-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlemmatizer_pipeline.py
212 lines (160 loc) · 7.06 KB
/
lemmatizer_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#!/usr/bin/python
# -*- coding: utf-8 -*-
import os
import shutil
#import conllutools as ct
import conlluplus
import preprocessing as pp
import model_api
from preferences import Paths, Tokenizer, Context
import postprocess
info = """===========================================================
Lemmatizer pipeline for BabyLemmatizer 2
asahala 2023
https://github.com/asahala
University of Helsinki
Origins of Emesal Project
Centre of Excellence for Ancient Near-Eastern Empires
==========================================================="""
def io(message):
print(f'> {message}')
## TODO: READ context settigns from MODEL!"!!!!
#CONTEXT = Context.pos_context
class Lemmatizer:
def __init__(self, input_file, fast=False, ignore_numbers=True):
path, file_ = os.path.split(input_file)
f, e = file_.split('.')
#fn = os.path.join(path, f)
""" Path for saving intermediate files """
step_path = os.path.join(path, 'steps')
try:
os.mkdir(step_path)
except FileExistsError:
pass
""" Parameters """
self.ignore_numbers = ignore_numbers
fn = os.path.join(step_path, f)
self.backup_file = os.path.join(path, f'backup_{f}.conllu')
self.fast = fast
self.input_file = input_file
self.input_path = path
self.word_forms = fn + '.forms'
self.tagger_input = fn + '.tag_src'
self.tagger_output = fn + '.tag_pred'
self.lemmatizer_input = fn + '.lem_src'
self.lemmatizer_output = fn + '.lem_pred'
self.final_output = fn + '.final'
self.line_count = 0
self.segment_count = 0
#self.preprocess_input(input_file)
""" Load and normalize source CoNLL-U+ file """
self.source_file = conlluplus.ConlluPlus(input_file, validate=False)
def preprocess_source(self):
self.source_file.normalize()
formctx = self.source_file.get_contexts('form', size=Context.tagger_context)
self.source_file.update_value('formctx', formctx)
with open(self.tagger_input, 'w', encoding='utf-8') as pos_src,\
open(self.word_forms, 'w', encoding='utf-8') as wf:
io(f'Generating input data for neural net {self.input_file}')
for id_, form, formctx in self.source_file.get_contents('id', 'form', 'formctx'):
pos_src.write(
pp.make_tagger_src(formctx, context=Context.tagger_context) + '\n')
wf.write(pp.get_chars(form + '\n'))
self.line_count += 1
if id_ == '1':
self.segment_count += 1
io(f'Input file size: {self.line_count}'\
f' words in {self.segment_count} segments.')
def update_model(self, model_name):
overrides = [os.path.join(self.input_path, f) for f\
in os.listdir(self.input_path) if f.endswith('.tsv')]
if overrides:
mod_o = os.path.join(
Paths.models, model_name, 'override', 'override.conllu')
override = conlluplus.ConlluPlus(mod_o, validate=False)
for o_file in overrides:
override.read_corrections(o_file)
override.normalize()
os.remove(o_file) # this is bad
override.write_file(mod_o)
def run_model(self, model_name, cpu):
""" Read Tokenizer Preferences """
Tokenizer.read(model_name)
Context.read(model_name)
""" Update model override """
self.update_model(model_name)
""" Load and normalize source CoNLL-U+ file """
self.source_file = conlluplus.ConlluPlus(
self.input_file, validate=False)
""" Backup for write-protected fields """
pp_file = self.input_file.replace('.conllu', '_pp.conllu')
if os.path.isfile(pp_file):
is_backup = True
shutil.copy(pp_file, self.backup_file)
else:
is_backup = False
""" Preprocess data for lemmatization """
self.preprocess_source()
""" Set model paths """
tagger_path = os.path.join(
Paths.models, model_name, 'tagger', 'model.pt')
lemmatizer_path = os.path.join(
Paths.models, model_name, 'lemmatizer', 'model.pt')
""" Run tagger on input """
io(f'Tagging {self.tagger_input} with {model_name}')
model_api.run_tagger(self.tagger_input,
tagger_path,
self.tagger_output,
cpu)
""" Merge tags to make lemmatizer input """
model_api.merge_tags(self.tagger_output,
self.source_file,
self.lemmatizer_input,
'xpos',
'xposctx')
""" Run lemmatizer """
io(f'Lemmatizing {self.lemmatizer_input} with {model_name}')
model_api.run_lemmatizer(self.lemmatizer_input,
lemmatizer_path,
self.lemmatizer_output,
cpu)
""" Merge lemmata to CoNLL-U+ """
model_api.merge_tags(self.lemmatizer_output,
self.source_file,
None,
'lemma',
None)
## TODO: fix path
self.source_file.write_file(
self.input_file.replace('.conllu', '_nn.conllu'))
#""" Merge backup """
#pass
""" Initialize postprocessor """
P = postprocess.Postprocessor(
predictions = self.source_file,
model_name = model_name)
P.initialize_scores()
P.fill_unambiguous(threshold = 0.6)
P.disambiguate_by_pos_context(threshold = 0.6)
P.apply_override()
if self.ignore_numbers:
self.source_file.unlemmatize(numbers=True)
""" Temporary field cleanup """
self.source_file.force_value('xposctx', '_')
self.source_file.force_value('formctx', '_')
self.source_file.write_file(
self.input_file.replace('.conllu', '_pp.conllu'), add_info=True)
""" Merge backup """
print('> Merging manual corrections')
#if is_backup:
# conlluplus.merge_backup(self.backup_file, pp_file)
""" Write lemmalists """
self.source_file.make_lemmalists()
def override_cycle(self):
""" Lemmatization cycle """
filename, ext = os.path.splitext(self.filename)
if __name__ == "__main__":
""" Demo for lemmatization """
#l = Lemmatizer('./input/example.conllu')
#l.run_model('lbtest1')
pass