-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgengrp.f90
1096 lines (1080 loc) · 46.2 KB
/
gengrp.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
!
! ParaGauss, a program package for high-performance computations of
! molecular systems
!
! Copyright (C) 2014 T. Belling, T. Grauschopf, S. Krüger,
! F. Nörtemann, M. Staufer, M. Mayer, V. A. Nasluzov, U. Birkenheuer,
! A. Hu, A. V. Matveev, A. V. Shor, M. S. K. Fuchs-Rohr, K. M. Neyman,
! D. I. Ganyushin, T. Kerdcharoen, A. Woiterski, A. B. Gordienko,
! S. Majumder, M. H. i Rotllant, R. Ramakrishnan, G. Dixit,
! A. Nikodem, T. Soini, M. Roderus, N. Rösch
!
! This program is free software; you can redistribute it and/or modify
! it under the terms of the GNU General Public License version 2 as
! published by the Free Software Foundation [1].
!
! This program is distributed in the hope that it will be useful, but
! WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
! General Public License for more details.
!
! [1] http://www.gnu.org/licenses/gpl-2.0.html
!
! Please see the accompanying LICENSE file for further information.
!
!=====================================================================
! Public interface of module
!=====================================================================
subroutine gengrp(group,igroup,iorder,elem,namele,ncsco,fcsco)
!-------------------------------------------------------------------
!
! Purpose:
! identifies the group by number in the canonical ordering used in
! the tables of Altmann and Herzig and generates the quaternionic
! representation of the group elements and their name
!
! author: N. Roesch, Theoretische Chemie, TU Muenchen
! version: 07.05.95
!
!== Interrupt of public interface of module =====================
!-------------------------------------------------------------------
! Modifications
!-------------------------------------------------------------------
!
! Modification (Please copy before editing)
! Author: ...
! Date: ...
! Description: ...
!
!-------------------------------------------------------------------
!------------ Modules used -----------------------------------------
use type_module, only: i4_kind,r8_kind
implicit none
!== Interrupt end of public interface of module =================
!------------ Declaration of formal parameters ---------------------
character(len=4), intent(in) :: group
! group name of the group
integer(kind=i4_kind),intent(in) :: iorder,igroup
! iorder order of the group
real(kind=r8_kind),intent(out) :: elem(5,iorder)
! elem quaternionic parameters of the group elements
character(len=8),intent(out) :: namele(iorder)
! namele conventional names of the group elements
integer(kind=i4_kind),intent(out) :: ncsco(3), fcsco(3)
! ncsco indicates the class operator used to generated the
! characters; for the numbering, see subroutine gencls
! a negative value indicates an non-ambivalent class,
! whence real and imaginary parts will be used as
! separate operators
! fcsco coefficient for the linear combination of class
! operators
!===================================================================
! End of public interface of module
!===================================================================
!------------ Declaration of local constants --------------------
integer(kind=i4_kind), parameter :: modnum=1, nptgrp=75, ngrpar=304
