0;
end
else if((axi_arlen_cntr <= axi_arlen) && axi_rvalid && S_AXI_RREADY)
begin
axi_arlen_cntr <= axi_arlen_cntr + 1;
axi_rlast <= 1'b0;
case (axi_arburst)
2'b00: // fixed burst
// The read address for all the beats in the transaction are fixed
begin
axi_araddr <= axi_araddr;
//for arsize = 4 bytes (010)
end
2'b01: //incremental burst
// The read address for all the beats in the transaction are increments by awsize
begin
axi_araddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] <= axi_araddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] + 1;
//araddr aligned to 4 byte boundary
axi_araddr[ADDR_LSB-1:0] <= {ADDR_LSB{1'b0}};
//for awsize = 4 bytes (010)
end
2'b10: //Wrapping burst
// The read address wraps when the address reaches wrap boundary
if (ar_wrap_en)
begin
axi_araddr <= (axi_araddr - ar_wrap_size);
end
else
begin
axi_araddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] <= axi_araddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] + 1;
//araddr aligned to 4 byte boundary
axi_araddr[ADDR_LSB-1:0] <= {ADDR_LSB{1'b0}};
end
default: //reserved (incremental burst for example)
begin
axi_araddr <= axi_araddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB]+1;
//for arsize = 4 bytes (010)
end
endcase
end
else if((axi_arlen_cntr == axi_arlen) && ~axi_rlast && axi_arv_arr_flag )
begin
axi_rlast <= 1'b1;
end
else if (S_AXI_RREADY)
begin
axi_rlast <= 1'b0;
end
end
end
// Implement axi_arvalid generation
// axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both
// S_AXI_ARVALID and axi_arready are asserted. The slave registers
// data are available on the axi_rdata bus at this instance. The
// assertion of axi_rvalid marks the validity of read data on the
// bus and axi_rresp indicates the status of read transaction.axi_rvalid
// is deasserted on reset (active low). axi_rresp and axi_rdata are
// cleared to zero on reset (active low).
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_rvalid <= 0;
axi_rresp <= 0;
end
else
begin
if (axi_arv_arr_flag && ~axi_rvalid)
begin
axi_rvalid <= 1'b1;
axi_rresp <= 2'b0;
// 'OKAY' response
end
else if (axi_rvalid && S_AXI_RREADY)
begin
axi_rvalid <= 1'b0;
end
end
end
// ------------------------------------------
// -- Example code to access user logic memory region
// ------------------------------------------
generate
if (USER_NUM_MEM >= 1)
begin
// assign mem_select = 1;
assign mem_address = (axi_arv_arr_flag? axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB]:(axi_awv_awr_flag? axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB]:0));
end
endgenerate
// implement Block RAM(s)
generate
for(i=0; i<= USER_NUM_MEM-1; i=i+1)
begin:BRAM_GEN
wire mem_rden;
wire mem_wren;
assign mem_wren = axi_wready && S_AXI_WVALID ;
assign mem_rden = axi_arv_arr_flag ; //& ~axi_rvalid
for(mem_byte_index=0; mem_byte_index<= (C_S_AXI_DATA_WIDTH/8-1); mem_byte_index=mem_byte_index+1)
begin:BYTE_BRAM_GEN
wire [8-1:0] data_in ;
wire [8-1:0] data_out;
reg [8-1:0] byte_ram [0 : 15];
// integer j;
//assigning 8 bit data
assign data_in = S_AXI_WDATA[(mem_byte_index*8+7) -: 8];
assign data_out = byte_ram[mem_address];
always @( posedge S_AXI_ACLK )
begin
if (mem_wren && S_AXI_WSTRB[mem_byte_index])
begin
byte_ram[mem_address] <= data_in;
end
end
always @( posedge S_AXI_ACLK )
begin
if (mem_rden)
begin
mem_data_out[i][(mem_byte_index*8+7) -: 8] <= data_out;
end
end
end
end
endgenerate
//Output register or memory read data
always @(*) // @( mem_data_out, axi_rvalid)
begin
if (axi_rvalid)
begin
// Read address mux
axi_rdata = mem_data_out[0];
end
else
begin
axi_rdata = 32'h00000000;
end
end
// Verification logic starts here:
initial axi_awready = 1'b0;
initial axi_awv_awr_flag = 1'b0;
initial axi_awaddr = 0;
initial axi_awlen_cntr = 0;
initial axi_awburst = 0;
initial axi_awlen = 0;
initial axi_wready = 1'b0;
initial axi_bvalid = 1'b0;
initial axi_bresp = 1'b0;
// initial axi_buser = 1'b0;
initial axi_arready = 1'b0;
initial axi_arv_arr_flag = 1'b0;
initial axi_araddr = 0;
initial axi_arlen_cntr = 0;
initial axi_arburst = 0;
initial axi_arlen = 0;
initial axi_rlast = 0;
// initial axi_ruser = 0;
initial axi_rvalid = 1'b0;
initial axi_rresp = 1'b0;
`ifdef FORMAL
//
// ...
