-
Notifications
You must be signed in to change notification settings - Fork 174
/
Copy pathplot.py
71 lines (59 loc) · 2.38 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
"""
Plot training/validation curves for multiple models.
"""
from __future__ import division
from __future__ import print_function
import argparse
import matplotlib
import numpy as np
import os
matplotlib.use('Agg') # This must be called before importing pyplot
import matplotlib.pyplot as plt
COLORS_RGB = [
(228, 26, 28), (55, 126, 184), (77, 175, 74),
(152, 78, 163), (255, 127, 0), (255, 255, 51),
(166, 86, 40), (247, 129, 191), (153, 153, 153)
]
# Scale the RGB values to the [0, 1] range, which is the format
# matplotlib accepts.
colors = [(r / 255, g / 255, b / 255) for r, g, b in COLORS_RGB]
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--dirs', nargs='+', required=True,
help='Directories where the model and costs are saved')
parser.add_argument('-s', '--save_file', type=str, required=True,
help='Filename of the output plot')
return parser.parse_args()
def graph(dirs, save_file, average_window=100):
""" Plot the training and validation costs over iterations
Params:
dirs (list(str)): Directories where the model and costs are saved
save_file (str): Filename of the output plot
average_window (int): Window size for smoothening the graphs
"""
fig, ax = plt.subplots()
ax.set_xlabel('Iters')
ax.set_ylabel('Loss')
average_filter = np.ones(average_window) / float(average_window)
for i, d in enumerate(dirs):
name = os.path.basename(os.path.abspath(d))
color = colors[i % len(colors)]
costs = np.load(os.path.join(d, 'costs.npz'))
train_costs = costs['train']
valid_costs = costs['validation'].tolist()
iters = train_costs.shape[0]
valid_range = [500 * (i + 1) for i in range(iters // 500)]
if len(valid_range) != len(valid_costs):
valid_range.append(iters)
if train_costs.ndim == 1:
train_costs = np.convolve(train_costs, average_filter,
mode='valid')
ax.plot(train_costs, color=color, label=name + '_train', lw=1.5)
ax.plot(valid_range, valid_costs[:len(valid_range)],
'-o', color=color, label=name + '_valid')
ax.grid(True)
ax.legend(loc='best')
plt.savefig(save_file)
if __name__ == '__main__':
args = parse_args()
graph(args.dirs, args.save_file)