diff --git a/llama/llama-3_1-405b-instruct/model/model.py b/llama/llama-3_1-405b-instruct/model/model.py index e7815eaa..2f4a1191 100644 --- a/llama/llama-3_1-405b-instruct/model/model.py +++ b/llama/llama-3_1-405b-instruct/model/model.py @@ -3,9 +3,8 @@ import subprocess import uuid -from transformers import AutoTokenizer - from model.sighelper import patch +from transformers import AutoTokenizer patch() @@ -14,9 +13,9 @@ from vllm.engine.async_llm_engine import AsyncLLMEngine os.environ["TOKENIZERS_PARALLELISM"] = "true" -os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = ( - "spawn" # for multiprocessing to work with CUDA -) +os.environ[ + "VLLM_WORKER_MULTIPROC_METHOD" +] = "spawn" # for multiprocessing to work with CUDA logger = logging.getLogger(__name__) diff --git a/segment-anything-2/config.yaml b/segment-anything-2/config.yaml new file mode 100644 index 00000000..bf93fe32 --- /dev/null +++ b/segment-anything-2/config.yaml @@ -0,0 +1,34 @@ +build_commands: [] +base_image: + image: alphatozeta/cuda-python:12.1.1-cudnn8-devel-ubuntu22.04 + python_executable_path: /usr/bin/python3 +model_name: segment-anything-2 +environment_variables: {} +external_package_dirs: [] +model_metadata: + example_model_input: {"image": "https://upload.wikimedia.org/wikipedia/commons/thumb/0/0c/Kiev_straatbeeld.jpg/640px-Kiev_straatbeeld.jpg", "points_per_side": 32, "pred_iou_thresh": 0.8, "stability_score_thresh": 0.95, "use_m2m": true} +python_version: py310 +requirements: + - torch==2.4.0 + - torchvision==0.19.0 + - numpy==1.26.4 + - tqdm==4.66.5 + - hydra-core==1.3.2 + - httpx==0.27.0 + - iopath==0.1.10 + - pillow==10.4.0 + - matplotlib==3.9.1 + - jupyter==1.0.0 + - opencv-python-headless==4.8.0.74 + - black==24.8.0 + - usort==1.0.8.post1 + - ufmt==2.7.0 +resources: + accelerator: A10G + use_gpu: true +secrets: {} +system_packages: + - libgl1-mesa-glx + - libglib2.0-0 + - ninja-build + - python3.10-venv diff --git a/segment-anything-2/model/__init__.py b/segment-anything-2/model/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/segment-anything-2/model/model.py b/segment-anything-2/model/model.py new file mode 100644 index 00000000..01c03a65 --- /dev/null +++ b/segment-anything-2/model/model.py @@ -0,0 +1,222 @@ +# Prediction interface for Cog ⚙️ +# https://cog.run/python + +import base64 +import gc +import os +import subprocess +import sys +import time +from io import BytesIO +from typing import Callable, Dict, List + +import cv2 +import httpx +import matplotlib.pyplot as plt +import numpy as np +import torch +from PIL import Image + +sys.path.insert(1, "data") + +from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator +from sam2.build_sam import build_sam2 + +DEVICE = "cuda" +MODEL_DIR = "checkpoints" +BASE_URL = "https://dl.fbaipublicfiles.com/segment_anything_2/072824/" +checkpoints = { + "sam2_hiera_tiny.pt": f"{BASE_URL}sam2_hiera_tiny.pt", + "sam2_hiera_small.pt": f"{BASE_URL}sam2_hiera_small.pt", + "sam2_hiera_base_plus.pt": f"{BASE_URL}sam2_hiera_base_plus.pt", + "sam2_hiera_large.pt": f"{BASE_URL}sam2_hiera_large.pt", +} + + +class Model: + def __init__(self, **kwargs): + """Load the model into memory to make running multiple predictions efficient""" + self._data_dir = kwargs["data_dir"] + print(self._data_dir) + self.model_files = [ + # "sam2_hiera_base_plus.pt", + # "sam2_hiera_large.pt", + "sam2_hiera_small.pt", + # "sam2_hiera_tiny.pt", + ] + # models are built into the truss itself + + self.model_configs = { + "tiny": ( + "sam2_hiera_t.yaml", + f"{self._data_dir}/checkpoints/sam2_hiera_tiny.pt", + ), + "small": ( + "sam2_hiera_s.yaml", + f"{self._data_dir}/checkpoints/sam2_hiera_small.pt", + ), + "base": ( + "sam2_hiera_b+.yaml", + f"{self._data_dir}/checkpoints/sam2_hiera_base_plus.pt", + ), + "large": ( + "sam2_hiera_l.yaml", + f"{self._data_dir}/checkpoints/sam2_hiera_large.pt", + ), + } + + self.model_cfg, self.sam2_checkpoint = self.model_configs["small"] + functions = [self.load, self.predict] + kwargs_list = [ + {}, + { + "model_input": { + "image": "https://replicate.delivery/pbxt/LMbGi83qiV3QXR9fqDIzTl0P23ZWU560z1nVDtgl0paCcyYs/cars.jpg" + } + }, + ] + + def download_file(self, url, filename): + try: + print(f"Downloading {filename} checkpoint...") + with httpx.stream("GET", url) as response: + response.raise_for_status() # Raise an error for unsuccessful status codes + # make sure its stored in checkpoints directory + os.makedirs( + os.path.dirname(f"{self._data_dir}/checkpoints"), exist_ok=True + ) + filename = f"{self._data_dir}/checkpoints/{filename}" + # make sure its stored in checkpoints directory + os.makedirs(os.path.dirname(filename), exist_ok=True) + with open(filename, "wb") as file: + for chunk in response.iter_bytes(): + file.write(chunk) + print(f"Successfully downloaded {filename}.") + except httpx.HTTPStatusError as e: + print(f"Failed to download checkpoint from {url}: {e}") + exit(1) + + def load(self): + # run pip freeze + os.system("pip freeze") + os.system(f"pip install --no-build-isolation -e /packages") + # Download checkpoint + for model in self.model_files: + self.download_file(checkpoints.get(model), model) + # Load model here and assign to self._model. + self.sam2 = build_sam2( + self.model_cfg, + self.sam2_checkpoint, + device="cuda", + apply_postprocessing=False, + ) + self.mask_generator = SAM2AutomaticMaskGenerator(self.sam2) + + # Enable bfloat16 and TF32 for better performance + torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__() + if torch.cuda.get_device_properties(0).major >= 8: + torch.backends.cuda.matmul.allow_tf32 = True + torch.backends.cudnn.allow_tf32 = True + try: + result = subprocess.run( + ["nvidia-smi"], capture_output=True, text=True, check=True + ) + print(result.stdout) + except subprocess.CalledProcessError as e: + print(f"Command failed with code {e.returncode}: {e.stderr}") + + def predict(self, model_input): + # Run model inference here + image = model_input.get("image") # assuming image is a url + points_per_side = model_input.get("points_per_side", 32) + pred_iou_thresh = model_input.get("pred_iou_thresh", 0.88) + stability_score_thresh = model_input.get("stability_score_thresh", 0.95) + use_m2m = model_input.get("use_m2m", True) + response = httpx.get(image) + input_image = Image.open(BytesIO(response.content)) + input_image = np.array(input_image.convert("RGB")) + + # Configure the mask generator + self.mask_generator.points_per_side = points_per_side + self.mask_generator.pred_iou_thresh = pred_iou_thresh + self.mask_generator.stability_score_thresh = stability_score_thresh + self.mask_generator.use_m2m = use_m2m + + # Generate masks + masks = self.mask_generator.generate(input_image) + + # Generate and save combined colored mask + b64_results = self.return_combined_mask(input_image, masks) + + # Generate and save individual black and white masks + individual_mask_paths = self.return_individual_masks(masks) + # create a list of b64_results and individual_mask_paths + b64_results = [b64_results] + individual_mask_paths + del masks + torch.cuda.empty_cache() + try: + result = subprocess.run( + ["nvidia-smi"], capture_output=True, text=True, check=True + ) + print(result.stdout) + except subprocess.CalledProcessError as e: + print(f"Command failed with code {e.returncode}: {e.stderr}") + return {"status": "success", "masks": b64_results} + + def return_combined_mask(self, input_image, masks): + """ + Generates a combined mask image