-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathuse.py
111 lines (94 loc) · 3.75 KB
/
use.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import tensorflow as tf
import numpy as np
from transformers import TFAutoModel, AutoTokenizer
try:
from model.scorer import Scorer
except:
from .model.scorer import Scorer
from newspaper import Article
from googlesearch import search
from rank_bm25 import BM25Okapi
class Passage():
def __init__(self, text, source, date):
self.text = text
self.source = source
self.date = date
def __eq__(self, other):
if not isinstance(other, Passage):
# don't attempt to compare against unrelated types
return NotImplemented
return self.text == other.text
def __repr__(self):
return 'Date: {}\nSource: {}\n{}'.format(self.date, self.source, self.text)
def __str__(self):
return 'Date: {}\nSource: {}\n{}'.format(self.date, self.source, self.text)
class Ranker():
def __init__(self, topic, model_name, weights_path, max_length=256, num_classes=2):
self.topic = topic
self.url_done = []
self.passages = []
self.bm25_scores = []
tokenizer = AutoTokenizer.from_pretrained(model_name)
self.scorer = Scorer(tokenizer, TFAutoModel, max_length, num_classes)
self.scorer.from_pretrained(model_name)
self.scorer(tf.zeros([1, 3, 256], tf.int32))
self.scorer.load_weights(weights_path)
self.scorer.compile(run_eagerly=True)
def find_passages(self, num_urls, wikipedia=True):
urls = query_to_urls(self.topic, num_urls, wikipedia=wikipedia)
for url in urls:
if url in self.url_done: continue
try:
passages = passages_from_url(url)
for passage in passages:
if passage in self.passages:
continue
self.passages.append(passage)
self.url_done += url
except:
pass
def run_bm25(self):
tokenized_corpus = [passage.text.split(" ") for passage in self.passages]
bm25 = BM25Okapi(tokenized_corpus)
tokenized_topic = self.topic.split(" ")
self.bm25_scores = bm25.get_scores(tokenized_topic)
assert len(self.passages) == len(self.bm25_scores)
def get_bm25_top(self, top_n=100):
if len(self.passages) != len(self.bm25_scores):
self.run_bm25()
passages_scores = list(zip(*sorted(zip(self.passages, self.bm25_scores), key=lambda x: x[1], reverse=True)))
return passages_scores[0][:top_n], passages_scores[1][:top_n]
def get_rerank_top(self, top_n=100, top_n_bm25=100, batch_size=16):
bm25_top, _ = self.get_bm25_top(top_n_bm25)
bm25_top_text = [passage.text for passage in bm25_top]
rerank_scores = self.scorer.score_query_passages(self.topic, bm25_top_text, batch_size)
passages_scores = list(zip(*sorted(zip(bm25_top, rerank_scores), key=lambda x: x[1], reverse=True)))
return passages_scores[0][:top_n], passages_scores[1][:top_n]
def query_to_urls(query, num_urls, wikipedia=True):
urls = []
for url in search(query, lang='en', num=num_urls, stop=num_urls, extra_params={'lr': 'lang_en'}):
if wikipedia or "wikipedia" not in url:
urls.append(url)
return urls
def passages_from_url(url):
article = Article(url)
article.download()
article.parse()
text = article.text
date = article.publish_date
passages = []
for passage in text.split('\n\n'):
if is_clean(passage):
passages.append(Passage(passage, url, date))
return passages
def is_clean(passage):
# Too short
if len(passage.split(' ')) < 10:
return False
# List
if len(passage.split('\n')) > 2:
return False
# Items
if len(passage.split('\t')) > 2:
return False
return True