-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevolve_fitness_clusters.py
232 lines (205 loc) · 10.8 KB
/
evolve_fitness_clusters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#!/global/cfs/cdirs/m3962/conda/pyrosetta
#!/global/cfs/cdirs/m3962/conda/SE3/bin/python
import os, sys
import pyrosetta
import numpy as np
import glob
import shutil
import argparse
import string
import random
from sklearn.cluster import KMeans
####################################################################################################################
#generation_number = sys.argv[1]
#selection_pressure = sys.argv[1]
parser = argparse.ArgumentParser(description='This script sets up jobs for in silico evolution of hallucinated designs. Selection for new generation based on ptm and plddt, takes only the fittest designs that are 1sigma above the rest of the population.')
parser.add_argument('--generation',
default=None,
required=True,
help='The evolution step number for the next generation')
parser.add_argument('--selection_pressure',
type=float,
required=False,
help='Selection pressure, only the fittest survive... (in number of sigmas above the population mean) (default: %(default)s).' )
parser.add_argument('--number_of_families',
type=float,
required=False,
help='How many of the fittest families will survive...? ')
args = parser.parse_args(args=None if sys.argv[1:] else ['--help'])
generation_number = args.generation
selection_pressure = args.selection_pressure
number_of_families = args.number_of_families
####################################################################################################################
#Compute mean + sigma of plddt, ptm and fitness over design population
def find_the_fittest(pdbs, sel_pressure):
dict_of_scores ={'plddt':[],'ptm':[], 'fitness':[]}
for pdb in pdbs:
with open(pdb,'r') as pdb_to_evaluate:
lines = pdb_to_evaluate.readlines()
for ln in lines:
if ln.startswith("plddt "):
dict_of_scores['plddt'].append(float(ln[5:11]))
if ln.startswith("ptm "):
dict_of_scores['ptm'].append(float(ln[5:9]))
if ln.startswith("loss "):
dict_of_scores['fitness'].append(1 - float(ln[5:9]))
avg_plus_std_Dict = {}
for k,v in dict_of_scores.items():
avg_plus_std_Dict[k] = np.mean(v) + sel_pressure*np.std(v)
print(" All designs fitter than "+ str(avg_plus_std_Dict) + " will survive...")
return avg_plus_std_Dict
#Clusters design population by fitness level, and select fitest individuals per clusters
def find_the_fittest_clusters(pdbs, n_clusters):
data = []
for pdb in pdbs:
with open(pdb,'r') as pdb_to_evaluate:
lines = pdb_to_evaluate.readlines()
for ln in lines:
if ln.startswith("loss "):
data.append(round(1 - float(ln[5:11]),3))
kmeans = KMeans(int(n_clusters))
kmeans.fit(np.array(data).reshape(-1,1))
cluster_partitions = {}
for centr in kmeans.cluster_centers_:
centroid_label = kmeans.predict([centr])
partition = []
for k, v in zip(data, kmeans.labels_):
if v == centroid_label:
partition.append(k)
cluster_partitions[centroid_label[0]] = partition
max_cluster_partitions = {}
for k,v in cluster_partitions.items():
max_cluster_partitions[k] = np.max(v)
print(" Clustered fittest families as " + str(max_cluster_partitions))
return max_cluster_partitions
#ID generator
def id_generator(size=3, chars=string.ascii_uppercase + string.digits):
return ''.join(random.choice(chars) for _ in range(size))
#Loop through pdbs and yield symmetry number and sequence of subunit of designs matching the selection pressure
def evaluate_pdbs(pdb, fitness_dict):
with open(pdb,'r') as pdb_to_evaluate:
lines = pdb_to_evaluate.readlines()
scores = {}
for ln in lines:
if ln.startswith("plddt "):
scores['plddt'] = (float(ln[5:11]))
if ln.startswith("ptm "):
scores['ptm'] = (float(ln[5:9]))
if ln.startswith("loss "):
scores['fitness'] = round(1 - float(ln[5:9]),3)
if scores.get("fitness") is not None:
if scores.get("fitness") >= fitness_dict.get("fitness"):
fit_value = scores.get("fitness")
print('Selected trajectory for evolution: \n' + pdb + ' \nWith fitness = ' + str(fit_value) )
number_of_As = test = pdb.split("+",1)[0].rsplit('_')[-1]
symmetry = number_of_As.count('A')
pose = pyrosetta.pose_from_pdb(pdb)
sequence = pose.sequence()
number_of_residues = pose.total_residue()
number_of_residue_per_subunit = number_of_residues / symmetry
sequence_of_subunit = sequence[:int(number_of_residue_per_subunit)]
print("number of subunits: " + number_of_As)
