-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_gbd.rkt
115 lines (90 loc) · 3.65 KB
/
main_gbd.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#lang racket
;Author: Andres Cordoba
;Copyright (2022) Andres Cordoba
;This script is distributed under the MIT License.
;email: [email protected]
(require (planet dherman/csv-write:1:2/csv-write))
(require (planet williams/science:4:7/science))
;; position in a 2D matrix
(define (2dmp matrix p1 p2)
(list-ref (list-ref matrix p1) p2))
;; dot product between matrix and vector
(define (dot mat vect)
(for/list ([i (in-range (length mat))])
(foldl + 0 (for/list ([j (in-range (length vect))])
(* (2dmp mat i j)(list-ref vect j))))))
;; matrix A in Ornstein-Ulembech process
(define (a c l u)
(append
(for/list ([i (in-range (length c))])
(append
(for/list ([j (in-range (length c))])
(if (equal? i j) (/ 1 (list-ref l i)) 0))
(list u)))
(list
(append
(for/list ([i (in-range (length c))])
(/ (list-ref c i) u))
(list u)))))
;; matrix B in Ornstein–Uhlenbeck process
(define (b c l u)
(append
(for/list ([i (in-range (length c))])
(append
(for/list ([j (in-range (length c))])
(if (equal? i j) (sqrt(* 2 (/ (expt u 2) (*(list-ref c i)(list-ref l i))))) 0))
(list 0)))
(list
(append
(for/list ([i (in-range (length c))])
(sqrt (* 2 (list-ref c i) (list-ref l i))))
(list (sqrt (* 2(- u (foldl + 0 (map * c l))))))))))
;; Equilibrium initial condition
(define (initcond c l u randsr randsq)
(append
(for/list ([i (in-range (length c))])
(random-gaussian (vector-ref randsq i) 0 (sqrt (/ (expt u 2) (list-ref c i)))))
(list (random-gaussian (vector-ref randsr 0) 0 1.0))))
;; time step function for the Ornstein–Uhlenbeck process with euler algorithm
(define (step rands mata matb vect deltat)
(map +
(map - vect (dot mata (map (lambda (x) (* x deltat)) vect)))
(dot matb
(for/list ([i (in-range (length (list-ref matb 0)))])
(random-gaussian (vector-ref rands (+ i 1)) 0 (sqrt deltat))))))
;; recursive function for the time evolution of the Ornstein–Uhlenbeck process
(define (evolution rands1 vect01 c l u lens sens mata matb
deltat tt n conts samp vectores1)
(cond
[(equal? n tt)]
[else
(cond
[(equal? n (* conts samp))
(vector-set! vectores1 conts (/(*(list-ref vect01 (-(length vect01)1))lens)sens))
(set! conts (+ conts 1))])
(set! mata (a c l u))
(set! vect01 (step rands1 mata matb vect01 deltat))
(evolution rands1 vect01 c l u lens sens mata matb
deltat tt (+ n 1) conts samp vectores1)]))
;; simulate trajectory
(define (runsimu c l u lens sens deltat tst inp it nod)
(define randsr1 (make-random-source-vector 3 (+(*(string->number inp)nod)it)))
(define randsq1 (make-random-source-vector (* 3 (length c)) (+(*(+ (string->number inp) 3)nod)it)))
(define rands1 (vector-append randsq1 randsr1))
(define nit2 (inexact->exact(round (/ tst deltat))))
(define vectr1 (initcond c l u randsr1 randsq1))
(define res4 (make-vector nit2))
(define matb (b c l u))
(define mata (a c l u))
(evolution rands1 vectr1 c l u lens sens mata matb deltat nit2 0 0 1 res4)
(for/list ([i (in-range nit2)]) (list (* i deltat)(vector-ref res4 i))))
;; Save trajectory
(define (savesimu c l u lens sens deltat tst inp)
(define out1 (open-output-file (string-append "Vdata_" "traj_" (number->string(*(string->number inp))) ".csv") #:exists 'replace))
(define rest1 (runsimu c l u lens sens deltat tst inp 1 1))
(write-table rest1 out1)
(close-output-port out1))
(provide
(rename-out (evolution ev_gbd_data)
(runsimu runsimu_gbd_data)
(savesimu savesimu_gbd_data)))