-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparticleSystem_cuda.cu
215 lines (178 loc) · 7.12 KB
/
particleSystem_cuda.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
/*
* Copyright 1993-2014 NVIDIA Corporation. All rights reserved.
*
* Please refer to the NVIDIA end user license agreement (EULA) associated
* with this source code for terms and conditions that govern your use of
* this software. Any use, reproduction, disclosure, or distribution of
* this software and related documentation outside the terms of the EULA
* is strictly prohibited.
*
*/
// This file contains C wrappers around the some of the CUDA API and the
// kernel functions so that they can be called from "particleSystem.cpp"
#include <cstdlib>
#include <cstdio>
#include <string.h>
#include <cuda_runtime.h>
#include <helper_cuda.h>
#include <helper_cuda_gl.h>
#include <helper_functions.h>
#include "thrust/device_ptr.h"
#include "thrust/for_each.h"
#include "thrust/iterator/zip_iterator.h"
#include "thrust/sort.h"
#include "particles_kernel_impl.cuh"
extern "C"
{
void cudaInit(int argc, char **argv)
{
int devID;
// use command-line specified CUDA device, otherwise use device with highest Gflops/s
devID = findCudaDevice(argc, (const char **)argv);
if (devID < 0)
{
printf("No CUDA Capable devices found, exiting...\n");
exit(EXIT_SUCCESS);
}
}
void allocateArray(void **devPtr, size_t size)
{
checkCudaErrors(cudaMalloc(devPtr, size));
}
void freeArray(void *devPtr)
{
checkCudaErrors(cudaFree(devPtr));
}
void threadSync()
{
checkCudaErrors(cudaDeviceSynchronize());
}
void copyArrayToDevice(void *device, const void *host, int offset, int size)
{
checkCudaErrors(cudaMemcpy((char *) device + offset, host, size, cudaMemcpyHostToDevice));
}
void copyArrayFromDevice(void *host, const void *device, int size)
{
checkCudaErrors(cudaMemcpy(host, device, size, cudaMemcpyDeviceToHost));
}
void setParameters(SimParams *hostParams)
{
// copy parameters to constant memory
checkCudaErrors(cudaMemcpyToSymbol(params, hostParams, sizeof(SimParams)));
}
//Round a / b to nearest higher integer value
uint iDivUp(uint a, uint b)
{
return (a % b != 0) ? (a / b + 1) : (a / b);
}
// compute grid and thread block size for a given number of elements
void computeGridSize(uint n, uint blockSize, uint &numBlocks, uint &numThreads)
{
numThreads = min(blockSize, n);
numBlocks = 4000;
}
void integrateSystem(float *pos,
float *vel,
float *force,
float deltaTime,
uint numParticles)
{
thrust::device_ptr<float4> d_pos4((float4 *)pos);
thrust::device_ptr<float4> d_vel4((float4 *)vel);
thrust::device_ptr<float4> d_force4((float4 *)force);
thrust::for_each(
thrust::make_zip_iterator(thrust::make_tuple(d_pos4, d_vel4, d_force4)),
thrust::make_zip_iterator(thrust::make_tuple(d_pos4+numParticles, d_vel4+numParticles, d_force4+numParticles)),
integrate_functor(deltaTime));
}
void vintegrateSystem(float *vel,
float *force,
float deltaTime,
uint numParticles)
{
thrust::device_ptr<float4> d_vel4((float4 *)vel);
thrust::device_ptr<float4> d_force4((float4 *)force);
thrust::for_each(
thrust::make_zip_iterator(thrust::make_tuple(d_vel4, d_force4)),
thrust::make_zip_iterator(thrust::make_tuple(d_vel4+numParticles, d_force4+numParticles)),
vintegrate_functor(deltaTime));
}
void calcHash(uint *gridParticleHash,
uint *gridParticleIndex,
float *pos,
int numParticles)
{
uint numThreads, numBlocks;
computeGridSize(numParticles, 256, numBlocks, numThreads);
// execute the kernel
calcHashD<<< numBlocks, numThreads >>>(gridParticleHash,
gridParticleIndex,
(float4 *) pos,
numParticles);
// check if kernel invocation generated an error
getLastCudaError("Kernel execution failed");
}
void reorderDataAndFindCellStart(uint *cellStart,
uint *cellEnd,
float *sortedPos,
float *sortedVel,
float *sortedForce,
uint *gridParticleHash,
uint *gridParticleIndex,
float *oldPos,
float *oldVel,
float *oldForce,
uint numParticles,
uint numCells)
{
uint numThreads, numBlocks;
computeGridSize(numParticles, 256, numBlocks, numThreads);
// set all cells to empty
checkCudaErrors(cudaMemset(cellStart, 0xffffffff, numCells*sizeof(uint)));
uint smemSize = sizeof(uint)*(numThreads+1);
reorderDataAndFindCellStartD<<< numBlocks, numThreads, smemSize>>>(
cellStart,
cellEnd,
(float4 *) sortedPos,
(float4 *) sortedVel,
(float4 *) sortedForce,
gridParticleHash,
gridParticleIndex,
(float4 *) oldPos,
(float4 *) oldVel,
(float4 *) oldForce,
numParticles);
getLastCudaError("Kernel execution failed: reorderDataAndFindCellStartD");
}
void collide(float *newForce,
float *sortedPos,
float *sortedVel,
float *sortedForce,
uint *gridParticleIndex,
uint *cellStart,
uint *cellEnd,
uint numParticles,
uint numCells)
{
// thread per particle
uint numThreads, numBlocks;
computeGridSize(numParticles, 64, numBlocks, numThreads);
// execute the kernel
collideD<<< numBlocks, numThreads >>>((float4 *)newForce,
(float4 *)sortedPos,
(float4 *)sortedVel,
(float4 *)sortedForce,
gridParticleIndex,
cellStart,
cellEnd,
numParticles);
// check if kernel invocation generated an error
getLastCudaError("Kernel execution failed");
}
void sortParticles(uint *dGridParticleHash, uint *dGridParticleIndex, uint numParticles)
{
thrust::sort_by_key(thrust::device_ptr<uint>(dGridParticleHash),
thrust::device_ptr<uint>(dGridParticleHash + numParticles),
thrust::device_ptr<uint>(dGridParticleIndex));
}
} // extern "C"