From 5a0e01aa357f8f522377c365535a79925d3ca21b Mon Sep 17 00:00:00 2001
From: Arnab Chakraborty
+Because:Otherwise, for some $\alpha\in \Lambda$ we have $C_ \alpha\cap D\neq\phi$ and $C_ \alpha\cap E\neq\phi.$ Then $(C_ \alpha\cap E)\cup(C_ \alpha\cap E)$ is a disconnection for $C_ \alpha.$Also, $\exists \alpha\in \Lambda~~C_ \alpha\subseteq D$ and $\exists \beta\in \Lambda~~C_ \beta\subseteq E.$ -+Because:Otherwise, either $D=\phi$ or $E=\phi.$@@ -279,7 +279,7 @@This function is continuous. -
+Because: Let $A\subseteq{\mathbb R}$ be open.@@ -353,7 +353,7 @@
+
Because: $U$ is clopen in $A\cup C.$ Since $C\cap U=\phi,$ hence $U\subseteq A.$ Since $A,B$ are separated, hence $B$ is separated from $U.$ So $U$ is clopen in $A\cup B\cup C.$ @@ -433,7 +433,7 @@Then $A$ is the intersection of all its clopen supersets. -
+Because: Let $C$ be a clopen superset of $A.$ Let $p\in C^c.$ Then $C^c$ and $C$ provide a disconnection for $A\cup\{p\}.$ @@ -874,7 +874,7 @@-We take any $x\in C.$. Then $\{x}^c$ is an open set containing $p.$ +We take any $x\in C.$. Then $\{x\}^c$ is an open set containing $p.$ So there must be some $n\in{\mathbb N}$ such that $B_n\subseteq\{x\}^c,$ ie, $c\in B_n^c(\contra\bc x\in C^c).$ @@ -997,7 +997,7 @@
SOLUTION: -Let $G=\{(x,f(x))~:~x\in X\}.$ We take any $(a,b)\in (X\timesY)\seminus G.$ +Let $G=\{(x,f(x))~:~x\in X\}.$ We take any $(a,b)\in (X\times Y)\setminus G.$ So $b\neq f(a).$ Since $Y$ is $T_2,$ hence can find two disjoint open sets $U$ and $V$ in $Y$ such that $f(a)\in U$ and $b\in V.$ @@ -1105,7 +1105,7 @@
Then $N\left(x,\frac \epsilon2\right)\subseteq G.$ -
/// @@ -1406,7 +1406,7 @@+Because: Take any $y\in N\left(x,\frac \epsilon2\right)$ and any $a\in A.$ @@ -1189,7 +1189,7 @@Since $f$ is an isometry, it is one-one. -
+Because: $x_1\neq x_2\Rightarrow d(x_1,x_2) > 0 \Rightarrow d'(f(x_1),f(x_2))= d(x_1,x_2)> 0\Rightarrow f(x_1)\neq f(x_2).$@@ -1340,7 +1340,7 @@Then the subcollection ${\cal D}=\{B_n~:~n\in{\mathbb N}\}$ is again a base. -Clearly, $B_n\in\{\cal B}\subseteq\tau.$ +Clearly, $B_n\in{\cal B}\subseteq\tau.$ Let $U\in\tau$ and $x\in U.$ Then $\exists n\in{\mathbb N} ~~x\in C_n\subseteq U.$
Each convergent sequence is eventually constant. -
+Because: Let $x_n\rightarrow L.$ Then $G = \{x_n\}^c\cup\{L\}$ is an open neighbourhood of $L.$ So $\exists K\in{\mathbb N}~~\forall n\geq K~~x_n\in G.$ diff --git a/topo/topo2.rb b/topo/topo2.rb index 867276121..a2d1213be 100644 --- a/topo/topo2.rb +++ b/topo/topo2.rb @@ -540,7 +540,7 @@ LetC = \cup_n B_n^c, which is a countable union of finite sets, and hence countable. SinceX is uncountable,C^c\neq\phi. -We take anyx\in C. . Then\{x}^c is an open set containingp. +We take anyx\in C. . Then\{x\}^c is an open set containingp. So there must be somen\in\nn such thatB_n\seq\{x\}^c, ie,c\in B_n^c(\contra\bc x\in C^c). @@ -630,7 +630,7 @@ Y, whereX\times Y is endowed with the product topology.[2] @}@{ -Let @} diff --git a/topo/topo2.rb.scrp b/topo/topo2.rb.scrp index c116ecb44..e69de29bb 100644 --- a/topo/topo2.rb.scrp +++ b/topo/topo2.rb.scrp @@ -1,25 +0,0 @@ -G=\{(x,f(x))~:~x\in X\}. We take any(a,b)\in (X\timesY)\seminus G. +LetG=\{(x,f(x))~:~x\in X\}. We take any(a,b)\in (X\times Y)\setminus G. Sob\neq f(a). SinceY isT_2, hence can find two disjoint open setsU andV inY such thatf(a)\in U andb\in V. @@ -917,7 +917,7 @@ Then the subcollection{\cal D}=\{B_n~:~n\in\nn\} is again a base. -Clearly,B_n\in\{\cal B}\seq\tau. +Clearly,B_n\in{\cal B}\seq\tau. LetU\in\tau andx\in U. Then\exists n\in\nn ~~x\in C_n\seq U. - - --------EOD------- ---------EOD------- - @{ -Let @}(X,\tau) be a co-countable space, whereX is an -uncountable set. Then which of the following is true? -- -- -
