From 5a0e01aa357f8f522377c365535a79925d3ca21b Mon Sep 17 00:00:00 2001 From: Arnab Chakraborty Date: Tue, 23 Apr 2024 12:28:10 +0530 Subject: [PATCH] topocorr --- topo/topo2.html | 22 +++++++++++----------- topo/topo2.rb | 6 +++--- topo/topo2.rb.scrp | 25 ------------------------- topo/topo3.html | 22 +++++++++++++++------- topo/topo3.rb | 17 ++++++++++++----- topo/topo3.rb.bkp | 20 +++++++++++++------- topo/topo3.rb.mrk | 2 +- topo/topo3.rb.sav1 | 20 +++++++++++++------- topo/topo3.rb.sav2 | 20 +++++++++++++------- 9 files changed, 81 insertions(+), 73 deletions(-) diff --git a/topo/topo2.html b/topo/topo2.html index 38fcb7bff..fc0c91304 100644 --- a/topo/topo2.html +++ b/topo/topo2.html @@ -206,11 +206,11 @@

Then $\forall \alpha\in \Lambda~~(C_ \alpha\subseteq D\mbox{ or } C_ \alpha\subseteq E).$ -
+
Because:Otherwise, for some $\alpha\in \Lambda$ we have $C_ \alpha\cap D\neq\phi$ and $C_ \alpha\cap E\neq\phi.$ Then $(C_ \alpha\cap E)\cup(C_ \alpha\cap E)$ is a disconnection for $C_ \alpha.$
Also, $\exists \alpha\in \Lambda~~C_ \alpha\subseteq D$ and $\exists \beta\in \Lambda~~C_ \beta\subseteq E.$ -
+
Because:Otherwise, either $D=\phi$ or $E=\phi.$

@@ -279,7 +279,7 @@

This function is continuous. -
+
Because: Let $A\subseteq{\mathbb R}$ be open.