-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathmodel.py
executable file
·467 lines (361 loc) · 18.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
import os
import tensorflow as tf
from tensorflow.python.tools import freeze_graph
from tensorflow.tools.graph_transforms import TransformGraph
import config
import download
import loss
class MSINET:
"""The class representing the MSI-Net based on the VGG16 model. It
implements a definition of the computational graph, as well as
functions related to network training.
"""
def __init__(self):
self._output = None
self._mapping = {}
if config.PARAMS["device"] == "gpu":
self._data_format = "channels_first"
self._channel_axis = 1
self._dims_axis = (2, 3)
elif config.PARAMS["device"] == "cpu":
self._data_format = "channels_last"
self._channel_axis = 3
self._dims_axis = (1, 2)
def _encoder(self, images):
"""The encoder of the model consists of a pretrained VGG16 architecture
with 13 convolutional layers. All dense layers are discarded and the
last 3 layers are dilated at a rate of 2 to account for the omitted
downsampling. Finally, the activations from 3 layers are combined.
Args:
images (tensor, float32): A 4D tensor that holds the RGB image
batches used as input to the network.
"""
imagenet_mean = tf.constant([103.939, 116.779, 123.68])
imagenet_mean = tf.reshape(imagenet_mean, [1, 1, 1, 3])
images -= imagenet_mean
if self._data_format == "channels_first":
images = tf.transpose(images, (0, 3, 1, 2))
layer01 = tf.layers.conv2d(images, 64, 3,
padding="same",
activation=tf.nn.relu,
data_format=self._data_format,
name="conv1/conv1_1")
layer02 = tf.layers.conv2d(layer01, 64, 3,
padding="same",
activation=tf.nn.relu,
data_format=self._data_format,
name="conv1/conv1_2")
layer03 = tf.layers.max_pooling2d(layer02, 2, 2,
data_format=self._data_format)
layer04 = tf.layers.conv2d(layer03, 128, 3,
padding="same",
activation=tf.nn.relu,
data_format=self._data_format,
name="conv2/conv2_1")
layer05 = tf.layers.conv2d(layer04, 128, 3,
padding="same",
activation=tf.nn.relu,
data_format=self._data_format,
name="conv2/conv2_2")
layer06 = tf.layers.max_pooling2d(layer05, 2, 2,
data_format=self._data_format)
layer07 = tf.layers.conv2d(layer06, 256, 3,
padding="same",
activation=tf.nn.relu,
data_format=self._data_format,
name="conv3/conv3_1")
layer08 = tf.layers.conv2d(layer07, 256, 3,
padding="same",
activation=tf.nn.relu,
data_format=self._data_format,
name="conv3/conv3_2")
layer09 = tf.layers.conv2d(layer08, 256, 3,
padding="same",
activation=tf.nn.relu,
data_format=self._data_format,
name="conv3/conv3_3")
layer10 = tf.layers.max_pooling2d(layer09, 2, 2,
data_format=self._data_format)
layer11 = tf.layers.conv2d(layer10, 512, 3,
padding="same",
activation=tf.nn.relu,
data_format=self._data_format,
name="conv4/conv4_1")
layer12 = tf.layers.conv2d(layer11, 512, 3,
padding="same",
activation=tf.nn.relu,
data_format=self._data_format,
name="conv4/conv4_2")
layer13 = tf.layers.conv2d(layer12, 512, 3,
padding="same",
activation=tf.nn.relu,
data_format=self._data_format,
name="conv4/conv4_3")
layer14 = tf.layers.max_pooling2d(layer13, 2, 1,
padding="same",
data_format=self._data_format)
layer15 = tf.layers.conv2d(layer14, 512, 3,
padding="same",
activation=tf.nn.relu,
dilation_rate=2,
data_format=self._data_format,
name="conv5/conv5_1")
layer16 = tf.layers.conv2d(layer15, 512, 3,
padding="same",
activation=tf.nn.relu,
dilation_rate=2,
data_format=self._data_format,
name="conv5/conv5_2")
layer17 = tf.layers.conv2d(layer16, 512, 3,
padding="same",
activation=tf.nn.relu,
dilation_rate=2,
data_format=self._data_format,
name="conv5/conv5_3")
layer18 = tf.layers.max_pooling2d(layer17, 2, 1,
padding="same",
data_format=self._data_format)
encoder_output = tf.concat([layer10, layer14, layer18],
axis=self._channel_axis)
self._output = encoder_output
def _aspp(self, features):
"""The ASPP module samples information at multiple spatial scales in
parallel via convolutional layers with different dilation factors.
The activations are then combined with global scene context and
represented as a common tensor.
