-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpr_gibbs.m
192 lines (167 loc) · 6.71 KB
/
gpr_gibbs.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
function [stats] = gpr_gibbs(X, Y, opt)
% Sample a spatial random effects model where the model is specified as
% a linear set of basis functions (currently an P degree polynomial
% expanision) plus a spatial Gaussian random field. The noise term is
% currently an isotropic Gaussian.
%
% Written by A. Marquand
%
% Updates:
% 20/10/15: Initial implementation
% 26/10/15: Revised implementation that: (i) uses a marginalised model for
% the GRF and (ii) correctly models additive variance components.
% Specify functions needed for the matlab compiler
%# function covLIN
%# function covLINard
%# function covSEiso
%# function covSEard
%# function covMaternard
%# function covMaterniso
%# function covSum
%# function covGrid
%# function infGrid
%# function sp_infGrid
%# function sp_covMTL
% seed random numbers
RandStream.setGlobalStream(RandStream('mt19937ar','seed',sum(100*clock)));
% housekeeping parameters
write_interval = round(opt.nGibbsIter/10);
update_interval = 10;%0;
% make sure y is a vector
y = Y(:); y(isnan(y)) = 0;
tic; % start timer
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Basic parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[N,D] = size(X);
% polynomial basis expansion for trend coefficients
Phi = zeros(size(X,1),size(X,2)*opt.DimPoly); colid = 1:size(X,2);
for d = 1:opt.DimPoly
Phi(:,colid) = X.^d; colid = colid + size(X,2);
end
DPhi = size(Phi,2);
% initialise top-level priors
al_prior = opt.PriorParam{1}; % ell
bl_prior = opt.PriorParam{2};
af_prior = opt.PriorParam{3}; % sf2
bf_prior = opt.PriorParam{4};
an_prior = opt.PriorParam{5}; % sn2 -> t2 (reparameterised)
bn_prior = opt.PriorParam{6};
mu_beta_prior = opt.PriorParam{7}; % beta (mean is assumed zero)
Prec_beta_prior = (1./opt.PriorParam{8})*eye(DPhi); % for convenience
% initial posterior values
Theta = opt.X0_Theta;
if any(regexp(func2str(opt.CovFunc{1}),'ard'))
ell = Theta(1:D); parid = D;
else
ell = Theta(1); parid = 1;
end
sf2 = Theta(parid+1);
sn2 = Theta(parid+2);
%t2 = sn2 / sf2;
beta = Theta(parid+3:end); % theta is the first value sampled
% compute initial covariance
if iscell(opt.CovFunc)
K = feval(opt.CovFunc{:}, [log(ell); 0.5*log(sf2)], X)/sf2;
else % old style
K = feval(opt.CovFunc,X,Theta)/sf2;
end
% Cholesky decomposition (not including signal variance component)
L_Ky = chol(K+sn2*eye(N))';
% initialize posteriors
Theta_all = zeros(size(Theta,1),opt.nGibbsIter);
% initialize stats
stats.iter = 1;
stats.opt = opt;
stats.prior_theta = opt.PriorParam;
stats.arate_ell = zeros(1,opt.nGibbsIter);
stats.arate_t2 = zeros(1,opt.nGibbsIter);
% probability distributions
logigam = @(x,a,b) -(a+1).*x -b./x;
logunif = @(x,a,b) -log(x) - (x<a)/eps - (x>b)/eps;
%unifpdf = @(x,a,b) 1./sum(x) .* (x>a & x<b);
%trigamrnd = @(c1,c2,a,b) 1./trgamrnd(c1,c2,a,b);
invgam = @(x,a,b) b^a/gamma(a).*(1./x).^(a+1).*exp(-b./x);
% prior and likelihood specification
%prior_sf2 = @(sf2,a,b) logigam(sf2,a,b);
%prior_sn2 = @(sn2,a,b) logigam(sn2,a,b);
