forked from MrPrajwalB/Speech-Depression-Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn_regressor.py
110 lines (91 loc) · 3.81 KB
/
cnn_regressor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import numpy as np
import pandas as pd
import os
from skimage.transform import resize
from skimage.io import imread
dev=np.asarray(pd.read_csv('C:\\Users\\Prajwal\\Desktop\\UMD_FT\\dev_split_Depression_AVEC2017.csv'))[:,[0,2]].astype(int)
train=np.asarray(pd.read_csv('C:\\Users\\Prajwal\\Desktop\\UMD_FT\\train_split_Depression_AVEC2017.csv'))[:,[0,2]].astype(int)
test=np.asarray(pd.read_csv('C:\\Users\\Prajwal\\Desktop\\UMD_FT\\test_split_Depression_AVEC2017.csv'))[:,[0,2]].astype(int)
dev_target=np.delete(dev,(24,25), axis=0)
train_target=np.delete(train,(9,12,25,40), axis=0)
test_target=np.delete(test,(), axis=0)
Y_test=test_target[:,1]
Y_dev=dev_target[:,1]
y_dev=np.load('C:\\Users\\Prajwal\\Desktop\\UMD_FT\\y_dev.npy')
y_train=np.load('C:\\Users\\Prajwal\\Desktop\\UMD_FT\\y_train.npy')
y_test=np.load('C:\\Users\\Prajwal\\Desktop\\UMD_FT\\y_test.npy')
length_dev=np.cumsum(np.load('C:\\Users\\Prajwal\\Desktop\\UMD_FT\\dev_img.npy'))
length_test=np.cumsum(np.load('C:\\Users\\Prajwal\\Desktop\\UMD_FT\\test_img.npy'))
dev_images, train_images, test_images = [],[],[]
for image_path in os.listdir('I:\\database_CNN\\dev'):
path='I:\\database_CNN\\dev'+ '\\' + image_path
img = imread(path)
img = resize(img, (174, 66, 3))
dev_images.append(img)
for image_path in os.listdir('I:\\database_CNN\\train'):
path='I:\\database_CNN\\train'+ '\\' + image_path
img = imread(path)
img = resize(img, (174, 66, 3))
train_images.append(img)
for image_path in os.listdir('I:\\database_CNN\\test'):
path='I:\\database_CNN\\test'+ '\\' + image_path
img = imread(path)
img = resize(img, (174, 66, 3))
test_images.append(img)
X_dev = np.array(dev_images)
X_train=np.array(train_images)
X_test=np.array(test_images)
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense, SpatialDropout2D
from keras import backend
def rmse(y_test, y_pred):
return backend.sqrt(backend.mean(backend.square(y_pred - y_test), axis=-1))
# Initialising the CNN
regressor = Sequential()
# Step 1 - Convolution
regressor.add(Conv2D(32, (3, 3), input_shape = (174, 66, 3), activation = 'relu'))
# Step 2 - Pooling
regressor.add(MaxPooling2D(pool_size = (2, 2)))
regressor.add(SpatialDropout2D(0.3))
# Adding a second convolutional layer
regressor.add(Conv2D(32, (3, 3), activation = 'relu'))
regressor.add(MaxPooling2D(pool_size = (2, 2)))
regressor.add(SpatialDropout2D(0.3))
# Step 3 - Flattening
regressor.add(Flatten())
# Step 4 - Full connection
regressor.add(Dense(units = 64, activation = 'relu'))
regressor.add(Dense(units = 1, activation = 'linear'))
# Compiling the CNN
regressor.compile(optimizer = 'adam', loss = 'mse', metrics = ['mae',rmse])
regressor.fit(X_train, y_train,validation_data=(X_dev,y_dev), batch_size =256, epochs =10)
y_pred_test = regressor.predict(X_test)
y_pred_dev = regressor.predict(X_dev)
p=0
MEAN_DEV=[]
for m in range(len(length_dev)):
mean=np.mean(y_pred_dev[p:length_dev[m]])
MEAN_DEV.append(mean)
p=length_dev[m]
q=0
MEAN_TEST=[]
for m in range(len(length_test)):
mean=np.mean(y_pred_test[q:length_test[m]])
MEAN_TEST.append(mean)
p=length_test[m]
Y_pred_dev=np.asarray(MEAN_DEV)
Y_pred_test=np.asarray(MEAN_TEST)
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
import math
mae_dev=mean_absolute_error(Y_dev,Y_pred_dev)
rmse_dev= math.sqrt(mean_squared_error(Y_dev, Y_pred_dev))
print('MAE_DEV=',mae_dev)
print('RMSE_DEV=',rmse_dev)
mae_test=mean_absolute_error(Y_test,Y_pred_test)
rmse_test= math.sqrt(mean_squared_error(Y_test, Y_pred_test))
print('MAE_TEST=',mae_test)
print('RMSE_TEST=',rmse_test)