!------------ Declaration of local variables --------------------
integer(kind=i4_kind) :: naxis, k, koffst, l, i, &
ncscop(3,nptgrp), fcscop(3,nptgrp)
character(len=36) :: grppar(ngrpar)
logical ::appinv
!
! elements of selected groups, angle/axis/parity coded
! parameter 1 : m/n -> angle = pi*m/n
! parameter 2-4 : unit vector along axis
! coded c -> cos, s -> sin, angle as above,
! special angles in group Oh:
! ct1/2 -> cos of (tetrahedral angle /2),
! sig, rho -> special angles of icosahedral group
! see Altmann & Herzig, Table T75.1,
! but beware of two typos !!!
! 0, 1, 1/2 just what you read
! parameter 5 : + pure rotation, - apply inversion
! parameter 6 : label of group element
!
data (grppar(k), k = 1, 2) /& ! Ci
& '0 0 0 1 + E ', &
& '0 0 0 1 - i ' /
data (grppar(k), k = 3, 4) /& ! Cs
& '0 0 0 1 + E ', &
& '1 0 0 1 - sigh ' /
data (grppar(k), k = 5, 12) / &! D2d
& '0 0 0 1 + E ', &
& '1 0 0 1 + C2 ', &
& '1 1 0 0 + C2,1'' ', &
& '1 0 1 0 + C2,2'' ', &
& '1/2 0 0 1 - S4- ', &
& '1/2 0 0 -1 - S4+ ', &
& '1 c1/4 s1/4 0 - sigd1 ', &
& '1 -s1/4 c1/4 0 - sigd2 ' /
data (grppar(k), k = 13, 24) /& ! D3h
& '0 0 0 1 + E ', &
& '2/3 0 0 1 + C3+ ', &
& '2/3 0 0 -1 + C3- ', &
& '1 1 0 0 + C2,1'' ', &
& '1 -c1/3 s1/3 0 + C2,2'' ', &
& '1 -c1/3 -s1/3 0 + C2,3'' ', &
& '1 0 0 1 - sigh ',&
& '1/3 0 0 1 - S3- ', &
& '1/3 0 0 -1 - S3+ ', &
& '1 0 1 0 - sigv1 ', &
& '1 -s1/3 -c1/3 0 - sigv2 ', &
& '1 s1/3 -c1/3 0 - sigv3 ' /
data (grppar(k), k = 25, 40) / &! D4d
& '0 0 0 1 + E', &
& '1/2 0 0 1 + C4+ ',&
& '1/2 0 0 -1 + C4- ', &
& '1 0 0 1 + C2 ', &
& '1 1 0 0 + C2,1'' ', &
& '1 0 1 0 + C2,2'' ', &
& '1 c1/4 s1/4 0 + C2,3'' ',&
& '1 -s1/4 c1/4 0 + C2,4'' ',&
& '1/4 0 0 1 - S8^3- ',&
& '1/4 0 0 -1 - S8^3+ ',&
& '3/4 0 0 1 - S8- ',&
& '3/4 0 0 -1 - S8+ ', &
& '1 c1/8 s1/8 0 - sigd1 ', &
& '1 -s1/8 c1/8 0 - sigd2 ', &
& '1 s1/8 c1/8 0 - sigd3 ', &
& '1 -c1/8 s1/8 0 - sigd4 ' /
data (grppar(k), k = 41, 60) /& ! D5h
& '0 0 0 1 + E ', &
& '2/5 0 0 1 + C5+ ', &
& '2/5 0 0 -1 + C5- ', &
& '4/5 0 0 1 + C5^2+ ', &
& '4/5 0 0 -1 + C5^2- ', &
& '1 1 0 0 + C2,1'' ', &
& '1 s1/10 c1/10 0 + C2,2'' ', &
& '1 -c1/5 s1/5 0 + C2,3'' ', &
& '1 -c1/5 -s1/5 0 + C2,4'' ', &
& '1 s1/10 -c1/10 0 + C2,5'' ', &
& '1/5 0 0 -1 - S5^2- ', &
& '1/5 0 0 1 - S5^2+ ', &
& '3/5 0 0 -1 - S5- ', &
& '3/5 0 0 1 - S5+ ', &
& '1 0 0 1 - sigh ', &
& '1 0 1 0 - sigv1 ', &
& '1 -c1/10 s1/10 0 - sigv2 ', &
& '1 -s1/5 -c1/5 0 - sigv3 ', &
& '1 s1/5 -c1/5 0 - sigv4 ', &
& '1 c1/10 s1/10 0 - sigv5 ' /
data (grppar(k), k = 61, 84) /& ! D6d
& '0 0 0 1 + E ', &
& '1/3 0 0 1 + C6+ ', &
& '1/3 0 0 -1 + C6- ', &
& '2/3 0 0 1 + C3+ ', &
& '2/3 0 0 -1 + C3- ', &
& '1 0 0 1 + C2 ', &
& '1 1 0 0 + C2,1'' ', &
& '1 -c1/3 s1/3 0 + C2,2'' ', &
& '1 -c1/3 -s1/3 0 + C2,3'' ', &
& '1 0 1 0 + C2,4'' ', &
& '1 -s1/3 -c1/3 0 + C2,5'' ', &
& '1 s1/3 -c1/3 0 + C2,6'' ', &
& '1/6 0 0 1 - S12^5- ', &
& '1/6 0 0 -1 - S12^5+ ', &
& '1/2 0 0 1 - S4- ', &
& '1/2 0 0 -1 - S4+ ', &
& '5/6 0 0 1 - S12- ', &
& '5/6 0 0 -1 - S12+ ', &
& '1 c1/4 s1/4 0 - sigd1 ', &
& '1 -c1/12 s1/12 0 - sigd2 ', &
& '1 s1/12 -c1/12 0 - sigd3 ', &
& '1 -s1/4 c1/4 0 - sigd4 ', &
& '1 -s1/12 -c1/12 0 - sigd5 ', &
& '1 c1/12 s1/12 0 - sigd6 ' /
data (grppar(k), k = 85, 112) /& ! D7h
& '0 0 0 1 + E ', &
& '2/7 0 0 1 + C7+ ', &
& '2/7 0 0 -1 + C7- ', &
& '4/7 0 0 1 + C7^2+ ', &
& '4/7 0 0 -1 + C7^2- ', &
