-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathindex.html
304 lines (243 loc) · 15.2 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
<!DOCTYPE html>
<html lang="en">
<!-- Head -->
<head> <!-- Metadata, OpenGraph and Schema.org -->
<!-- Standard metadata -->
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<title>MorAL: Learning Morphologically Adaptive Locomotion Controller for Quadrupedal Robots on Challenging Terrains </title>
<meta name="author" content="MorAL: Learning Morphologically Adaptive Locomotion Controller for Quadrupedal Robots on Challenging Terrains " />
<meta name="description" content="A Learning-based Morphologically Adaptive Locomotion Controller for legged robots.
" />
<meta name="keywords" content="Reinforcement learning, Control, Legged robots" />
<!-- OpenGraph -->
<meta property="og:site_name" content="MorAL: Learning Morphologically Adaptive Locomotion Controller for Quadrupedal Robots on Challenging Terrains " />
<meta property="og:type" content="website" />
<meta property="og:title" content="MorAL: Learning Morphologically Adaptive Locomotion Controller for Quadrupedal Robots on Challenging Terrains | Home" />
<meta property="og:url" content="http://localhost:4000/MorAL_Quadruped_Robots/" />
<meta property="og:description" content="A Learning-based Morphologically Adaptive Locomotion Controller for legged robots.
" />
<meta property="og:locale" content="en" />
<!-- Twitter card -->
<meta name="twitter:card" content="summary" />
<meta name="twitter:title" content="Home" />
<meta name="twitter:description" content="A Learning-based Morphologically Adaptive Locomotion Controller for legged robots.
" />
<!-- Schema.org -->
<script type="application/ld+json">
{
"author":
{
"@type": "Person",
"name": "MorAL: Learning Morphologically Adaptive Locomotion Controller for Quadrupedal Robots on Challenging Terrains "
},
"url": "http://localhost:4000/MorAL_Quadruped_Robots/",
"@type": "WebSite",
"description": "A Learning-based Morphologically Adaptive Locomotion Controller for legged robots.",
"headline": "Home",
"sameAs": ["https://star-datasets.github.io/", "https://mpl.sist.shanghaitech.edu.cn/"],
"name": "MorAL: Learning Morphologically Adaptive Locomotion Controller for Quadrupedal Robots on Challenging Terrains ",
"@context": "https://schema.org"
}
</script>
<!-- Bootstrap & MDB -->
<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha256-DF7Zhf293AJxJNTmh5zhoYYIMs2oXitRfBjY+9L//AY=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/css/mdb.min.css" integrity="sha256-jpjYvU3G3N6nrrBwXJoVEYI/0zw8htfFnhT9ljN3JJw=" crossorigin="anonymous" />
<!-- Fonts & Icons -->
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@fortawesome/[email protected]/css/all.min.css" integrity="sha256-mUZM63G8m73Mcidfrv5E+Y61y7a12O5mW4ezU3bxqW4=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/css/academicons.min.css" integrity="sha256-i1+4qU2G2860dGGIOJscdC30s9beBXjFfzjWLjBRsBg=" crossorigin="anonymous">
<link rel="stylesheet" type="text/css" href="https://fonts.googleapis.com/css?family=Roboto:300,400,500,700|Roboto+Slab:100,300,400,500,700|Material+Icons">
<!-- Code Syntax Highlighting -->
<link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/jwarby/jekyll-pygments-themes@master/PASTIE.css" media="none" id="highlight_theme_light" />
<!-- Styles -->
<link rel="shortcut icon" href="/vector/assets/img/mpl_icon.png"/>
<link rel="stylesheet" href="https://arclab-hku.github.io/MorAL_Quadruped_Robots/assets/css/main.css">
<link rel="canonical" href="http://localhost:4000/MorAL_Quadruped_Robots/">
<link rel="stylesheet" href="https://arclab-hku.github.io/MorAL_Quadruped_Robots/assets/css/fonts.css">
<link rel="stylesheet" href="/MorAL_Quadruped_Robots/assets/css/fonts.css">
<!-- Dark Mode -->
</head>
<!-- Body -->
<body class="fixed-top-nav ">
<!-- <!– Header –>-->
<!-- <header>-->
<!-- <!– Nav Bar –>-->
<!-- <nav id="navbar" class="navbar navbar-light navbar-expand-sm fixed-top">-->
<!-- <div class="container">-->
<!-- <!– Navbar Toggle –>-->
<!-- <button class="navbar-toggler collapsed ml-auto" type="button" data-toggle="collapse" data-target="#navbarNav" aria-controls="navbarNav" aria-expanded="false" aria-label="Toggle navigation">-->
<!-- <span class="sr-only">Toggle navigation</span>-->
<!-- <span class="icon-bar top-bar"></span>-->
<!-- <span class="icon-bar middle-bar"></span>-->