from the given input image and masks and returns a base64 encoded jpeg image + """ + buffer = BytesIO() + plt.figure(figsize=(20, 20)) + plt.imshow(input_image) + self.show_anns(masks) + plt.axis("off") + plt.savefig(buffer, format="jpeg", bbox_inches="tight", pad_inches=0) + plt.close() + buffer.seek(0) + img_base64 = base64.b64encode(buffer.read()).decode("utf-8") + return img_base64 + + def return_individual_masks(self, masks): + individual_mask_strings = [] + for i, mask in enumerate(masks): + mask_image = mask["segmentation"].astype(np.uint8) * 255 + + buffer = BytesIO() + Image.fromarray(mask_image).save(buffer, format="JPEG") + base64_string = base64.b64encode(buffer.getvalue()).decode("utf-8") + + individual_mask_strings.append(base64_string) + + return individual_mask_strings + + def show_anns(self, anns): + if len(anns) == 0: + return + sorted_anns = sorted(anns, key=(lambda x: x["area"]), reverse=True) + ax = plt.gca() + ax.set_autoscale_on(False) + + img = np.ones( + ( + sorted_anns[0]["segmentation"].shape[0], + sorted_anns[0]["segmentation"].shape[1], + 4, + ) + ) + img[:, :, 3] = 0 + for ann in sorted_anns: + m = ann["segmentation"] + color_mask = np.concatenate([np.random.random(3), [0.5]]) + img[m] = color_mask + contours, _ = cv2.findContours( + m.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE + ) + contours = [ + cv2.approxPolyDP(contour, epsilon=0.01, closed=True) + for contour in contours + ] + cv2.drawContours(img, contours, -1, (0, 0, 1, 0.4), thickness=1) + + ax.imshow(img) diff --git a/segment-anything-2/packages/CODE_OF_CONDUCT.md b/segment-anything-2/packages/CODE_OF_CONDUCT.md new file mode 100644 index 00000000..08b500a2 --- /dev/null +++ b/segment-anything-2/packages/CODE_OF_CONDUCT.md @@ -0,0 +1,80 @@ +# Code of Conduct + +## Our Pledge + +In the interest of fostering an open and welcoming environment, we as +contributors and maintainers pledge to make participation in our project and +our community a harassment-free experience for everyone, regardless of age, body +size, disability, ethnicity, sex characteristics, gender identity and expression, +level of experience, education, socio-economic status, nationality, personal +appearance, race, religion, or sexual identity and orientation. + +## Our Standards + +Examples of behavior that contributes to creating a positive environment +include: + +* Using welcoming and inclusive language +* Being respectful of differing viewpoints and experiences +* Gracefully accepting constructive criticism +* Focusing on what is best for the community +* Showing empathy towards other community members + +Examples of unacceptable behavior by participants include: + +* The use of sexualized language or imagery and unwelcome sexual attention or + advances +* Trolling, insulting/derogatory comments, and personal or political attacks +* Public or private harassment +* Publishing others' private information, such as a physical or electronic + address, without explicit permission +* Other conduct which could reasonably be considered inappropriate in a + professional setting + +## Our Responsibilities + +Project maintainers are responsible for clarifying the standards of acceptable +behavior and are expected to take appropriate and fair corrective action in +response to any instances of unacceptable behavior. + +Project maintainers have the right and responsibility to remove, edit, or +reject comments, commits, code, wiki edits, issues, and other contributions +that are not aligned to this Code of Conduct, or to ban temporarily or +permanently any contributor for other behaviors that they deem inappropriate, +threatening, offensive, or harmful. + +## Scope + +This Code of Conduct applies within all