& '6/7 0 0 1 + C7^3+ ', &
& '6/7 0 0 -1 + C7^3- ', &
& '1 1 0 0 + C2,1'' ', &
& '1 c2/7 s2/7 0 + C2,2'' ', &
& '1 -c3/7 s3/7 0 + C2,3'' ', &
& '1 -c1/7 s1/7 0 + C2,4'' ', &
& '1 -c1/7 -s1/7 0 + C2,5'' ', &
& '1 -c3/7 -s3/7 0 + C2,6'' ', &
& '1 c2/7 -s2/7 0 + C27'' ', &
& '1 0 0 1 - sigh ', &
& '5/7 0 0 -1 - S7+ ', &
& '5/7 0 0 1 - S7- ', &
& '3/7 0 0 -1 - S7^2+ ', &
& '3/7 0 0 1 - S7^2- ', &
& '1/7 0 0 -1 - S7^3+ ', &
& '1/7 0 0 1 - S7^3- ', &
& '1 0 1 0 - sigv1 ', &
& '1 -s2/7 c2/7 0 - sigv2 ', &
& '1 -s3/7 -c3/7 0 - sigv3 ', &
& '1 -s1/7 -c1/7 0 - sigv4 ', &
& '1 s1/7 -c1/7 0 - sigv5 ', &
& '1 s3/7 -c3/7 0 - sigv6 ', &
& '1 s2/7 c2/7 0 - sigv7 ' /
data (grppar(k), k = 113, 144) /& ! D8d &
& '0 0 0 1 + E ', &
& '1/4 0 0 1 + C8+ ', &
& '1/4 0 0 -1 + C8- ', &
& '1/2 0 0 1 + C4+ ', &
& '1/2 0 0 -1 + C4- ', &
& '3/4 0 0 1 + C8^3+ ', &
& '3/4 0 0 -1 + C8^3- ', &
& '1 0 0 1 + C2 ', &
& '1 1 0 0 + C2,1'' ', &
& '1 0 1 0 + C2,2'' ', &
& '1 c1/4 s1/4 0 + C2,3'' ', &
& '1 -s1/4 c1/4 0 + C2,4'' ', &
& '1 c1/8 s1/8 0 + C2,5'' ', &
& '1 -s1/8 c1/8 0 + C2,6'' ', &
& '1 s1/8 c1/8 0 + C2,7'' ', &
& '1 -c1/8 s1/8 0 + C2,8'' ', &
& '1/8 0 0 1 - S16^7- ', &
& '1/8 0 0 -1 - S16^7+ ', &
& '3/8 0 0 1 - S16^5- ', &
& '3/8 0 0 -1 - S16^5+ ', &
& '5/8 0 0 1 - S16^3- ', &
& '5/8 0 0 -1 - S16^3+ ', &
& '7/8 0 0 1 - S16- ', &
& '7/8 0 0 -1 - S16+ ', &
& '1 c1/16 s1/16 0 - sigd1 ', &
& '1 -s1/16 c1/16 0 - sigd2 ', &
& '1 s3/16 c3/16 0 - sigd3 ', &
& '1 -c3/16 s3/16 0 - sigd4 ', &
& '1 c3/16 s3/16 0 - sigd5 ', &
& '1 -s3/16 c3/16 0 - sigd6 ', &
& '1 s1/16 c1/16 0 - sigd7 ', &
& '1 -c1/16 s1/16 0 - sigd8 ' /
data (grppar(k), k = 145, 180) /& ! D9h &
& '0 0 0 1 + E ', &
& '2/9 0 0 1 + C9+ ', &
& '2/9 0 0 -1 + C9- ', &
& '4/9 0 0 1 + C9^2+ ', &
& '4/9 0 0 -1 + C9^2- ', &
& '2/3 0 0 1 + C3+ ', &
& '2/3 0 0 -1 + C3- ', &
& '8/9 0 0 1 + C9^4+ ', &
& '8/9 0 0 -1 + C9^4- ', &
& '1 1 0 0 + C2,1'' ', &
& '1 -c1/3 s1/3 0 + C2,2'' ', &
& '1 -c1/3 -s1/3 0 + C2,3'' ', &
& '1 c2/9 s2/9 0 + C2,4'' ', &
& '1 -c1/9 s1/9 0 + C2,5'' ', &
& '1 c4/9 -s4/9 0 + C2,6'' ', &
& '1 c4/9 s4/9 0 + C2,7'' ', &
& '1 -c1/9 -s1/9 0 + C2,8'' ', &
& '1 c2/9 -s2/9 0 + C2,9'' ', &
& '1 0 0 1 - sigh ', &
& '7/9 0 0 -1 - S9+ ', &
& '7/9 0 0 1 - S9- ', &
& '5/9 0 0 -1 - S9^2+ ', &
& '5/9 0 0 1 - S9^2- ', &
& '1/3 0 0 -1 - S3+ ', &
& '1/3 0 0 1 - S3- ', &
& '1/9 0 0 -1 - S9^4+ ', &
& '1/9 0 0 1 - S9^4- ', &
& '1 0 1 0 - sigv1 ', &
& '1 -s1/3 -c1/3 0 - sigv2 ', &
& '1 s1/3 -c1/3 0 - sigv3 ', &
& '1 -s2/9 c2/9 0 - sigv4 ', &
& '1 -s1/9 -c1/9 0 - sigv5 ', &
& '1 s4/9 c4/9 0 - sigv6 ', &
& '1 -s4/9 c4/9 0 - sigv7 ', &
& '1 s1/9 -c1/9 0 - sigv8 ', &
& '1 s2/9 c2/9 0 - sigv9 ' /
data (grppar(k), k = 181, 216) /& ! D10d
& '0 0 0 1 + E ', &
& '1/5 0 0 1 + C10+ ', &
& '1/5 0 0 -1 + C10- ', &
& '2/5 0 0 1 + C5+ ', &
& '2/5 0 0 -1 + C5- ', &
& '3/5 0 0 1 + C10^3+ ', &
& '3/5 0 0 -1 + C10^3- ', &
& '4/5 0 0 1 + C5^2+ ', &
& '4/5 0 0 -1 + C5^2- ', &
& '1 0 0 1 + C2 ', &
& '1 1 0 0 + C2,1'' ', &
& '1 s1/10 c1/10 0 + C2,2'' ', &
& '1 -c1/5 s1/5 0 + C2,3'' ', &
& '1 -c1/5 -s1/5 0 + C2,4'' ', &
& '1 s1/10 -c1/10 0 + C2,5'' ', &
& '1 0 1 0 + C2,6'' ', &
& '1 -c1/10 s1/10 0 + C2,7'' ', &
& '1 -s1/5 -c1/5 0 + C2,8'' ', &
& '1 s1/5 -c1/5 0 + C2,9'' ', &
& '1 c1/10 s1/10 0 + C2,10'' ', &
& '1/10 0 0 1 - S20^9- ', &
& '1/10 0 0 -1 - S20^9+ ', &
& '3/10 0 0 1 - S20^7- ', &
