原文:DS-100/textbook/notebooks/ch02
校验:飞龙
自豪地采用谷歌翻译
数据科学很难成为没有数据的科学。 因此重要的是,我们通过了解我们的数据是如何生成的,来启动任何数据分析。
在本章中,我们将讨论数据来源。 虽然术语“数据来源”通常指的是数据的整个历史,以及它随时间变化的位置,但我们将在本教科书中使用这个术语,来指代我们的数据的生成过程。 许多人得出了不成熟的结论,因为他们对数据的理解不够细致; 我们将讨论一个例子来证明,概率抽样在数据科学中的重要性。
在 1948 年的美国总统大选中,纽约州州长托马斯杜威(Thomas Dewey)与现任的杜鲁门(Harry Truman)竞争。 像往常一样,一些投票机构进行民意调查,来预测哪个候选人更有可能赢得选举。
在 1936 年,1948 年的三次选举之前,《文学文摘》(Literary Digest)预言,富兰克林·德拉诺·罗斯福会遇到断崖式下跌,这使其声名狼藉。为了做出这个断言,该杂志根据电话和车管局调查了 200 多万人的样本。 你可能知道,这种抽样方案存在抽样偏差:那些拥有电话和汽车的人往往比没有的人更富有。 在这种情况下,抽样偏差如此之大,足以使《文学文摘》认为罗斯福只有 43% 的大众选票,而他最终以 61% 的大众选票胜出,相差近 20%,这是有史以来,由民意调查引发的最大的错误。“文学文摘”不久之后就停刊了 [1]。
[1] https://www.qualtrics.com/blog/the-1936-election-a-polling-catastrophe/
为了从过去的错误中学习,盖洛普民意调查采用了一种称为配额抽样的方法,来预测 1948 年选举的结果。 在他们的抽样方案中,每位采访者都会调查来自每个特征类别的一定数量的人。 例如,采访者需要采访不同年龄,种族和收入水平的男性和女性,来匹配美国人口普查的人口特征。 这确保了民意调查不会遗漏投票人群的重要子分组。
使用这种方法,盖洛普民意调查预测,托马斯杜威将比哈里杜鲁门多赢得 5% 的大众选票。 这种差异非常显着,众所周知,《芝加哥论坛报》( Chicago Tribune)的标题是“杜威击败杜鲁门”:
虽然配额抽样确实有助于民意调查者减少抽样偏差,但它以另一种方式引入了偏差。盖洛普民意调查机构对其采访者说,只要他们实现了配额,他们就可以采访他们想要的任何人。为什么采访者的投票结果与共和党人不成比例,以下是一个可能的解释:当时,共和党人平均较富裕,而且更有可能居住在较好的社区,这使他们更容易受到采访。盖洛普民意调查预测的共和党票数,将比之前的 3 次选举的实际结果多出 2 % 至 6%。
这些例子强调了在数据收集过程中,尽可能理解抽样偏差的重要性。《文学文摘》和盖洛普民意调查都错误地认为,当他们的抽样方案始终基于人类判断时,他们的方法是没有偏差的。
我们现在依靠概率抽样,一组抽样方法,为每个样本的外观赋予精确的概率,来尽可能减少数据收集过程中的偏差。
在大数据时代,我们试图通过收集更多数据来应对偏差。 毕竟,我们知道人口普查会向我们提供完美的估计;不管抽样技术如何,一个非常大的样本不应该给出几乎完美的估计值嘛?