Args:
features (tensor, float32): A 4D tensor that holds the features
produced by the encoder module.
"""
branch1 = tf.layers.conv2d(features, 256, 1,
padding="same",
activation=tf.nn.relu,
data_format=self._data_format,
name="aspp/conv1_1")
branch2 = tf.layers.conv2d(features, 256, 3,
padding="same",
activation=tf.nn.relu,
dilation_rate=4,
data_format=self._data_format,
name="aspp/conv1_2")
branch3 = tf.layers.conv2d(features, 256, 3,
padding="same",
activation=tf.nn.relu,
dilation_rate=8,
data_format=self._data_format,
name="aspp/conv1_3")
branch4 = tf.layers.conv2d(features, 256, 3,
padding="same",
activation=tf.nn.relu,
dilation_rate=12,
data_format=self._data_format,
name="aspp/conv1_4")
branch5 = tf.reduce_mean(features,
axis=self._dims_axis,
keepdims=True)
branch5 = tf.layers.conv2d(branch5, 256, 1,
padding="valid",
activation=tf.nn.relu,
data_format=self._data_format,
name="aspp/conv1_5")
shape = tf.shape(features)
branch5 = self._upsample(branch5, shape, 1)
context = tf.concat([branch1, branch2, branch3, branch4, branch5],
axis=self._channel_axis)
aspp_output = tf.layers.conv2d(context, 256, 1,
padding="same",
activation=tf.nn.relu,
data_format=self._data_format,
name="aspp/conv2")
self._output = aspp_output
def _decoder(self, features):
"""The decoder model applies a series of 3 upsampling blocks that each
performs bilinear upsampling followed by a 3x3 convolution to avoid
checkerboard artifacts in the image space. Unlike all other layers,
the output of the model is not modified by a ReLU.
Args:
features (tensor, float32): A 4D tensor that holds the features
produced by the ASPP module.
"""
shape = tf.shape(features)
layer1 = self._upsample(features, shape, 2)
layer2 = tf.layers.conv2d(layer1, 128, 3,
padding="same",
activation=tf.nn.relu,
data_format=self._data_format,
name="decoder/conv1")
shape = tf.shape(layer2)
layer3 = self._upsample(layer2, shape, 2)
layer4 = tf.layers.conv2d(layer3, 64, 3,
padding="same",
activation=tf.nn.relu,
data_format=self._data_format,
name="decoder/conv2")
shape = tf.shape(layer4)
layer5 = self._upsample(layer4, shape, 2)
layer6 = tf.layers.conv2d(layer5, 32, 3,
padding="same",
activation=tf.nn.relu,
data_format=self._data_format,
name="decoder/conv3")
decoder_output = tf.layers.conv2d(layer6, 1, 3,
padding="same",
data_format=self._data_format,
name="decoder/conv4")
if self._data_format == "channels_first":
decoder_output = tf.transpose(decoder_output, (0, 2, 3, 1))
self._output = decoder_output
def _upsample(self, stack, shape, factor):
"""This function resizes the input to a desired shape via the
bilinear upsampling method.
Args:
stack (tensor, float32): A 4D tensor with the function input.
shape (tensor, int32): A 1D tensor with the reference shape.
factor (scalar, int): An integer denoting the upsampling factor.
Returns:
tensor, float32: A 4D tensor that holds the activations after
bilinear upsampling of the input.
"""
if self._data_format == "channels_first":
stack = tf.transpose(stack, (0, 2, 3, 1))
stack = tf.image.resize_bilinear(stack, (shape[self._dims_axis[0]] * factor,
shape[self._dims_axis[1]] * factor))
if self._data_format == "channels_first":
stack = tf.transpose(stack, (0, 3, 1, 2))
return stack
def _normalize(self, maps, eps=1e-7):
"""This function normalizes the output values to a range
between 0 and 1 per saliency map.
Args:
maps (tensor, float32): A 4D tensor that holds the model output.
eps (scalar, float, optional): A small factor to avoid numerical
instabilities. Defaults to 1e-7.
"""
min_per_image = tf.reduce_min(maps, axis=(1, 2, 3), keep_dims=True)
maps -= min_per_image
max_per_image = tf.reduce_max(maps, axis=(1, 2, 3), keep_dims=True)
maps = tf.divide(maps, eps + max_per_image, name="output")
self._output = maps
def _pretraining(self):
"""The first 26 variables of the model here are based on the VGG16
network. Therefore, their names are matched to the ones of the
pretrained VGG16 checkpoint for correct initialization.
"""
for var in tf.global_variables()[:26]:
key = var.name.split("/", 1)[1]
key = key.replace("kernel:0", "weights")
key = key.replace("bias:0", "biases")
self._mapping[key] = var
def forward(self, images):
"""Public method to forward RGB images through the whole network
architecture and retrieve the resulting output.