& '3/10 0 0 -1 - S20^7+ ', &
& '1/2 0 0 1 - S4- ', &
& '1/2 0 0 -1 - S4+ ', &
& '7/10 0 0 1 - S20^3- ', &
& '7/10 0 0 -1 - S20^3+ ', &
& '9/10 0 0 1 - S20- ', &
& '9/10 0 0 -1 - S20+ ', &
& '1 c1/4 s1/4 0 - sigd1 ', &
& '1 -s3/20 c3/20 0 - sigd2 ', &
& '1 -c1/20 -s1/20 0 - sigd3 ', &
& '1 -s1/20 -c1/20 0 - sigd4 ', &
& '1 c3/20 -s3/20 0 - sigd5 ', &
& '1 -s1/4 c1/4 0 - sigd6 ' /
data (grppar(k), k= 217,220) / &
& '1 -c3/20 -s3/20 0 - sigd7 ', &
& '1 s1/20 -c1/20 0 - sigd8 ', &
& '1 c1/20 -s1/20 0 - sigd9 ', &
& '1 s3/20 c3/20 0 - sigd10 ' /
data (grppar(k), k = 221, 244) /& ! O
& '0 0 0 1 + E ', &
& '1 1 0 0 + C2x ', &
& '1 0 1 0 + C2y ', &
& '1 0 0 1 + C2z ', &
& '2/3 ct/2 ct/2 ct/2 + C3,1+ ', &
& '2/3 -ct/2 -ct/2 ct/2 + C3,2+ ', &
& '2/3 ct/2 -ct/2 -ct/2 + C3,3+ ', &
& '2/3 -ct/2 ct/2 -ct/2 + C3,4+ ', &
& '2/3 -ct/2 -ct/2 -ct/2 + C3,1- ', &
& '2/3 ct/2 ct/2 -ct/2 + C3,2- ', &
& '2/3 -ct/2 ct/2 ct/2 + C3,3- ', &
& '2/3 ct/2 -ct/2 ct/2 + C3,4- ', &
& '1/2 1 0 0 + C4x+ ', &
& '1/2 0 1 0 + C4y+ ', &
& '1/2 0 0 1 + C4z+ ', &
& '1/2 -1 0 0 + C4x- ', &
& '1/2 0 -1 0 + C4y- ', &
& '1/2 0 0 -1 + C4z- ', &
& '1 c1/4 s1/4 0 + C2a'' ', &
& '1 -s1/4 c1/4 0 + C2b'' ', &
& '1 s1/4 0 c1/4 + C2c'' ', &
& '1 0 -c1/4 -s1/4 + C2d'' ', &
& '1 c1/4 0 -s1/4 + C2e'' ', &
& '1 0 -s1/4 c1/4 + C2f'' ' /
data (grppar(k), k = 245, 274) /& ! I
& '0 0 0 1 + E ', &
& '2/5 csig 0 ssig + C5,1+ ', &
& '2/5 -csig 0 ssig + C5,2+ ', &
& '2/5 0 ssig csig + C5,3+ ', &
& '2/5 0 -ssig csig + C5,4+ ', &
& '2/5 ssig csig 0 + C5,5+ ', &
& '2/5 ssig -csig 0 + C5,6+ ', &
& '2/5 -csig 0 -ssig + C5,1- ', &
& '2/5 csig 0 -ssig + C5,2- ', &
& '2/5 0 -ssig -csig + C5,3- ', &
& '2/5 0 ssig -csig + C5,4- ', &
& '2/5 -ssig -csig 0 + C5,5- ', &
& '2/5 -ssig csig 0 + C5,6- ', &
& '4/5 csig 0 ssig + C5,1^2+ ', &
& '4/5 -csig 0 ssig + C5,2^2+ ', &
& '4/5 0 ssig csig + C5,3^2+ ', &
& '4/5 0 -ssig csig + C5,4^2+ ', &
& '4/5 ssig csig 0 + C5,5^2+ ', &
& '4/5 ssig -csig 0 + C5,6^2+ ', &
& '4/5 -csig 0 -ssig + C5,1^2- ', &
& '4/5 csig 0 -ssig + C5,2^2- ', &
& '4/5 0 -ssig -csig + C5,3^2- ', &
& '4/5 0 ssig -csig + C5,4^2- ', &
& '4/5 -ssig -csig 0 + C5,5^2- ', &
& '4/5 -ssig csig 0 + C5,6^2- ', &
& '2/3 ct/2 ct/2 ct/2 + C3,1+ ', &
& '2/3 -ct/2 -ct/2 ct/2 + C3,2+ ', &
& '2/3 ct/2 -ct/2 -ct/2 + C3,3+ ', &
& '2/3 -ct/2 ct/2 -ct/2 + C3,4+ ', &
& '2/3 -srho 0 crho + C3,5+ ' /
data (grppar(k) , k=275,304) / &
& '2/3 0 crho -srho + C3,6+ ', &
& '2/3 crho -srho 0 + C3,7+ ', &
& '2/3 srho 0 crho + C3,8+ ', &
& '2/3 0 crho srho + C3,9+ ', &
& '2/3 crho srho 0 + C3,10+ ', &
& '2/3 -ct/2 -ct/2 -ct/2 + C3,1- ', &
& '2/3 ct/2 ct/2 -ct/2 + C3,2- ', &
& '2/3 -ct/2 ct/2 ct/2 + C3,3- ', &
& '2/3 ct/2 -ct/2 ct/2 + C3,4- ', &
& '2/3 srho 0 -crho + C3,5- ', &
& '2/3 0 -crho srho + C3,6- ', &
& '2/3 -crho srho 0 + C3,7- ', &
& '2/3 -srho 0 -crho + C3,8- ', &
& '2/3 0 -crho -srho + C3,9- ', &
& '2/3 -crho -srho 0 + C3,10- ', &
& '1 1 0 0 + C2a ', &
& '1 0 1 0 + C2b ', &
& '1 0 0 1 + C2c ', &
& '1 c1/5 s1/10 1/2 + C2d ', &
& '1 1/2 -c1/5 -s1/10 + C2e ', &
& '1 s1/10 1/2 -c1/5 + C2f ', &
& '1 s1/10 1/2 c1/5 + C2g ', &
& '1 1/2 -c1/5 s1/10 + C2h ', &
& '1 c1/5 s1/10 -1/2 + C2i ', &
& '1 -s1/10 1/2 c1/5 + C2j ', &
& '1 -c1/5 s1/10 -1/2 + C2k ', &
& '1 -1/2 -c1/5 s1/10 + C2l ', &
& '1 -c1/5 s1/10 1/2 + C2m ', &
& '1 -s1/10 1/2 -c1/5 + C2n ', &
& '1 -1/2 -c1/5 -s1/10 + C2o ' /
!
