-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmy_mem_manager.c
733 lines (564 loc) · 18.7 KB
/
my_mem_manager.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
/*
* my_mem_manager.c
*
* Created on: Oct 25, 2018
* Author: sg1425,ark159,vp406
* Machine: man.cs.rutgers.edu
*/
#include <sys/mman.h>
#include "my_pthread_t.h"
#include "my_mem_manager.h"
static char *memory;
inv_pte *invt_pg_table;
int *invt_swap_tb;
int mem_manager_init = 0;
FILE *swap_file;
float SHARED_SPACE = 0.25;
float KERNEL_SPACE = 0.25;
float PAGE_SPACE = 0.5;
int available_pages = 0;
int PAGE_SIZE = 0;
int TOTAL_PAGES = 0;
int SHARED_PAGES = 0;
int KERNEL_PAGES = 0;
int SWAP_PAGES = 0;
#undef malloc(x)
#undef free(x)
struct sigaction mem_access_sigact;
void setBit(int *A, int k) {
A[k / 32] |= 1 << (k % 32); // Set the bit at the k-th position in A[i]
}
int testBit(int *A, int k) {
return ((A[k / 32] & (1 << (k % 32))) != 0);
}
void clearBit(int *A, int k) {
A[k / 32] &= ~(1 << (k % 32));
}
void swap_pages(int pg1, int pg2) {
// Verify if valid swap
if (pg1 == pg2)
return;
// Update Thread Page Table Entries
int i;
pte *curr_pte;
// Update mem_page_no of pg1 to pg2 inside Thread Page Table
if (invt_pg_table[pg1].is_alloc == 1) {
int pg1_tid = invt_pg_table[pg1].tid;
curr_pte = thread_pt[pg1_tid];
while (curr_pte != NULL && curr_pte->mem_page_no != pg1) {
curr_pte = curr_pte->next;
}
if (curr_pte == NULL) {
printf("Page not found in thread page table!!!\n");
return;
}
curr_pte->mem_page_no = pg2;
}
// Update mem_page_no of pg2 to pg1 inside Thread Page Table
if (invt_pg_table[pg2].is_alloc == 1 && pg2 != available_pages - 1) {
int pg2_tid = invt_pg_table[pg2].tid;
curr_pte = thread_pt[pg2_tid];
while (curr_pte != NULL && curr_pte->mem_page_no != pg2) {
curr_pte = curr_pte->next;
}
if (curr_pte == NULL) {
printf("Page not found in thread page table!!!\n");
return;
}
curr_pte->mem_page_no = pg1;
}
// Update Inverted Page Table
inv_pte *p1 = &(invt_pg_table[pg1]);
inv_pte *p2 = &(invt_pg_table[pg2]);
void *holder = (void*) malloc(sizeof(inv_pte));
memcpy(holder, p1, sizeof(inv_pte));
memcpy(p1, p2, sizeof(inv_pte));
memcpy(p2, holder, sizeof(inv_pte));
void *mem_pg1 = memory + (pg1 * PAGE_SIZE);
void *mem_pg2 = memory + (pg2 * PAGE_SIZE);
//unprotect old page to swap out
mprotect(mem_pg1, PAGE_SIZE, PROT_READ | PROT_WRITE);
// Perform actual swap in Main memory
void *temp = malloc(PAGE_SIZE);
memcpy(temp, mem_pg1, PAGE_SIZE);
memcpy(mem_pg1, mem_pg2, PAGE_SIZE);
memcpy(mem_pg2, temp, PAGE_SIZE);
free(temp);
}
void * special_alloc(size_t size, int type) {
int alloc_complete = 0, i = 0, j = 0, old_pg = 0;
// make_scheduler();
init_mem_manager();
void *ret_val;
// get address of first shared page.
