-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtest.py
142 lines (113 loc) · 3.91 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# -*- coding: utf-8 -*- #
"""*********************************************************************************************"""
# FileName [ test.py ]
# Synopsis [ Testing algorithms for a trained Tacotron model ]
# Author [ Ting-Wei Liu (Andi611) ]
# Copyright [ Copyleft(c), Speech Lab, NTU, Taiwan ]
"""*********************************************************************************************"""
###############
# IMPORTATION #
###############
import os
import sys
import nltk
import argparse
import librosa
import librosa.display
import numpy as np
from tqdm import tqdm
#--------------------------------#
import torch
from torch.autograd import Variable
#--------------------------------#
from utils import audio
from utils.text import text_to_sequence, symbols
from utils.plot import test_visualize, plot_alignment
#--------------------------------#
from model.tacotron import Tacotron
from config import config, get_test_args
############
# CONSTANT #
############
USE_CUDA = torch.cuda.is_available()
##################
# TEXT TO SPEECH #
##################
def tts(model, text):
"""Convert text to speech waveform given a Tacotron model.
"""
if USE_CUDA:
model = model.cuda()
# NOTE: dropout in the decoder should be activated for generalization!
# model.decoder.eval()
model.encoder.eval()
model.postnet.eval()
sequence = np.array(text_to_sequence(text))
sequence = Variable(torch.from_numpy(sequence)).unsqueeze(0)
if USE_CUDA:
sequence = sequence.cuda()
# Greedy decoding
mel_outputs, linear_outputs, gate_outputs, alignments = model(sequence)
linear_output = linear_outputs[0].cpu().data.numpy()
spectrogram = audio._denormalize(linear_output)
alignment = alignments[0].cpu().data.numpy()
# Predicted audio signal
waveform = audio.inv_spectrogram(linear_output.T)
return waveform, alignment, spectrogram
####################
# SYNTHESIS SPEECH #
####################
def synthesis_speech(model, text, figures=True, path=None):
waveform, alignment, spectrogram = tts(model, text)
if figures:
test_visualize(alignment, spectrogram, path)
librosa.output.write_wav(path + '.wav', waveform, config.sample_rate)
########
# MAIN #
########
def main():
#---initialize---#
args = get_test_args()
model = Tacotron(n_vocab=len(symbols),
embedding_dim=config.embedding_dim,
mel_dim=config.num_mels,
linear_dim=config.num_freq,
r=config.outputs_per_step,
padding_idx=config.padding_idx,
attention=config.attention,
use_mask=config.use_mask)
#---handle path---#
checkpoint_path = os.path.join(args.ckpt_dir, args.checkpoint_name + args.model_name + '.pth')
os.makedirs(args.result_dir, exist_ok=True)
#---load and set model---#
print('Loading model: ', checkpoint_path)
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint["state_dict"])
model.decoder.max_decoder_steps = config.max_decoder_steps # Set large max_decoder steps to handle long sentence outputs
if args.interactive == True:
output_name = args.result_dir + args.model_name
#---testing loop---#
while True:
try:
text = str(input('< Tacotron > Text to speech: '))
print('Model input: ', text)
synthesis_speech(model, text=text, figures=args.plot, path=output_name)
except KeyboardInterrupt:
print()
print('Terminating!')
break
elif args.interactive == False:
output_name = args.result_dir + args.model_name + '/'
os.makedirs(output_name, exist_ok=True)
#---testing flow---#
with open(args.test_file_path, 'r', encoding='utf-8') as f:
lines = f.readlines()
for idx, line in enumerate(lines):
print("{}: {} - ({} chars)".format(idx+1, line, len(line)))
synthesis_speech(model, text=line, figures=args.plot, path=output_name+str(idx+1))
print("Finished! Check out {} for generated audio samples.".format(output_name))
else:
raise RuntimeError('Invalid mode!!!')
sys.exit(0)
if __name__ == "__main__":
main()