在讨论概率抽样方法来比较两种方法之后,我们将回到这个问题。
与任意抽样不同,概率抽样允许我们,为抽取特定样本的事件分配精确的概率。 我们将首先回顾 Data8 中的简单随机样本,然后介绍概率抽样的两种替代方法:整群抽样和分层抽样。
假设我们有 6 个个体。 我们已经给了每个个体一个 的字母。
从这个总体中抽取大小为 2 的简单随机样本,我们可以在单个索引卡片上写下 的每个字母,将所有卡片放入一个帽子中,充分混合这些卡片,然后抽出两张卡片而不看它们。 也就是说,SRS 是无放回随机抽样。
这里是所有可能的大小为 2 的样本:
我们的大小为 6 的总体,有 15 非可能的样本,大小 2。 计算可能的样本数量的另一种方法是:
由于在 SRS 中我们随机均匀抽样,这些 15 非样本中的每个都是等可能选中的:
我们也可以使用这种几率机制,来回答样本组成的其他问题。 例如:
根据对称性,我们可以说:
另一种计算 的方法是,确认对于样本中的 ,我们需要将其作为第一个弹子或第二个弹子来抽取。
在整群抽样中,我们将总体划分为簇。 然后,我们使用 SRS 来随机选择簇而不是个体。
作为一个例子,假设我们从大小为 6 的总体选取个体,我们将他们中的每一个配对:,组成 3 个个体为 2 的簇。 然后,我们使用 SRS 选择一个簇来产生大小为 2 的样本。
与之类似,任何特定个体出现在我们的样本中的概率是 。 请注意,这与我们的 SRS 相同。 然而,当我们观察样本本身时,我们看到了差异。 例如,在 SRS 中获得 的机会与获得 的机会相同,都是 。 但是,采用这种整群抽样方案:
由于如果我们只选择一个簇, 和 永远不会出现在同一个样本中。
整群抽样仍然是抽率采样,因为我们可以为每个潜在的抽样分配一个概率。 然而,所得概率与使用 SRS 不同,取决于总体如何聚集。
为什么使用整群抽样? 整群抽样是最有用的,因为它使得样本收集更容易。 例如,调查 100 个城镇的人口比调查遍布整个美国的数千人要容易得多。 这就是今天许多民意调查机构使用整群抽样形式进行调查的原因。
整群抽样的主要缺点是,它往往会产生更大的估计差异。 这通常意味着,我们在使用整群抽样时需要更大的样本。 请注意,现实比这更复杂,但我们将把细节留给未来的抽样技术课程。
在分层抽样中,我们将总体分成几层,然后每层产生一个简单随机样本。 在整群抽样和分层抽样中,我们将人口分成几组;在整群抽样中,我们使用单个 SRS 来选择组,而在分层抽样中,我们使用多个 SRS,每组有一个 SRS。
我们可以将我们大小为 6 的总体分成以下几层:
我们使用 SRS 从每一层中选择一个个体,来生成一个大小为 2 的样本。这向我们提供了以下可能的样本:
但是:
与整群抽样一样,分层抽样也是一种概率抽样方法,它根据总体的分层情况产生不同的概率。 请注意,就像这个例子,层的大小不一定相同。 例如,我们可以根据职业对美国进行分层,然后根据美国职业分布,从每个层级抽取样本 - 如果美国只有 0.01% 的人是统计人员,我们可以确保我们样本的 0.01% 将由统计人员组成。 简单的随机样本可能完全忽略了可怜的统计人员!