(X,\tau) is a first countable space.- -
(X,\tau) is a Hausdorff space.- There exists a convergent sequence in
-X whose limit -is not unique.- A sequence
-\{x_n\} inX is convergent if and -only if there is some positive integerm such that for -alln\geq m x_n= constant.khAli sheSerTAi Thik. --------EOD------- - --------EOD------- diff --git a/topo/topo3.html b/topo/topo3.html index 0232d0c22..1ad2ac66a 100644 --- a/topo/topo3.html +++ b/topo/topo3.html @@ -158,7 +158,7 @@ @{ -Prove that a topological invariant is a metric invariant. Is the -converse ture? Justify.[3+2] - @}EXAMPLE (2021.1h): -If $\tau = \{\phi, \{a\},\{\a,b\},X\}$ is a topology on $X = +If $\tau = \{\phi, \{a\},\{a,b\},X\}$ is a topology on $X = \{a,b,c\},$ then $(X,\tau)$ is
- compact and Hausdorff.
@@ -317,8 +317,8 @@SOLUTION:Continuous, কারণ এর গ্রাফ আঁকতে হলে পেন তুলতে হয় একমাত্র domain-এ ফাঁক আছে যেখানে, সেখানে৷ Open নয়, কারণ - $(2.1,2.9)$ এখানে $open,$ কিন্তু এর image হল $\{2\},$ - যেক্ষা মোটেই ${\mathbb R}$-এর মধ্যে open নয়৷ /// + $(2.1,2.9)$ এখানে open, কিন্তু এর image হল $\{2\},$ + যেটা মোটেই ${\mathbb R}$-এর মধ্যে open নয়৷ /// @@ -385,7 +385,7 @@
Clearly, this relation is reflexive and symmetric. Also it is transitive. -
+Because: Let $a\sim b$ and $b\sim c.$ Let, if possible, $a\not\sim c.$ @@ -419,12 +419,18 @@Second part: -Since the elements of $\beta$ are all complements of closed sets (wrt $\tau$), hence $bb\subseteq \tau.$ +Since the elements of $\beta$ are all complements of closed sets (wrt $\tau$), hence $\beta\subseteq \tau.$ So $\tau'\subseteq \tau.$ Third part: + +Let $\{U_ \alpha~:~ \alpha\in \Lambda\}\subseteq \tau'$ be a cover for $X.$ Pick some + $U$ in this cover (possible since this cover cannot be empty, as $X\neq\phi$). +Then $U^c$ is compact in $(X,\tau)$ and has $\{U_ \alpha~:~ \alpha\in \Lambda\}\setminus\{U\}$ as an open + cover (since $\tau'\subseteq\tau$). So we can extract a finite subcover $\{U_1,...,U_n\}$ for $U^c.$ Then $\{U_1,...,U_n\}\cup \{U\}$ + is a finite subcover for $X$ in $(X,\tau'),$ completing the proof. /// @@ -482,7 +488,7 @@
Since $X$ is compact, there is a finite subcover, $\{F_{\alpha_1}^c,...,F_{\alpha_n}^c\}$ ie, -$\cup _{i=1}^n F_ \alpha_i^c = X,$ ie, $\cap _{i=1}^n F_ \alpha_i = \phi (\contra$ FIP$).$ +$\cup _{i=1}^n F_ {\alpha_i}^c = X,$ ie, $\cap _{i=1}^n F_ {\alpha_i} = \phi (\contra$ FIP$).$ Conversely, if every family with FIP has non-empty intersection, then we shall show that $X$ must be compact. @@ -508,6 +514,8 @@
Target$\forall x\in K^c~~\exists U\in \tau~~x\in U\subseteq K^c.$ + +$\forall x$Take any $x\in K^c.$ Then $\forall y\in K~~x\neq y.$ @@ -645,7 +653,7 @@Then $\tau$ is a topology on $X.$ -
+Because: Clearly, $\phi, X\in\tau.$ diff --git a/topo/topo3.rb b/topo/topo3.rb index 062b54c6e..84a824746 100644 --- a/topo/topo3.rb +++ b/topo/topo3.rb @@ -7,7 +7,7 @@ @{Compact @}+ @{ @{ -If @}\tau = \{\phi, \{a\},\{\a,b\},X\} is a topology onX = +If \tau = \{\phi, \{a\},\{a,b\},X\} is a topology onX = \{a,b,c\}, then(X,\tau) is- compact and Hausdorff.
