Skip to content

Latest commit

 

History

History
64 lines (43 loc) · 2.23 KB

README.md

File metadata and controls

64 lines (43 loc) · 2.23 KB

codecov

pymort

pymort is a way to retrieve the mortality tables hosted at https://mort.soa.org/. It only hosts the data, an example of a package implementing Lee-Carter models is here - https://github.com/jkoestner/morai/tree/main

Installation

Install pymort with pip install pymort.

MortXML

If you want the full details of any SOA table, you can use the lower level load API. You just need to enter the table ID.

from pymort import MortXML
# load the 2017 Loaded CSO Composite Gender-Blended 20% Male ALB table (tableId = 3282)
xml = MortXML.from_id(3282)
# you can load from a file path on your computer
xml_from_path = MortXML.from_path("t3282.xml")
# you can load from raw xml text
xml_str = Path("t3282.xml").read_text()
xml_from_str = MortXML(xml_str)

This MortXML class is a wrapper around the underlying XML. The autocompletions you get on attributes improve the developer experience over using the underlying XML directly.

autocompletions

Also, mortality rate tables are Pandas DataFrames.

rate table as a dataframe

Accessing mortality rates

For a select and ultimate table we can retrieve rates as follows.

from pymort import MortXML
# Table 3265 is 2015 VBT Smoker Distinct Male Non-Smoker ANB, see https://mort.soa.org/ 
xml = MortXML.from_id(3265)
# This is the select table as a MultiIndex (age/duration) DataFrame.
xml.Tables[0].Values
# This is the minimum value of the issue age axis on the select table
xml.Tables[0].MetaData.AxisDefs[0].MinScaleValue
# This is the ultimate table as a DataFrame with index attained age.
xml.Tables[1].Values

Usage with tensor libraries

We can get the data from Pandas to NumPy.

select = MortXML.from_id(3265).Tables[0].Values.unstack().values
ultimate = MortXML.from_id(3265).Tables[1].Values.unstack().values

select.shape # (78, 25) ages from 18 to 95, duration from 1 to 25
ultimate.shape # (103,) is age 18 to 120

# Be careful when indexing into these, ultimate[0] is the rate at age 18!