-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfaces-train.py
50 lines (42 loc) · 1.62 KB
/
faces-train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import cv2
import os
import numpy as np
from PIL import Image
import pickle
BASE_DIR = os.path.dirname(os.path.abspath(__file__)) #faces-train.py file's path is BASE_DIR
image_dir = os.path.join(BASE_DIR, "images") # the path for the images directory
face_cascade = cv2.CascadeClassifier('cascades/data/haarcascade_frontalface_alt2.xml')
recognizer = cv2.face.LBPHFaceRecognizer_create()
current_id = 0
label_ids = {}
y_labels = []
x_train = []
for root, dirs, files in os.walk(image_dir):
for file in files:
if file.endswith("png") or file.endswith("jpg"): # if files end with png or jpg
path = os.path.join(root, file) # ^^take the path for both of them
label = os.path.basename(root).replace(" ", "-").lower() #labeling for all path of images' directories
#print(label, path) # print path for all of them
if not label in label_ids:
label_ids[label] = current_id
current_id +=1
id_ = label_ids[label]
#print(label_ids)
#y_labels.append(label) #some number
#x_train.append(path) #verify this image, turn into a NUMPY array, GRAY
pil_image = Image.open(path).convert("L") # gray scale
size = (550, 550)
final_image = pil_image.resize(size, Image.ANTIALIAS)
image_array = np.array(final_image, "uint8")
#print(image_array)
faces = face_cascade.detectMultiScale(image_array, scaleFactor=1.5, minNeighbors=5)
for(x, y, w, h) in faces:
roi = image_array[y:y+h, x:x+w]
x_train.append(roi)
y_labels.append(id_)
#print(y_labels)
#print(x_train)
with open("labels.pickle", 'wb') as f:
pickle.dump(label_ids, f)
recognizer.train(x_train, np.array(y_labels))
recognizer.save("trainner.yml")