Skip to content

Latest commit

 

History

History
230 lines (194 loc) · 5.15 KB

README.md

File metadata and controls

230 lines (194 loc) · 5.15 KB

Shortest Path in Neo4j

Experiment

Originally created as a response to the data presented in this blog post, this experiment compares the performance of different path finding algorithm implementations in Neo4j. The start and end nodes are selected uniformly at random from across the entire node space (~4000 nodes). Each algorithm is run 1000 times, using different (well, randomly selected) start and end nodes each time.

Dataset

Source			: http://snap.stanford.edu/data/egonets-Facebook.html
Nodes			: 4,040
Relationships	: 88,234

Environment

Processor			: 4x Intel i3-2330M CPU @ 2.20GHz (2 cores, with HyperThreading)
Memory				: 6GB
Storage				: INTEL SSDSA2BW16 160GB SSD drive
Operating System	: Ubuntu 12.04.3 LTS (Linux 3.2.0-52-generic (x86_64))
Java				: Java HotSpot 64-Bit VM
Neo4j				: Neo4j Enterprise 1.9.4

Results

Single Shortest Path

- Shortest Path -

Run Time (ms)
	COUNT			 : 1000
	MIN				 : 0
	MAX				 : 222
	50th PERCENTILE	 : 1
	90th PERCENTILE	 : 6
	95th PERCENTILE	 : 10
	99th PERCENTILE	 : 18
	MEAN			 : 2.769
Path Length
	COUNT			 : 1000
	MIN				 : 1
	MAX				 : 7
	50th PERCENTILE	 : 4
	90th PERCENTILE	 : 5
	95th PERCENTILE	 : 6
	99th PERCENTILE	 : 7
	MEAN			 : 3.613

- Unweighted Dijkstra -

Run Time (ms)
	COUNT			 : 1000
	MIN				 : 0
	MAX				 : 12365
	50th PERCENTILE	 : 143
	90th PERCENTILE	 : 651
	95th PERCENTILE	 : 1093
	99th PERCENTILE	 : 2150
	MEAN			 : 294.47
Path Length
	COUNT			 : 1000
	MIN				 : 1
	MAX				 : 7
	50th PERCENTILE	 : 4
	90th PERCENTILE	 : 5
	95th PERCENTILE	 : 6
	99th PERCENTILE	 : 7
	MEAN			 : 3.613

- Weighted Dijkstra -

Run Time (ms)
	COUNT			 : 1000
	MIN				 : 0
	MAX				 : 589
	50th PERCENTILE	 : 134
	90th PERCENTILE	 : 209
	95th PERCENTILE	 : 241
	99th PERCENTILE	 : 363
	MEAN			 : 126.423
Path Length
	COUNT			 : 1000
	MIN				 : 1
	MAX				 : 32
	50th PERCENTILE	 : 13
	90th PERCENTILE	 : 21
	95th PERCENTILE	 : 23
	99th PERCENTILE	 : 28
	MEAN			 : 13.146

All Shortest Paths (Run Time is for retrieving the 1st path only)

- Shortest Path -

Run Time (ms)
	COUNT			 : 1000
	MIN				 : 0
	MAX				 : 159
	50th PERCENTILE	 : 2
	90th PERCENTILE	 : 7
	95th PERCENTILE	 : 10
	99th PERCENTILE	 : 17
	MEAN			 : 3.059
Path Length
	COUNT			 : 1000
	MIN				 : 1
	MAX				 : 7
	50th PERCENTILE	 : 4
	90th PERCENTILE	 : 5
	95th PERCENTILE	 : 6
	99th PERCENTILE	 : 7
	MEAN			 : 3.613
Discovered Path Count
	COUNT			 : 1000
	MIN				 : 1
	MAX				 : 515
	50th PERCENTILE	 : 2
	90th PERCENTILE	 : 15
	95th PERCENTILE	 : 25
	99th PERCENTILE	 : 68
	MEAN			 : 6.975

- Unweighted Dijkstra -

Run Time (ms)
	COUNT			 : 1000
	MIN				 : 0
	MAX				 : 12580
	50th PERCENTILE	 : 132
	90th PERCENTILE	 : 652
	95th PERCENTILE	 : 1064
	99th PERCENTILE	 : 2203
	MEAN			 : 293.552
Path Length
	COUNT			 : 1000
	MIN				 : 1
	MAX				 : 7
	50th PERCENTILE	 : 4
	90th PERCENTILE	 : 5
	95th PERCENTILE	 : 6
	99th PERCENTILE	 : 7
	MEAN			 : 3.613
Discovered Path Count
	COUNT			 : 1000
	MIN				 : 1
	MAX				 : 515
	50th PERCENTILE	 : 2
	90th PERCENTILE	 : 15
	95th PERCENTILE	 : 25
	99th PERCENTILE	 : 68
	MEAN			 : 6.975

- Weighted Dijkstra -

Run Time (ms)
	COUNT			 : 1000
	MIN				 : 0
	MAX				 : 609
	50th PERCENTILE	 : 129
	90th PERCENTILE	 : 209
	95th PERCENTILE	 : 241
	99th PERCENTILE	 : 362
	MEAN			 : 124.228
Path Length
	COUNT			 : 1000
	MIN				 : 1
	MAX				 : 32
	50th PERCENTILE	 : 13
	90th PERCENTILE	 : 21
	95th PERCENTILE	 : 23
	99th PERCENTILE	 : 28
	MEAN			 : 13.146
Discovered Path Count
	COUNT			 : 1000
	MIN				 : 1
	MAX				 : 12
	50th PERCENTILE	 : 1
	90th PERCENTILE	 : 3
	95th PERCENTILE	 : 4
	99th PERCENTILE	 : 8
	MEAN			 : 1.665

Recreate at home

Follow these instructions if you wish to recreate the experiment at home.

(1) Compile:

mvn clean compile -Dmaven.compiler.source=1.6 -Dmaven.compiler.target=1.6

(2) Generate Graph .csv Files:

mvn exec:java -Dexec.mainClass=org.neo4j.bench.shortestpath.InputFilesCreator -Dexec.arguments="undirected"

(3) Download and build neo4j-import (see README):

https://github.com/dmontag/neo4j-import

(4) Load Generated .csv Files into Neo4j using neo4j-import:

./run.sh /path/to/shortestpath_bench/db /path/to/shortestpath_bench/data/generated/nodes.csv /path/to/shortestpath_bench/data/generated/relationships.csv

After this step the project directory should look as follows:

shortestpath_bench/
	data/
		raw/
		generated/
			nodes.csv
			relationships.csv
			path-start-and-end-nodes.csv
	db/
		...
	lib/
		...
	pom.xml  
	README.md  
	src/
		...
	target/
		...

(5) Run Benchmark:

First parameter specifies if algorithm should find one shortest path or all shortest paths

Second parameter specific if relationships should be traversed in both directions or outgoing only

MAVEN_OPTS="-server -XX:+UseConcMarkSweepGC -Xmx512m" mvn exec:java -Dexec.mainClass=org.neo4j.bench.shortestpath.ShortestPathBench -Dexec.arguments="<single|all> <out|both>"