-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfitting_polynomials_2d.py
250 lines (196 loc) · 7.65 KB
/
fitting_polynomials_2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
"""
fitting_polynomials_2d.py
=========================
Examples of regression of in two dimensions, described in the paper "No
patterns in regression residuals," illustrating underspecified, correctly
specified, and overspecified regression of randomly-generated polynomial
surfaces on a regular 2D grid.
Saves output from each simulated regression into a uniquely timestamped
subfolder of ./plots/polynomials_2d/.
"""
import os
import pickle
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
# Parameters
# ==========
# Datapoints per side of coordinate grid
nx = 28
# Extent of coordinate grid
x0x1_min = -.85
x0x1_max = +.85
# Sigma of iid pixel noise
noise_sigma = 1.
# Low (underspecified), true / matching, high (overspecified) and very high (very overspecified)
# polynomial model set degree to use in simulated regressions
fit_degree_lo = 3
fit_degree_true = 6 # the actual signal curve will be a 2D polynomial series of this degree
fit_degree_hi = 24
fit_degree_vhi = 48
# Per coefficient "signal to noise" in random true pattern, i.e. ratio of standard deviation
# of true curve coefficient values to noise_sigma
coeff_signal_to_noise = 1.
# Plotting settings
FIGSIZE = (6, 5) # this makes the pcolor plots approximately square
CLIM = [-2.5, 2.5] # a reasonable balance to show features across the lo->vhi residual plots
CMAP = "Greys_r"
TITLE_SIZE = "x-large"
# Output folder structure
PLTDIR = os.path.join(".", "plots")
PROJDIR = os.path.join(PLTDIR, "polynomials_2d")
# Functions
# =========
def build_output_folder_structure(timestamp, project_dir=PROJDIR):
"""Builds output folder structure using input timestamp and module scope
PLTDIR, PROJDIR constant variables. Returns output folder name.
"""
for _dir in (PLTDIR, project_dir):
if not os.path.isdir(_dir):
os.mkdir(_dir)
outdir = os.path.join(project_dir, timestamp)
if not os.path.isdir(outdir):
os.mkdir(outdir)
return outdir
# Consistent functions for determining p, q indices labels for the kth coefficient
# also labelled theta_pq, used in the construction of the design matrix
def _dtri(k):
"""Total order (in both x0 and x1) of the kth column polynomial, minus one"""
return np.floor(.5 * (np.sqrt(1. + 8. * k) - 3)).astype(int)
def _ktri(k):
"""Number of coefficients in the complete series of degree _dtri(k)"""
return (1 + _dtri(k)) * (2 + _dtri(k)) // 2
def _ps(k):
"""p index label for the kth coefficient theta_pq"""
return 1 + _dtri(k) + _ktri(k) - k
def _qs(k):
"""q index label for the kth coefficient theta_pq"""
return k - _ktri(k)
def square_grid(min_val=-1.0, max_val=+1.0, nside=100, endpoint=True, flatten_order="C"):
"""Returns numpy arrays x0, x1 containing the coordinates of a square grid,
symmetric with respect to the line x0=x1, defined by input min and max
coordinate values.
