-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrain.lua
executable file
·213 lines (173 loc) · 6.81 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
local optim = require 'optim'
local M = {}
local Trainer = torch.class('resnet.Trainer', M)
function Trainer:__init(model, criterion, opt, optimState)
self.model = model
self.criterion = criterion
self.optimState = optimState or {
learningRate = opt.LR,
learningRateDecay = 0.0,
momentum = opt.momentum,
nesterov = true,
dampening = 0.0,
weightDecay = opt.weightDecay ,
}
self.opt = opt
self.params, self.gradParams = model:getParameters()
self.opt.decayFactor = (self.opt.minLR - self.opt.LR)/self.opt.saturateEpoch
end
function Trainer:train(epoch, dataloader)
-- Trains the model for a single epoch
self.optimState.learningRate = self:learningRate(epoch)
print(self.optimState.learningRate)
local timer = torch.Timer()
local dataTimer = torch.Timer()
local function feval()
return self.criterion.output, self.gradParams
end
local trainSize = dataloader:size()
local top1Sum, top5Sum, lossSum = 0.0, 0.0, 0.0
local N = 0
print('=> Training epoch # ' .. epoch)
-- set the batch norm to training mode
self.model:training()
for n, sample in dataloader:run() do
local dataTime = dataTimer:time().real
-- Copy inpout and target to the GPU
self:copyInputs(sample)
local output = self.model:forward(self.input)
local loss = self.criterion:forward(self.model.output, self.target)
self.model:zeroGradParameters()
self.criterion:backward(self.model.output, self.target)
self.model:backward(self.input, self.criterion.gradInput)
optim.sgd(feval, self.params, self.optimState)
-- optim.rmsprop(feval, self.params, self.optimState)
local top1, top5 = self:computeScore(output, sample.target, 1)
top1Sum = top1Sum + top1
top5Sum = top5Sum + top5
lossSum = lossSum + loss
N = N + 1
print((' | Epoch: [%d][%d/%d] Time %.3f Data %.3f Err %1.4f top1 %7.3f(%7.3f) top5 %7.3f(%7.3f)'):format(
epoch, n, trainSize, timer:time().real, dataTime, loss, top1, top1Sum / N, top5, top5Sum / N))
-- check that the storage didn't get changed do to an unfortunate getParameters call
-- assert(self.params:storage() == self.model:parameters()[1]:storage())
timer:reset()
dataTimer:reset()
end
return top1Sum / N, top5Sum / N, lossSum / N
end
function Trainer:test(epoch, dataloader)
-- Computes the top-1 and top-5 err on the validation set
local timer = torch.Timer()
local dataTimer = torch.Timer()
local size = dataloader:size()
local nCrops = self.opt.tenCrop and 10 or 1
local top1Sum, top5Sum, timeSum = 0.0, 0.0, 0.0
local N = 0
self.model:evaluate()
for n, sample in dataloader:run() do
local dataTime = dataTimer:time().real
-- Copy input and target to the GPU
self:copyInputs(sample)
local output = self.model:forward(self.input)
-- local loss = self.criterion:forward(self.model.output, self.target)
local top1, top5 = self:computeScore(output, sample.target, nCrops)
top1Sum = top1Sum + top1
top5Sum = top5Sum + top5
N = N + 1
timeSum = timeSum + timer:time().real
print((' | Test: [%d][%d/%d] Time %.3f(%.3f) Data %.3f top1 %7.3f (%7.3f) top5 %7.3f (%7.3f)'):format(
epoch, n, size, timer:time().real, timeSum, dataTime, top1, top1Sum / N, top5, top5Sum / N))
timer:reset()
dataTimer:reset()
end
self.model:training()
print((' * Finished epoch # %d top1: %7.3f top5: %7.3f\n'):format(
epoch, top1Sum / N, top5Sum / N))
return top1Sum / N, top5Sum / N
end
function Trainer:computeScore(output, target, nCrops)
if self.opt.rho ~= 1 then
tmpOutput = output[1]
if self.opt.dynamic then
local scale = output[1].new()
scale:resize(output[1]:size(1)):fill(1 / (self.opt.rho - 1))
tag = scale[1]
for i = 3, self.opt.rho do
tmpAction = self.model:getAction(i)
for j = 1, tmpAction:size(1) do
if tmpAction[j][1] > 0.5 and scale[j] == tag then
scale[j] = 1 / (i - 2)
-- print(scale[j])
end
end
end
scale = torch.repeatTensor(scale, output[1]:size(2),1):t()
local sumOutput = output[1].new()
sumOutput:resizeAs(output[1]):fill(0)
for i = 2, self.opt.rho do
sumOutput = sumOutput + output[i]
end
sumOutput:cmul(scale)
tmpOutput = tmpOutput + sumOutput
else
for i = 2, self.opt.rho do
tmpOutput = tmpOutput + output[i] / (self.opt.rho - 1)
end
end
output = tmpOutput
end
if nCrops > 1 then
-- Sum over crops
output = output:view(output:size(1) / nCrops, nCrops, output:size(2))
--:exp()
:sum(2):squeeze(2)
end
-- Coputes the top1 and top5 error rate
local batchSize = output:size(1)
local _ , predictions = output:float():sort(2, true) -- descending
-- Find which predictions match the target
local correct = predictions:eq(
target:long():view(batchSize, 1):expandAs(output))
-- Top-1 score
local top1 = 1.0 - (correct:narrow(2, 1, 1):sum() / batchSize)
-- Top-5 score, if there are at least 5 classes
local len = math.min(5, correct:size(2))
local top5 = 1.0 - (correct:narrow(2, 1, len):sum() / batchSize)
return top1 * 100, top5 * 100
end
function Trainer:copyInputs(sample)
-- Copies the input to a CUDA tensor, if using 1 GPU, or to pinned memory,
-- if using DataParallelTable. The target is always copied to a CUDA tensor
self.input = self.input or (self.opt.nGPU == 1
and torch.CudaTensor()
or cutorch.createCudaHostTensor())
self.target = self.target or torch.CudaTensor()
self.input:resize(sample.input:size()):copy(sample.input)
self.target:resize(sample.target:size()):copy(sample.target)
end
function Trainer:learningRate(epoch)
-- Training schedule
local decay = 0
if self.opt.dataset == 'imagenet' then
decay = math.floor((epoch - 1) / 30)
elseif self.opt.dataset == 'cifar10' then
decay = epoch >= 122 and 2 or epoch >= 81 and 1 or 0
end
return self.opt.LR * math.pow(0.1, decay)
end
function recursivecmul(t1, t2)
if torch.type(t2) == 'table' then
t1 = (torch.type(t1) == 'table') and t1 or {t1}
for key,_ in pairs(t2) do
t1[key], t2[key] = recursivecmul(t1[key], t2[key])
end
elseif torch.isTensor(t1) and torch.isTensor(t2) then
t1 = torch.cmul(t1,torch.repeatTensor(t2:t(),t1:size()[2],1):t())
else
error("expecting nested tensors or tables. Got "..
torch.type(t1).." and "..torch.type(t2).." instead")
end
return t1, t2
end
return M.Trainer