@@ -110,8 +110,8 @@@{ Continuous @}, kAraN er grAf A,nkte hale pen tulte hay ekmAtra @{domain @}-e f,nAk Achhe yekhAne, sekhAne. @{Open @} nay, kAraN - @{(2.1,2.9) @} ekhAne @{open, @} kintu er @{image @} hala @{\{2\}, @} - yexA moTei @{\rr @}-er madhye @{open @} nay.(2.1,2.9) @} ekhAne @{open, @} kintu er @{image @} hala @{\{2\}, @} + yeTA moTei @{\rr @}-er madhye @{open @} nay.@@ -232,7 +238,7 @@ So @{ Let (X,\tau) be an uncountable compact space @@ -182,11 +182,17 @@ HenceB_1\cap B_2\in \beta. So\beta is a basis. Second part: -Since the elements of\beta are all complements of closed sets (wrt\tau ), hencebb\seq \tau. +Since the elements of\beta are all complements of closed sets (wrt\tau ), hence\beta\seq \tau. So\tau'\seq \tau. Third part: + +Let\{U_ \alpha~:~ \alpha\in \Lambda\}\seq \tau' be a cover forX. Pick some +U in this cover (possible since this cover cannot be empty, asX\neq\phi ). +ThenU^c is compact in(X,\tau) and has\{U_ \alpha~:~ \alpha\in \Lambda\}\setminus\{U\} as an open + cover (since\tau'\seq\tau ). So we can extract a finite subcover\{U_1,...,U_n\} forU^c. Then\{U_1,...,U_n\}\cup \{U\} + is a finite subcover forX in(X,\tau'), completing the proof. @}\{F_ \alpha^c~:~ \alpha\in \Lambda\} is an open cover ofX. SinceX is compact, there is a finite subcover,\{F_{\alpha_1}^c,...,F_{\alpha_n}^c\} ie, -\cup _{i=1}^n F_ \alpha_i^c = X, ie,\cap _{i=1}^n F_ \alpha_i = \phi (\contra FIP). +\cup _{i=1}^n F_ {\alpha_i}^c = X, ie,\cap _{i=1}^n F_ {\alpha_i} = \phi (\contra FIP). Conversely, if every family with FIP has non-empty intersection, then we shall show thatX must be compact. @@ -255,6 +261,7 @@ Shall show thatK is closed, ie,K^c is open, ie\forall x\in K^c~~\exists U\in \tau~~x\in U\seq K^c. +x Take anyx\in K^c. Then\forall y\in K~~x\neq y. diff --git a/topo/topo3.rb.bkp b/topo/topo3.rb.bkp index b1ddd587c..dbf0eb8d8 100644 --- a/topo/topo3.rb.bkp +++ b/topo/topo3.rb.bkp @@ -7,7 +7,7 @@ @{Compact @}+ @{ @{ -If @}\tau = \{\phi, \{a\},\{\a,b\},X\} is a topology onX = +If \tau = \{\phi, \{a\},\{a,b\},X\} is a topology onX = \{a,b,c\}, then(X,\tau) is- compact and Hausdorff.
