forked from dgraph-io/badger
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkv.go
1219 lines (1082 loc) · 31.9 KB
/
kv.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright 2017 Dgraph Labs, Inc. and Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package badger
import (
"expvar"
"log"
"os"
"path/filepath"
"sync"
"sync/atomic"
"time"
"golang.org/x/net/trace"
"github.com/dgraph-io/badger/skl"
"github.com/dgraph-io/badger/table"
"github.com/dgraph-io/badger/y"
"github.com/pkg/errors"
)
var (
badgerPrefix = []byte("!badger!") // Prefix for internal keys used by badger.
head = []byte("!badger!head") // For storing value offset for replay.
)
// Options are params for creating DB object.
type Options struct {
Dir string // Directory to store the data in. Should exist and be writable.
ValueDir string // Directory to store the value log in. Can be the same as Dir.
// Should exist and be writable.
// The following affect all levels of LSM tree.
MaxTableSize int64 // Each table (or file) is at most this size.
LevelSizeMultiplier int // Equals SizeOf(Li+1)/SizeOf(Li).
MaxLevels int // Maximum number of levels of compaction.
ValueThreshold int // If value size >= this threshold, only store value offsets in tree.
MapTablesTo int // How should LSM tree be accessed.
NumMemtables int // Maximum number of tables to keep in memory, before stalling.
// The following affect how we handle LSM tree L0.
// Maximum number of Level 0 tables before we start compacting.
NumLevelZeroTables int
// If we hit this number of Level 0 tables, we will stall until L0 is compacted away.
NumLevelZeroTablesStall int
// Maximum total size for L1.
LevelOneSize int64
// Run value log garbage collection if we can reclaim at least this much space. This is a ratio.
ValueGCThreshold float64
// How often to run value log garbage collector.
ValueGCRunInterval time.Duration
// Size of single value log file.
ValueLogFileSize int64
// Sync all writes to disk. Setting this to true would slow down data loading significantly.
SyncWrites bool
// Number of compaction workers to run concurrently.
NumCompactors int
// Flags for testing purposes.
DoNotCompact bool // Stops LSM tree from compactions.
maxBatchSize int64 // max batch size in bytes
}
// DefaultOptions sets a list of recommended options for good performance.
// Feel free to modify these to suit your needs.
var DefaultOptions = Options{
DoNotCompact: false,
LevelOneSize: 256 << 20,
LevelSizeMultiplier: 10,
MapTablesTo: table.LoadToRAM,
// table.MemoryMap to mmap() the tables.
// table.Nothing to not preload the tables.
MaxLevels: 7,
MaxTableSize: 64 << 20,
NumCompactors: 3,
NumLevelZeroTables: 5,
NumLevelZeroTablesStall: 10,
NumMemtables: 5,
SyncWrites: false,
ValueGCRunInterval: 10 * time.Minute,
ValueGCThreshold: 0.5, // Set to zero to not run GC.
ValueLogFileSize: 1 << 30,
ValueThreshold: 20,
}
func (opt *Options) estimateSize(entry *Entry) int {
if len(entry.Value) < opt.ValueThreshold {
return len(entry.Key) + len(entry.Value) + y.MetaSize + y.UserMetaSize + y.CasSize
}
return len(entry.Key) + 16 + y.MetaSize + y.UserMetaSize + y.CasSize
}
// KV provides the various functions required to interact with Badger.
// KV is thread-safe.
type KV struct {
sync.RWMutex // Guards list of inmemory tables, not individual reads and writes.
dirLockGuard *DirectoryLockGuard
// nil if Dir and ValueDir are the same
valueDirGuard *DirectoryLockGuard
closer *y.Closer
elog trace.EventLog
mt *skl.Skiplist // Our latest (actively written) in-memory table
imm []*skl.Skiplist // Add here only AFTER pushing to flushChan.
opt Options
manifest *manifestFile
lc *levelsController
vlog valueLog
vptr valuePointer // less than or equal to a pointer to the last vlog value put into mt
writeCh chan *request
flushChan chan flushTask // For flushing memtables.
