Skip to content

Latest commit

 

History

History
270 lines (205 loc) · 7.79 KB

README.md

File metadata and controls

270 lines (205 loc) · 7.79 KB

LUME-model

LUME-model holds data structures used in the LUME modeling toolset. Variables and models built using LUME-model will be compatible with other tools. LUME-model uses pydantic models to enforce typed attributes upon instantiation.

Requirements

  • Python >= 3.9
  • pydantic
  • numpy

Install

LUME-model can be installed with conda using the command:

$ conda install lume-model -c conda-forge

Developer

A development environment may be created using the packaged dev-environment.yml file.

conda env create -f dev-environment.yml

Variables

The lume-model variables are intended to enforce requirements for input and output variables by variable type. For now, only scalar variables (floats) are supported.

Minimal example of scalar input and output variables:

from lume_model.variables import ScalarVariable

input_variable = ScalarVariable(
    name="example_input",
    default_value=0.1,
    value_range=[0.0, 1.0],
)
output_variable = ScalarVariable(name="example_output")

All input variables may be made into constants by passing the is_constant=True keyword argument. These constant variables are always set to their default value and any other value assignments on them will raise an error message.

Models

The lume-model base class lume_model.base.LUMEBaseModel is intended to guide user development while allowing for flexibility and customizability. It is used to enforce LUME tool compatible classes for the execution of trained models.

Requirements for model classes:

  • input_variables: A list defining the input variables for the model. Variable names must be unique. Required for use with lume-epics tools.
  • output_variables: A list defining the output variables for the model. Variable names must be unique. Required for use with lume-epics tools.
  • _evaluate: The evaluate method is called by the serving model. Subclasses must implement this method, accepting and returning a dictionary.

Example model implementation and instantiation:

from lume_model.base import LUMEBaseModel
from lume_model.variables import ScalarInputVariable, ScalarOutputVariable


class ExampleModel(LUMEBaseModel):
    def _evaluate(self, input_dict):
        output_dict = {
            "output1": input_dict[self.input_variables[0].name] ** 2,
            "output2": input_dict[self.input_variables[1].name] ** 2,
        }
        return output_dict


input_variables = [
    ScalarInputVariable(name="input1", default=0.1, value_range=[0.0, 1.0]),
    ScalarInputVariable(name="input2", default=0.2, value_range=[0.0, 1.0]),
]
output_variables = [
    ScalarOutputVariable(name="output1"),
    ScalarOutputVariable(name="output2"),
]

m = ExampleModel(input_variables=input_variables, output_variables=output_variables)

Configuration files

Models and variables may be constructed using a YAML configuration file. The configuration file consists of three sections:

  • model (optional, can alternatively pass a custom model class into the model_from_yaml method)
  • input_variables
  • output_variables

The model section is used for the initialization of model classes. The model_class entry is used to specify the model class to initialize. The model_from_yaml method will attempt to import the specified class. Additional model-specific requirements may be provided. These requirements will be checked before model construction. Model keyword arguments may be passed via the config file or with the function kwarg model_kwargs. All models are assumed to accept input_variables and output_variables as keyword arguments.

For example, m.dump("example_model.yml") writes the following to file

model_class: ExampleModel
input_variables:
  input1:
    variable_class: ScalarVariable
    default_value: 0.1
    is_constant: false
    value_range: [0.0, 1.0]
  input2:
    variable_class: ScalarVariable
    default_value: 0.2
    is_constant: false
    value_range: [0.0, 1.0]
output_variables:
  output1: {variable_class: ScalarVariable}
  output2: {variable_class: ScalarVariable}

and can be loaded by simply passing the file to the model constructor:

from lume_model.base import LUMEBaseModel


class ExampleModel(LUMEBaseModel):
    def _evaluate(self, input_dict):
        output_dict = {
            "output1": input_dict[self.input_variables[0].name] ** 2,
            "output2": input_dict[self.input_variables[1].name] ** 2,
        }
        return output_dict


m = ExampleModel("example_model.yml")

PyTorch Toolkit

A TorchModel can also be loaded from a YAML, specifying TorchModel in the model_class of the configuration file.

model_class: TorchModel
model: model.pt
output_format: tensor
device: cpu
fixed_model: true

In addition to the model_class, we also specify the path to the PyTorch model and the transformers (saved using torch.save()).

The output_format specification indicates which form the outputs of the model's evaluate() function should take, which may vary depending on the application. PyTorchModels working with the LUME-EPICS service will require an OutputVariable type, while [Xopt](https://github. com/xopt-org/Xopt) requires either a dictionary of float values or tensors as output.

The variables and any transformers can also be added to the YAML configuration file:

model_class: TorchModel
input_variables:
  input1:
    variable_class: ScalarVariable
    default_value: 0.1
    value_range: [0.0, 1.0]
    is_constant: false
  input2:
    variable_class: ScalarVariable
    default_value: 0.2
    value_range: [0.0, 1.0]
    is_constant: false
output_variables:
  output:
    variable_class: ScalarVariable
    value_range: [-.inf, .inf]
    is_constant: false
input_validation_config: null
output_validation_config: null
model: model.pt
input_transformers: [input_transformers_0.pt]
output_transformers: [output_transformers_0.pt]
output_format: tensor
device: cpu
fixed_model: true
precision: double

The TorchModel can then be loaded:

from lume_model.torch_model import TorchModel

# Load the model from a YAML file
torch_model = TorchModel("path/to/model_config.yml")

TorchModule Usage

The TorchModule wrapper around the TorchModel is used to provide a consistent API with PyTorch, making it easier to integrate with other PyTorch-based tools and workflows.

Initialization

To initialize a TorchModule, you need to provide the TorchModel object or a YAML file containing the TorchModule model configuration.

#  Wrap in TorchModule
torch_module = TorchModule(model=torch_model)

# Or load the model configuration from a YAML file
torch_module = TorchModule("path/to/module_config.yml")

Model Configuration

The YAML configuration file should specify the TorchModule class as well as the TorchModel configuration:

model_class: TorchModule
input_order: [input1, input2]
output_order: [output]
model:
  model_class: TorchModel
  input_variables:
    input1:
      variable_class: ScalarVariable
      default_value: 0.1
      value_range: [0.0, 1.0]
      is_constant: false
    input2:
      variable_class: ScalarVariable
      default_value: 0.2
      value_range: [0.0, 1.0]
      is_constant: false
  output_variables:
    output:
      variable_class: ScalarVariable
  model: model.pt
  output_format: tensor
  device: cpu
  fixed_model: true
  precision: double

Using the Model

Once the TorchModule is initialized, you can use it just like a regular PyTorch model. You can pass tensor-type inputs to the model and get tensor-type outputs.

from torch import tensor
from lume_model.torch_module import TorchModule


# Example input tensor
input_data = tensor([[0.1, 0.2]])

# Evaluate the model
output = torch_module(input_data)

# Output will be a tensor
print(output)