<!-- <span class="icon-bar bottom-bar"></span>-->
<!-- </button>-->
<!-- <div class="collapse navbar-collapse text-right" id="navbarNav">-->
<!-- <ul class="navbar-nav ml-auto flex-nowrap">-->
<!-- <!– Home –>-->
<!-- <li class="nav-item active">-->
<!-- <a class="nav-link" href="/MorAL_Quadruped_Robots/">Home<span class="sr-only">(current)</span></a>-->
<!-- </li>-->
<!-- <!– Other pages –>-->
<!-- <!– <li class="nav-item dropdown ">-->
<!-- <a class="nav-link dropdown-toggle" href="#" id="navbarDropdown" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">About</a>-->
<!-- <div class="dropdown-menu dropdown-menu-right" aria-labelledby="navbarDropdown">-->
<!-- <a class="dropdown-item" href="/vector/about/sensor/">Sensor Suite</a>-->
<!-- <div class="dropdown-divider"></div>-->
<!-- <a class="dropdown-item" href="/vector/about/synchronization/">Synchronization</a>-->
<!-- <div class="dropdown-divider"></div>-->
<!-- <a class="dropdown-item" href="/vector/about/ground_truth/">Ground Truth</a>-->
<!-- </div>-->
<!-- </li> –>-->
<!-- <li class="nav-item ">-->
<!-- <a class="nav-link" href="/vector/calibration/">Calibration</a>-->
<!-- </li>-->
<!-- <li class="nav-item ">-->
<!-- <a class="nav-link" href="/vector/download/">Download</a>-->
<!-- </li>-->
<!-- <li class="nav-item ">-->
<!-- <a class="nav-link" href="/vector/competition/">Competition</a>-->
<!-- </li>-->
<!-- <!– <li class="nav-item dropdown ">-->
<!-- <a class="nav-link dropdown-toggle" href="#" id="navbarDropdown" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Contact Us</a>-->
<!-- <div class="dropdown-menu dropdown-menu-right" aria-labelledby="navbarDropdown">-->
<!-- <a class="dropdown-item" href="https://github.com/mgaoling/mpl_calibration_toolbox/issues" target="_blank" rel="noopener noreferrer">Calibration Issue</a>-->
<!-- <div class="dropdown-divider"></div>-->
<!-- <a class="dropdown-item" href="https://github.com/mgaoling/mpl_dataset_toolbox/issues" target="_blank" rel="noopener noreferrer">Dataset Issue</a>-->
<!-- </div>-->
<!-- </li> –>-->
<!-- </ul>-->
<!-- </div>-->
<!-- </div>-->
<!-- </nav>-->
<!-- </header>-->
<!-- Content -->
<div class="container mt-5">
<!-- home.html -->
<div class="post">
<header class="post-header">
<h1 class="post-title">
<span class="font-weight-bold">MorAL: Learning Morphologically Adaptive Locomotion Controller for Quadrupedal Robots on Challenging Terrains</span>
</h1>
<p class="desc">
A Learning-based Morphologically Adaptive Locomotion Controller for legged robots
</p>
</header>
<article>
<div class="clearfix">
<p><br></p>
<p><img src="Figures/cover.png" alt="morphology" style="max-width:98%;"></p>
<iframe width="760"
height="370"
src="https://www.youtube.com/embed/EjR2OkiLzTA"
title="YouTube video player"
frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen>
</iframe>
<p><br></p>
<h2>Abstract</h2>
Due to the rapid development of the quadruped robot industry in the past decade, various commercial quadruped robots have
emerged with distinct physical attributes. Different from the previous work in which the designed controller
is robot-specific, this article proposes a learning-based control framework -- MorAL, which is adaptive to
different morphologies of quadruped robots and challenging terrains. Our framework concurrently trains the
control policy and an adaptive module, which considers the temporal robot states. This module empowers the
control policy to implicitly online identify different robot platforms' properties and estimate body velocity.
Extensive experiments in the real world and simulation demonstrate that our controller enables robots with
significantly different morphology to overcome various indoor and outdoor harsh terrains.
<p><br></p>
</div>
<!-- Comparison with existing controllers -->
<div class="Comparison">
<h2>Comparison</h2>
The comparative evaluation is performed among the following locomotion controllers that only use proprioception, including
Vanilla PPO, RMA, Concurrent and DreamWaQ. The following figure illustrates the learning performance of five
different controllers in terms of the average rewards. It indicates that MorAL is the most efficient controller
in this multi-morphology task.
<div align=center>
<p><img src="Figures/webpage_reward.png" alt="morphology" width="450"></p>
</div>
To make the comparison more fair, further analysis conducted on their performance in terms of the robot-specific tasks.