@@ -110,8 +110,8 @@ Then which of the following is true?@{ Continuous @}, kAraN er grAf A,nkte hale pen tulte hay ekmAtra @{domain @}-e f,nAk Achhe yekhAne, sekhAne. @{Open @} nay, kAraN - @{(2.1,2.9) @} ekhAne @{open, @} kintu er @{image @} hala @{\{2\}, @} - yexA moTei @{\rr @}-er madhye @{open @} nay.(2.1,2.9) @} ekhAne @{open, @} kintu er @{image @} hala @{\{2\}, @} + yeTA moTei @{\rr @}-er madhye @{open @} nay.@@ -232,7 +238,7 @@ Let, if possible, @{ Let (X,\tau) be an uncountable compact space @@ -182,11 +182,17 @@ HenceB_1\cap B_2 = (K_1\cup K_2)^c = K^c, whereK=K_1\cup K_2 i HenceB_1\cap B_2\in \beta. So\beta is a basis. Second part: -Since the elements of\beta are all complements of closed sets (wrt\tau ), hencebb\seq \tau. +Since the elements of\beta are all complements of closed sets (wrt\tau ), hence\beta\seq \tau. So\tau'\seq \tau. Third part: + +Let\{U_ \alpha~:~ \alpha\in \Lambda\}\seq \tau' be a cover forX. Pick some +U in this cover (possible since this cover cannot be empty, asX\neq\phi ). +ThenU^c is compact in(X,\tau) and has\{U_ \alpha~:~ \alpha\in \Lambda\}\setminus\{U\} as an open + cover (since\tau'\seq\tau ). So we can extract a finite subcover\{U_1,...,U_n\} forU^c. Then\{U_1,...,U_n\}\cup \{U\} + is a finite subcover forX in(X,\tau'), completing the proof. @}\cap _{\alpha\in \Lambda} F_ \alpha = \phi. Then, de M So\{F_ \alpha^c~:~ \alpha\in \Lambda\} is an open cover ofX. SinceX is compact, there is a finite subcover,\{F_{\alpha_1}^c,...,F_{\alpha_n}^c\} ie, -\cup _{i=1}^n F_ \alpha_i^c = X, ie,\cap _{i=1}^n F_ \alpha_i = \phi (\contra FIP). +\cup _{i=1}^n F_ {\alpha_i}^c = X, ie,\cap _{i=1}^n F_ {\alpha_i} = \phi (\contra FIP). Conversely, if every family with FIP has non-empty intersection, then we shall show thatX must be compact. @@ -336,13 +342,13 @@ samAdhAne khAli @{f @}-er @{domain @}-TA ye @{T_2 @}, eTukui l+@} @{ Prove that a real valued continuous function @}f on a compact set(X,\tau) attains its greatest value. [2] -@{ Standard result. @}+@} @{ Prove that every closed and bounded interval of the real line @}\rr (i.e.,\rr with the usual topology) is compact. [3] -@{ Standard result. @}@{ diff --git a/topo/topo3.rb.mrk b/topo/topo3.rb.mrk index 51b400812..2b930fc49 100644 --- a/topo/topo3.rb.mrk +++ b/topo/topo3.rb.mrk @@ -1 +1 @@ -345 +265 diff --git a/topo/topo3.rb.sav1 b/topo/topo3.rb.sav1 index c26f94ae1..c64ebeaa6 100644 --- a/topo/topo3.rb.sav1 +++ b/topo/topo3.rb.sav1 @@ -7,7 +7,7 @@ @{ Compact @}+ @{ @{ -If @}\tau = \{\phi, \{a\},\{\a,b\},X\} is a topology onX = +If \tau = \{\phi, \{a\},\{a,b\},X\} is a topology onX = \{a,b,c\}, then(X,\tau) is- compact and Hausdorff.
@@ -110,8 +110,8 @@ Then which of the following is true?@{ Continuous @}, kAraN er grAf A,nkte hale pen tulte hay ekmAtra @{domain @}-e f,nAk Achhe yekhAne, sekhAne. @{Open @} nay, kAraN - @{(2.1,2.9) @} ekhAne @{open, @} kintu er @{image @} hala @{\{2\}, @} - yexA moTei @{\rr @}-er madhye @{open @} nay.(2.1,2.9) @} ekhAne @{open, @} kintu er @{image @} hala @{\{2\}, @} + yeTA moTei @{\rr @}-er madhye @{open @} nay.