-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathq2B.py
123 lines (107 loc) · 3.48 KB
/
q2B.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# -*- coding: utf-8 -*-
"""
Created on Wed Feb 13 13:31:03 2019
@author: Aditya's HP Omen 15
"""
# this program if for line fitting using OLS (oridnary least squares)
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import style
import pickle
from statistics import mean
from numpy import linalg as LA
style.use('fivethirtyeight')
# DATA1
f = open('data1_new.pkl','rb')
data1 = pickle.load(f)
f.close()
da = np.asarray(data1)
X = da[:,0]
Y = da[:,1]
plt.axis([-150,150,-100,100])
def TLS(X,Y):
numerator = (np.sum(Y**2)- Y.shape[0]*(mean(Y)**2))-(np.sum(X**2)- X.shape[0]*(mean(X)**2))
denominator = X.shape[0]*mean(X)*mean(Y) -np.sum(np.multiply(X,Y))
B = 0.5*numerator/denominator
m = -B+ np.sqrt(B*B+1)
c = mean(Y) -m*mean(X)
return m,c
TLS_m,TLS_c = TLS(X,Y)
TLS_regression_line = [(TLS_m*x)+TLS_c for x in X]
plt.figure(1)
plt.scatter(X,Y, color = 'blue')
plt.plot(X,TLS_regression_line, color = 'red', label = "TLS")
def OLS(X,Y):
m = (np.multiply(mean(X),mean(Y)) -mean(np.multiply(X,Y) ))/((mean(X))**2-mean((X)**2))
c = mean(Y) - m*mean(X)
return m,c
m,c = OLS(X,Y)
regression_line = [(m*x)+c for x in X]
plt.scatter(X,Y, color = 'blue')
plt.plot(X,regression_line, color = 'green', label = "OLS")
plt.title("Line fitting with vertical and orthogonal least squares on data 1")
plt.legend()
plt.axis([-150,150,-100,100])
plt.show()
#DATA2
f = open('data2_new.pkl','rb')
data1 = pickle.load(f)
f.close()
da = np.asarray(data1)
X = da[:,0]
Y = da[:,1]
plt.axis([-150,150,-100,100])
def TLS(X,Y):
numerator = (np.sum(Y**2)- Y.shape[0]*(mean(Y)**2))-(np.sum(X**2)- X.shape[0]*(mean(X)**2))
denominator = X.shape[0]*mean(X)*mean(Y) -np.sum(np.multiply(X,Y))
B = 0.5*numerator/denominator
m = -B+ np.sqrt(B*B+1)
c = mean(Y) -m*mean(X)
return m,c
TLS_m,TLS_c = TLS(X,Y)
TLS_regression_line = [(TLS_m*x)+TLS_c for x in X]
plt.figure(2)
plt.scatter(X,Y, color = 'blue')
plt.plot(X,TLS_regression_line, color = 'red', label = "TLS")
def OLS(X,Y):
m = (np.multiply(mean(X),mean(Y)) -mean(np.multiply(X,Y) ))/((mean(X))**2-mean((X)**2))
c = mean(Y) - m*mean(X)
return m,c
m,c = OLS(X,Y)
regression_line = [(m*x)+c for x in X]
plt.plot(X,regression_line, color = 'green', label = "OLS")
plt.title("Line fitting with vertical and orthogonal least squares on data 1")
plt.legend()
plt.axis([-150,150,-100,100])
plt.show()
#DATA3
f = open('data3_new.pkl','rb')
data1 = pickle.load(f)
f.close()
da = np.asarray(data1)
X = da[:,0]
Y = da[:,1]
plt.axis([-150,150,-100,100])
def TLS(X,Y):
numerator = (np.sum(Y**2)- Y.shape[0]*(mean(Y)**2))-(np.sum(X**2)- X.shape[0]*(mean(X)**2))
denominator = X.shape[0]*mean(X)*mean(Y) -np.sum(np.multiply(X,Y))
B = 0.5*numerator/denominator
m = -B+ np.sqrt(B*B+1)
c = mean(Y) -m*mean(X)
return m,c
TLS_m,TLS_c = TLS(X,Y)
TLS_regression_line = [(TLS_m*x)+TLS_c for x in X]
plt.figure(3)
plt.scatter(X,Y, color = 'blue')
plt.plot(X,TLS_regression_line, color = 'red', label = "TLS")
def OLS(X,Y):
m = (np.multiply(mean(X),mean(Y)) -mean(np.multiply(X,Y) ))/((mean(X))**2-mean((X)**2))
c = mean(Y) - m*mean(X)
return m,c
m,c = OLS(X,Y)
regression_line = [(m*x)+c for x in X]
plt.plot(X,regression_line, color = 'green', label = "OLS")
plt.title("Line fitting with vertical and orthogonal least squares on data 3")
plt.legend()
plt.axis([-150,150,-100,100])
plt.show()