// pte *curr_shared_pg = (void *) memory + TOTAL_PAGES * PAGE_SIZE;
int shared_pg_index;
int end_pg_index;
if (type == SHARED_REGION) {
shared_pg_index = TOTAL_PAGES + 1;
end_pg_index = TOTAL_PAGES + SHARED_PAGES;
} else if (type == KERNEL_REGION) {
shared_pg_index = TOTAL_PAGES + SHARED_PAGES + 1;
end_pg_index = TOTAL_PAGES + SHARED_PAGES + KERNEL_PAGES;
}
while (invt_pg_table[shared_pg_index].max_free < size
&& shared_pg_index < end_pg_index) {
shared_pg_index++;
}
if (invt_pg_table[shared_pg_index].max_free >= size) {
// An existing page with free space more than 'size' is found.
// Find a block in page more than or equal to 'size'
int curr_offset = 0;
pgm *itr_addr = (pgm*) (memory + (shared_pg_index * PAGE_SIZE));
while (curr_offset < PAGE_SIZE
&& !(itr_addr->free == 1
&& (itr_addr->size > (sizeof(pgm) + size)))) {
curr_offset += sizeof(pgm) + itr_addr->size;
itr_addr = (void *) itr_addr + sizeof(pgm) + itr_addr->size;
}
split_pg_block(itr_addr, size);
// Update max_block in the page
if (itr_addr->is_max_free_block == 1) {
itr_addr->is_max_free_block = 0;
int curr_offset = 0;
pgm *temp_addr = (pgm*) (memory + (shared_pg_index * PAGE_SIZE));
invt_pg_table[shared_pg_index].max_free = 0;
pgm *max_addr = NULL;
while (curr_offset < PAGE_SIZE) {
if (temp_addr->free == 1
&& temp_addr->size
> invt_pg_table[shared_pg_index].max_free) {
invt_pg_table[shared_pg_index].max_free = temp_addr->size;
max_addr = temp_addr;
}
curr_offset += sizeof(pgm) + temp_addr->size;
temp_addr = (void *) temp_addr + sizeof(pgm) + temp_addr->size;
}
if (max_addr != NULL) {
max_addr->is_max_free_block = 1;
}
}
ret_val = (void *)itr_addr + sizeof(pgm);
// alloc_complete = 1;
} else {
// The thread has used up all its virtual memory.
if (type == KERNEL_REGION)
printf("Kernel Region is full\n");
else if (type == SHARED_REGION)
printf("Shared Region is full\n");
return NULL;
}
return ret_val;
}
int read_from_swap(int mem_index, int swap_index) {
int swap_offset = swap_index * PAGE_SIZE;
void *mem_addr = memory + mem_index * PAGE_SIZE;
swap_file = fopen(SWAP_NAME, "r+");
int x = lseek(fileno(swap_file), swap_offset, SEEK_SET);
x = read(fileno(swap_file), mem_addr, PAGE_SIZE);
close(fileno(swap_file));
if (x < 1) {
printf("Read form swap file failed!!!\n");
return -1;
}
invt_pg_table[mem_index].is_alloc = 1;
invt_pg_table[mem_index].tid = scheduler.running_thread->tid;
invt_pg_table[mem_index].max_free = 0;
clearBit(invt_swap_tb, swap_index);
pgm *curr_pgm = memory + mem_index * PAGE_SIZE;
while (curr_pgm != NULL) {
if (curr_pgm->is_max_free_block == 1) {
invt_pg_table[mem_index].max_free = curr_pgm->size;
break;
}
curr_pgm = (void *) curr_pgm + sizeof(pgm) + curr_pgm->size;
}
}
void mem_access_handler(int sig, siginfo_t *si, void *unused) {
// printf("Got SIGSEGV at address: 0x%lx\n",(long) si->si_addr);
int page_accessed = (int) (si->si_addr - (void *) memory) / PAGE_SIZE;
void *accessed_page_addr = memory + (page_accessed * PAGE_SIZE);
int i;
if (scheduler.running_thread->tid == invt_pg_table[page_accessed].tid) {
pte *curr_pte = thread_pt[scheduler.running_thread->tid];
int pg_count = 0;
while (curr_pte != NULL
&& !(curr_pte->in_memory == 1
&& curr_pte->mem_page_no == page_accessed)) {
curr_pte = curr_pte->next;
pg_count++;
}
if (page_accessed == pg_count) {
// If the main memory has the correct page, then unprotect the page
mprotect(accessed_page_addr, PAGE_SIZE, PROT_READ | PROT_WRITE);
return;
}
}
// The main memory access does not have the correct page.
