-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathL1.Rmd
236 lines (198 loc) · 4.57 KB
/
L1.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
---
title: "L1 Overview"
author: "Xiaoting Chen"
date: "2023-08-07"
output: pdf_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(dplyr)
library(HistData)
library(lubridate)
library(ggplot2)
library(gridExtra)
library(scales)
```
## Basic calculations
```{r}
# complex number
1i
round(exp(1i*pi)+1)
```
### practice 1.
```{r}
fib <- c(0,1,1,2,3,5,8,13,21,34) # 3rd number = sum(the two numbers before)
# alternatively
fib = vector()
fib[1:2] = c(0,1)
for (i in 3:10) {
fib[i] <- sum(c(fib[i-1],fib[i-2]))
}
length(fib)
sum(fib)
prod(fib)
diff(fib)
a <- 1:100
N <- 100
sum(a) == N*(N+1)/2
a_2 <- a^2
sum(a_2)
```
add up the first 100 integers without using sum() function
```{r}
n <- 100
x <- 1:n
s <- 0
for (i in 1:n) {
s <- s + x[i]
}
```
add only even numbers in 1:100
```{r}
n <- 100
x <- 1:n
s <- 0
for (i in 1:n) {
if (x[i]%%2 == 0) {
s <- s + x[i]
}
}
```
## R basics
### list
```{r}
list_x <- list(A = pi,
B = c(0,1),
c = 1:10,
D = c("one","two"))
list_x[2]
list_x[[2]]
```
### data frame
```{r}
data("Virginis.interp")
# Virginis.interp |> dplyr::as_tibble() |> class()
#virginis <- as_tibble(Virginis.interp)
virginis = Virginis.interp |> as_tibble()
mean(virginis$velocity)
```
### plots
```{r}
data("Snow.dates")
clr <- ifelse(Snow.dates$date < mdy("09081854"), "red", "darkgreen")
plot(deaths ~ date, data = Snow.dates,
type = "h", lwd = 2, col = clr, xlab="")
points(deaths ~ date, data = Snow.dates,
cex = 0.5, pch = 16, col = clr)
```
Intro to ggplot
```{r}
x <- seq(0, 100, by = 5)
y <- x^2
quadratic <- tibble(x = x, y = y)
p1 <- ggplot(data = quadratic,
mapping = aes(x = x, y = y))
p2 <- p1 + geom_point(size = 0.5)
p3 <- p1 + geom_line(linewidth = 0.2,
color = 'red')
p4 <- p1 + geom_point(size = 0.5) +
geom_line(linewidth = 0.2, color = 'red')
grid.arrange(p1, p2, p3, p4, nrow = 2)
```
## simulating coin flips
```{r}
coin <- c("H", "T")
set.seed(0)
sp <- sample(coin, 100, replace = T, prob = c(0.6, 0.4))
mean(sp == "H")
```
check convergence of coin flips
```{r}
coin <- c(0,1)
set.seed(1) # why do we do this?
n <- 1e4
est_prop <- numeric(n) # allocate a vector of size n
for (i in 1:n) {
x <- sample(coin, i, replace = TRUE)
est_prop[i] <- mean(x)
}
coin_dat <- tibble(n = 1:n, est_prop = est_prop)
ggplot(data = coin_dat, mapping = aes(x = n, y = est_prop)) +
geom_line(size=0.1)
```
Law of large numbers
```{r}
ggplot(data = coin_dat, mapping = aes(x = n, y = est_prop)) +
geom_line(size = 0.1) +
geom_hline(yintercept = 0.5, size = 0.2, color = 'red') +
scale_x_continuous(trans = 'log10', label = comma) +
xlab("Number of flips on Log10 scale") +
ylab("Estimated proportion of Heads") +
ggtitle("Error decreases with the size of the sample")
```
## Reproduce experiments / simulations
```{r}
estimate_proportion <- function(n) {
coin <- c(1, 0)
x <- sample(coin, n, replace = TRUE)
est <- mean(x)
return(est)
}
x <- replicate(1e3, estimate_proportion(10))
hist(x,
xlab = "Number of simulations",
main = "Distribution of Proportions of Heads")
```
```{r}
library(purrr)
par(mar = c(3, 3, 2, 1), mgp = c(2, .7, 0), tck = -.01, bg = "#f0f1eb")
y <- map_dbl(2:500, estimate_proportion). # the same as sapply(2:500, estimate_proportion)
plot(2:500, y, xlab = "", ylab = "", type = 'l')
```
practice: \
modify the coin bias to 0.3
```{r}
estimate_proportion_bias <- function(n, bias = 0.5) {
coin <- c(1, 0)
prob <- c(bias, 1-bias)
x <- sample(coin, n, prob = prob, replace = TRUE)
est <- mean(x)
return(est)
}
x <- replicate(1e3, estimate_proportion_bias(n=10, bias = 0.3))
hist(x,
xlab = "Number of simulations",
main = "Distribution of Proportions of Heads")
```
## Estimating \(\pi\) by Simulation
$$ \pi = 4\frac{A_c}{A_s}$$
(deviration in slides)
```{r}
set.seed(0)
n <- 1e3
x <- runif(n, -1, 1); y <- runif(n, -1, 1)
inside <- x^2 + y^2 < 1
data <- tibble(x, y, inside)
ggplot(aes(x = x, y = y), data = data)+
geom_point(aes(color = inside)) +
theme(legend.position = "none") +
coord_fixed(ratio = 1)
```
```{r}
cat("Estimated value of pi =", 4*sum(inside) / n)
```
practice:\
function to estimate value of pi with specified number of iterations
```{r}
set.seed(0)
est_pi <- function(n) {
n <- n
x <- runif(n, -1, 1); y <- runif(n, -1, 1)
inside <- x^2 + y^2 < 1
return(4*sum(inside) / n)
}
par(mar = c(3, 3, 2, 1), mgp = c(2, .7, 0), tck = -.01, bg = "#f0f1eb")
y <- map_dbl(2:1000, est_pi)
plot(2:1000, y, xlab = "", ylab = "", type = 'l')
abline(h = pi, col = "red", lty = 2)
```