%prior_ell = @(ell,a,b) logunif(ell,a,b);
lik_sf2 = @(sf2,ell,sn2,y,x,cov,L) likelihood_gaussian(y,x,[ell,sf2,sn2],cov);
lik_sn2 = @(sn2,ell,sf2,y,x,cov,L) likelihood_gaussian(y,x,[ell,sf2,sn2],cov);
lik_ell = @(ell,sf2,sn2,y,x,cov,L) likelihood_gaussian(y,x,[ell,sf2,sn2],cov);
% posteriors (only used if sampling from the posterior directly)
%post_sf2 = @(sf2,ell,sn2,y,x,cov,a,b) likelihood_gaussian(y,x,[ell,sf2,sn2],cov) + prior_sf2(sf2,a,b);
%post_sn2 = @(sn2,ell,sf2,y,x,cov,a,b) likelihood_gaussian(y,x,[ell,sf2,sn2],cov) + prior_sn2(sn2,a,b);
%post_ell = @(ell,sf2,sn2,y,x,cov,a,b) likelihood_gaussian(y,x,[ell,sf2,sn2],cov) + prior_ell(ell,a,b);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Begin Gibbs Sampling Block
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for g = 1:opt.nGibbsIter
% display output
if mod(g,update_interval) == 0
disp(['Gibbs iter: ',num2str(g)]);
stats.iter = g;
if opt.PlotProgress, plot(Theta_all'); pause(0.1); end
end
% save output
if mod(g,write_interval) == 0 && opt.WriteInterim && ...
isfield(opt,'OutputFilename') && ...
~isempty(opt.OutputFilename)
fprintf('Writing output ... ');
save([opt.OutputFilename,'stats'],'stats');
save([opt.OutputFilename,'Theta_all'],'Theta_all','-v7.3');
fprintf('done.\n');
end
% slice sample using the likelihood
ell = slice_sample(ell,lik_ell,[al_prior,bl_prior],sf2,sn2,y-Phi*beta,X,opt.CovFunc);
sf2 = slice_sample(sf2,lik_sf2,{@trinvgamrnd,[0,30],{af_prior,bf_prior}},ell,sn2,y-Phi*beta,X,opt.CovFunc);
[sn2,L_Ky] = slice_sample(sn2,lik_sn2,{@trinvgamrnd,[0,30],{an_prior,bn_prior}},ell,sf2,y-Phi*beta,X,opt.CovFunc);
% slice sample the posterior directly
%sf2 = slice_sample(sf2,post_sf2,[0 20], ell,sn2,y-Phi*beta,X,opt.CovFunc,af_prior,bf_prior);
%sn2 = slice_sample(sn2,post_sn2,[0 20], ell,sf2,y-Phi*beta,X,opt.CovFunc,an_prior,bn_prior);
%ell = slice_sample(ell,post_ell,[al_prior,bl_prior],sf2,sn2,y-Phi*beta,X,opt.CovFunc,al_prior,bl_prior);
%K = feval(opt.CovFunc{:}, [log(ell); log(sqrt(sf2))], X);
%L_Ky = chol(K+sn2*eye(N))';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% sample beta
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Prec_beta_post = Phi'*solve_chol(L_Ky',Phi) + Prec_beta_prior;
mu_beta_post = (Prec_beta_post\Phi')*solve_chol(L_Ky',y);
% sample from posterior
L_Sb = chol(inv(Prec_beta_post))'; % FIXME: not efficient
beta = mu_beta_post + L_Sb*randn(DPhi,1);
% update Theta
Theta = [ell; sf2; sn2; beta];
Theta_all(:,g) = Theta;
end
stats.time_taken = toc;
if isfield(opt,'OutputFilename') && ~isempty(opt.OutputFilename)
save([opt.OutputFilename,'Theta_all'],'Theta_all','-v7.3');
save([opt.OutputFilename,'stats'],'stats','-v7.3');
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Private functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function x = trinvgamrnd(l,u,a,b)
% % sample from a truncated inverse gamma distribution
%
% % check the range
% if l < 0; l = 0; end
% if u < 0; u = 1/eps; end
%
% N = 10000;
%
% ok = false;
% for n = 1:N
% x = 1./gamrnd(a,1/b);
% x = x(x > l & x < u);
% if ~isempty(x)
% ok = true;
% break
% end
% end
% if ~ok
% error ('sampling from truncated Gamma failed');
% end
% end