// Is the required present in Main Memory
int actual_page = 0;
pte *reqd_pte = thread_pt[scheduler.running_thread->tid];
for (i = 0; i < page_accessed && reqd_pte != NULL; i++) {
reqd_pte = reqd_pte->next;
}
if (reqd_pte == NULL) {
printf("Page access out of bounds!!!\n");
return;
}
if (reqd_pte->in_memory == 1) {
actual_page = reqd_pte->mem_page_no;
void *actual_page_addr = memory + (actual_page * PAGE_SIZE);
//Unprotect the pages to be swapped
mprotect(accessed_page_addr, PAGE_SIZE, PROT_READ | PROT_WRITE);
mprotect(actual_page_addr, PAGE_SIZE, PROT_READ | PROT_WRITE);
swap_pages(actual_page, page_accessed);
// Re-Protect the swapped out page
mprotect(actual_page_addr, PAGE_SIZE, PROT_NONE);
} else {
// Required page in Swap file
// Take care of the page existing at 'page_accessed'
int is_buffered = 0;
int free_pg_index = find_free_page();
if (free_pg_index == -1) {
// swap from swap file
free_pg_index = available_pages - 1;
is_buffered = 1;
}
int old_tid = invt_pg_table[page_accessed].tid;
void *page = memory + (page_accessed * PAGE_SIZE);
mprotect(page, PAGE_SIZE, PROT_READ | PROT_WRITE);
page = memory + (free_pg_index * PAGE_SIZE);
mprotect(page, PAGE_SIZE, PROT_READ | PROT_WRITE);
swap_pages(page_accessed, free_pg_index);
page = memory + (free_pg_index * PAGE_SIZE);
mprotect(page, PAGE_SIZE, PROT_READ | PROT_WRITE);
int swap_file_index = reqd_pte->swap_page_no;
read_from_swap(page_accessed, swap_file_index);
reqd_pte->in_memory = 1;
reqd_pte->mem_page_no = page_accessed;
reqd_pte->swap_page_no = 0;
if (is_buffered) {
// Write Buffer to Swap File
write_in_swap(free_pg_index, swap_file_index);
pte *curr_pte = thread_pt[old_tid];
while (curr_pte != NULL
&& !(curr_pte->in_memory == 1
&& curr_pte->mem_page_no == available_pages - 1)) {
curr_pte = curr_pte->next;
}
if (curr_pte == NULL) {
printf("Page not found\n");
}
curr_pte->in_memory = 0;
curr_pte->swap_page_no = swap_file_index;
curr_pte->mem_page_no = 0;
}
}
}
void switch_thread(int old_tid, int new_tid) {
// Protect all pages
mprotect(memory, PAGE_SIZE * TOTAL_PAGES, PROT_NONE);
}
void init_mem_manager() {
if (mem_manager_init == 0) {
PAGE_SIZE = sysconf(_SC_PAGE_SIZE);
available_pages = MAIN_MEM_SIZE / PAGE_SIZE;
TOTAL_PAGES = available_pages * PAGE_SPACE;
SHARED_PAGES = available_pages * SHARED_SPACE;
KERNEL_PAGES = available_pages * KERNEL_SPACE;
KERNEL_PAGES--; // The last page in Main memory will be reserved for Buffer Space.
