-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathaxiempty.v
489 lines (448 loc) · 12 KB
/
axiempty.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
////////////////////////////////////////////////////////////////////////////////
//
// Filename: rtl/axiempty.v
// {{{
// Project: WB2AXIPSP: bus bridges and other odds and ends
//
// Purpose: A basic AXI core to provide a response to an AXI master when
// no other slaves are connected to the bus. All results are
// bus errors.
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
// }}}
// Copyright (C) 2019-2025, Gisselquist Technology, LLC
// {{{
// This file is part of the WB2AXIP project.
//
// The WB2AXIP project contains free software and gateware, licensed under the
// Apache License, Version 2.0 (the "License"). You may not use this project,
// or this file, except in compliance with the License. You may obtain a copy
// of the License at
// }}}
// http://www.apache.org/licenses/LICENSE-2.0
// {{{
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
//
////////////////////////////////////////////////////////////////////////////////
//
`default_nettype none
// }}}
module axiempty #(
// {{{
parameter integer C_AXI_ID_WIDTH = 2,
parameter integer C_AXI_DATA_WIDTH = 32,
// Verilator lint_off UNUSED
parameter integer C_AXI_ADDR_WIDTH = 6,
// Verilator lint_on UNUSED
parameter [0:0] OPT_LOWPOWER = 0
// Some useful short-hand definitions
// localparam AW = C_AXI_ADDR_WIDTH,
// localparam DW = C_AXI_DATA_WIDTH
// }}}
) (
// {{{
input wire S_AXI_ACLK,
input wire S_AXI_ARESETN,
//
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
//
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
input wire S_AXI_WLAST,
//
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [1:0] S_AXI_BRESP,
//
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [7:0] S_AXI_ARLEN,
//
output wire S_AXI_RVALID,
input wire S_AXI_RREADY,
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire S_AXI_RLAST,
output wire [1:0] S_AXI_RRESP
// }}}
);
localparam IW = C_AXI_ID_WIDTH;
// Double buffer the write response channel only
reg [IW-1 : 0] axi_bid;
reg axi_bvalid;
////////////////////////////////////////////////////////////////////////
//
// Write logic
// {{{
////////////////////////////////////////////////////////////////////////
//
//
//
// Start with the two skid buffers
// {{{
wire m_awvalid, m_wvalid;
wire m_awready, m_wready, m_wlast;
wire [IW-1:0] m_awid;
//
skidbuffer #(.DW(IW), .OPT_OUTREG(1'b0))
awskd(S_AXI_ACLK, !S_AXI_ARESETN,
S_AXI_AWVALID, S_AXI_AWREADY, S_AXI_AWID,
m_awvalid, m_awready, m_awid );
skidbuffer #(.DW(1), .OPT_OUTREG(1'b0))
wskd(S_AXI_ACLK, !S_AXI_ARESETN,
S_AXI_WVALID, S_AXI_WREADY, S_AXI_WLAST,
m_wvalid, m_wready, m_wlast );
// }}}
// m_awready, m_wready
// {{{
// The logic here is pretty simple--accept a write address burst
// into the skid buffer, then leave it there while the write data comes
// on. Once we get to the last write data element, accept both it and
// the address. This spares us the trouble of counting out the elements
// in the write burst.
//
assign m_awready= (m_awvalid && m_wvalid && m_wlast)
&& (!S_AXI_BVALID || S_AXI_BREADY);
assign m_wready = !m_wlast || m_awready;
// }}}
// bvalid
// {{{
// As soon as m_awready above, a packet has come through successfully.
// Acknowledge it with a bus error.
