diff --git a/src/pipeline.py b/src/pipeline.py index b10fcc1..46c1d95 100644 --- a/src/pipeline.py +++ b/src/pipeline.py @@ -243,10 +243,10 @@ def run_exp( ## Results - Model performance metrics: -| Model | MAE (s) | MAPE (%) | RMSE (s) | -|-------------------------------------|-----------|------------|------------| -| Base model (XGBoost) | {mean_absolute_error(true_predictions, base_model_predictions)} | {mean_absolute_percentage_error(true_predictions, base_model_predictions) * 100} | {root_mean_squared_error(true_predictions, base_model_predictions)} | -| Base model with incremental learning | {mean_absolute_error(true_predictions, model_predictions)} | {mean_absolute_percentage_error(true_predictions, model_predictions) * 100} | {root_mean_squared_error(true_predictions, model_predictions)} | +| Model | MAE (s) | RMSE (s) | +|-------------------------------------|-----------|------------| +| Base model (XGBoost) | {mean_absolute_error(true_predictions, base_model_predictions)} | {root_mean_squared_error(true_predictions, base_model_predictions)} | +| Base model with incremental learning | {mean_absolute_error(true_predictions, model_predictions)} | {root_mean_squared_error(true_predictions, model_predictions)} | - Average processing time after the batch preparation: {mean(processing_times) * 1000:.3f} ms """