SWAP_PAGES = (SWAP_SIZE / PAGE_SIZE);
// Initialize Inverted Page Table and mem-align the pages
invt_pg_table = (inv_pte*) malloc(available_pages * sizeof(inv_pte));
memory = (char*) memalign(PAGE_SIZE, MAIN_MEM_SIZE);
int i = 0, j = 0;
// Initialize Inverted Swap Table
invt_swap_tb = (int *) malloc(SWAP_PAGES / 32);
for (i = 0; i < SWAP_PAGES; i++) {
clearBit(invt_swap_tb, i);
}
// Init Inverted Page Table
for (i = 0; i < available_pages; i++) {
invt_pg_table[i].tid = 0;
invt_pg_table[i].is_alloc = 0;
invt_pg_table[i].max_free = PAGE_SIZE - sizeof(pgm);
pgm *pg_addr = (void *) (memory + (i * PAGE_SIZE));
pg_addr->free = 1;
pg_addr->size = PAGE_SIZE - sizeof(pgm);
pg_addr->is_max_free_block = 1;
}
//Init Thread Page Table
thread_pt = (pte **) malloc(sizeof(pte *));
for (i = 0; i < MAX_THREADS; i++) {
thread_pt[i] = NULL;
}
//init swap space
swap_file = fopen(SWAP_NAME, "w+");
ftruncate(fileno(swap_file), SWAP_SIZE);
close(fileno(swap_file));
mem_manager_init = 1;
// Protect all pages
mprotect(memory, PAGE_SIZE * TOTAL_PAGES, PROT_NONE);
// Register Handler
mem_access_sigact.sa_flags = SA_SIGINFO;
sigemptyset(&mem_access_sigact.sa_mask);
mem_access_sigact.sa_sigaction = mem_access_handler;
if (sigaction(SIGSEGV, &mem_access_sigact, NULL) == -1) {
printf("Fatal error setting up signal handler\n");
exit(EXIT_FAILURE); //explode!
}
}
}
void split_pg_block(pgm *itr_addr, int size) {
pgm *new_ptr = (void *) itr_addr + sizeof(pgm) + size;
new_ptr->free = 1;
new_ptr->size = itr_addr->size - size - sizeof(pgm);
itr_addr->free = 0;
itr_addr->size = size;
}
int write_in_swap(int mem_index, int swap_index) {
void *mem_page = (void *) memory + mem_index * PAGE_SIZE;
int swap_offset = swap_index * PAGE_SIZE;
// Unprotect page to be swapped out
mprotect(mem_page, PAGE_SIZE, PROT_READ | PROT_WRITE);
setBit(invt_swap_tb, swap_index);
swap_file = fopen(SWAP_NAME, "r+");
int x = lseek(fileno(swap_file), swap_offset, SEEK_SET);
x = write(fileno(swap_file), mem_page, PAGE_SIZE);
close(fileno(swap_file));
return x;
}
/*
* Find a free page in main memory
*/
int find_free_page() {
int pg_no;
for (pg_no = 0; pg_no < TOTAL_PAGES && invt_pg_table[pg_no].is_alloc == 1;
pg_no++)
;
if (pg_no == TOTAL_PAGES) {
// No space left in main memory.
return -1;
} else {
return pg_no;
}
}
void *allocate_in_page(int tid, int pg_no, int size) {
// Update Inverted Page Table
inv_pte *free_pg_entry = &(invt_pg_table[pg_no]);
free_pg_entry->tid = tid;
free_pg_entry->is_alloc = 1;
free_pg_entry->max_free = free_pg_entry->max_free - sizeof(pgm) - size;
pgm *free_page = (pgm*) (memory + (pg_no * PAGE_SIZE));
split_pg_block(free_page, size);
free_page->is_max_free_block = 0;
((pgm *) ((void *) free_page + sizeof(pgm) + size))->is_max_free_block = 1;
return (void *) free_page + sizeof(pgm);
}
void *init_pte(int pg_no) {
// Create a new Page Table Entry for the page
pte *new_pte = (pte *) malloc(sizeof(pte));
new_pte->in_memory = 1;
new_pte->dirty = 0;
new_pte->mem_page_no = pg_no;
new_pte->swap_page_no = 0;
new_pte->next = NULL;
return new_pte;
}
void * myallocate(size_t size, char *filename, int line_number, int flag) {
int alloc_complete = 0, i = 0, j = 0, old_pg = 0;
if (flag != THREADREQ) {
return special_alloc(size, KERNEL_REGION);
// return malloc(size);
} else {
make_scheduler();
void *ret_val;
int tid = scheduler.running_thread->tid;
if (thread_pt[tid] == NULL) {
// The threads is asking for the page for the first time.