你可能已经想到,分层抽样可能被称为配额抽样的合理方式。 它允许研究人员确保总体中的子组,在样本中得到很好的代表,而不用人为判断来选择样本中的个体。 这通常会使估计差异较小。 然而,分层抽样有时更难完成,因为我们有时不知道每一层有多大。 在前面的例子中,我们有美国人口普查的优势,但有些时候我们并不那么幸运。
我们在 Data8 中看到,概率抽样使我们能够量化,我们对估计或预测的不确定性。 只有通过这个精确度,我们才能进行推断和假设检验。 当任何人向你给出 p 值或置信度,而没有正确解释他们的抽样技术时,要小心。
现在我们理解了概率抽样,让我们看看卑微的 SRS 与“大数据”相比如何。
我们之前提到,通过使用大量数据来消除我们冗长的偏差问题,是很有吸引人的。按照定义,人口普查确实会产生无偏估计。如果我们收集大量数据,也许我们不必担心偏差。
假设我们是 2012 年的民意调查者,试图预测美国总统选举的大众投票,巴拉克·奥巴马与米特·罗姆尼竞争。由于我们知道准确的大众投票结果,因此我们可以比较 SRS 的预测,与大型非随机数据集(通常称为行政数据集)的预测,因为它们通常作为某些行政工作的一部分而收集。
我们将比较大小为 400 的 SRS 和大小为 60,000,000 的非随机样本。我们的非随机样本比我们的 SRS 大近 15 万倍!由于 2012 年大约有 1.2 亿选民,我们可以将我们的非随机样本看作一个调查,其中美国所有选民的一半做出了回应(没有超过 10,000,000 个选民的实际调查)。
# HIDDEN
total = 129085410
obama_true_count = 65915795
romney_true_count = 60933504
obama_true = obama_true_count / total
romney_true = romney_true_count / total
# 1 percent off
obama_big = obama_true - 0.01
romney_big = romney_true + 0.01
这是一个绘图,比较了非随机样本的比例与真实比例。 标有真实值的条形显示了,每位候选人收到的选票的真实比例。 标有“大”的条形显示了,我们 6000 万选民的数据集中的比例。
pd.DataFrame({
'truth': [obama_true, romney_true],
'big': [obama_big, romney_big],
}, index=['Obama', 'Romney'], columns=['truth', 'big']).plot.bar()
plt.title('Truth compared to a big non-random dataset')
plt.xlabel('Candidate')
plt.ylabel('Proportion of popular vote')
plt.ylim(0, 0.75)
None
我们可以看到,就像 1948 年的盖洛普民意调查一样,我们的大数据集仅仅有点偏向共和党候选人罗姆尼。尽管如此,这个数据集可以向我们提供准确的预测。 为了检查,我们可以从总体中模拟抽取大小为 400 的随机样本,和大小为 60,000,000 的大型非随机样本。 我们将计算每个样本中的奥巴马的选票比例,并绘制比例分布图。
srs_size = 400
big_size = 60000000
replications = 10000
def resample(size, prop, replications):
return np.random.binomial(n=size, p=prop, size=replications) / size
srs_simulations = resample(srs_size, obama_true, replications)
big_simulations = resample(big_size, obama_big, replications)
现在,我们将绘制模拟结果并放上一条红线,表示投票给奥巴马的选民的真实比例。
bins = bins=np.arange(0.47, 0.55, 0.005)
plt.hist(srs_simulations, bins=bins, alpha=0.7, normed=True, label='srs')
plt.hist(big_simulations, bins=bins, alpha=0.7, normed=True, label='big')
plt.title('Proportion of Obama Voters for SRS and Big Data')
plt.xlabel('Proportion')
plt.ylabel('Percent per unit')
plt.xlim(0.47, 0.55)
plt.ylim(0, 50)
plt.axvline(x=obama_true, color='r', label='truth')
plt.legend()
None
正如你所看到的,SRS 分布是分散的,但围绕着奥巴马选民的真实总体比例。 另一方面,大型非随机样本创建的分布非常狭窄,但没有一个模拟样本能够产生真实总体比例。 如果我们尝试使用非随机样本创建置信区间,则它们都不会包含真实总体比例。 更糟糕的是,由于样本非常大,置信区间将非常狭窄。我们最终会确信错误估计。
事实上,当我们的抽样方法有偏差时,由于我们收集了更多的数据,我们的估计会变得更糟,因为我们会更加确信不正确的结果,只有当我们的数据集几乎是人口普查时才会变得更加准确。 数据的质量比它的大小重要得多。
在接受数据分析结果之前,仔细检查数据的质量是值得的。 特别是,我们必须提出以下问题:
数据是否为人口普查(是否包括整个人群)? 如果是这样,我们可以直接计算总体的属性而不必使用推断。 如果数据是样本,那么样本是如何收集的? 为了正确进行推断,样本应该根据概率抽样方法收集。 在产生结果之前对数据进行了哪些更改? 这些变化是否会影响数据的质量?
对于随机和非随机大样本之间的比较的更多细节,我们建议观看统计学家 Xiao-Li Meng 的这个讲座。