//
faxi_slave #(
.F_AXI_MAXSTALL(6),
.C_AXI_ID_WIDTH(C_S_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH(C_S_AXI_DATA_WIDTH),
.C_AXI_ADDR_WIDTH(C_S_AXI_ADDR_WIDTH),
.OPT_NARROW_BURST(0),
.OPT_EXCLUSIVE(0),
.F_LGDEPTH(F_LGDEPTH))
f_slave(
// {{{
.i_clk(S_AXI_ACLK),
.i_axi_reset_n(S_AXI_ARESETN),
//
// Address write channel
//
// Write Address ID
.i_axi_awid(S_AXI_AWID),
// Write address
.i_axi_awaddr(S_AXI_AWADDR),
// Burst length. The burst length gives the exact number of transfers in a burst
.i_axi_awlen(S_AXI_AWLEN),
// Burst size. This signal indicates the size of each transfer in the burst
.i_axi_awsize(S_AXI_AWSIZE),
// Burst type. The burst type and the size information,
// determine how the address for each transfer within the burst is calculated.
.i_axi_awburst(S_AXI_AWBURST),
// Lock type. Provides additional information about the
// atomic characteristics of the transfer.
.i_axi_awlock(S_AXI_AWLOCK),
// Memory type. This signal indicates how transactions
// are required to progress through a system.
.i_axi_awcache(S_AXI_AWCACHE),
// Protection type. This signal indicates the privilege
// and security level of the transaction, and whether
// the transaction is a data access or an instruction access.
.i_axi_awprot(S_AXI_AWPROT),
// Quality of Service, QoS identifier sent for each
// write transaction.
.i_axi_awqos(S_AXI_AWQOS),
// Write address valid. This signal indicates that
// the channel is signaling valid write address and
// control information.
.i_axi_awvalid(S_AXI_AWVALID),
// Write address ready. This signal indicates that
// the slave is ready to accept an address and associated
// control signals.
.i_axi_awready(S_AXI_AWREADY),
//
//
//
// Write Data Channel
//
// Write Data
.i_axi_wdata(S_AXI_WDATA),
// Write strobes. This signal indicates which byte
// lanes hold valid data. There is one write strobe
// bit for each eight bits of the write data bus.
.i_axi_wstrb(S_AXI_WSTRB),
// Write last. This signal indicates the last transfer
// in a write burst.
.i_axi_wlast(S_AXI_WLAST),
// Write valid. This signal indicates that valid write
// data and strobes are available.
.i_axi_wvalid(S_AXI_WVALID),
// Write ready. This signal indicates that the slave
// can accept the write data.
.i_axi_wready(S_AXI_WREADY),
//
//
// Response ID tag. This signal is the ID tag of the
// write response.
.i_axi_bid(S_AXI_BID),
// Write response. This signal indicates the status
// of the write transaction.
.i_axi_bresp(S_AXI_BRESP),
// Write response valid. This signal indicates that the
// channel is signaling a valid write response.
.i_axi_bvalid(S_AXI_BVALID),
// Response ready. This signal indicates that the master
// can accept a write response.
.i_axi_bready(S_AXI_BREADY),
//
//
//
// Read address channel
//
// Read address ID. This signal is the identification
// tag for the read address group of signals.
.i_axi_arid(S_AXI_ARID),
// Read address. This signal indicates the initial
// address of a read burst transaction.