project spaces, and it also applies when +an individual is representing the project or its community in public spaces. +Examples of representing a project or community include using an official +project e-mail address, posting via an official social media account, or acting +as an appointed representative at an online or offline event. Representation of +a project may be further defined and clarified by project maintainers. + +This Code of Conduct also applies outside the project spaces when there is a +reasonable belief that an individual's behavior may have a negative impact on +the project or its community. + +## Enforcement + +Instances of abusive, harassing, or otherwise unacceptable behavior may be +reported by contacting the project team at . All +complaints will be reviewed and investigated and will result in a response that +is deemed necessary and appropriate to the circumstances. The project team is +obligated to maintain confidentiality with regard to the reporter of an incident. +Further details of specific enforcement policies may be posted separately. + +Project maintainers who do not follow or enforce the Code of Conduct in good +faith may face temporary or permanent repercussions as determined by other +members of the project's leadership. + +## Attribution + +This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4, +available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html + +[homepage]: https://www.contributor-covenant.org + +For answers to common questions about this code of conduct, see +https://www.contributor-covenant.org/faq diff --git a/segment-anything-2/packages/CONTRIBUTING.md b/segment-anything-2/packages/CONTRIBUTING.md new file mode 100644 index 00000000..ad15049f --- /dev/null +++ b/segment-anything-2/packages/CONTRIBUTING.md @@ -0,0 +1,31 @@ +# Contributing to segment-anything +We want to make contributing to this project as easy and transparent as +possible. + +## Pull Requests +We actively welcome your pull requests. + +1. Fork the repo and create your branch from `main`. +2. If you've added code that should be tested, add tests. +3. If you've changed APIs, update the documentation. +4. Ensure the test suite passes. +5. Make sure your code lints, using the `ufmt format` command. Linting requires `black==24.2.0`, `usort==1.0.2`, and `ufmt==2.0.0b2`, which can be installed via `pip install -e ".[dev]"`. +6. If you haven't already, complete the Contributor License Agreement ("CLA"). + +## Contributor License Agreement ("CLA") +In order to accept your pull request, we need you to submit a CLA. You only need +to do this once to work on any of Facebook's open source projects. + +Complete your CLA here: + +## Issues +We use GitHub issues to track public bugs. Please ensure your description is +clear and has sufficient instructions to be able to reproduce the issue. + +Facebook has a [bounty program](https://www.facebook.com/whitehat/) for the safe +disclosure of security bugs. In those cases, please go through the process +outlined on that page and do not file a public issue. + +## License +By contributing to segment-anything, you agree that your contributions will be licensed +under the LICENSE file in the root directory of this source tree. diff --git a/segment-anything-2/packages/LICENSE b/segment-anything-2/packages/LICENSE new file mode 100644 index 00000000..261eeb9e --- /dev/null +++ b/segment-anything-2/packages/LICENSE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/segment-anything-2/packages/LICENSE_cctorch b/segment-anything-2/packages/LICENSE_cctorch new file mode 100644 index 00000000..23da14a6 --- /dev/null +++ b/segment-anything-2/packages/LICENSE_cctorch @@ -0,0 +1,29 @@ +BSD 3-Clause License + +Copyright (c) 2020, the respective contributors, as shown by the AUTHORS file. +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +3. Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/segment-anything-2/packages/README.md b/segment-anything-2/packages/README.md new file mode 100644 index 00000000..dd8c8862 --- /dev/null +++ b/segment-anything-2/packages/README.md @@ -0,0 +1,140 @@ +# SAM 2: Segment Anything in Images and Videos + +**[AI at Meta, FAIR](https://ai.meta.com/research/)** + +[Nikhila Ravi](https://nikhilaravi.com/), [Valentin Gabeur](https://gabeur.github.io/), [Yuan-Ting Hu](https://scholar.google.com/citations?user=E8DVVYQAAAAJ&hl=en), [Ronghang Hu](https://ronghanghu.com/), [Chaitanya Ryali](https://scholar.google.com/citations?user=4LWx24UAAAAJ&hl=en), [Tengyu Ma](https://scholar.google.com/citations?user=VeTSl0wAAAAJ&hl=en), [Haitham Khedr](https://hkhedr.com/), [Roman Rädle](https://scholar.google.de/citations?user=Tpt57v0AAAAJ&hl=en), [Chloe Rolland](https://scholar.google.com/citations?hl=fr&user=n-SnMhoAAAAJ), [Laura Gustafson](https://scholar.google.com/citations?user=c8IpF9gAAAAJ&hl=en), [Eric Mintun](https://ericmintun.github.io/), [Junting Pan](https://junting.github.io/), [Kalyan Vasudev Alwala](https://scholar.google.co.in/citations?user=m34oaWEAAAAJ&hl=en), [Nicolas Carion](https://www.nicolascarion.com/), [Chao-Yuan Wu](https://chaoyuan.org/), [Ross Girshick](https://www.rossgirshick.info/), [Piotr Dollár](https://pdollar.github.io/), [Christoph Feichtenhofer](https://feichtenhofer.github.io/) + +[[`Paper`](https://ai.meta.com/research/publications/sam-2-segment-anything-in-images-and-videos/)] [[`Project`](https://ai.meta.com/sam2)] [[`Demo`](https://sam2.metademolab.com/)] [[`Dataset`](https://ai.meta.com/datasets/segment-anything-video)] [[`Blog`](https://ai.meta.com/blog/segment-anything-2)] [[`BibTeX`](#citing-sam-2)] + +![SAM 2 architecture](assets/model_diagram.png?raw=true) + +**Segment Anything Model 2 (SAM 2)** is a foundation model towards solving promptable visual segmentation in images and videos. We extend SAM to video by considering images as a video with a single frame. The model design is a simple transformer architecture with streaming memory for real-time video processing. We build a model-in-the-loop data engine, which improves model and data via user interaction, to collect [**our SA-V dataset**](https://ai.meta.com/datasets/segment-anything-video), the largest video segmentation dataset to date. SAM 2 trained on our data provides strong performance across a wide range of tasks and visual domains. + +![SA-V dataset](assets/sa_v_dataset.jpg?raw=true) + +## Installation + +Please install SAM 2 on a GPU machine using: + +```bash +git clone git@github.com:facebookresearch/segment-anything-2.git + +cd segment-anything-2; pip install -e . +``` + +To use the SAM 2 predictor and run the example notebooks, `jupyter` and `matplotlib` are required and can be installed by: + +```bash +pip install -e ".[demo]" +``` + +## Getting Started + +### Download Checkpoints + +First, we need to download a model checkpoint. All the model checkpoints can be downloaded by running: + +```bash +cd checkpoints +./download_ckpts.sh +``` + +or individually from: + +- [sam2_hiera_tiny.pt](https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_tiny.pt) +- [sam2_hiera_small.pt](https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_small.pt) +- [sam2_hiera_base_plus.pt](https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_base_plus.pt) +- [sam2_hiera_large.pt](https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_large.pt) + +Then SAM 2 can be used in a few lines as follows for image and video prediction. + +### Image prediction + +SAM 2 has all the capabilities of [SAM](https://github.com/facebookresearch/segment-anything) on static images, and we provide image prediction APIs that closely resemble SAM for image use cases. The `SAM2ImagePredictor` class has an easy interface for image prompting. + +```python +import torch +from sam2.build_sam import build_sam2 +from sam2.sam2_image_predictor import SAM2ImagePredictor + +checkpoint = "./checkpoints/sam2_hiera_large.pt" +model_cfg = "sam2_hiera_l.yaml" +predictor = SAM2ImagePredictor(build_sam2(model_cfg, checkpoint)) + +with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16): + predictor.set_image() + masks, _, _ = predictor.predict() +``` + +Please refer to the examples in [image_predictor_example.ipynb](./notebooks/image_predictor_example.ipynb) for static image use cases. + +SAM 2 also supports automatic mask generation on images just like SAM. Please see [automatic_mask_generator_example.ipynb](./notebooks/automatic_mask_generator_example.ipynb) for automatic mask generation in images. + +### Video prediction + +For promptable segmentation and tracking in videos, we provide a video predictor with APIs for example to add prompts and propagate masklets throughout a video. SAM 2 supports video inference on multiple objects and uses an inference state to keep track of the interactions in each video. + +```python +import torch +from sam2.build_sam import build_sam2_video_predictor + +checkpoint = "./checkpoints/sam2_hiera_large.pt" +model_cfg = "sam2_hiera_l.yaml" +predictor = build_sam2_video_predictor(model_cfg, checkpoint) + +with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16): + state = predictor.init_state() + + # add new prompts and instantly get the output on the same frame + frame_idx, object_ids, masks = predictor.add_new_points(state, ): + + # propagate the prompts to get masklets throughout the video + for frame_idx, object_ids, masks in predictor.propagate_in_video(state): + ... +``` + +Please refer to the examples in [video_predictor_example.ipynb](./notebooks/video_predictor_example.ipynb) for details on how to add prompts, make refinements, and track multiple objects in videos. + +## Model Description + +| **Model** | **Size (M)** | **Speed (FPS)** | **SA-V test (J&F)** | **MOSE val (J&F)** | **LVOS v2 (J&F)** | +| :------------------: | :----------: | :--------------------: | :-----------------: | :----------------: | :---------------: | +| sam2_hiera_tiny | 38.9 | 47.2 | 75.0 | 70.9 | 75.3 | +| sam2_hiera_small | 46 | 43.3 (53.0 compiled\*) | 74.9 | 71.5 | 76.4 | +| sam2_hiera_base_plus | 80.8 | 34.8 (43.8 compiled\*) | 74.7 | 72.8 | 75.8 | +| sam2_hiera_large | 224.4 | 24.2 (30.2 compiled\*) | 76.0 | 74.6 | 79.8 | + +\* Compile the model by setting `compile_image_encoder: True` in the config. + +## Segment Anything Video Dataset + +See [sav_dataset/README.md](sav_dataset/README.md) for details. + +## License + +The models are licensed under the [Apache 2.0 license](./LICENSE). Please refer to our research paper for more details on the models. + +## Contributing + +See [contributing](CONTRIBUTING.md) and the [code of conduct](CODE_OF_CONDUCT.md). + +## Contributors + +The SAM 2 project was made possible with the help of many contributors (alphabetical): + +Karen Bergan, Daniel Bolya, Alex Bosenberg, Kai Brown, Vispi Cassod, Christopher Chedeau, Ida Cheng, Luc Dahlin, Shoubhik Debnath, Rene Martinez Doehner, Grant Gardner, Sahir Gomez, Rishi Godugu, Baishan Guo, Caleb Ho, Andrew Huang, Somya Jain, Bob Kamma, Amanda Kallet, Jake Kinney, Alexander Kirillov, Shiva Koduvayur, Devansh Kukreja, Robert Kuo, Aohan Lin, Parth Malani, Jitendra Malik, Mallika Malhotra, Miguel Martin, Alexander Miller, Sasha Mitts, William