-
Notifications
You must be signed in to change notification settings - Fork 174
/
Copy pathtest.py
87 lines (76 loc) · 3.35 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
"""
Test a trained speech model over a dataset
"""
from __future__ import absolute_import, division, print_function
import argparse
import numpy as np
from data_generator import DataGenerator
from model import compile_test_fn
from utils import argmax_decode, conv_output_length, load_model
def test(model, test_fn, datagen, mb_size=16, conv_context=11,
conv_border_mode='valid', conv_stride=2):
""" Testing routine for speech-models
Params:
model (keras.model): Constructed keras model
test_fn (theano.function): A theano function that calculates the cost
over a test set
datagen (DataGenerator)
mb_size (int): Size of each minibatch
conv_context (int): Convolution context
conv_border_mode (str): Convolution border mode
conv_stride (int): Convolution stride
Returns:
test_cost (float): Average test cost over the whole test set
"""
avg_cost = 0.0
i = 0
for batch in datagen.iterate_test(mb_size):
inputs = batch['x']
labels = batch['y']
input_lengths = batch['input_lengths']
label_lengths = batch['label_lengths']
ground_truth = batch['texts']
# Due to convolution, the number of timesteps of the output
# is different from the input length. Calculate the resulting
# timesteps
output_lengths = [conv_output_length(l, conv_context,
conv_border_mode, conv_stride)
for l in input_lengths]
predictions, ctc_cost = test_fn([inputs, output_lengths, labels,
label_lengths, True])
predictions = np.swapaxes(predictions, 0, 1)
for i, prediction in enumerate(predictions):
print ("Truth: {}, Prediction: {}"
.format(ground_truth[i], argmax_decode(prediction)))
avg_cost += ctc_cost
i += 1
return avg_cost / i
def main(test_desc_file, train_desc_file, load_dir):
# Prepare the data generator
datagen = DataGenerator()
# Load the JSON file that contains the dataset
datagen.load_test_data(test_desc_file)
datagen.load_train_data(train_desc_file)
# Use a few samples from the dataset, to calculate the means and variance
# of the features, so that we can center our inputs to the network
datagen.fit_train(100)
# Compile a Recurrent Network with 1 1D convolution layer, GRU units
# and 1 fully connected layer
model = load_model(load_dir)
# Compile the testing function
test_fn = compile_test_fn(model)
# Test the model
test_loss = test(model, test_fn, datagen)
print ("Test loss: {}".format(test_loss))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('test_desc_file', type=str,
help='Path to a JSON-line file that contains '
'test labels and paths to the audio files. ')
parser.add_argument('train_desc_file', type=str,
help='Path to the training JSON-line file. This will '
'be used to extract feature means/variance')
parser.add_argument('load_dir', type=str,
help='Directory where a trained model is stored.')
args = parser.parse_args()
main(args.test_desc_file, args.train_desc_file, args.load_dir)