int vir_pg = 0; // Since this is thread's first page.
old_pg = find_free_page(tid, size);
// Create a new Page Table Entry for the page
pte *new_pte = init_pte(vir_pg);
thread_pt[tid] = new_pte;
if (old_pg == -1) {
// No Space left in Main Memory
printf("Main memory is full!!!\n");
// TODO: Swap code
int swap_index = 0;
while (testBit(invt_swap_tb, swap_index)
&& swap_index < SWAP_PAGES) {
swap_index++;
}
if (swap_index == SWAP_PAGES) {
printf("Swap is also FULL, You are Doomed!!!\n");
return NULL;
}
int old_tid = invt_pg_table[0].tid;
thread_pt[old_tid]->in_memory = 0;
thread_pt[old_tid]->swap_page_no = swap_index;
if (write_in_swap(thread_pt[old_tid]->mem_page_no, swap_index)
== -1) {
printf("Cant write in Swap File!!!\n");
return NULL;
}
invt_pg_table[0].tid = tid;
invt_pg_table[0].is_alloc = 1;
invt_pg_table[0].max_free = PAGE_SIZE - sizeof(pgm);
thread_pt[tid]->in_memory = 1;
thread_pt[tid]->mem_page_no = 0;
thread_pt[tid]->next = NULL;
pgm * curr_pgm = memory;
curr_pgm->free = 0;
curr_pgm->is_max_free_block = 1;
curr_pgm->size = PAGE_SIZE - sizeof(pgm);
return allocate_in_page(tid, 0, size);
}
void *page = memory + (old_pg * PAGE_SIZE);
mprotect(page, PAGE_SIZE, PROT_READ | PROT_WRITE);
page = memory + (vir_pg * PAGE_SIZE);
mprotect(page, PAGE_SIZE, PROT_READ | PROT_WRITE);
swap_pages(old_pg, vir_pg);
page = memory + (old_pg * PAGE_SIZE);
// Unprotect newly assignned page
mprotect(page, PAGE_SIZE, PROT_READ | PROT_WRITE);
ret_val = allocate_in_page(tid, vir_pg, size);
} else {
int vir_pg = 0;
pte *vir_pte = thread_pt[tid];
for (vir_pg = 0; vir_pte->next != NULL; vir_pg++) {
if (invt_pg_table[vir_pte->mem_page_no].max_free >= size) {
break;
}
vir_pte = vir_pte->next;
}
if (invt_pg_table[vir_pte->mem_page_no].max_free >= size) {
// An existing page with free space more than 'size' is found.
int pg_no = vir_pte->mem_page_no;
// Find a block in page more than or equal to 'size'
int curr_offset = 0;
pgm *itr_addr = (pgm*) (memory + (pg_no * PAGE_SIZE));
while (curr_offset < PAGE_SIZE
&& !(itr_addr->free == 1
&& (itr_addr->size > (sizeof(pgm) + size)))) {
curr_offset += sizeof(pgm) + itr_addr->size;
itr_addr = (void *) itr_addr + sizeof(pgm) + itr_addr->size;
}
// Unprotect
mprotect(itr_addr, PAGE_SIZE, PROT_READ | PROT_WRITE);
split_pg_block(itr_addr, size);
// Update max_block in the page
if (itr_addr->is_max_free_block == 1) {
itr_addr->is_max_free_block = 0;
int curr_offset = 0;
pgm *temp_addr = (pgm*) (memory + (pg_no * PAGE_SIZE));
invt_pg_table[pg_no].max_free = 0;
pgm *max_addr = NULL;
while (curr_offset < PAGE_SIZE) {
if (temp_addr->free == 1
&& temp_addr->size
> invt_pg_table[pg_no].max_free) {
invt_pg_table[pg_no].max_free = temp_addr->size;
max_addr = temp_addr;
}
curr_offset += sizeof(pgm) + temp_addr->size;
temp_addr = (void *) temp_addr + sizeof(pgm)
+ temp_addr->size;
}
if (max_addr != NULL) {
max_addr->is_max_free_block = 1;
}
}
ret_val = itr_addr + sizeof(pgm);
} else if (vir_pg == TOTAL_PAGES - 1) {
// The thread has used up all its virtual memory.
printf("The thread %d has used up all his virtual memory!!!\n",
tid);
return NULL;
} else {
// The thread does not currently have a page large enough to hold the 'size' allocation.
