forked from williamfiset/Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCompressedPrimeSieve.java
76 lines (68 loc) · 2.88 KB
/
CompressedPrimeSieve.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
/**
* Generate a compressed prime sieve using bit manipulation. The idea is that each bit represents a
* boolean value indicating whether a number is prime or not. This saves a lot of room when creating
* the sieve. In this implementation I store all odd numbers in individual longs meaning that for
* each long I use I can represent a range of 128 numbers (even numbers are omitted because they are
* not prime, with the exception of 2 which is handled as a special case).
*
* <p>Time Complexity: ~O(nloglogn)
*
* <p>Compile: javac -d src/main/java
* src/main/java/com/williamfiset/algorithms/math/CompressedPrimeSieve.java
*
* <p>Run: java -cp src/main/java com/williamfiset/algorithms/math/CompressedPrimeSieve
*
* @author William Fiset, [email protected]
*/
package com.williamfiset.algorithms.math;
public class CompressedPrimeSieve {
private static final double NUM_BITS = 128.0;
private static final int NUM_BITS_SHIFT = 7; // 2^7 = 128
// Sets the bit representing n to 1 indicating this number is not prime
private static void setBit(long[] arr, int n) {
if ((n & 1) == 0) return; // n is even
arr[n >> NUM_BITS_SHIFT] |= 1L << ((n - 1) >> 1);
}
// Returns true if the bit for n is off (meaning n is a prime).
// Note: do use this method to access numbers outside your prime sieve range!
private static boolean isNotSet(long[] arr, int n) {
if (n < 2) return false; // n is not prime
if (n == 2) return true; // two is prime
if ((n & 1) == 0) return false; // n is even
long chunk = arr[n >> NUM_BITS_SHIFT];
long mask = 1L << ((n - 1) >> 1);
return (chunk & mask) != mask;
}
// Returns true/false depending on whether n is prime.
public static boolean isPrime(long[] sieve, int n) {
return isNotSet(sieve, n);
}
// Returns an array of longs with each bit indicating whether a number
// is prime or not. Use the isNotSet and setBit methods to toggle to bits for each number.
public static long[] primeSieve(int limit) {
final int numChunks = (int) Math.ceil(limit / NUM_BITS);
final int sqrtLimit = (int) Math.sqrt(limit);
// if (limit < 2) return 0; // uncomment for primeCount purposes
// int primeCount = (int) Math.ceil(limit / 2.0); // Counts number of primes <= limit
long[] chunks = new long[numChunks];
chunks[0] = 1; // 1 as not prime
for (int i = 3; i <= sqrtLimit; i += 2)
if (isNotSet(chunks, i))
for (int j = i * i; j <= limit; j += i)
if (isNotSet(chunks, j)) {
setBit(chunks, j);
// primeCount--;
}
return chunks;
}
/* Example usage. */
public static void main(String[] args) {
final int limit = 200;
long[] sieve = CompressedPrimeSieve.primeSieve(limit);
for (int i = 0; i <= limit; i++) {
if (CompressedPrimeSieve.isPrime(sieve, i)) {
System.out.printf("%d is prime!\n", i);
}
}
}
}