.i_axi_araddr(S_AXI_ARADDR),
// Burst length. The burst length gives the exact number of transfers in a burst
.i_axi_arlen(S_AXI_ARLEN),
// Burst size. This signal indicates the size of each transfer in the burst
.i_axi_arsize(S_AXI_ARSIZE),
// Burst type. The burst type and the size information,
// determine how the address for each transfer within the burst is calculated.
.i_axi_arburst(S_AXI_ARBURST),
// Lock type. Provides additional information about the
// atomic characteristics of the transfer.
.i_axi_arlock(S_AXI_ARLOCK),
// Memory type. This signal indicates how transactions
// are required to progress through a system.
.i_axi_arcache(S_AXI_ARCACHE),
// Protection type. This signal indicates the privilege
// and security level of the transaction, and whether
// the transaction is a data access or an instruction access.
.i_axi_arprot(S_AXI_ARPROT),
// Quality of Service, QoS identifier sent for each
// read transaction.
.i_axi_arqos(S_AXI_ARQOS),
// Write address valid. This signal indicates that
// the channel is signaling valid read address and
// control information.
.i_axi_arvalid(S_AXI_ARVALID),
// Read address ready. This signal indicates that
// the slave is ready to accept an address and associated
// control signals.
.i_axi_arready(S_AXI_ARREADY),
//
//
//
// Read data return channel
//
// Read ID tag. This signal is the identification tag
// for the read data group of signals generated by the slave.
.i_axi_rid(S_AXI_RID),
// Read Data
.i_axi_rdata(S_AXI_RDATA),
// Read response. This signal indicates the status of
// the read transfer.
.i_axi_rresp(S_AXI_RRESP),
// Read last. This signal indicates the last transfer
// in a read burst.
.i_axi_rlast(S_AXI_RLAST),
// Read valid. This signal indicates that the channel
// is signaling the required read data.
.i_axi_rvalid(S_AXI_RVALID),
// Read ready. This signal indicates that the master can
// accept the read data and response information.
.i_axi_rready(S_AXI_RREADY)
//
// ...
//
// }}}
);
//
// ...
//
////////////////////////////////////////////////////////////////////////
//
// Write induction properties
//
////////////////////////////////////////////////////////////////////////
//
//
//
// ...
//
////////////////////////////////////////////////////////////////////////
//
// Read induction properties
//
////////////////////////////////////////////////////////////////////////
//
//
//
// ...
//
////////////////////////////////////////////////////////////////////////
//
// Cover properties
//
////////////////////////////////////////////////////////////////////////
//
//
//
// ...
//
////////////////////////////////////////////////////////////////////////
//
// Assumptions necessary to pass a formal check
//
////////////////////////////////////////////////////////////////////////
//
//
// BUG #1: The ID inputs, both ARID and AWID, are not registered.
// As a result, if the master changes these values mid burst,
// the slave will return the wrong ID values
//
// ...
//
//
// BUG #2: This core using the S_AXI_WLAST signal, without first
// checking that S_AXI_WVALID is also true. Hence, if there's any
// time between WVALIDs, the core might act on the last one
// without receiving the data
//
// ...
//
//
// BUG #3: Like Xilinx's AXI-lite core, this core can't handle back
// pressure. Should S_AXI_BREADY not be accepted before the next
// S_AXI_AWVALID & S_AXI_AWREADY, a burst would be dropped
//
//
// ...
//
//
// BAD PRACTICE: This particular core can't handle both reads and
// writes at the same time. To avoid failing a stall timeout,
// we'll insist that no new transactions start while a
// transaction on the other side is in process
//
// Comments:
//
// - ID's are broken. The ID should be registered and recorded within the
// core, allowing the interconnect to change them after the transaction
// has been accepted
//
// - This core does not support narrow burst mode, but rather only
// supports an AxSIZE of 2'b10 (32'bit bus). It cannot handle busses
// of other sizes, or transactions from smaller sources.
//
// This might be considered a "feature"
//
// - This core can only handle read or write transactions, but never both
// at the same time
//
// This might also be considered a "feature"
//
// - The wrap logic depends upon a multiply
//
// A good synthesis tool might simplify this
//
// - Read transactions take place at one word every other clock at best
//
// This is just plain crippled.
//
// - Any back pressure could easily cause the core to lose a transaction,
// as the newer transaction's response will overwrite the waiting
// response from the previous transaction
//
`endif
// User logic ends
endmodule