// Allocating a new page.
// Id for new virtual page
vir_pg++;
// Create a new Page Table Entry for the page
pte *new_pte = init_pte(vir_pg);
vir_pte->next = new_pte;
void *page = memory + (old_pg * PAGE_SIZE);
mprotect(page, PAGE_SIZE, PROT_READ | PROT_WRITE);
void *newpage = memory + (vir_pg * PAGE_SIZE);
mprotect(newpage, PAGE_SIZE, PROT_READ | PROT_WRITE);
old_pg = find_free_page(tid, size);
if (old_pg == -1) {
// No Space left in Main Memory
printf("Main memory is full!!!\n");
// TODO: Swap code
int swap_index = 0;
while (testBit(invt_swap_tb, swap_index)
&& swap_index < SWAP_PAGES) {
swap_index++;
}
if (swap_index == SWAP_PAGES) {
printf("Swap is also FULL, You are Doomed!!!\n");
return NULL;
}
int old_tid = invt_pg_table[vir_pg].tid;
pte *curr_pte = thread_pt[old_tid];
while (curr_pte != NULL
&& !(curr_pte->in_memory == 1
&& curr_pte->mem_page_no == vir_pg))
curr_pte = curr_pte->next;
curr_pte->in_memory = 0;
curr_pte->swap_page_no = swap_index;
if (write_in_swap(vir_pg, swap_index) == -1) {
printf("Cant write in Swap File!!!\n");
return NULL;
}
invt_pg_table[vir_pg].tid = tid;
invt_pg_table[vir_pg].is_alloc = 1;
invt_pg_table[vir_pg].max_free = PAGE_SIZE - sizeof(pgm);
new_pte->in_memory = 1;
new_pte->mem_page_no = vir_pg;
new_pte->next = NULL;
pgm * curr_pgm = memory + vir_pg * PAGE_SIZE;
curr_pgm->free = 0;
curr_pgm->is_max_free_block = 1;
curr_pgm->size = PAGE_SIZE - sizeof(pgm);
return allocate_in_page(tid, vir_pg, size);
}
swap_pages(old_pg, vir_pg);
//reprotect old page
page = memory + (old_pg * PAGE_SIZE);
mprotect(page, PAGE_SIZE, PROT_NONE);
void *new_page = memory + (vir_pg * PAGE_SIZE);
mprotect(new_page, PAGE_SIZE, PROT_READ | PROT_WRITE);
ret_val = allocate_in_page(tid, vir_pg, size);
}
}
return ret_val;
}
}
// TODO: dealloc_thread_mem()
void mydeallocate(void * ptr, char *filename, int line_number, int flag) {
int alloc_complete = 0;
make_scheduler();
pgm *pg_meta = ptr - sizeof(pgm);
pgm *curr_pgm;
pg_meta->free = 1;
int inv_pg_index = (int) ((void *) pg_meta - (void *) memory)
/ (int) PAGE_SIZE;
if (invt_pg_table[inv_pg_index].max_free < pg_meta->size) {
invt_pg_table[inv_pg_index].max_free = pg_meta->size;
pg_meta->is_max_free_block = 1;
while (curr_pgm != NULL) {
if (curr_pgm->is_max_free_block == 1) {
curr_pgm->is_max_free_block = 0;
break;
}
curr_pgm += sizeof(pgm) + curr_pgm->size;
}
}
return;
}
void* shalloc(size_t size) {
special_alloc(size, SHARED_REGION);
}