@@ -330,19 +336,19 @@ be compact such that @{ Let (X,\tau) be an uncountable compact space @@ -182,11 +182,17 @@ HenceB_1\cap B_2 = (K_1\cup K_2)^c = K^c, whereK=K_1\cup K_2 i HenceB_1\cap B_2\in \beta. So\beta is a basis. Second part: -Since the elements of\beta are all complements of closed sets (wrt\tau ), hencebb\seq \tau. +Since the elements of\beta are all complements of closed sets (wrt\tau ), hence\beta\seq \tau. So\tau'\seq \tau. Third part: + +Let\{U_ \alpha~:~ \alpha\in \Lambda\}\seq \tau' be a cover forX. Pick some +U in this cover (possible since this cover cannot be empty, asX\neq\phi ). +ThenU^c is compact in(X,\tau) and has\{U_ \alpha~:~ \alpha\in \Lambda\}\setminus\{U\} as an open + cover (since\tau'\seq\tau ). So we can extract a finite subcover\{U_1,...,U_n\} forU^c. Then\{U_1,...,U_n\}\cup \{U\} + is a finite subcover forX in(X,\tau'), completing @}\tau_1\seq \tau_2. Prove that\tau_1=\tau_2. [ @{f:(X,\tau_2)\to(X,\tau_1) @} nichchhi @{f(x)=x. @} tabe @{\tau_1\seq \tau_2 @} haoyAy @{f @} ekTA @{continuous @} @{function @} habe. Ager a.nker yuk+tite @{f @} ekTA @{homeomorphism. @} tAi dudiker @{topology @} ek hate bAdhya. Ager a.nke abashya @{metric space @} niye kaj hachchhila. kintu -samAdhAne khAli @{f @}-er @{domain @}-TA ye @{T_2 @}, eTukui +samAdhAne khAli @{f @}-er @{domain @}-TA ye @{T_2 @}, eTukui legechhe.+@} @{ Prove that a real valued continuous function @}f on a compact set(X,\tau) attains its greatest value. [2] -@{ Standard result. @}+@} @{ Prove that every closed and bounded interval of the real line @}\rr (i.e.,\rr with the usual topology) is compact. [3] -@{ Standard result. @}@{ diff --git a/topo/topo3.rb.sav2 b/topo/topo3.rb.sav2 index 792a18ce5..a4b5f792b 100644 --- a/topo/topo3.rb.sav2 +++ b/topo/topo3.rb.sav2 @@ -7,7 +7,7 @@ @{ Compact @}+ @{ @{ -If @}\tau = \{\phi, \{a\},\{\a,b\},X\} is a topology onX = +If \tau = \{\phi, \{a\},\{a,b\},X\} is a topology onX = \{a,b,c\}, then(X,\tau) is- compact and Hausdorff.
@@ -110,8 +110,8 @@ Then which of the following is true?@{ Continuous @}, kAraN er grAf A,nkte hale pen tulte hay ekmAtra @{domain @}-e f,nAk Achhe yekhAne, sekhAne. @{Open @} nay, kAraN - @{(2.1,2.9) @} ekhAne @{open, @} kintu er @{image @} hala @{\{2\}, @} - yexA moTei @{\rr @}-er madhye @{open @} nay.(2.1,2.9) @} ekhAne @{open, @} kintu er @{image @} hala @{\{2\}, @} + yeTA moTei @{\rr @}-er madhye @{open @} nay.@@ -330,19 +336,19 @@ be compact such that @{ Let (X,\tau) be an uncountable compact space @@ -182,11 +182,17 @@ HenceB_1\cap B_2 = (K_1\cup K_2)^c = K^c, whereK=K_1\cup K_2 i HenceB_1\cap B_2\in \beta. So\beta is a basis. Second part: -Since the elements of\beta are all complements of closed sets (wrt\tau ), hencebb\seq \tau. +Since the elements of\beta are all complements of closed sets (wrt\tau ), hence\beta\seq \tau. So\tau'\seq \tau. Third part: + +Let\{U_ \alpha~:~ \alpha\in \Lambda\}\seq \tau' be a cover forX. Pick some +U in this cover (possible since this cover cannot be empty, asX\neq\phi ). +ThenU^c is compact in(X,\tau) and has\{U_ \alpha~:~ \alpha\in \Lambda\}\setminus\{U\} as an open + cover (since\tau'\seq\tau ). So we can extract a finite subcover\{U_1,...,U_n\} forU^c. Then\{U_1,...,U_n\}\cup \{U\} + is a finite subcover forX in(X,\tau'), @}\tau_1\seq \tau_2. Prove that\tau_1=\tau_2. [ @{f:(X,\tau_2)\to(X,\tau_1) @} nichchhi @{f(x)=x. @} tabe @{\tau_1\seq \tau_2 @} haoyAy @{f @} ekTA @{continuous @} @{function @} habe. Ager a.nker yuk+tite @{f @} ekTA @{homeomorphism. @} tAi dudiker @{topology @} ek hate bAdhya. Ager a.nke abashya @{metric space @} niye kaj hachchhila. kintu -samAdhAne khAli @{f @}-er @{domain @}-TA ye @{T_2 @}, +samAdhAne khAli @{f @}-er @{domain @}-TA ye @{T_2 @}, eTukui legechhe.+@} @{ Prove that a real valued continuous function @}f on a compact set(X,\tau) attains its greatest value. [2] -@{ Standard result. @}+@} @{ Prove that every closed and bounded interval of the real line @}\rr (i.e.,\rr with the usual topology) is compact. [3] -@{ Standard result. @}@{