Skip to content

Latest commit

 

History

History
43 lines (31 loc) · 1.28 KB

README.md

File metadata and controls

43 lines (31 loc) · 1.28 KB

Examples of TensorRT models using ONNX

All useful sample codes of TensorRT models using ONNX

1. Basic step

  1. Generation TensorRT Model by using ONNX
    1.1 TensorRT CPP API
    1.2 TensorRT Python API
    1.3 Polygraphy

  2. Dynamic shapes for TensorRT
    2.1 Dynamic batch
    2.2 Dynamic input size

2. Intermediate step

  1. Custom Plugin
    3.1 Adding a pre-processing layer by cuda

  2. Modifying an ONNX graph by ONNX GraphSurgeon
    4.1 Extracting a feature map of the last Conv for Grad-Cam
    4.2 Generating a TensorRT model with a custom plugin and ONNX

  3. TensorRT Model Optimizer
    5.1 Explict Quantization (PTQ)
    5.2 Explict Quantization (QAT)
    5.3 Sparsity (2:4 sparsity pattern)

3. Advanced step

  1. Super Resolution
    6.1 Real-ESRGAN
  2. Object Detection
  3. Instance Segmentation
  4. Semantic Segmentation
  5. Depth Estimation
    10.1 Depth Pro ( "It is under repair due to an accuracy issue.")

4. reference