! For each group, ncscop denotes the classes making up a CSCO and
! fcscop provides the coefficient in the linear combination of the
! class operators. A negative number indicates a non-ambivalent
! class whence the real and the imaginary part will be used as
! separate class operators. The list of the classes will be
! generated in subroutine gencls.
!
data ((ncscop(i,k), i = 1,3), k = 1, 18) &
& / 1, 0, 0, 2, 0, 0, -2, 0, 0, -2, 0, 0, -2, 0, 0, -2, 0, 0,&
& -2, 0, 0, -2, 0, 0, -2, 0, 0, -2, 0, 0, -2, 0, 0, -2, 0, 0, &
& -4, 0, 0, -6, 0, 0, -8, 0, 0,-10, 0, 0,-12, 0, 0,-14, 0, 0 /
data ((fcscop(i,k), i = 1,3), k = 1, 18) &
& / 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,&
& 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, &
& 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 /
data ((ncscop(i,k), i = 1,3), k = 19, 36) &
& /-16, 0, 0,-18, 0, 0,-20, 0, 0, 2, 3, 0, 3, 0, 0, 2, 4, 0, &
& 2, 4, 0, 2, 5, 0, 2, 5, 0, 2, 6, 0, 2, 6, 0, 2, 7, 0, &
& 2, 3, 5, 3, 4, 0, 2, 4, 6, 2, 4, 7, 2, 5, 7, 2, 5, 6 /
data ((fcscop(i,k), i = 1,3), k = 19, 36) &
& / 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 1, 0, 0, 2, 1, 0,&
& 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 2, 0, 2, 1, 0, 2, 1, 0, &
& 6, 2, 1, 1, 1, 0, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1 /
data ((ncscop(i,k), i = 1,3), k = 37, 54) &
& / 2, 6, 8, 2, 6, 7, 2, 7, 9, 2, 4, 6, 4, 5, 0, 4, 6, 0, &
& 6, 7, 0, 7, 8, 0, 8, 9, 0, 9,10, 0, 10,11, 0, 11,12, 0, &
& 12,13, 0, 2, 3, 0, 3, 0, 0, 2, 4, 0, 2, 4, 0, 2, 5, 0 /
data ((fcscop(i,k), i = 1,3), k = 37, 54) &
& / 2, 2, 1, 2, 1, 1, 4, 2, 1, 2, 1, 1, 2, 1, 0, 2, 1, 0,&
& 3, 1, 0, 2, 1, 0, 4, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, &
& 2, 1, 0, 2, 1, 0, 1, 0, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0 /
data ((ncscop(i,k), i = 1,3), k = 55, 72) &
& / 2, 5, 0, 2, 6, 0, 2, 6, 0, 2, 7, 0, 2, 4, 0, 2, 3, 0, &
& -2, 4, 0, -2, 5, 0, -2,10, 0, -2, 7, 0, -2, 8, 0, -2, 9, 0, &
& -2,10, 0, -2,11, 0, 5, 0, 0, -3, 0, 0, 5, 6, 0, -3, 5, 0 /
data ((fcscop(i,k), i = 1,3), k = 55, 72) &
& / 2, 1, 0, 2, 2, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0,&
& 1, 5, 0, 2, 5, 0, 2, 5, 0, 2, 5, 0, 2, 5, 0, 2, 5, 0, &
& 2, 5, 0, 2, 5, 0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 1, 5, 0 /
data ((ncscop(i,k), i = 1,3), k = 73, 75) &
& / 5, 0, 0, 2, 5, 0, 2, 5, 6 /
data ((fcscop(i,k), i = 1,3), k = 73, 75) &
& / 1, 0, 0, 2, 1, 0, 2, 1, 1 /
!
! FIXME: for some reason the subroutine suplab() is called
! with uninitialized names of elements from intent(out)
! array namele(:) as input, this seems to lead to some
! artifacts. Initialize them to empty strings as a workaround:
!
do i = 1, size(namele)
namele(i) = " "
enddo
appinv = .false.
!
! selects proper subgroup or supplement with inversion etc.
! then decodes and forms quaternionic parameters elem as well as
! label of element from grppar. Where appropriate, supnam is
! called for labels of derived elements (i.e. those generated by
! applying the inversion)
!
if ( igroup.ge.1 .and. igroup.le.10 ) then ! Cn
naxis = iorder ! order of main rotation axis
koffst = 2*naxis*(naxis-1) ! offset in list grppar
do k = 1, iorder
call decdel (grppar(koffst+k),elem(1,k))
namele(k) = grppar(koffst+k) (29:)
end do
else if ( igroup.eq.11 ) then ! Ci
call decdel (grppar(1),elem(1,1))
namele(1) = grppar(1) (29:)
call decdel (grppar(2),elem(1,2))
namele(2) = grppar(2) (29:)
else if ( igroup.eq.12 ) then ! Cs
call decdel (grppar(3),elem(1,1))
namele(1) = grppar(3) (29:)
call decdel (grppar(4),elem(1,2))
namele(2) = grppar(4) (29:)
else if ( igroup.ge.13 .and. igroup.le.21 ) then ! S2n
naxis = iorder/2
koffst = 2*naxis*(naxis-1)
do k = 1, naxis
call decdel (grppar(koffst+k),elem(1,k))
namele(k) = grppar(koffst+k) (29:)
end do
if ( mod(naxis,2) .eq. 0 ) then
koffst = koffst + iorder
do k = 1, naxis
call decdel (grppar(koffst+k),elem(1,naxis+k))
namele(naxis+k) = grppar(koffst+k) (29:)
end do
else
do k = 1, naxis
do l = 1, 4
elem(l,naxis+k) = elem(l,k)
end do
elem(5,naxis+k) = - elem(5,k)
appinv = .true.