// Incremented in the non-concurrently accessed write loop. But also accessed outside. So
// we use an atomic op.
lastUsedCasCounter uint64
metricsTicker *time.Ticker
}
// ErrInvalidDir is returned when Badger cannot find the directory
// from where it is supposed to load the key-value store.
var ErrInvalidDir = errors.New("Invalid Dir, directory does not exist")
// ErrValueLogSize is returned when opt.ValueLogFileSize option is not within the valid
// range.
var ErrValueLogSize = errors.New("Invalid ValueLogFileSize, must be between 1MB and 1GB")
// ErrExceedsMaxKeyValueSize is returned as part of Entry when the size of the key or value
// exceeds the specified limits.
var ErrExceedsMaxKeyValueSize = errors.New("Key (value) size exceeded 1MB (1GB) limit")
const (
kvWriteChCapacity = 1000
)
// NewKV returns a new KV object.
func NewKV(optParam *Options) (out *KV, err error) {
// Make a copy early and fill in maxBatchSize
opt := *optParam
opt.maxBatchSize = (15 * opt.MaxTableSize) / 100
for _, path := range []string{opt.Dir, opt.ValueDir} {
dirExists, err := exists(path)
if err != nil {
return nil, y.Wrapf(err, "Invalid Dir: %q", path)
}
if !dirExists {
return nil, ErrInvalidDir
}
}
absDir, err := filepath.Abs(opt.Dir)
if err != nil {
return nil, err
}
absValueDir, err := filepath.Abs(opt.ValueDir)
if err != nil {
return nil, err
}
dirLockGuard, err := AcquireDirectoryLock(opt.Dir, lockFile)
if err != nil {
return nil, err
}
defer func() {
if dirLockGuard != nil {
_ = dirLockGuard.Release()
}
}()
var valueDirLockGuard *DirectoryLockGuard
if absValueDir != absDir {
valueDirLockGuard, err = AcquireDirectoryLock(opt.ValueDir, lockFile)
if err != nil {
return nil, err
}
}
defer func() {
if valueDirLockGuard != nil {
_ = valueDirLockGuard.Release()
}
}()
if !(opt.ValueLogFileSize <= 2<<30 && opt.ValueLogFileSize >= 1<<20) {
return nil, ErrValueLogSize
}
manifestFile, manifest, err := OpenOrCreateManifestFile(opt.Dir)
if err != nil {
return nil, err
}
defer func() {
if manifestFile != nil {
_ = manifestFile.close()
}
}()
out = &KV{
imm: make([]*skl.Skiplist, 0, opt.NumMemtables),
flushChan: make(chan flushTask, opt.NumMemtables),
writeCh: make(chan *request, kvWriteChCapacity),
opt: opt,
closer: y.NewCloser(),
manifest: manifestFile,
elog: trace.NewEventLog("Badger", "KV"),
dirLockGuard: dirLockGuard,
valueDirGuard: valueDirLockGuard,
metricsTicker: time.NewTicker(5 * time.Minute),
}
go out.updateSize()
out.mt = skl.NewSkiplist(arenaSize(&opt))
// newLevelsController potentially loads files in directory.
if out.lc, err = newLevelsController(out, &manifest); err != nil {
return nil, err
}
lc := out.closer.Register("compactors")
out.lc.startCompact(lc)
lc = out.closer.Register("memtable")
go out.flushMemtable(lc) // Need levels controller to be up.
if err = out.vlog.Open(out, &opt); err != nil {
return out, err
}
var item KVItem
if err := out.Get(head, &item); err != nil {
return nil, errors.Wrap(err, "Retrieving head")
}
val := item.Value()
// lastUsedCasCounter will either be the value stored in !badger!head, or some subsequently
// written value log entry that we replay. (Subsequent value log entries might be _less_
// than lastUsedCasCounter, if there was value log gc so we have to max() values while
// replaying.)
out.lastUsedCasCounter = item.casCounter
var vptr valuePointer
if len(val) > 0 {
vptr.Decode(val)
}
lc = out.closer.Register("replay")
go out.doWrites(lc)
first := true
fn := func(e Entry, vp valuePointer) error { // Function for replaying.
