-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutilities.R
135 lines (124 loc) · 4.89 KB
/
utilities.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
if (!require(corpus)){ install.packages("corpus") }
library(igraph)
library(stringr)
library(jsonlite)
library(corpus)
split_document <- function(files, output_path){
for (file in files){
xmlfile <- xmlParse(paste(input_path, file, sep=""))
rootnode <- xmlRoot(xmlfile)
size = xmlSize(rootnode)
for (i in 1:size){
bug_id = xmlGetAttr(rootnode[i]$bug, name="id")
bug_report = as.character(xmlToDataFrame(rootnode)$buginformation[i]);
# camel case splitting and other transformation
text <- to_sentence_case(bug_report)
# replace punctuation with spaces
text <- gsub("[[:punct:]]", " ", text)
text <- gsub("username", "user name", text)
write.table(text, paste(output_path, bug_id, ".txt", sep=""), row.names = FALSE, col.names = FALSE)
}
}
}
save_results <- function(system, lib, algorithm, fitness, file_output, x, top5, top10, top15, top20, time){
result_frame <- data.frame(system, lib, algorithm, fitness, x[1], x[2], x[3], x[4], top5, top10, top15, top20, time)
colnames(result_frame) <- c("System","Library","Algorithm","FitnessFunction","x1","x2","x3","x4","TOP-5","TOP-10","TOP-15","TOP-20","Time")
if (file.exists(file_output))
write.table(result_frame, file_output, sep = ",", col.names = F, row.names = F, append = T)
else
write.table(result_frame, file_output, sep = ",", col.names = T, row.names = F, append = T)
}
oracle2graph <- function(path) {
oracle <- fromJSON(path)
duplicate_graph <- make_empty_graph(directed = FALSE)
data <- oracle[[1]]
for (i in 1:nrow(data)){
v1 = vertex(as.character(data[i,1]))
if (!as.character(data[i,1]) %in% V(duplicate_graph)$name)
duplicate_graph <- duplicate_graph + vertex(as.character(data[i,1]))
if (!as.character(data[i,2]) %in% V(duplicate_graph)$name)
duplicate_graph <- duplicate_graph + vertex(as.character(data[i,2]))
duplicate_graph <- duplicate_graph + edge(as.character(data[i,1]), as.character(data[i,2]))
}
return(duplicate_graph)
}
topk <- function(graph, distances, k){
clusters <- components(graph)
counter <- 0
numerator <- 0
for (doc in rownames(distances)){
doc_name <- unlist(strsplit(doc, split='.', fixed=TRUE))[1]
if (doc_name %in% V(graph)$name){
get_cluster <- clusters$membership[names(clusters$membership) == doc_name] # cluster of the document 'doc_name'
cluster_members <- names(clusters$membership[clusters$membership == get_cluster]) # all members in the same cluster
cluster_members <- cluster_members[cluster_members!= doc_name]
rank <- distances[rownames(distances) == doc, ]
rank <- sort(rank, decreasing = FALSE)
rank <- str_remove(names(rank), '[.]txt')
matches <- match(cluster_members, rank)
in_top_k = (matches <= k)
if (any(in_top_k)){
numerator <- numerator + 1
}
counter <- counter + 1
# print(min(matches))
}
}
return(numerator/counter)
}
detach_package <- function(pkg, character.only = FALSE)
{
if(!character.only)
{
pkg <- deparse(substitute(pkg))
}
search_item <- paste("package", pkg, sep = ":")
while(search_item %in% search())
{
detach(search_item, unload = TRUE, character.only = TRUE)
}
}
silhouette_coefficient <- function(matrix, distances){
# computing number of clusters
clustering<-matrix("",length(rownames(matrix)),1)
for (i in 1:length(rownames(matrix))) {
flag<-(matrix[i,]==max(matrix[i,]))# each documents belongs to the cluster with the higher probability
flag<-which(flag==TRUE)
topics <- sort(flag)
clustering[i,1]<-paste(topics, collapse = '_')
}
rownames(clustering)<-rownames(matrix)
# assign the clusters
clusters<-unique(clustering)
count <- 1
for (clust in clusters){
clustering[clustering[,1] == clust,1] <- count
count <- count+1
}
cluster_objects<-list();
cluster_objects$clustering <- as.numeric(clustering)
sil = silhouette(x=cluster_objects$clustering, dmatrix=distances)
sil = summary(sil)
# # compute the cohesion for each documents
# cohesion <- matrix(nrow = length(rownames(distances)), ncol = 1)
# for (i in 1:length(rownames(distances))){
# cohesion[i,1] <- max(distances[clustering[,1] == clustering[i,1],i])
# }
#
# # compute the separation from other clusters
# separation <- matrix(nrow = length(rownames(distances)), ncol = 1)
# for (i in 1:length(rownames(distances))){
# separation[i,1] <- min(distances[clustering[,1] != clustering[i,1],i])
# }
#
# # compute the silhouette coefficient
# sil <- matrix(nrow = length(rownames(distances)), ncol = 1)
# for (i in 1:length(rownames(distances))){
# if (sum(clustering[i,1] == clustering)>1)
# sil[i,1] <- (separation[i,1] - cohesion[i,1]) / max(separation[i,1], cohesion[i,1])
# else
# sil[i,1] <- 0 # if the cluster contanis only one document, the Silohuette Coeff. is zero
# }
# return(mean(sil))
return(sil$avg.width)
}