The following results indicate MorAL still outperforms other baseline methods. The analysis is conduted on four different
specific robot configurations, including Aliengo (FE), ANYMal-B (FKBE), Mini Cheetah-FK (FK), and Mini Cheetah-FEBK (FEBK).
<div align=center>
<p><img src="Figures/reward_specific.png" alt="morphology" width="700"></p>
</div>
The MorAL algorithm also achieve the smallest velocity estimation error and the most robust velcocity tracking performance.
<div align=center>
<p><img src="Figures/tracking.png" alt="morphology" width="650"></p>
</div>
<!-- Selected papers -->
<div class="publications">
<h2>Citation</h2>
Please cite the following publication when using this benchmark in an academic context:
<h2></h2>
<ol class="bibliography"><li>
<!-- _layouts/bib.html -->
<div class="row">
<div class="col-sm-2 abbr"><abbr class="badge">RA-L</abbr></div>
<!-- Entry bib key -->
<div id="gao2022vector" class="col-sm-8">
<!-- Title -->
<div class="title">MorAL: Learning Morphologically Adaptive Locomotion Controller for Quadrupedal Robots on Challenging Terrains</div>
<!-- Author -->
<div class="author">Z. Luo, Y. Dong, X. Li, R. Huang, Z. Shu, E. Xiao, and P. Lu
</div>
<!-- Journal/Book title and date -->
<div class="periodical">
<em>IEEE Robotics and Automation Letters</em> 2024
</div>
<!-- <!– Links/Buttons –>-->
<!-- <div class="links">-->
<!-- <a class="abstract btn btn-sm z-depth-0" role="button">Abs</a>-->
<!-- <a href="http://arxiv.org/abs/2207.01404" class="btn btn-sm z-depth-0" role="button" target="_blank" rel="noopener noreferrer">arXiv</a>-->
<!-- <a href="/vector/assets/pdf/VECtor.pdf" class="btn btn-sm z-depth-0" role="button">PDF</a>-->
<!-- <a href="/vector/assets/pdf/supplementary_material.pdf" class="btn btn-sm z-depth-0" role="button">Supp</a>-->
<!-- </div>-->
</div>
</div>
</li></ol>
</div>
<br>
<!-- Acknowledgements -->
<div class="Acknowledgement">
<h2>Acknowledgement</h2>
This work was supported by the General Research Fund under Grant 17204222, and in part by the Seed Fund for Collaborative Research and General Funding Scheme-HKU-TCL Joint Research Center for Artificial Intelligence. </div>
<br>
<br>
</article>
</div>
</div>
<!-- Footer -->
<footer class="fixed-bottom">
<div class="container mt-0" style="width:100%;text-align:center;">
© 2024 Adaptive Robotics Controls Lab (Arclab), The University of Hong Kong, Hong Kong. All rights reserved.
</div>
</footer>
<!-- JavaScripts -->
<!-- jQuery -->
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/jquery.min.js" integrity="sha256-/xUj+3OJU5yExlq6GSYGSHk7tPXikynS7ogEvDej/m4=" crossorigin="anonymous"></script>
<!-- Bootsrap & MDB scripts -->
<script src="https://cdn.jsdelivr.net/npm/@popperjs/[email protected]/dist/umd/popper.min.js" integrity="sha256-l/1pMF/+J4TThfgARS6KwWrk/egwuVvhRzfLAMQ6Ds4=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.min.js" integrity="sha256-SyTu6CwrfOhaznYZPoolVw2rxoY7lKYKQvqbtqN93HI=" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/js/mdb.min.js" integrity="sha256-NdbiivsvWt7VYCt6hYNT3h/th9vSTL4EDWeGs5SN3DA=" crossorigin="anonymous"></script>
<!-- Masonry & imagesLoaded -->
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/masonry.pkgd.min.js" integrity="sha256-Nn1q/fx0H7SNLZMQ5Hw5JLaTRZp0yILA/FRexe19VdI=" crossorigin="anonymous"></script>
<script defer src="https://cdn.jsdelivr.net/npm/imagesloaded@4/imagesloaded.pkgd.min.js"></script>
<script defer src="/vector/assets/js/masonry.js" type="text/javascript"></script>
<!-- Medium Zoom JS -->
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/medium-zoom.min.js" integrity="sha256-EdPgYcPk/IIrw7FYeuJQexva49pVRZNmt3LculEr7zM=" crossorigin="anonymous"></script>
<script src="/vector/assets/js/zoom.js"></script><!-- Load Common JS -->
<script src="/vector/assets/js/common.js"></script>
<!-- MathJax -->
<script type="text/javascript">
window.MathJax = {
tex: {
tags: 'ams'
}
};
</script>
<script defer type="text/javascript" id="MathJax-script" src="https://cdn.jsdelivr.net/npm/[email protected]/es5/tex-mml-chtml.js"></script>
<script defer src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
</body>
</html>