if first {
out.elog.Printf("First key=%s\n", e.Key)
}
first = false
if out.lastUsedCasCounter < e.casCounter {
out.lastUsedCasCounter = e.casCounter
}
if e.CASCounterCheck != 0 {
oldValue, err := out.get(e.Key)
if err != nil {
return err
}
if oldValue.CASCounter != e.CASCounterCheck {
return nil
}
}
nk := make([]byte, len(e.Key))
copy(nk, e.Key)
var nv []byte
meta := e.Meta
if out.shouldWriteValueToLSM(e) {
nv = make([]byte, len(e.Value))
copy(nv, e.Value)
} else {
nv = make([]byte, 16)
vp.Encode(nv)
meta = meta | BitValuePointer
}
v := y.ValueStruct{
Value: nv,
Meta: meta,
UserMeta: e.UserMeta,
CASCounter: e.casCounter,
}
for err := out.ensureRoomForWrite(); err != nil; err = out.ensureRoomForWrite() {
out.elog.Printf("Replay: Making room for writes")
time.Sleep(10 * time.Millisecond)
}
out.mt.Put(nk, v)
return nil
}
if err = out.vlog.Replay(vptr, fn); err != nil {
return out, err
}
lc.SignalAndWait() // Wait for replay to be applied first.
out.writeCh = make(chan *request, kvWriteChCapacity)
lc = out.closer.Register("writes")
go out.doWrites(lc)
lc = out.closer.Register("value-gc")
go out.vlog.runGCInLoop(lc)
valueDirLockGuard = nil
dirLockGuard = nil
manifestFile = nil
return out, nil
}
// Close closes a KV. It's crucial to call it to ensure all the pending updates
// make their way to disk.
func (s *KV) Close() (err error) {
defer func() {
if guardErr := s.dirLockGuard.Release(); err == nil {
err = errors.Wrap(guardErr, "KV.Close")
}
if s.valueDirGuard != nil {
if guardErr := s.valueDirGuard.Release(); err == nil {
err = errors.Wrap(guardErr, "KV.Close")
}
}
if manifestErr := s.manifest.close(); err == nil {
err = errors.Wrap(manifestErr, "KV.Close")
}
// Fsync directories to ensure that lock file, and any other removed files whose directory
// we haven't specifically fsynced, are guaranteed to have their directory entry removal
// persisted to disk.
if syncErr := syncDir(s.opt.Dir); err == nil {
err = errors.Wrap(syncErr, "KV.Close")
}
if syncErr := syncDir(s.opt.ValueDir); err == nil {
err = errors.Wrap(syncErr, "KV.Close")
}
}()
s.elog.Printf("Closing database")
// Stop value GC first.
lc := s.closer.Get("value-gc")
lc.SignalAndWait()
// Stop writes next.
lc = s.closer.Get("writes")
lc.SignalAndWait()
// Now close the value log.
if err := s.vlog.Close(); err != nil {
return errors.Wrapf(err, "KV.Close")
}
// Make sure that block writer is done pushing stuff into memtable!
// Otherwise, you will have a race condition: we are trying to flush memtables
// and remove them completely, while the block / memtable writer is still
// trying to push stuff into the memtable. This will also resolve the value
// offset problem: as we push into memtable, we update value offsets there.
if !s.mt.Empty() {
s.elog.Printf("Flushing memtable")
for {
pushedFlushTask := func() bool {
s.Lock()
defer s.Unlock()
y.AssertTrue(s.mt != nil)
select {
case s.flushChan <- flushTask{s.mt, s.vptr}:
s.imm = append(s.imm, s.mt) // Flusher will attempt to remove this from s.imm.
s.mt = nil // Will segfault if we try writing!
s.elog.Printf("pushed to flush chan\n")
return true
default:
// If we fail to push, we need to unlock and wait for a short while.
// The flushing operation needs to update s.imm. Otherwise, we have a deadlock.