call suplab (namele(k),namele(naxis+k),group,naxis, &
& appinv)
end do
end if
else if ( igroup.ge.22 .and. igroup.le.30 ) then ! Dn
naxis = iorder/2
koffst = 2*naxis*(naxis-1)
do k = 1, iorder
call decdel (grppar(koffst+k),elem(1,k))
namele(k) = grppar(koffst+k) (29:)
end do
if ( naxis .eq. 2 ) then
call suplab (namele(2),namele(2),group,naxis,appinv)
call suplab (namele(3),namele(3),group,naxis,appinv)
call suplab (namele(4),namele(4),group,naxis,appinv)
else if ( mod(naxis,2) .eq. 0 .and. naxis .gt. 2 ) then
do k = 3*naxis/2+1, iorder
call suplab (namele(k),namele(k),group,naxis,appinv)
end do
end if
else if ( igroup.ge.31 .and. igroup.le.39 ) then ! Dnh
naxis = iorder/4
koffst = 2*naxis*(naxis-1)
if ( mod(naxis,2) .eq. 0 ) then
do k = 1, iorder/2
call decdel (grppar(koffst+k),elem(1,k))
namele(k) = grppar(koffst+k) (29:)
end do
appinv = .false.
if ( naxis .eq. 2 ) then
call suplab (namele(2),namele(2),group,naxis,appinv)
call suplab (namele(3),namele(3),group,naxis,appinv)
call suplab (namele(4),namele(4),group,naxis,appinv)
else
do k = 3*naxis/2+1, iorder
call suplab (namele(k),namele(k),group,naxis,appinv)
end do
end if
appinv = .true.
do k = 1, iorder/2
do l = 1, 4
elem(l,iorder/2+k) = elem(l,k)
end do
elem(5,iorder/2+k) = - elem(5,k)
call suplab (namele(k),namele(iorder/2+k),group, &
& naxis,appinv)
end do
else
do k = 1, iorder
call decdel (grppar(koffst+k),elem(1,k))
namele(k) = grppar(koffst+k) (29:)
end do
end if
else if ( igroup.ge.41 .and. igroup.le.49 ) then ! Dnd
naxis = iorder/4
koffst = 2*naxis*(naxis-1)
if ( mod(naxis,2).eq.0 ) then
do k = 1, iorder
call decdel (grppar(koffst+k),elem(1,k))
namele(k) = grppar(koffst+k) (29:)
end do
else
do k = 1, iorder/2
call decdel (grppar(koffst+k),elem(1,k))
namele(k) = grppar(koffst+k) (29:)
do l = 1, 4
elem(l,iorder/2+k) = elem(l,k)
end do
elem(5,iorder/2+k) = - elem(5,k)
appinv = .false.
call suplab (namele(k),namele(iorder/2+k),group,naxis, &
& appinv)
end do
end if
else if ( igroup.ge.50 .and. igroup.le.58 ) then ! Cnv
naxis = iorder/2
koffst = 2*naxis*(naxis-1)
do k = 1, naxis
call decdel (grppar(koffst+k),elem(1,k))
namele(k) = grppar(koffst+k) (29:)
end do
if ( mod(naxis,2).eq.0 ) then
koffst = koffst + naxis
appinv = .true.
do k = 1, naxis
call decdel (grppar(koffst+k),elem(1,naxis+k))
elem(5,naxis+k) = - elem(5,k)
namele(naxis+k) = grppar(koffst+k) (29:)
call suplab (namele(naxis+k),namele(naxis+k),group, &
& naxis,appinv)
end do
else
koffst = koffst + 3*naxis
do k = 1, naxis
call decdel (grppar(koffst+k),elem(1,naxis+k))
namele(naxis+k) = grppar(koffst+k) (29:)
end do
end if
else if ( igroup.ge.60 .and. igroup.le.68 ) then ! Cnh
naxis = iorder/2
koffst = 2*naxis*(naxis-1)
do k = 1, naxis
call decdel (grppar(koffst+k),elem(1,k))
namele(k) = grppar(koffst+k) (29:)
end do
if ( mod(naxis,2).eq.0 ) then
koffst = koffst + naxis
appinv = .true.
do k = 1, naxis
do l = 1, 4
elem(l,naxis+k) = elem(l,k)
end do
elem(5,naxis+k) = - elem(5,k)
call suplab (namele(k),namele(naxis+k),group,naxis, &
& appinv)
end do
else
koffst = koffst + 2*naxis
do k = 1, naxis
call decdel (grppar(koffst+k),elem(1,naxis+k))
namele(naxis+k) = grppar(koffst+k) (29:)
end do
end if
else if ( igroup.ge.69 .and. igroup.le.73 ) then ! octahedral
koffst = 220
if ( igroup.eq.69 .or. igroup.eq.70 ) then
naxis = iorder ! O or T
else
naxis = iorder/2 ! Oh, Th, Td
end if
do k = 1, naxis
call decdel (grppar(koffst+k),elem(1,k))
namele(k) = grppar(koffst+k) (29:)
end do
if ( igroup.eq.71 .or. igroup.eq.72 ) then ! Oh or Th
appinv = .true.
