forked from ML-Society/MLSoc-Weekly
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_user_blank.py
54 lines (41 loc) · 1.37 KB
/
sample_user_blank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from sklearn import tree
from sklearn import svm
import numpy as np
import data
def ex1_fn(X_train, y_train, random_state=0):
params = {
# add params here
'random_state': random_state,
}
# decision tree ~1 line (NOTE: only pass params as **params e.g. DecisionTree(**params))
# fit tree ~1 line
# print("Grade: ", data.grade(pred_fn)) # pred_fn => classfier_obj.predict (extract reference from object!)
return # pred_fn
def ex2_fn(X_train, y_train, random_state=0):
params = {
# add params here
'random_state': random_state,
}
# svm LINEAR classifier ~1 line # (NOTE: only pass params as **params)
# fit classifier
# print("Grade: ", data.grade(pred_fn))
# return pred_fn
## test [0.1, 1.0, 10] ## choose best param from these
def ex3_fn(X_train, y_train, random_state=0):
params = {
# add params here
'random_state': random_state,
#'C': ???,
}
# svc classifier, default kernel aka 'rbf' ~1 line
# fit classifier ~1 line
# print("Grade: ", data.grade(pred_fn))
# return pred_fn
if __name__ == "__main__":
X_train, y_train = data.load_train_data()
ex1_fn(X_train, y_train)
ex2_fn(X_train, y_train)
ex3_fn(X_train, y_train)
### Expected results
### all these are from using random_state=0
### EX1_MIN_ACC, EX2_MIN_ACC, EX3_MIN_ACC = 0.85, 0.42, 0.69