-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredictFromModel.py
93 lines (73 loc) · 4.1 KB
/
predictFromModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import pandas
from file_operations import file_methods
from data_preprocessing import preprocessing
from data_ingestion import data_loader_prediction
from application_logging import logger
from Prediction_Raw_Data_Validation.predictionDataValidation import Prediction_Data_validation
class prediction:
def __init__(self,path):
self.file_object = open("Prediction_Logs/Prediction_Log.txt", 'a+')
self.log_writer = logger.App_Logger()
self.pred_data_val = Prediction_Data_validation(path)
def predictionFromModel(self):
try:
self.pred_data_val.deletePredictionFile() #deletes the existing prediction file from last run!
self.log_writer.log(self.file_object,'Start of Prediction')
data_getter=data_loader_prediction.Data_Getter_Pred(self.file_object,self.log_writer)
data=data_getter.get_data()
#code change
# wafer_names=data['Wafer']
# data=data.drop(labels=['Wafer'],axis=1)
preprocessor=preprocessing.Preprocessor(self.file_object,self.log_writer)
data = preprocessor.dropUnnecessaryColumns(data,['DATE','Precip','WETBULBTEMPF','DewPointTempF','StationPressure'])
# replacing '?' values with np.nan as discussed in the EDA part
data = preprocessor.replaceInvalidValuesWithNull(data)
is_null_present,cols_with_missing_values=preprocessor.is_null_present(data)
if(is_null_present):
data=preprocessor.impute_missing_values(data)
#scale the prediction data
data_scaled = pandas.DataFrame(preprocessor.standardScalingData(data),columns=data.columns)
#data=data.to_numpy()
file_loader=file_methods.File_Operation(self.file_object,self.log_writer)
kmeans=file_loader.load_model('KMeans')
##Code changed
#pred_data = data.drop(['Wafer'],axis=1)
clusters=kmeans.predict(data_scaled)#drops the first column for cluster prediction
data_scaled['clusters']=clusters
clusters=data_scaled['clusters'].unique()
result=[] # initialize blank list for storing predicitons
# with open('EncoderPickle/enc.pickle', 'rb') as file: #let's load the encoder pickle file to decode the values
# encoder = pickle.load(file)
for i in clusters:
cluster_data= data_scaled[data_scaled['clusters']==i]
cluster_data = cluster_data.drop(['clusters'],axis=1)
model_name = file_loader.find_correct_model_file(i)
model = file_loader.load_model(model_name)
for val in (model.predict(cluster_data.values)):
result.append(val)
result = pandas.DataFrame(result,columns=['Predictions'])
path="Prediction_Output_File/Predictions.csv"
result.to_csv("Prediction_Output_File/Predictions.csv",header=True) #appends result to prediction file
self.log_writer.log(self.file_object,'End of Prediction')
except Exception as ex:
self.log_writer.log(self.file_object, 'Error occured while running the prediction!! Error:: %s' % ex)
raise ex
return path
# old code
# i=0
# for row in data:
# cluster_number=kmeans.predict([row])
# model_name=file_loader.find_correct_model_file(cluster_number[0])
#
# model=file_loader.load_model(model_name)
# #row= sparse.csr_matrix(row)
# result=model.predict([row])
# if (result[0]==-1):
# category='Bad'
# else:
# category='Good'
# self.predictions.write("Wafer-"+ str(wafer_names[i])+','+category+'\n')
# i=i+1
# self.log_writer.log(self.file_object,'The Prediction is :' +str(result))
# self.log_writer.log(self.file_object,'End of Prediction')
#print(result)