-
Notifications
You must be signed in to change notification settings - Fork 113
/
Copy pathlaunch.py
149 lines (135 loc) · 6.45 KB
/
launch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import sys
import requests
def parts(length):
result = []
for i in range(length):
a = chr(97 + (i // 26))
b = chr(97 + (i % 26))
result.append(a + b)
return result
# [['model-url-0', 'model-url-1', ...], 'tokenizer-url', 'weights-float-type', 'buffer-float-type', 'model-type']
MODELS = {
'tinyllama_1_1b_3t_q40': [
['https://huggingface.co/b4rtaz/TinyLlama-1.1B-3T-Distributed-Llama/resolve/main/dllama_model_tinylama_1.1b_3t_q40.m?download=true'],
'https://huggingface.co/b4rtaz/TinyLlama-1.1B-3T-Distributed-Llama/resolve/main/dllama_tokenizer_tinylama_1.1b_3t.t?download=true',
'q40', 'q80', 'base'
],
'llama3_8b_q40': [
['https://huggingface.co/b4rtaz/Llama-3-8B-Q40-Distributed-Llama/resolve/main/dllama_model_meta-llama-3-8b_q40.m?download=true'],
'https://huggingface.co/b4rtaz/Llama-3-8B-Q40-Distributed-Llama/resolve/main/dllama_tokenizer_llama3.t?download=true',
'q40', 'q80', 'base'
],
'llama3_8b_instruct_q40': [
['https://huggingface.co/b4rtaz/Llama-3-8B-Q40-Instruct-Distributed-Llama/resolve/main/dllama_model_lama3_instruct_q40.m?download=true'],
'https://huggingface.co/b4rtaz/Llama-3-8B-Q40-Instruct-Distributed-Llama/resolve/main/dllama_tokenizer_llama3.t?download=true',
'q40', 'q80', 'chat'
],
'llama3_1_8b_instruct_q40': [
['https://huggingface.co/b4rtaz/Llama-3_1-8B-Q40-Instruct-Distributed-Llama/resolve/main/dllama_model_llama3.1_instruct_q40.m?download=true'],
'https://huggingface.co/b4rtaz/Llama-3_1-8B-Q40-Instruct-Distributed-Llama/resolve/main/dllama_tokenizer_llama_3_1.t?download=true',
'q40', 'q80', 'chat'
],
'llama3_1_405b_instruct_q40': [
list(map(lambda suffix : f'https://huggingface.co/b4rtaz/Llama-3_1-405B-Q40-Instruct-Distributed-Llama/resolve/main/dllama_model_llama31_405b_q40_{suffix}?download=true', parts(56))),
'https://huggingface.co/b4rtaz/Llama-3_1-405B-Q40-Instruct-Distributed-Llama/resolve/main/dllama_tokenizer_llama_3_1.t?download=true',
'q40', 'q80', 'chat'
],
'llama3_2_1b_instruct_q40': [
['https://huggingface.co/b4rtaz/Llama-3_2-1B-Q40-Instruct-Distributed-Llama/resolve/main/dllama_model_llama3.2-1b-instruct_q40.m?download=true'],
'https://huggingface.co/b4rtaz/Llama-3_2-1B-Q40-Instruct-Distributed-Llama/resolve/main/dllama_tokenizer_llama3_2.t?download=true',
'q40', 'q80', 'chat', '--max-seq-len 8192'
],
'llama3_2_3b_instruct_q40': [
['https://huggingface.co/b4rtaz/Llama-3_2-3B-Q40-Instruct-Distributed-Llama/resolve/main/dllama_model_llama3.2-3b-instruct_q40.m?download=true'],
'https://huggingface.co/b4rtaz/Llama-3_2-3B-Q40-Instruct-Distributed-Llama/resolve/main/dllama_tokenizer_llama3_2.t?download=true',
'q40', 'q80', 'chat', '--max-seq-len 8192'
],
'llama3_3_70b_instruct_q40': [
list(map(lambda suffix : f'https://huggingface.co/b4rtaz/Llama-3_3-70B-Q40-Instruct-Distributed-Llama/resolve/main/dllama_model_llama-3.3-70b_q40{suffix}?download=true', parts(11))),
'https://huggingface.co/b4rtaz/Llama-3_3-70B-Q40-Instruct-Distributed-Llama/resolve/main/dllama_tokenizer_llama-3.3-70b.t?download=true',
'q40', 'q80', 'chat', '--max-seq-len 8192'
],
}
def downloadFile(urls: str, path: str):
if (os.path.isfile(path)):
fileName = os.path.basename(path)
result = input(f'❓ {fileName} already exists, do you want to download again? ("Y" if yes): ')
if (result.upper() != 'Y'):
return
lastSizeMb = 0
with open(path, 'wb') as file:
for url in urls:
print(f'📄 {url}')
response = requests.get(url, stream=True)
response.raise_for_status()
for chunk in response.iter_content(chunk_size=4096):
file.write(chunk)
sizeMb = file.tell() // (1024 * 1024)
if (sizeMb != lastSizeMb):
sys.stdout.write("\rDownloaded %i MB" % sizeMb)
lastSizeMb = sizeMb
sys.stdout.write('\n')
sys.stdout.write(' ✅\n')
def download(modelName: str, model: list):
dirPath = os.path.join('models', modelName)
print(f'📀 Downloading {modelName} to {dirPath}...')
os.makedirs(dirPath, exist_ok=True)
modelUrls = model[0]
tokenizerUrl = model[1]
modelPath = os.path.join(dirPath, f'dllama_model_{modelName}.m')
tokenizerPath = os.path.join(dirPath, f'dllama_tokenizer_{modelName}.t')
downloadFile(modelUrls, modelPath)
downloadFile([tokenizerUrl], tokenizerPath)
print('📀 All files are downloaded')
return (modelPath, tokenizerPath)
def writeRunFile(modelName: str, command: str):
filePath = f'run_{modelName}.sh'
with open(filePath, 'w') as file:
file.write('#!/bin/sh\n')
file.write('\n')
file.write(f'{command}\n')
return filePath
def printUsage():
print('Usage: python download-model.py <model>')
print()
print('Options:')
print(' <model> The name of the model to download')
print(' --run Run the model after download')
print()
print('Available models:')
for model in MODELS:
print(f' {model}')
if __name__ == '__main__':
if (len(sys.argv) < 2):
printUsage()
exit(1)
os.chdir(os.path.dirname(__file__))
modelName = sys.argv[1].replace('-', '_')
if modelName not in MODELS:
print(f'Model is not supported: {modelName}')
exit(1)
runAfterDownload = sys.argv.count('--run') > 0
model = MODELS[modelName]
(modelPath, tokenizerPath) = download(modelName, model)
if (model[4] == 'chat'):
command = './dllama chat'
else:
command = './dllama inference --steps 64 --prompt "Hello world"'
command += f' --model {modelPath} --tokenizer {tokenizerPath} --buffer-float-type {model[3]} --nthreads 4'
if (len(model) > 5):
command += f' {model[5]}'
print('To run Distributed Llama you need to execute:')
print('--- copy start ---')
print()
print('\033[96m' + command + '\033[0m')
print()
print('--- copy end -----')
runFilePath = writeRunFile(modelName, command)
print(f'🌻 Created {runFilePath} script to easy run')
if (not runAfterDownload):
runAfterDownload = input('❓ Do you want to run Distributed Llama? ("Y" if yes): ').upper() == 'Y'
if (runAfterDownload):
if (not os.path.isfile('dllama')):
os.system('make dllama')
os.system(command)