// TODO: Think about how to do this more cleanly, maybe without any locks.
}
return false
}()
if pushedFlushTask {
break
}
time.Sleep(10 * time.Millisecond)
}
}
s.flushChan <- flushTask{nil, valuePointer{}} // Tell flusher to quit.
lc = s.closer.Get("memtable")
lc.Wait()
s.elog.Printf("Memtable flushed")
lc = s.closer.Get("compactors")
lc.SignalAndWait()
s.elog.Printf("Compaction finished")
if err := s.lc.close(); err != nil {
return errors.Wrap(err, "KV.Close")
}
s.metricsTicker.Stop()
s.elog.Printf("Waiting for closer")
s.closer.SignalAll()
s.closer.WaitForAll()
s.elog.Finish()
return nil
}
const (
lockFile = "LOCK"
)
// When you create or delete a file, you have to ensure the directory entry for the file is synced
// in order to guarantee the file is visible (if the system crashes). (See the man page for fsync,
// or see https://github.com/coreos/etcd/issues/6368 for an example.)
func syncDir(dir string) error {
f, err := OpenDir(dir)
if err != nil {
return errors.Wrapf(err, "While opening directory: %s.", dir)
}
err = f.Sync()
closeErr := f.Close()
if err != nil {
return errors.Wrapf(err, "While syncing directory: %s.", dir)
}
return errors.Wrapf(closeErr, "While closing directory: %s.", dir)
}
// getMemtables returns the current memtables and get references.
func (s *KV) getMemTables() ([]*skl.Skiplist, func()) {
s.RLock()
defer s.RUnlock()
tables := make([]*skl.Skiplist, len(s.imm)+1)
// Get mutable memtable.
tables[0] = s.mt
tables[0].IncrRef()
// Get immutable memtables.
last := len(s.imm) - 1
for i := range s.imm {
tables[i+1] = s.imm[last-i]
tables[i+1].IncrRef()
}
return tables, func() {
for _, tbl := range tables {
tbl.DecrRef()
}
}
}
// FillValue populates item with a value.
//
// item must be a valid KVItem returned by Badger during iteration. This method
// could be used to fetch values explicitly during a key-only iteration
// (FetchValues is set to false). It is useful for example, if values are
// required for some keys only.
//
// This method should not be called when iteration is performed with
// FetchValues set to true, as it will cause additional copying.
//
// Multiple calls to this method will result in multiple copies from the value
// log. It is the caller’s responsibility to make sure they don’t call this
// method more than once.
func (s *KV) FillValue(item *KVItem) error {
// Wait for any pending fill operations to finish.
item.wg.Wait()
item.wg.Add(1)
defer item.wg.Done()
return s.fillItem(item)
}
func (s *KV) fillItem(item *KVItem) error {
if item.meta == 0 && item.vptr == nil {
item.val = nil // key not found
return nil
}
if (item.meta & BitDelete) != 0 {
// Tombstone encountered.
item.val = nil
return nil
}
if item.slice == nil {
item.slice = new(y.Slice)
}
if (item.meta & BitValuePointer) == 0 {
item.val = item.slice.Resize(len(item.vptr))
copy(item.val, item.vptr)
return nil
}
var vp valuePointer
vp.Decode(item.vptr)
entry, err := s.vlog.Read(vp, item.slice)
if err != nil {
return errors.Wrapf(err, "Unable to read from value log: %+v", vp)
}
if (entry.Meta & BitDelete) != 0 { // Is a tombstone.
item.val = nil
return nil
}
item.val = entry.Value
return nil
}
// get returns the value in memtable or disk for given key.
// Note that value will include meta byte.
func (s *KV) get(key []byte) (y.ValueStruct, error) {
tables, decr := s.getMemTables() // Lock should be released.
defer decr()
y.NumGets.Add(1)
for i := 0; i < len(tables); i++ {
vs := tables[i].Get(key)
y.NumMemtableGets.Add(1)
if vs.Meta != 0 || vs.Value != nil {
return vs, nil
}
}
return s.lc.get(key)
}
// Get looks for key and returns a KVItem.
