-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscrape-reddit-match-thread.py
336 lines (289 loc) · 10.1 KB
/
scrape-reddit-match-thread.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import logging
import pathlib
import time
import json
from argparse import ArgumentParser
import threading
import multiprocessing.dummy
from tqdm import tqdm
import nltk
import pandas as pd
from profanity_filter import ProfanityFilter
import praw
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
from google.cloud import language
import pyrugby.reddit
log = logging.getLogger(__name__)
log.setLevel(logging.INFO)
ch = logging.StreamHandler()
formatter = logging.Formatter(
"%(asctime)s | %(name)s | %(levelname)7s | %(message)s",
"%Y-%m-%d %H:%M:%S"
)
ch.setFormatter(formatter)
log.addHandler(ch)
# Initialise the tqdm pandas instance
tqdm.pandas()
def get_parser():
parser = ArgumentParser(
description=(
'Scrape comments from /r/rugbyunion Match Threads'
' and perform sentiment analysis'
)
)
subparsers = parser.add_subparsers(
title='Sub-commands', dest='command'
)
scraper = subparsers.add_parser('scrape')
scraper.add_argument(
'-u', '--url', action='store_true',
help='ID is a Reddit Submission URL'
)
scraper.add_argument(
'-o', '--outdir',
help='Optional output directory for final CSV '
'(Defaults to current working directory'
)
scraper.add_argument('subid', help='URL or Submission ID')
processer = subparsers.add_parser('process')
processer.add_argument('input', help='CSV of comments from "scrape"')
processer.add_argument(
'update', choices=['google', 'vader', 'profanity', 'flair'],
nargs='+', help='Which fields to add/update'
)
processer.add_argument(
'-p', '--profanities',
help='A JSON file containing profanities indexed by their "root"'
)
return parser
def get_vader_sentiment(comment, analyzer):
vs = analyzer.polarity_scores(comment)
return vs
def comment_list_to_pandas(comms, id_col='id'):
df = pd.DataFrame(comms)
df.set_index(id_col, inplace=True)
df = df.loc[~df.index.duplicated(keep='first')]
return df
def get_profanities(words, custom_profanities=None):
pf = ProfanityFilter()
if custom_profanities is not None:
pf.custom_profane_word_dictionaries = {
'en': custom_profanities
}
swears = []
for w in words:
cw = pf.censor_word(w)
if cw.is_profane:
swears.append(cw.original_profane_word)
return swears
# Class to handle mutliple Google Natural Language Requests
# Implements rate-limiting and error handling
class GoogleNaturalLanguageBatch():
def __init__(self, threads=250, limit=500, every=60):
self.nthreads = threads
self.ratelimit = threading.BoundedSemaphore(limit)
self.every = every
self.log = logging.getLogger(__name__).getChild(self.__class__.__name__).getChild(str(id(self)))
def _limited(func):
def _limited_wrapper(self, *args, **kwargs):
self.ratelimit.acquire()
t = threading.Timer(self.every, self.ratelimit.release)
t.start()
return func(self, *args, **kwargs)
return _limited_wrapper
@_limited
def _analyze_sentiment(
self,
text,
text_id=None,
doctype=language.enums.Document.Type.PLAIN_TEXT,
encoding=language.enums.EncodingType.UTF8,
doc_language='en'
):
client = language.LanguageServiceClient()
document = {
"content": text,
"type": doctype,
"language": doc_language,
}
sent = client.analyze_sentiment(
document,
encoding_type=encoding
)
# Must do this to clean up connections and
# avoid "Too Many Open Files" error
# https://github.com/googleapis/google-cloud-python/issues/5523
client.transport.channel.close()
return (text_id, sent)
def analyze_sentiment(self, docs):
with multiprocessing.dummy.Pool(self.nthreads) as tpool:
results = tpool.starmap_async(self._analyze_sentiment, docs)
self.track_results(results)
return results.get()
def track_results(self, task, interval=60):
while task._number_left > 0:
self.log.info(
"Tasks remaining = %d",
(task._number_left * task._chunksize)
)
time.sleep(interval)
def scrape_and_clean(subid, url=False, outdir=''):
sub_id = subid
log.info("Creating Reddit instance")
# Settings for this 'bot' in praw.ini
reddit = praw.Reddit("rugby-union-comment-scraper")
if url:
log.info("Fetching PRAW submission by url: %s", sub_id)
submission = reddit.submission(url=sub_id)
sub_id = submission.id
log.info("Submission ID determined as: %s", sub_id)
else:
log.info("Fetching PRAW submission by id: %s", sub_id)
submission = reddit.submission(sub_id)
