-
Notifications
You must be signed in to change notification settings - Fork 174
/
Copy pathtrain.py
155 lines (137 loc) · 6.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
"""
Train an end-to-end speech recognition model using CTC.
Use $python train.py --help for usage
"""
from __future__ import absolute_import, division, print_function
import argparse
import logging
import os
from data_generator import DataGenerator
from model import compile_gru_model, compile_train_fn, compile_test_fn
from utils import configure_logging, save_model
logger = logging.getLogger(__name__)
def validation(model, val_fn, datagen, mb_size=16):
""" Validation routine for speech-models
Params:
model (keras.model): Constructed keras model
val_fn (theano.function): A theano function that calculates the cost
over a validation set
datagen (DataGenerator)
mb_size (int): Size of each minibatch
Returns:
val_cost (float): Average validation cost over the whole validation set
"""
avg_cost = 0.0
i = 0
for batch in datagen.iterate_validation(mb_size):
inputs = batch['x']
labels = batch['y']
input_lengths = batch['input_lengths']
label_lengths = batch['label_lengths']
# Due to convolution, the number of timesteps of the output
# is different from the input length. Calculate the resulting
# timesteps
output_lengths = [model.conv_output_length(l)
for l in input_lengths]
_, ctc_cost = val_fn([inputs, output_lengths, labels,
label_lengths, True])
avg_cost += ctc_cost
i += 1
if i == 0:
return 0.0
return avg_cost / i
def train(model, train_fn, val_fn, datagen, save_dir, epochs=10, mb_size=16,
do_sortagrad=True):
""" Main training routine for speech-models
Params:
model (keras.model): Constructed keras model
train_fn (theano.function): A theano function that takes in acoustic
inputs and updates the model
val_fn (theano.function): A theano function that calculates the cost
over a validation set
datagen (DataGenerator)
save_dir (str): Path where model and costs are saved
epochs (int): Total epochs to continue training
mb_size (int): Size of each minibatch
do_sortagrad (bool): If true, we sort utterances by their length in the
first epoch
"""
train_costs, val_costs = [], []
iters = 0
for e in range(epochs):
if do_sortagrad:
shuffle = e != 0
sortagrad = e == 0
else:
shuffle = True
sortagrad = False
for i, batch in \
enumerate(datagen.iterate_train(mb_size, shuffle=shuffle,
sort_by_duration=sortagrad)):
inputs = batch['x']
labels = batch['y']
input_lengths = batch['input_lengths']
label_lengths = batch['label_lengths']
# Due to convolution, the number of timesteps of the output
# is different from the input length. Calculate the resulting
# timesteps
output_lengths = [model.conv_output_length(l)
for l in input_lengths]
_, ctc_cost = train_fn([inputs, output_lengths, labels,
label_lengths, True])
train_costs.append(ctc_cost)
if i % 10 == 0:
logger.info("Epoch: {}, Iteration: {}, Loss: {}"
.format(e, i, ctc_cost, input_lengths))
iters += 1
if iters % 500 == 0:
val_cost = validation(model, val_fn, datagen, mb_size)
val_costs.append(val_cost)
save_model(save_dir, model, train_costs, val_costs, iters)
if iters % 500 != 0:
# End of an epoch. Check validation cost and save costs
val_cost = validation(model, val_fn, datagen, mb_size)
val_costs.append(val_cost)
save_model(save_dir, model, train_costs, val_costs, iters)
def main(train_desc_file, val_desc_file, epochs, save_dir, sortagrad):
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# Configure logging
configure_logging(file_log_path=os.path.join(save_dir, 'train_log.txt'))
# Prepare the data generator
datagen = DataGenerator()
# Load the JSON file that contains the dataset
datagen.load_train_data(train_desc_file)
datagen.load_validation_data(val_desc_file)
# Use a few samples from the dataset, to calculate the means and variance
# of the features, so that we can center our inputs to the network
datagen.fit_train(100)
# Compile a Recurrent Network with 1 1D convolution layer, GRU units
# and 1 fully connected layer
model = compile_gru_model(recur_layers=3, nodes=1000, batch_norm=True)
# Compile the CTC training function
train_fn = compile_train_fn(model)
# Compile the validation function
val_fn = compile_test_fn(model)
# Train the model
train(model, train_fn, val_fn, datagen, save_dir, epochs=epochs,
do_sortagrad=sortagrad)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('train_desc_file', type=str,
help='Path to a JSON-line file that contains '
'training labels and paths to the audio files.')
parser.add_argument('val_desc_file', type=str,
help='Path to a JSON-line file that contains '
'validation labels and paths to the audio files.')
parser.add_argument('save_dir', type=str,
help='Directory to store the model. This will be '
'created if it doesn\'t already exist')
parser.add_argument('--epochs', type=int, default=20,
help='Number of epochs to train the model')
parser.add_argument('--sortagrad', type=bool, default=True,
help='If true, we sort utterances by their length in '
'the first epoch')
args = parser.parse_args()
main(args.train_desc_file, args.val_desc_file, args.epochs, args.save_dir,
args.sortagrad)