// If key is not found, item.Value() is nil.
func (s *KV) Get(key []byte, item *KVItem) error {
vs, err := s.get(key)
if err != nil {
return errors.Wrapf(err, "KV::Get key: %q", key)
}
if item.slice == nil {
item.slice = new(y.Slice)
}
item.meta = vs.Meta
item.userMeta = vs.UserMeta
item.casCounter = vs.CASCounter
item.key = key
item.vptr = vs.Value
if err := s.fillItem(item); err != nil {
return errors.Wrapf(err, "KV::Get key: %q", key)
}
return nil
}
// Exists looks if a key exists. Returns true if the
// key exists otherwises return false. if err is not nil an error occurs during
// the key lookup and the existence of the key is unknown
func (s *KV) Exists(key []byte) (bool, error) {
vs, err := s.get(key)
if err != nil {
return false, err
}
if vs.Value == nil && vs.Meta == 0 {
return false, nil
}
if (vs.Meta & BitDelete) != 0 {
// Tombstone encountered.
return false, nil
}
return true, nil
}
func (s *KV) updateOffset(ptrs []valuePointer) {
var ptr valuePointer
for i := len(ptrs) - 1; i >= 0; i-- {
p := ptrs[i]
if !p.IsZero() {
ptr = p
break
}
}
if ptr.IsZero() {
return
}
s.Lock()
defer s.Unlock()
y.AssertTrue(!ptr.Less(s.vptr))
s.vptr = ptr
}
var requestPool = sync.Pool{
New: func() interface{} {
return new(request)
},
}
func (s *KV) shouldWriteValueToLSM(e Entry) bool {
return len(e.Value) < s.opt.ValueThreshold
}
func (s *KV) writeToLSM(b *request) error {
var offsetBuf [10]byte
if len(b.Ptrs) != len(b.Entries) {
return errors.Errorf("Ptrs and Entries don't match: %+v", b)
}
for i, entry := range b.Entries {
entry.Error = nil
if entry.CASCounterCheck != 0 {
oldValue, err := s.get(entry.Key)
if err != nil {
return errors.Wrap(err, "writeToLSM")
}
// No need to decode existing value. Just need old CAS counter.
if oldValue.CASCounter != entry.CASCounterCheck {
entry.Error = ErrCasMismatch
continue
}
}
if entry.Meta == BitSetIfAbsent {
// Someone else might have written a value, so lets check again if key exists.
exists, err := s.Exists(entry.Key)
if err != nil {
return err
}
// Value already exists, don't write.
if exists {
entry.Error = ErrKeyExists
continue
}
}
if s.shouldWriteValueToLSM(*entry) { // Will include deletion / tombstone case.
s.mt.Put(entry.Key,
y.ValueStruct{
Value: entry.Value,
Meta: entry.Meta,
UserMeta: entry.UserMeta,
CASCounter: entry.casCounter})
} else {
s.mt.Put(entry.Key,
y.ValueStruct{
Value: b.Ptrs[i].Encode(offsetBuf[:]),
Meta: entry.Meta | BitValuePointer,
UserMeta: entry.UserMeta,
CASCounter: entry.casCounter})
}
}
return nil
}
// lastCASCounter returns the last-used cas counter.
func (s *KV) lastCASCounter() uint64 {
return atomic.LoadUint64(&s.lastUsedCasCounter)
}
// newCASCounters generates a set of unique CAS counters -- the interval [x, x + howMany) where x
// is the return value.
func (s *KV) newCASCounters(howMany uint64) uint64 {
last := atomic.AddUint64(&s.lastUsedCasCounter, howMany)
return last - howMany + 1
}
// writeRequests is called serially by only one goroutine.
func (s *KV) writeRequests(reqs []*request) error {
if len(reqs) == 0 {
return nil
}
done := func(err error) {
for _, r := range reqs {
r.Err = err
r.Wg.Done()
}
}
s.elog.Printf("writeRequests called. Writing to value log")
// CAS counter for all operations has to go onto value log. Otherwise, if it is just in
// memtable for a long time, and following CAS operations use that as a check, when
// replaying, we will think that these CAS operations should fail, when they are actually
// valid.