# Get all comments for submission from Pushshift
log.info("Fetching comments from Pushshift")
start = time.time()
pushshift_comms = pyrugby.reddit.get_all_pushshift_comments(sub_id)
end = time.time()
log.info(
"Pushshift: Fetched %d comments in %d seconds",
len(pushshift_comms), end-start
)
log.info("Processing Pushshift comment flair")
for comment in pushshift_comms:
fid = pyrugby.reddit.get_flair_identifier(comment)
comment['flair_id'] = fid
if fid not in pyrugby.reddit.FLAIRS:
log.warning(
'Unrecognised flair found! | %s / %s / %s',
comment["id"], comment.get("author_flair_css_class"),
comment.get("author_flair_richtext")
)
log.info("Fetching PRAW comments - approx %d", submission.num_comments)
start = time.time()
submission.comments.replace_more(limit=None)
end = time.time()
log.info(
"PRAW Fetched %d comments in %d seconds",
len(submission.comments.list()), end-start
)
praw_comms = []
log.info("Processing PRAW comments")
for comment in submission.comments.list():
p_cmnt = pyrugby.reddit.praw_comment_to_dict(comment)
praw_comms.append(p_cmnt)
push_comms = comment_list_to_pandas(pushshift_comms)
praw_comms = comment_list_to_pandas(praw_comms)
log.info("Merging comment sets")
all_comms = push_comms.join(
praw_comms, how='outer', rsuffix='_praw'
)
# Get plaintext comment using pushshift comment body
log.info("Converting comment to plaintext")
all_comms['plaintext'] = all_comms.body.apply(
pyrugby.reddit.comment_md_to_plaintext
)
csvname = pathlib.Path(outdir, f"{sub_id}_cleaned.csv")
log.info("Saving comments to CSV %s", csvname)
all_comms.to_csv(csvname)
def add_vader_sentiment(df):
log.info("Calculating VADER comment sentiment")
vader = SentimentIntensityAnalyzer()
df['vader_score'] = df.body.progress_apply(
get_vader_sentiment, analyzer=vader
).apply(
lambda x: x['compound']
)
def add_google_sentiment(df):
log.info("Fetching Google NLP sentiment")
start = time.time()
google_nlp = GoogleNaturalLanguageBatch()
google_scores = google_nlp.analyze_sentiment(
list(zip(df.plaintext, df.id))
)
end = time.time()
log.info("All scores fetched in %d seconds", end-start)
google_df = pd.DataFrame(google_scores, columns=('id', 'sent'))
google_df.set_index('id', inplace=True)
df.drop(
columns=('google_score', 'google_magnitude'),
errors='ignore', inplace=True
)
df = df.join(google_df.sent.apply(
lambda x: pd.Series(
(x.document_sentiment.score, x.document_sentiment.magnitude),
index=('google_score', 'google_magnitude')
)
))
def add_profanities(df, profanity_json=None):
# Set up the custom profanity dicts if needed
custom_profanities = None
profane_word_roots = {}
if profanity_json is not None:
with open(profanity_json, 'r') as pjson:
_custom_profanities = json.load(pjson)
custom_profanities = {
w for sublist
in _custom_profanities.values()
for w in sublist
}
profane_word_roots = {
w: root for root, words
in _custom_profanities.items()
for w in words
}
log.info("Tokenizing comments")
df['words'] = df.plaintext.progress_apply(nltk.word_tokenize)
log.info("Detecting swear words")
df['swears'] = df.words.progress_apply(
get_profanities, custom_profanities=custom_profanities
)
log.info("Calculating swear word roots")
df['swears_root'] = df.swears.progress_apply(
lambda x: [profane_word_roots.get(word, word) for word in x]
)
df['swears'] = df.swears.str.join(',')
df['swears_root'] = df.swears_root.str.join(',')
df['words'] = df.words.str.len()
def add_flair_info(df):
df[['flair_country', 'flair_league', 'flair_club']] = df.flair_id.apply(
lambda x: pd.Series(
pyrugby.reddit.FLAIRS.get(
x, {'country': None, 'club': None, 'league': None}
)
)
)
PROCESS_FUNCMAP = {
'google': add_google_sentiment,
'vader': add_vader_sentiment,
'profanity': add_profanities,
'flair': add_flair_info
}
def main(args):
if args.command == 'scrape':
scrape_and_clean(args.subid, args.url, args.outdir)
elif args.command == 'process':
if 'profanity' in args.update and not args.profanities:
print(
'No profanities supplied falling back to'
' "profanity_filter" defaults'
)
incsv = pathlib.Path(args.input)
df = pd.read_csv(incsv)
for field in args.update:
if field == 'profanity':
PROCESS_FUNCMAP[field](df, args.profanities)
else:
PROCESS_FUNCMAP[field](df)
df.to_csv(
incsv.with_name(
f'{incsv.stem}_{"_".join(args.update)}.csv'
),
index=False
)
else:
print('Unrecognised command!')
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
main(args)