do k = 1, naxis
do l = 1, 4
elem(l,naxis+k) = elem(l,k)
end do
elem(5,naxis+k) = - elem(5,k)
call suplab (namele(k),namele(naxis+k),group,naxis,&
& appinv)
end do
else if ( igroup.eq. 73 ) then ! Td
koffst = koffst + naxis
appinv = .true.
do k = 1, naxis
call decdel (grppar(koffst+k),elem(1,naxis+k))
elem(5,naxis+k) = - elem(5,k)
namele(naxis+k) = grppar(koffst+k) (29:)
call suplab (namele(naxis+k),namele(naxis+k),group, &
& naxis,appinv)
end do
end if
else if ( igroup.eq.74 .or. igroup.eq.75 ) then ! icosahedral
koffst = 244
if ( igroup.eq.74 ) then
naxis = iorder ! I
else
naxis = iorder/2 ! Ih
end if
do k = 1, naxis
call decdel (grppar(koffst+k),elem(1,k))
namele(k) = grppar(koffst+k) (29:)
end do
if ( igroup.eq.75 ) then ! Ih
appinv = .true.
do k = 1, naxis
do l = 1, 4
elem(l,naxis+k) = elem(l,k)
end do
elem(5,naxis+k) = - elem(5,k)
call suplab (namele(k),namele(naxis+k),group,naxis,&
& appinv)
end do
end if
end if
!
do l = 1, 3
ncsco(l) = ncscop (l,igroup)
fcsco(l) = fcscop (l,igroup)
end do
contains
subroutine addinv (namold, namnew)
implicit none
!
! author: N. Roesch, Theoretische Chemie, TU Muenchen
! version: 30.04.95
!
! ... subroutine parameters
character(len=8), intent(in) :: namold
character(len=8), intent(out) :: namnew
!
! renames a rotation as required when the inversion is applied
! based on the representation Cn+, Cn-, Cn^m+, Cn^m- where
! the rotation angle is +-2*pi*m/n. The first two forms are
! used in case of m = 1. E and C2 are treated explicitly
! in subroutine supnam and thus are excluded here. The
! subroutine relies on the ASCII collating sequence.
!
! namold old name
! namnew new name
!
! ... integer
integer possig, poscar, m, n, posnup, next
! ... character
character(len=8) namcha
!
possig = index(namold,'+') + index(namold,'-')
if ( possig .eq. 0 ) then
if (namold(1:1) .eq. 'E' ) then
namcha = 'i'
else if ( namold(1:3) .eq. 'C2 ' ) then
namcha = 'sigh'
end if
else
poscar = index(namold,'^')
if (poscar .eq. 0) then
m = 1
posnup = possig - 1
else
m = ichar(namold(poscar+1:poscar+1)) - 48
posnup = poscar - 1
end if
n = ichar(namold(2:2)) - 48
if ( posnup .eq. 3 ) then
n = n*10 + ichar(namold(3:3)) - 48
end if
!... generate improper rotation and eliminate factors if necessary
m = n - 2*m
n = n*2
if (mod(m,2) .eq. 0) then
m = m/2
n = n/2
end if
if (mod(m,2) .eq. 0) then
m = m/2
n = n/2
end if
namcha = 'S'
if (n .gt. 9) then
namcha(2:2) = char(48+n/10)
namcha(3:3) = char(48+n-(n/10)*10)
next = 4
else
namcha(2:2) = char(48+n)
next = 3
end if
if (m .gt. 1) then
namcha(next:next) = '^'
namcha(next+1:next+1) = char(48+m)
next = next + 2
end if
!... reverse sense of rotation
if (namold(possig:possig) .eq. '+') then
namcha(next:next) = '-'
else
namcha(next:next) = '+'
end if
end if
!
namnew = namcha
!
end subroutine addinv
subroutine decdel (grppar,elem)
implicit none
!
! author: N. Roesch, Theoretische Chemie, TU Muenchen
! version: 30.04.95
!
! ... subroutine parameters
!!$ integer, parameter :: r8_kind = selected_real_kind(15)
character(len=36) grppar
real(r8_kind) :: elem(5)
!
! decodes the group element grppar (given in the data statements
! of subroutine gengrp) and converts angle/axis parameters into
! quaternionic parameters elem:
! cos(phi/2), sin(phi/2)*n1, sin(phi/2)*n2, sin(phi/2)*n3), parity
! The subroutine relies on the ASCII collating sequence.
!
! ... integer
integer k, m, n
! ... real
real(r8_kind) :: angle, phi2, pi
real(r8_kind),parameter ::&
& zero = 0.0_r8_kind,&
& one = 1.0_r8_kind,&
& two = 2.0_r8_kind,&
& three = 3.0_r8_kind,&
& five = 5.0_r8_kind
! ... character
character(len=4) chphi
character(len=5) chang
!
pi = 4.0_r8_kind*atan(1.0_r8_kind)
!
chphi = grppar(1:4)
m = iachar(chphi(1:1)) - 48
if ( chphi(2:2).eq.'/' ) then
if ( chphi(4:4).ne.' ' ) then
n = 10*(iachar(chphi(3:3))-48) + (iachar(chphi(4:4))-48)
else
n = iachar(chphi(3:3)) - 48
endif
else
n = 1
endif
phi2 = ((pi/two) * m) / n
!