Args:
images (tensor, float32): A 4D tensor that holds the values of the
raw input images.
Returns:
tensor, float32: A 4D tensor that holds the values of the
predicted saliency maps.
"""
self._encoder(images)
self._aspp(self._output)
self._decoder(self._output)
self._normalize(self._output)
return self._output
def train(self, ground_truth, predicted_maps, learning_rate):
"""Public method to define the loss function and optimization
algorithm for training the model.
Args:
ground_truth (tensor, float32): A 4D tensor with the ground truth.
predicted_maps (tensor, float32): A 4D tensor with the predictions.
learning_rate (scalar, float): Defines the learning rate.
Returns:
object: The optimizer element used to train the model.
tensor, float32: A 0D tensor that holds the averaged error.
"""
error = loss.kld(ground_truth, predicted_maps)
optimizer = tf.train.AdamOptimizer(learning_rate)
optimizer = optimizer.minimize(error)
return optimizer, error
def save(self, saver, sess, dataset, path, device):
"""This saves a model checkpoint to disk and creates
the folder if it doesn't exist yet.
Args:
saver (object): An object for saving the model.
sess (object): The current TF training session.
path (str): The path used for saving the model.
device (str): Represents either "cpu" or "gpu".
"""
os.makedirs(path, exist_ok=True)
saver.save(sess, path + "model_%s_%s.ckpt" % (dataset, device),
write_meta_graph=False, write_state=False)
def restore(self, sess, dataset, paths, device):
"""This function allows continued training from a prior checkpoint and
training from scratch with the pretrained VGG16 weights. In case the
desired dataset is not SALICON, a prior checkpoint based on the
SALICON dataset is required.
Args:
sess (object): The current TF training session.
dataset ([type]): The dataset used for training.
paths (dict, str): A dictionary with all path elements.
device (str): Represents either "cpu" or "gpu".
Returns:
object: A saver object for saving the model.
"""
model_name = "model_%s_%s" % (dataset, device)
salicon_name = "model_salicon_%s" % device
vgg16_name = "vgg16_hybrid"
ext1 = ".ckpt.data-00000-of-00001"
ext2 = ".ckpt.index"
saver = tf.train.Saver()
if os.path.isfile(paths["latest"] + model_name + ext1) and \
os.path.isfile(paths["latest"] + model_name + ext2):
saver.restore(sess, paths["latest"] + model_name + ".ckpt")
elif dataset in ("mit1003", "cat2000", "dutomron",
"pascals", "osie", "fiwi"):
if os.path.isfile(paths["best"] + salicon_name + ext1) and \
os.path.isfile(paths["best"] + salicon_name + ext2):
saver.restore(sess, paths["best"] + salicon_name + ".ckpt")
else:
raise FileNotFoundError("Train model on SALICON first")
else:
if not (os.path.isfile(paths["weights"] + vgg16_name + ext1) or
os.path.isfile(paths["weights"] + vgg16_name + ext2)):
download.download_pretrained_weights(paths["weights"],
"vgg16_hybrid")
self._pretraining()
loader = tf.train.Saver(self._mapping)
loader.restore(sess, paths["weights"] + vgg16_name + ".ckpt")
return saver
def optimize(self, sess, dataset, path, device):
"""The best performing model is frozen, optimized for inference
by removing unneeded training operations, and written to disk.
Args:
sess (object): The current TF training session.
path (str): The path used for saving the model.
device (str): Represents either "cpu" or "gpu".
.. seealso:: https://bit.ly/2VBBdqQ and https://bit.ly/2W7YqBa
"""
model_name = "model_%s_%s" % (dataset, device)
model_path = path + model_name
tf.train.write_graph(sess.graph.as_graph_def(),
path, model_name + ".pbtxt")
freeze_graph.freeze_graph(model_path + ".pbtxt", "", False,
model_path + ".ckpt", "output",
"save/restore_all", "save/Const:0",
model_path + ".pb", True, "")
os.remove(model_path + ".pbtxt")
graph_def = tf.GraphDef()
with tf.gfile.Open(model_path + ".pb", "rb") as file:
graph_def.ParseFromString(file.read())
transforms = ["remove_nodes(op=Identity)",
"merge_duplicate_nodes",
"strip_unused_nodes",
"fold_constants(ignore_errors=true)"]
optimized_graph_def = TransformGraph(graph_def,
["input"],
["output"],
transforms)
tf.train.write_graph(optimized_graph_def,
logdir=path,
as_text=False,
name=model_name + ".pb")