//
initial axi_bvalid = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
axi_bvalid <= 1'b0;
else if (m_awready)
axi_bvalid <= 1'b1;
else if (S_AXI_BREADY)
axi_bvalid <= 1'b0;
// }}}
// bid
// {{{
always @(posedge S_AXI_ACLK)
if (m_awready)
axi_bid <= m_awid;
// }}}
assign S_AXI_BVALID = axi_bvalid;
assign S_AXI_BID = axi_bid;
assign S_AXI_BRESP = 2'b11; // An interconnect bus error
// }}}
////////////////////////////////////////////////////////////////////////
//
// Read half
// {{{
////////////////////////////////////////////////////////////////////////
//
//
reg [IW-1:0] rid, axi_rid;
reg axi_arready, axi_rlast, axi_rvalid;
reg [8:0] axi_rlen;
// axi_arready
// {{{
initial axi_arready = 1;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
axi_arready <= 1;
else if (S_AXI_ARVALID && S_AXI_ARREADY)
axi_arready <= (S_AXI_ARLEN==0)&&(!S_AXI_RVALID|| S_AXI_RREADY);
else if (!S_AXI_RVALID || S_AXI_RREADY)
begin
if ((!axi_arready)&&(S_AXI_RVALID))
axi_arready <= (axi_rlen <= 2);
end
// }}}
// axi_rlen
// {{{
initial axi_rlen = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
axi_rlen <= 0;
else if (S_AXI_ARVALID && S_AXI_ARREADY)
axi_rlen <= (S_AXI_ARLEN+1)
+ ((S_AXI_RVALID && !S_AXI_RREADY) ? 1:0);
else if (S_AXI_RREADY && S_AXI_RVALID)
axi_rlen <= axi_rlen - 1;
// }}}
// rid
// {{{
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN && OPT_LOWPOWER)
rid <= 0;
else if (S_AXI_ARREADY && (!OPT_LOWPOWER || S_AXI_ARVALID))
rid <= S_AXI_ARID;
else if (OPT_LOWPOWER && S_AXI_RVALID && S_AXI_RREADY && S_AXI_RLAST)
rid <= 0;
// }}}
// axi_rvalid
// {{{
initial axi_rvalid = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
axi_rvalid <= 0;
else if (S_AXI_ARVALID || (axi_rlen > 1))
axi_rvalid <= 1;
else if (S_AXI_RREADY)
axi_rvalid <= 0;
// }}}
// axi_rid
// {{{
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN && OPT_LOWPOWER)
axi_rid <= 0;
else if (!S_AXI_RVALID || S_AXI_RREADY)
begin
if (S_AXI_ARVALID && S_AXI_ARREADY)
axi_rid <= S_AXI_ARID;
else if (OPT_LOWPOWER && S_AXI_RVALID && S_AXI_RREADY
&& S_AXI_RLAST)
axi_rid <= 0;
else
axi_rid <= rid;
end
// }}}
// axi_rlast
// {{{
initial axi_rlast = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN && OPT_LOWPOWER)
axi_rlast <= 0;
else if (!S_AXI_RVALID || S_AXI_RREADY)
begin
if (S_AXI_ARVALID && S_AXI_ARREADY)
axi_rlast <= (S_AXI_ARLEN == 0);
else if (S_AXI_RVALID)
axi_rlast <= (axi_rlen == 2);
else
axi_rlast <= (axi_rlen == 1);
end
// }}}
//
assign S_AXI_ARREADY = axi_arready;
assign S_AXI_RVALID = axi_rvalid;
assign S_AXI_RID = axi_rid;
assign S_AXI_RDATA = 0;
assign S_AXI_RRESP = 2'b11;
assign S_AXI_RLAST = axi_rlast;
// }}}
// Make Verilator happy
// {{{
// Verilator lint_off UNUSED
wire unused;
assign unused = &{ 1'b0 };
// Verilator lint_on UNUSED
// }}}
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
// Formal properties
// {{{
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
`ifdef FORMAL
//
// The following properties are only some of the properties used
// to verify this core
//
reg f_past_valid;
initial f_past_valid = 0;
always @(posedge S_AXI_ACLK)
f_past_valid <= 1;
always @(*)
if (!f_past_valid)
assume(!S_AXI_ARESETN);
faxi_slave #(
// {{{
.C_AXI_ID_WIDTH(C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH(C_AXI_DATA_WIDTH),
.C_AXI_ADDR_WIDTH(C_AXI_ADDR_WIDTH)
// }}}
f_slave(
// {{{
.i_clk(S_AXI_ACLK),
.i_axi_reset_n(S_AXI_ARESETN),
//
// Address write channel
// {{{
.i_axi_awvalid(S_AXI_AWVALID),
.i_axi_awready(S_AXI_AWREADY),
.i_axi_awid( S_AXI_AWID),
.i_axi_awaddr( {(C_AXI_ADDR_WIDTH){1'b0}}),
.i_axi_awlen( S_AXI_AWLEN),
.i_axi_awsize( LSB[2:0]),
.i_axi_awburst(2'b0),
.i_axi_awlock( 1'b0),
.i_axi_awcache(4'h0),
.i_axi_awprot( 3'h0),
.i_axi_awqos( 4'h0),
// }}}
// Write Data Channel
// {{{
// Write Data
.i_axi_wdata({(C_AXI_DATA_WIDTH){1'b0}}),
.i_axi_wstrb({(C_AXI_DATA_WIDTH/8){1'b0}}),
.i_axi_wlast(S_AXI_WLAST),
.i_axi_wvalid(S_AXI_WVALID),
.i_axi_wready(S_AXI_WREADY),
// }}}
// Write response
// {{{
.i_axi_bvalid(S_AXI_BVALID),
.i_axi_bready(S_AXI_BREADY),
.i_axi_bid( S_AXI_BID),
.i_axi_bresp( S_AXI_BRESP),
// }}}
// Read address channel
// {{{
.i_axi_arvalid(S_AXI_ARVALID),
.i_axi_arready(S_AXI_ARREADY),
.i_axi_arid( S_AXI_ARID),
.i_axi_araddr( {(C_AXI_ADDR_WIDTH){1'b0}}),
.i_axi_arlen( S_AXI_ARLEN),
.i_axi_arsize( LSB[2:0]),
.i_axi_arburst(2'b00),
.i_axi_arlock( 1'b0),
.i_axi_arcache(4'h0),
.i_axi_arprot( 3'h0),
.i_axi_arqos( 4'h0),
// }}}
// Read data return channel
// {{{
.i_axi_rvalid(S_AXI_RVALID),
.i_axi_rready(S_AXI_RREADY),
.i_axi_rid(S_AXI_RID),
.i_axi_rdata(S_AXI_RDATA),
.i_axi_rresp(S_AXI_RRESP),
.i_axi_rlast(S_AXI_RLAST),
//
// ...