do k = 1, 3
chang = grppar(7*k:7*k+4)
if ( chang.eq.'1/2 ' ) then
elem(k+1) = sin(phi2) / two
else if ( chang.eq.'ct/2 ' ) then
elem(k+1) = sin(phi2) / sqrt(three)
else if ( chang.eq.'1 ' ) then
elem(k+1) = sin(phi2)
else if ( chang.eq.'0 ' ) then
elem(k+1) = zero
else
if ( chang(2:4).eq.'rho' ) then
angle = atan((sqrt(five) + three) / two)
else if ( chang(2:4).eq.'sig' ) then
angle = atan((sqrt(five) + one ) / two)
else
m = iachar(chang(2:2)) - 48
if ( chang(5:5).ne.' ' ) then
n = 10*(iachar(chang(4:4))-48) &
& + (iachar(chang(5:5))-48)
else
n = iachar(chang(4:4)) - 48
endif
angle = (pi * m) / n
end if
if ( chang(1:1).eq.'c' ) then
elem(k+1) = sin(phi2) * cos(angle)
else
elem(k+1) = sin(phi2) * sin(angle)
end if
end if
if ( grppar(7*k-1:7*k-1).eq.'-' ) then
elem(k+1) = -elem(k+1)
end if
end do
!
elem(1) = cos(phi2)
if (grppar(27:27).eq.'-' ) then
elem(5) = -one
else
elem(5) = one
end if
!
end subroutine decdel
subroutine suplab (namold,namnew,group,naxis,appinv)
implicit none
!
! part of the module efm_mo
! author: N. Roesch, Theoretische Chemie, TU Muenchen
! version: 01.05.95
!
! ... subroutine parameters
character(len=8), intent(in) :: namold
character(len=8), intent(out) :: namnew
character(len=4), intent(in) :: group
integer , intent(in) :: naxis
logical , intent(in) :: appinv
!
! supplies additinoal names for group elements not explicitly
! given in the data statements of subroutine gengrp,
! e.g. for all improper rotations. In most cases, the inversion
! is applied automically by subroutine addinv, but E and C2
! are handled explictly. In all cases, the names have been
! chosen to closely follow the tables of Altmann and Herzig.
! The subroutine relies on the ASCII collating sequence.
!
! namold old name
! namnew new name
! group name of the point group
! naxis order of the main axis
! appinv apply inversion (evaluated only for certain groups !)
!
! ... subroutines called
! addinv
! ... integer
integer possig, poscar, n, poskup
! ... character
character(len=8) namcha
character(len=3) kvalue
!
if (group(1:1) .eq. 'S') then ! S2n
!... groups S2n, n even
!... apply inversion to proper rotations
if (namold(1:1) .eq. 'E') then
namcha = 'i '
else
call addinv (namold,namcha)
end if
else if (group(1:2) .eq. 'D2') then ! D2, D2h
!... groups D2, D2h
!... apply inversion to proper rotations, use special names
if (namold(1:3) .eq. 'C2 ') then
namcha = 'C2z'
else if (namold(1:5) .eq. 'C2,1''') then
namcha = 'C2x'
else if (namold(1:5) .eq. 'C2,2''') then
namcha = 'C2y'
else if (namold(1:1) .eq. 'E') then
namcha = 'i'
else if (namold(1:3) .eq. 'C2z') then
namcha = 'sigz'
else if (namold(1:3) .eq. 'C2x') then
namcha = 'sigx'
else if (namold(1:3) .eq. 'C2y') then
namcha = 'sigy'
end if
else if ( group(1:1).eq.'D' .and. naxis.gt.2 .and. &
& mod(naxis,2).eq.0 .and. .not.appinv ) then ! Dn, n>2
!... groups Dn, Dnh and Dnd, n even and n > 2
!... generates the labels for the second class C2,k" of C2 operations
!... besides C2,k'
poscar = index(namold,',')
possig = index(namold,'''')
n = ichar(namold(poscar+1:poscar+1)) - 48
if ( poscar+1 .lt. possig-1 ) then
n = n*10 + ichar(namold(poscar+2:poscar+2)) - 48
end if
n = n - naxis/2
namcha = namold(:poscar)//char(48+n)//"''"
else if ( group(1:1).eq.'D' .and. naxis.gt.2 .and. &
& index(group,'H') .gt. 0 ) then ! Dnh, n>2
!... groups Dnh, n even and n > 2
!... apply inversion to proper rotations, generate labels for the
!... two sets of vertical mirror planes, sigv and sigd
poscar = index(namold,',')
if (poscar .eq. 0 ) then
call addinv (namold,namcha)
else
possig = index(namold,'''')
namcha = 'sig '//namold(poscar+1:poscar+1)
if ( mod(naxis,4) .eq. 0 ) then
if ( possig .gt. 0 ) then
namcha(4:4) = 'V'
else
namcha(4:4) = 'D'
end if
else
if ( possig .gt. 0 ) then
namcha(4:4) = 'D'
else
namcha(4:4) = 'V'
end if
end if
end if
else if ( group(1:1).eq.'D' .and. mod(naxis,2).ne.0 &
& .and. index(group(2:),'D') .gt. 0 ) then ! Dnd, n odd
!... groups Dnd, n odd and n > 2
!... apply inversion to proper rotations, generate labels for the
!... two class of vertical mirror planes, sigd.
poscar = index(namold,',')
if (poscar .eq. 0 ) then
call addinv (namold,namcha)
else
possig = index(namold,'''')
namcha = 'sigd'//namold(poscar+1:poscar+1)
end if
else if ( group(1:1).eq.'C' .and. mod(naxis,2).eq.0 &
& .and. index(group,'V') .gt. 0 ) then ! Cnv, n even
!... groups Cnv, n even
!... generate labels for the two sets of vertical mirror planes,
!... sigvk' and sigvk", C2v is handled explicitly.
if ( naxis .eq. 2 ) then
if ( namold(1:5) .eq. 'C2,1''') then
namcha = 'sigx'