// There is code (in flushMemtable) whose correctness depends on us generating CAS Counter
// values _before_ we modify s.vptr here.
for _, req := range reqs {
counterBase := s.newCASCounters(uint64(len(req.Entries)))
for i, e := range req.Entries {
e.casCounter = counterBase + uint64(i)
}
}
err := s.vlog.write(reqs)
if err != nil {
done(err)
return err
}
s.elog.Printf("Writing to memtable")
var count int
for _, b := range reqs {
if len(b.Entries) == 0 {
continue
}
count += len(b.Entries)
for err := s.ensureRoomForWrite(); err != nil; err = s.ensureRoomForWrite() {
s.elog.Printf("Making room for writes")
// We need to poll a bit because both hasRoomForWrite and the flusher need access to s.imm.
// When flushChan is full and you are blocked there, and the flusher is trying to update s.imm,
// you will get a deadlock.
time.Sleep(10 * time.Millisecond)
}
if err != nil {
done(err)
return errors.Wrap(err, "writeRequests")
}
if err := s.writeToLSM(b); err != nil {
done(err)
return errors.Wrap(err, "writeRequests")
}
s.updateOffset(b.Ptrs)
}
done(nil)
s.elog.Printf("%d entries written", count)
return nil
}
func writeRequestsOrLogError(s *KV, reqs []*request) {
if err := s.writeRequests(reqs); err != nil {
log.Printf("ERROR in Badger::writeRequests: %v", err)
}
}
func (s *KV) doWrites(lc *y.LevelCloser) {
defer lc.Done()
reqs := make([]*request, 0, 10)
for {
var r *request
select {
case r = <-s.writeCh:
case <-lc.HasBeenClosed():
goto closedCase
}
for {
reqs = append(reqs, r)
if len(reqs) == kvWriteChCapacity {
goto defaultCase
}
select {
case r = <-s.writeCh:
case <-lc.HasBeenClosed():
goto closedCase
default:
goto defaultCase
}
}
closedCase:
close(s.writeCh)
for r := range s.writeCh { // Flush the channel.
reqs = append(reqs, r)
}
writeRequestsOrLogError(s, reqs)
return
defaultCase:
writeRequestsOrLogError(s, reqs)
reqs = reqs[:0]
}
}
func (s *KV) sendToWriteCh(entries []*Entry) []*request {
var reqs []*request
var size int64
var b *request
var bad []*Entry
for _, entry := range entries {
if len(entry.Key) > maxKeySize || len(entry.Value) > maxValueSize {
entry.Error = ErrExceedsMaxKeyValueSize
bad = append(bad, entry)
continue
}
if b == nil {
b = requestPool.Get().(*request)
b.Entries = b.Entries[:0]
b.Wg = sync.WaitGroup{}
b.Wg.Add(1)
}
size += int64(s.opt.estimateSize(entry))
b.Entries = append(b.Entries, entry)
if size >= s.opt.maxBatchSize {
s.writeCh <- b
y.NumPuts.Add(int64(len(b.Entries)))
reqs = append(reqs, b)
size = 0
b = nil
}
}
if size > 0 {
s.writeCh <- b
y.NumPuts.Add(int64(len(b.Entries)))
reqs = append(reqs, b)
}
if len(bad) > 0 {
b := requestPool.Get().(*request)
b.Entries = bad
b.Wg = sync.WaitGroup{}
b.Err = nil
b.Ptrs = nil
reqs = append(reqs, b)
y.NumBlockedPuts.Add(int64(len(bad)))
}
return reqs
}
// BatchSet applies a list of badger.Entry. If a request level error occurs it
// will be returned. Errors are also set on each Entry and must be checked
// individually.