// }}}
);
//
////////////////////////////////////////////////////////////////////////
//
// Write induction properties
//
////////////////////////////////////////////////////////////////////////
//
// {{{
//
// ...
//
// }}}
////////////////////////////////////////////////////////////////////////
//
// Read induction properties
//
////////////////////////////////////////////////////////////////////////
//
// {{{
//
// ...
//
always @(posedge S_AXI_ACLK)
if (f_past_valid && $rose(S_AXI_RLAST))
assert(S_AXI_ARREADY);
// }}}
////////////////////////////////////////////////////////////////////////
//
// Contract checking
//
////////////////////////////////////////////////////////////////////////
//
// {{{
//
// ...
//
// }}}
////////////////////////////////////////////////////////////////////////
//
// Cover properties
//
////////////////////////////////////////////////////////////////////////
//
// {{{
reg f_wr_cvr_valid, f_rd_cvr_valid;
initial f_wr_cvr_valid = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
f_wr_cvr_valid <= 0;
else if (S_AXI_AWVALID && S_AXI_AWREADY && S_AXI_AWLEN > 4)
f_wr_cvr_valid <= 1;
always @(*)
cover(!S_AXI_BVALID && axi_awready && !m_awvalid
&& f_wr_cvr_valid /* && ... */));
initial f_rd_cvr_valid = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
f_rd_cvr_valid <= 0;
else if (S_AXI_ARVALID && S_AXI_ARREADY && S_AXI_ARLEN > 4)
f_rd_cvr_valid <= 1;
always @(*)
cover(S_AXI_ARREADY && f_rd_cvr_valid /* && ... */);
//
// Generate cover statements associated with multiple successive bursts
//
// These will be useful for demonstrating the throughput of the core.
//
reg [4:0] f_dbl_rd_count, f_dbl_wr_count;
initial f_dbl_wr_count = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
f_dbl_wr_count = 0;
else if (S_AXI_AWVALID && S_AXI_AWREADY && S_AXI_AWLEN == 3)
begin
if (!(&f_dbl_wr_count))
f_dbl_wr_count <= f_dbl_wr_count + 1;
end
always @(*)
cover(S_AXI_ARESETN && (f_dbl_wr_count > 1)); //!
always @(*)
cover(S_AXI_ARESETN && (f_dbl_wr_count > 3)); //!
always @(*)
cover(S_AXI_ARESETN && (f_dbl_wr_count > 3) && !m_awvalid
&&(!S_AXI_AWVALID && !S_AXI_WVALID && !S_AXI_BVALID)
&& (f_axi_awr_nbursts == 0)
&& (f_axi_wr_pending == 0)); //!!
initial f_dbl_rd_count = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
f_dbl_rd_count = 0;
else if (S_AXI_ARVALID && S_AXI_ARREADY && S_AXI_ARLEN == 3)
begin
if (!(&f_dbl_rd_count))
f_dbl_rd_count <= f_dbl_rd_count + 1;
end
always @(*)
cover(!S_AXI_ARESETN && (f_dbl_rd_count > 3)
/* && ... */
&& !S_AXI_ARVALID && !S_AXI_RVALID);
// }}}
////////////////////////////////////////////////////////////////////////
//
// Assumptions necessary to pass a formal check
//
////////////////////////////////////////////////////////////////////////
//
//
//
// No limiting assumptions at present, check is currently full and
// complete
//
`endif
// }}}
endmodule