-
Notifications
You must be signed in to change notification settings - Fork 174
/
Copy pathvisualize.py
77 lines (63 loc) · 2.65 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
r"""
Use this script to visualize the output of a trained speech-model.
Usage: python visualize.py /path/to/audio /path/to/training/json.json \
/path/to/model
"""
from __future__ import absolute_import, division, print_function
import argparse
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
from data_generator import DataGenerator
from model import compile_output_fn
from utils import argmax_decode, load_model
def softmax(x):
return np.exp(x) / np.sum(np.exp(x), axis=0)
def visualize(model, test_file, train_desc_file):
""" Get the prediction using the model, and visualize softmax outputs
Params:
model (keras.models.Model): Trained speech model
test_file (str): Path to an audio clip
train_desc_file(str): Path to the training file used to train this
model
"""
datagen = DataGenerator()
datagen.load_train_data(train_desc_file)
datagen.fit_train(100)
print ("Compiling test function...")
test_fn = compile_output_fn(model)
inputs = [datagen.featurize(test_file)]
prediction = np.squeeze(test_fn([inputs, True]))
softmax_file = "softmax.npy".format(test_file)
softmax_img_file = "softmax.png".format(test_file)
print ("Prediction: {}"
.format(argmax_decode(prediction)))
print ("Saving network output to: {}".format(softmax_file))
print ("As image: {}".format(softmax_img_file))
np.save(softmax_file, prediction)
sm = softmax(prediction.T)
sm = np.vstack((sm[0], sm[2], sm[3:][::-1]))
fig, ax = plt.subplots()
ax.pcolor(sm, cmap=plt.cm.Greys_r)
column_labels = [chr(i) for i in range(97, 97 + 26)] + ['space', 'blank']
ax.set_yticks(np.arange(sm.shape[0]) + 0.5, minor=False)
ax.set_yticklabels(column_labels[::-1], minor=False)
plt.savefig(softmax_img_file)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('test_file', type=str,
help='Path to an audio file')
parser.add_argument('train_desc_file', type=str,
help='Path to the training JSON-line file. This will '
'be used to extract feature means/variance')
parser.add_argument('load_dir', type=str,
help='Directory where a trained model is stored.')
parser.add_argument('--weights_file', type=str, default=None,
help='Path to a model weights file')
args = parser.parse_args()
print ("Loading model")
model = load_model(args.load_dir, args.weights_file)
visualize(model, args.test_file, args.train_desc_file)
if __name__ == '__main__':
main()