-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPCAforMatrix.R
executable file
·241 lines (199 loc) · 7.95 KB
/
PCAforMatrix.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#!/usr/bin/env Rscript
###################################################################################
#Copyright 2010 Wu Albert Cheng <[email protected]>
#
#Permission is hereby granted, free of charge, to any person obtaining a copy
#of this software and associated documentation files (the "Software"), to deal
#in the Software without restriction, including without limitation the rights
#to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#copies of the Software, and to permit persons to whom the Software is
#furnished to do so, subject to the following conditions:
#
#The above copyright notice and this permission notice shall be included in
#all copies or substantial portions of the Software.
#
#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
#THE SOFTWARE.
#
#
#This is based on tutorial from Steven M. Holland
#http://www.uga.edu/strata/software/pdf/pcaTutorial.pdfJOawJ5IyJuS3Hg&cad=rja
#
#
###################################################################################
args <- commandArgs(TRUE)
largs <- length(args)
if(largs<2){
cat("Usage: \n\t[Rscript] PCAforMatrix.R matrixFileName outputDir [center:yes] [scale:yes] [sep:tab] [showMaxPC:20] [ [drawcomponents:1,2] ...]\n")
cat("\nDescriptions:\n")
cat("\tPerform PCA analysis on a matrix file where data vectors are in rows. For data vectors in columns, first perform transposition, e.g., by using matrixTranspose.py originalMatrix > transposedMatrix. Output to outputDir\n")
cat("\nOptions Descriptions:\n")
cat("\tcenter\t\t\t\tWhether to set mean to 0\n")
cat("\tscale\t\t\t\tWhether to scale such that sd=1 for each data vector\n")
cat("\tsep\t\t\t\tSet field separator\n")
cat("\tshowMaxPC\t\t\tHow many maximum PC to plots on variance plots\n")
cat("\tdrawcomponents...\t\tSpecify PC pairs to draw the PCA plot, biplot and loading plot. By default 1 and 2 are already included. e.g., 2,3 4,5 will draw PCA1,2 PCA2,3 and PCA4,5\n")
cat("\nOutput Descriptions (in outputDir):\n")
cat("\tloading.txt\t\t\tThe loading matrix for the variables and PCs\n")
cat("\tscores.txt\t\t\tThe PCA score matrix\n")
cat("\tsd.txt\t\t\t\tThe singular values, variances info\n")
cat("\tsummary.txt\t\t\tThe summary report from R on the pca result object\n")
cat("\tloading.<c1>,<c2>.png\t\tThe loading plot for components <c1> and <c2>\n")
cat("\tPCA.<c1>,<c2>.png\t\tThe PCA score plot for components <c1> and <c2>\n")
cat("\tPCABiPlot.<c1>,<c2>.png\t\tThe Biplot for components <c1> and <c2>\n")
quit()
}
center="yes"
scale="yes"
separator="\t"
matrixFileName=args[1]
outputDir=args[2]
showMaxPC=20
drawcomponents=cbind(c(0,0),c(1,2))
if(largs>=3){
center=args[3]
if(largs>=4){
scale=args[4]
if(largs>=5)
{
separator=args[5]
if(largs>=6)
{
showMaxPC=as.numeric(args[6])
if(largs>=7){
for(i in 7:largs){
fields=as.numeric(unlist(strsplit(args[i],",")))
drawcomponents=cbind(drawcomponents,fields) }
}
}
}
}
}
if(separator=="\\t")
{
separator="\t"
}
#print(drawcomponents)
#quit()
centerFlag=(center=="yes")
scaleFlag=(scale=="yes")
#read data and print first 5 lines
mydata <- read.table(file=matrixFileName,header=TRUE,row.names=1,sep=separator) #,colClasses=c("character","double","double")
mydata.pca <- prcomp(mydata,scale.=scaleFlag, retx=TRUE, center=centerFlag)
#variable means set to zero, and variances set to one
#sample scores stored in mydata.pca$x
#loadings stored in mydata.pca$rotation
#singular values (square roots of eigenvalues) stored in mydata.pca$sdev (standard deviation explained by each PC)
#variable means stored in mydata.pca$center
#variable standard deviations stored in mydata.pca$scale
sd <- mydata.pca$sdev #this is the singular values=stdev (square roots of eigenvalues=variances) explained by each PC