"""
xvals = np.linspace(min_val, max_val, num=nx, endpoint=True)
x0, x1 = np.meshgrid(xvals, xvals)
if flatten_order is not None:
x0 = x0.flatten(order=flatten_order)
x1 = x1.flatten(order=flatten_order)
return x0, x1
def chebyshev_design_matrix(x0, x1, degree):
"""Returns the Chebyshev polynomial design matrix up to input degree for two
independent coordinates x0, x1
"""
if len(x0) != len(x1):
raise ValueError("input coordinate arrays x0 and x1 unequal length")
# Get the columns of the matrix corresponding to the x0, x1 coordinate grids
i1n = np.eye(1 + degree)
mp = np.asarray([np.polynomial.chebyshev.chebval(x0, _row) for _row in i1n]).T
mq = np.asarray([np.polynomial.chebyshev.chebval(x1, _row) for _row in i1n]).T
# Prepare final output matrix
ncoeff = (degree + 1) * (degree + 2) // 2
ps = _ps(np.arange(ncoeff, dtype=int))
qs = _qs(np.arange(ncoeff, dtype=int))
design_matrix = np.concatenate(
[(mp[:, _p] * mq[:, _q]).reshape(len(x0), 1) for _p, _q in zip(ps, qs)],
axis=1,
)
return design_matrix
def plot_image(data, title, filename=None, clim=None, show=True, tick_stride=7):
"""Quick image plot using module level constant settings"""
fig = plt.figure(figsize=FIGSIZE)
plt.title(title, size=TITLE_SIZE)
plt.pcolor(data, cmap=CMAP)
if clim is not None:
plt.clim(clim)
plt.colorbar()
# Ensure integer ticks
xticks = np.linspace(
0, data.shape[0], num=1 + data.shape[0]//tick_stride, endpoint=True, dtype=int)
yticks = np.linspace(
0, data.shape[1], num=1 + data.shape[1]//tick_stride, endpoint=True, dtype=int)
plt.xticks(xticks)
plt.yticks(yticks)
plt.tight_layout()
if filename is not None:
plt.savefig(filename)
if show:
plt.show()
return
# Main script
# ===========
if __name__ == "__main__":
# Current timestamp, used in I/0
tstmp = pd.Timestamp.now().isoformat().replace(":", "")
outdir = build_output_folder_structure(tstmp, project_dir=PROJDIR)
# Output dict - will be pickled
output = {}
# Prepare two independent variables on a grid
x0, x1 = square_grid(
min_val=x0x1_min, max_val=x0x1_max, nside=nx, endpoint=True, flatten_order="C")
# Design matrices
design_lo, design_true, design_hi, design_vhi = tuple(
chebyshev_design_matrix(x0, x1, degree=_deg)
for _deg in (fit_degree_lo, fit_degree_true, fit_degree_hi, fit_degree_vhi)
)
# Build the true / ideal 2D contour, plot and save
ctrue = np.random.randn(design_true.shape[-1]) * coeff_signal_to_noise
ztrue = (np.matmul(design_true, ctrue)).reshape((nx, nx), order="C")
plot_image(
ztrue, "Ideal model", filename=os.path.join(outdir, "ideal_"+tstmp+".png"), show=True)
output["ctrue"] = ctrue
output["ztrue"] = ztrue
# Add the random noise to generate the dataset, plot and save
zdata = ztrue + noise_sigma * np.random.randn(*ztrue.shape)
plot_image(zdata, "Data", filename=os.path.join(outdir, "data_"+tstmp+".png"), show=True)
output["zdata"] = zdata
# Perform too low, matching, too high, and very much too high degree regressions on data
zflat = zdata.flatten(order="C")
predictions = []
for _design_matrix in (design_lo, design_true, design_hi, design_vhi):
_coeffs = np.linalg.lstsq(_design_matrix, zflat, rcond=None)[0].T
_prediction = _design_matrix.dot(_coeffs).reshape((nx, nx), order="C")
predictions.append(_prediction)
pred_lo, pred_true, pred_hi, pred_vhi = tuple(predictions)
output["pred_lo"] = pred_lo
output["pred_true"] = pred_true
output["pred_hi"] = pred_hi
output["pred_vhi"] = pred_vhi
# Calculate and plot residuals
rlo = zdata - pred_lo
plot_image(
rlo,
"Low degree polynomial residuals",
filename=os.path.join(outdir, "lo_"+tstmp+".png"),
clim=CLIM,
)
rtrue = zdata - pred_true
plot_image(
rtrue,
"Matching degree polynomial residuals",
filename=os.path.join(outdir, "matching_"+tstmp+".png"),
clim=CLIM,
)
rhi = zdata - pred_hi
plot_image(
rhi,
"High degree polynomial residuals",
filename=os.path.join(outdir, "hi_"+tstmp+".png"),
clim=CLIM,
)
rvhi = zdata - pred_vhi
plot_image(
rvhi,
"Very high degree polynomial residuals",
filename=os.path.join(outdir, "vhi_"+tstmp+".png"),
clim=CLIM,
)
output["rlo"] = rlo
output["rtrue"] = rtrue
output["rhi"] = rhi
output["rvhi"] = rvhi
# Save output for further analysis
outfile = os.path.join(outdir, "output_"+tstmp+".pickle")
print("Saving to "+outfile)
with open(outfile, "wb") as fout:
pickle.dump(output, fout)