// Check(kv.BatchSet(entries))
// for _, e := range entries {
// Check(e.Error)
// }
func (s *KV) BatchSet(entries []*Entry) error {
reqs := s.sendToWriteCh(entries)
var err error
for _, req := range reqs {
req.Wg.Wait()
if req.Err != nil {
err = req.Err
}
requestPool.Put(req)
}
return err
}
// BatchSetAsync is the asynchronous version of BatchSet. It accepts a callback
// function which is called when all the sets are complete. If a request level
// error occurs, it will be passed back via the callback. The caller should
// still check for errors set on each Entry individually.
// kv.BatchSetAsync(entries, func(err error)) {
// Check(err)
// for _, e := range entries {
// Check(e.Error)
// }
// }
func (s *KV) BatchSetAsync(entries []*Entry, f func(error)) {
reqs := s.sendToWriteCh(entries)
go func() {
var err error
for _, req := range reqs {
req.Wg.Wait()
if req.Err != nil {
err = req.Err
}
requestPool.Put(req)
}
// All writes complete, let's call the callback function now.
f(err)
}()
}
// Set sets the provided value for a given key. If key is not present, it is created.
// If it is present, the existing value is overwritten with the one provided.
func (s *KV) Set(key, val []byte, userMeta byte) error {
e := &Entry{
Key: key,
Value: val,
UserMeta: userMeta,
}
if err := s.BatchSet([]*Entry{e}); err != nil {
return err
}
return e.Error
}
// SetAsync is the asynchronous version of Set. It accepts a callback function which is called
// when the set is complete. Any error encountered during execution is passed as an argument
// to the callback function.
func (s *KV) SetAsync(key, val []byte, userMeta byte, f func(error)) {
e := &Entry{
Key: key,
Value: val,
UserMeta: userMeta,
}
s.BatchSetAsync([]*Entry{e}, func(err error) {
if err != nil {
f(err)
return
}
if e.Error != nil {
f(e.Error)
return
}
f(nil)
})
}
// SetIfAbsent sets value of key if key is not present.
// If it is present, it returns the KeyExists error.
func (s *KV) SetIfAbsent(key, val []byte, userMeta byte) error {
exists, err := s.Exists(key)
if err != nil {
return err
}
// Found the key, return KeyExists
if exists {
return ErrKeyExists
}
e := &Entry{
Key: key,
Meta: BitSetIfAbsent,
Value: val,
UserMeta: userMeta,
}
if err := s.BatchSet([]*Entry{e}); err != nil {
return err
}
return e.Error
}
// EntriesSet adds a Set to the list of entries.
// Exposing this so that user does not have to specify the Entry directly.
func EntriesSet(s []*Entry, key, val []byte) []*Entry {
return append(s, &Entry{
Key: key,
Value: val,
})
}
// CompareAndSet sets the given value, ensuring that the no other Set operation has happened,
// since last read. If the key has a different casCounter, this would not update the key
// and return an error.
func (s *KV) CompareAndSet(key []byte, val []byte, casCounter uint64) error {
e := &Entry{
Key: key,
Value: val,
CASCounterCheck: casCounter,
}
if err := s.BatchSet([]*Entry{e}); err != nil {
return err
}
return e.Error
}
func (s *KV) compareAsync(e *Entry, f func(error)) {
b := requestPool.Get().(*request)
b.Wg = sync.WaitGroup{}
b.Wg.Add(1)
s.writeCh <- b
go func() {
b.Wg.Wait()
if b.Err != nil {
f(b.Err)
return
}
f(e.Error)
}()
}
// CompareAndSetAsync is the asynchronous version of CompareAndSet. It accepts a callback function
// which is called when the CompareAndSet completes. Any error encountered during execution is
// passed as an argument to the callback function.
func (s *KV) CompareAndSetAsync(key []byte, val []byte, casCounter uint64, f func(error)) {
e := &Entry{
Key: key,
Value: val,
CASCounterCheck: casCounter,
}
s.compareAsync(e, f)
}
// Delete deletes a key.
// Exposing this so that user does not have to specify the Entry directly.
// For example, BitDelete seems internal to badger.
func (s *KV) Delete(key []byte) error {
e := &Entry{
Key: key,
Meta: BitDelete,
}
return s.BatchSet([]*Entry{e})
}