variances=sd^2
loadings <- mydata.pca$rotation #these are the weights in cols (the eigenvectors) indexed by the PC component index
rownames(loadings) <- colnames(mydata) #the names of the genes and the corresponding loadings, i.e., weights on the rows of the loadings matrix (eigenvectors)
scores <- mydata.pca$x #these are the new data in the PC coordinate systems
if(!file.exists(outputDir)){
dir.create(outputDir) #create output directory
}
sink(paste(outputDir,"/","summary.txt",sep=""))
cat("First 5 lines of Data:\n")
print(mydata[1:min(5,dim(mydata)[1]),])
cat("\nCenter:\n")
print(mydata.pca$center)
cat("\n")
summary(mydata.pca)
#cat("\nloadings:\n")
#print(loadings)
#cat("\nsingular values:\n")
#cat(sd)
#cat("\n\nscores:\n")
#print(scores)
sink()
#now plots
#print(ncol(drawcomponents))
for(prequestI in 2:ncol(drawcomponents)){
compv=drawcomponents[,prequestI]
#print(compv)
c1=compv[1]
c2=compv[2]
cat("Drawing plots for","PCA",c1,"and","PCA",c2,"\n")
png(filename=paste(outputDir,"/","PCABiPlot.",c1,",",c2,".png",sep=""))
biplot(scores[,c(c1,c2)],loadings[,c(c1,c2)],xlab=paste("PCA",c1),ylab=paste("PCA",c2),cex=0.7)
abline(h=0,lty=2)
abline(v=0,lty=2)
sink("/dev/null")
dev.off()
sink()
png(filename=paste(outputDir,"/","PCA.",c1,",",c2,".png",sep=""))
minV=min(scores[,c(c1,c2)])
maxV=max(scores[,c(c1,c2)])
plot(scores[,c1],scores[,c2],xlab=paste("PCA",c1),ylab=paste("PCA",c2),type="n",xlim=c(minV,maxV),ylim=c(minV,maxV))
text(scores[,c1],scores[,c2],rownames(scores),col="blue",cex=0.7)
abline(h=0,lty=2)
abline(v=0,lty=2)
sink("/dev/null")
dev.off()
sink()
png(filename=paste(outputDir,"/","loading.",c1,",",c2,".png",sep=""))
minL=min(loadings[,c(c1,c2)])
maxL=max(loadings[,c(c1,c2)])
xmin=min(loadings[,c1])
xmax=max(loadings[,c1])
ymin=min(loadings[,c2])
ymax=max(loadings[,c2])
xrange=xmax-xmin
yrange=ymax-ymin
xadd=xrange/5
yadd=yrange/5
plot(loadings[,c1],loadings[,c2],xlab=paste("PCA",c1),ylab=paste("PCA",c2),type="n",xlim=c(xmin-xadd,xmax+xadd),ylim=c(ymin-yadd,ymax+yadd))
text(loadings[,c1],loadings[,c2],rownames(loadings),col="blue",cex=0.7)
abline(h=0,lty=2)
abline(v=0,lty=2)
sink("/dev/null")
dev.off()
sink()
}
#variance plots
png(filename=paste(outputDir,"/","variancePlot.png",sep=""))
plot(log(variances[1:min(showMaxPC,length(variances))]),xlab="principal components",ylab="log(variance)",type="b",pch=16)
sink("/dev/null")
dev.off()
sink()
png(filename=paste(outputDir,"/","variancePlotNL.png",sep=""))
plot(variances[1:min(showMaxPC,length(variances))],xlab="principal components",ylab="variance",type="b",pch=16)
sink("/dev/null")
dev.off()
sink()
cumulative =function(L)
{
cL=L
cL[1]=L[1]
for(i in 2:length(L)){
cL[i]=cL[i-1]+L[i]
}
return(cL)
}
sumOfVariances=sum(sd^2)
variancesProportion=variances/sumOfVariances*100
variancesCdf=cumulative(variancesProportion)
variancesCdfOffset=variancesCdf-variancesProportion
png(filename=paste(outputDir,"/","variancePlotProportion.png",sep=""))
barplot(rbind(variancesProportion[1:min(showMaxPC,length(variances))], variancesCdfOffset[1:min(showMaxPC,length(variances))]),xlab="principal components",ylab="variance proportion (%)",pch=16,ylim=c(0,100),names.arg=1:min(showMaxPC,length(variances)),col=c("red","grey"))
sink("/dev/null")
dev.off()
sink()
#write tables
loadingOut=paste(outputDir,"/","loading.txt",sep="")
scoresOut=paste(outputDir,"/","scores.txt",sep="")
sdOut=paste(outputDir,"/","sd.txt",sep="")
options(warn=-1)
cat("X\t",file=loadingOut)
write.table(loadings,file=loadingOut,sep=separator,append=TRUE,quote=FALSE)
cat("X\t", file=scoresOut)
write.table(scores,file=scoresOut,sep=separator,append=TRUE,quote=FALSE)
cat("PC\t", file=sdOut)
write.table(cbind(sd=sd,variance=variances,variancePdf=variancesProportion/100.0,varainceCdf=variancesCdf/100.0),file=sdOut,sep=separator,append=TRUE,quote=FALSE)