print("sequence: " + sequence_of_subunit)
print("Symmetry: " + str(symmetry))
return number_of_As, sequence_of_subunit, symmetry, fit_value
else:
print("Passing trajectory " + pdb + " with scores " + str(scores) )
else:
print("Passing trajectory " + pdb )
#Loop through pdbs and yield symmetry number and sequence of subunit of designs matching the selection pressure
def evaluate_clusters(pdb, fitness_dict):
with open(pdb,'r') as pdb_to_evaluate:
lines = pdb_to_evaluate.readlines()
scores = {}
for ln in lines:
if ln.startswith("loss "):
scores['fitness'] = round(1 - float(ln[5:11]),3)
if scores.get("fitness") is not None:
if scores.get("fitness") in fitness_dict.values():
fit_value = scores.get("fitness")
print('Selected trajectory for evolution: \n' + pdb + ' \nWith fitness = ' + str(fit_value) )
number_of_As = test = pdb.split("+",1)[0].rsplit('_')[-1]
symmetry = number_of_As.count('A')
pose = pyrosetta.pose_from_pdb(pdb)
sequence = pose.sequence()
number_of_residues = pose.total_residue()
number_of_residue_per_subunit = number_of_residues / symmetry
sequence_of_subunit = sequence[:int(number_of_residue_per_subunit)]
print("number of subunits: " + number_of_As)
print("sequence: " + sequence_of_subunit)
print("Symmetry: " + str(symmetry))
return number_of_As, sequence_of_subunit, symmetry, fit_value
else:
print("Passing trajectory " + pdb + " with scores " + str(scores) )
else:
print("Passing trajectory " + pdb )
#Write each command into task file into new evolution dir
def write_to_task_file(task_file, number_ofAs, sequence_of_sub, symm, va, gen_numb, ID):
with open(task_file, 'a') as the_file:
the_file.write('srun /global/cfs/cdirs/m3962/users/acourbet/AF2_multistate_hallucination.py --oligo '
+ str(number_ofAs) + '+'
+ ' --loss dual_cyclic --seq ' + str(sequence_of_sub)
+ ' --single_chain --mutation_rate 3-1 --T_init 0.01 --half_life 800 --steps 5000 --out HALC' + str(symm)
+ '_' + ID + '_generation' + str(gen_numb) + '_fitness' + str(va)
+ ' --timestamp --recycles 1 --model 4 --select_positions random ; \n' )
#Write SLURM submission script and move everything into new dir
def make_new_dir(gen_number, task_file):
jobs_file_name = 'HAL_jobs_gen' + str(gen_number) + '.sh'
if not os.path.exists(jobs_file_name):
with open(jobs_file_name, 'a') as the_otherfile:
the_otherfile.write(
'#!/bin/bash \n'
'#SBATCH --job-name=HAL_gen' + str(gen_number) + '\n'
'#SBATCH --constraint=gpu \n'
'#SBATCH --gpus=4 \n'
'#SBATCH --nodes=1 \n'
'#SBATCH --ntasks=4 #4 gpus per node and 1 task per gpu \n'
'#SBATCH --account=m3962_g \n'
'#SBATCH --qos=regular \n'
'#SBATCH --time=2:00:00 \n'
'#SBATCH --gpu-bind=map_gpu:0,1,2,3 \n'
'module load cudatoolkit/21.9_11.4 \n'
'source ~/.bashrc \n'
'source activate SE3 \n'
'conda activate mlfold \n'
'CMD=$(sed -n "${SLURM_ARRAY_TASK_ID}p" ' + str(task_file) + ') \n'
'echo "${CMD}" | bash \n'
'#####sbatch -a 1-$(cat ' + str(task_file) + '|wc -l) *.sh'
)
dirName = 'generation' + str(gen_number)
if not os.path.exists(dirName):
os.mkdir(dirName)
print("Directory " , dirName , "for new evolution step created ")
else:
print("Directory " , dirName , " already exists")
shutil.move(task_file, dirName)
shutil.move(jobs_file_name, dirName)
####################################################################################################################
##################
pyrosetta.init("-mute all")
##################
def main():
pdb_files = glob.glob( "**/*.pdb", recursive = True)
tasks = open('tasks_gen' + str(generation_number), "x")
name_of_task_file = tasks.name
if args.number_of_families is None :
fittest_designs = find_the_fittest(pdb_files, selection_pressure)
for pdb in pdb_files:
if evaluate_pdbs(pdb, fittest_designs) is not None:
As, seq, sym, val = evaluate_pdbs(pdb, fittest_designs)
unique_ID = id_generator()
write_to_task_file(name_of_task_file, As, seq, sym, val, generation_number, unique_ID)
else:
continue
make_new_dir(generation_number, name_of_task_file)
elif args.selection_pressure is None :
fittest_clusters = find_the_fittest_clusters(pdb_files, number_of_families)
for pdb in pdb_files:
if evaluate_clusters(pdb, fittest_clusters) is not None:
As, seq, sym, val = evaluate_clusters(pdb, fittest_clusters)
unique_ID = id_generator()
write_to_task_file(name_of_task_file, As, seq, sym, val, generation_number, unique_ID)
else:
continue
make_new_dir(generation_number, name_of_task_file)
main()