Ngan, George Orlin, Joelle Pineau, Kate Saenko, Rodrick Shepard, Azita Shokrpour, David Soofian, Jonathan Torres, Jenny Truong, Sagar Vaze, Meng Wang, Claudette Ward, Pengchuan Zhang. + +Third-party code: we use a GPU-based connected component algorithm adapted from [`cc_torch`](https://github.com/zsef123/Connected_components_PyTorch) (with its license in [`LICENSE_cctorch`](./LICENSE_cctorch)) as an optional post-processing step for the mask predictions. + +## Citing SAM 2 + +If you use SAM 2 or the SA-V dataset in your research, please use the following BibTeX entry. + +```bibtex +@article{ravi2024sam2, + title={SAM 2: Segment Anything in Images and Videos}, + author={Ravi, Nikhila and Gabeur, Valentin and Hu, Yuan-Ting and Hu, Ronghang and Ryali, Chaitanya and Ma, Tengyu and Khedr, Haitham and R{\"a}dle, Roman and Rolland, Chloe and Gustafson, Laura and Mintun, Eric and Pan, Junting and Alwala, Kalyan Vasudev and Carion, Nicolas and Wu, Chao-Yuan and Girshick, Ross and Doll{\'a}r, Piotr and Feichtenhofer, Christoph}, + journal={arXiv preprint}, + year={2024} +} +``` diff --git a/segment-anything-2/packages/assets/model_diagram.png b/segment-anything-2/packages/assets/model_diagram.png new file mode 100644 index 00000000..61b8b7c0 Binary files /dev/null and b/segment-anything-2/packages/assets/model_diagram.png differ diff --git a/segment-anything-2/packages/assets/sa_v_dataset.jpg b/segment-anything-2/packages/assets/sa_v_dataset.jpg new file mode 100644 index 00000000..77af3b1a Binary files /dev/null and b/segment-anything-2/packages/assets/sa_v_dataset.jpg differ diff --git a/segment-anything-2/packages/pyproject.toml b/segment-anything-2/packages/pyproject.toml new file mode 100644 index 00000000..1cc403ff --- /dev/null +++ b/segment-anything-2/packages/pyproject.toml @@ -0,0 +1,6 @@ +[build-system] +requires = [ + "setuptools>=61.0", + "torch>=2.3.1", + ] +build-backend = "setuptools.build_meta" diff --git a/segment-anything-2/packages/sam2/__init__.py b/segment-anything-2/packages/sam2/__init__.py new file mode 100644 index 00000000..ff90d104 --- /dev/null +++ b/segment-anything-2/packages/sam2/__init__.py @@ -0,0 +1,9 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from hydra import initialize_config_module + +initialize_config_module("sam2_configs", version_base="1.2") diff --git a/segment-anything-2/packages/sam2/automatic_mask_generator.py b/segment-anything-2/packages/sam2/automatic_mask_generator.py new file mode 100644 index 00000000..67668b2f --- /dev/null +++ b/segment-anything-2/packages/sam2/automatic_mask_generator.py @@ -0,0 +1,434 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +# Adapted from https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/automatic_mask_generator.py +from typing import Any, Dict, List, Optional, Tuple + +import numpy as np +import torch +from torchvision.ops.boxes import batched_nms, box_area # type: ignore + +from sam2.modeling.sam2_base import SAM2Base +from sam2.sam2_image_predictor import SAM2ImagePredictor +from sam2.utils.amg import ( + area_from_rle, + batch_iterator, + batched_mask_to_box, + box_xyxy_to_xywh, + build_all_layer_point_grids, + calculate_stability_score, + coco_encode_rle, + generate_crop_boxes, + is_box_near_crop_edge, + mask_to_rle_pytorch, + MaskData, + remove_small_regions, + rle_to_mask, + uncrop_boxes_xyxy, + uncrop_masks, + uncrop_points, +) + + +class SAM2AutomaticMaskGenerator: + def __init__( + self, + model: SAM2Base, + points_per_side: Optional[int] = 32, + points_per_batch: int = 64, + pred_iou_thresh: float = 0.8, + stability_score_thresh: float = 0.95, + stability_score_offset: float = 1.0, + mask_threshold: float = 0.0, + box_nms_thresh: float = 0.7, + crop_n_layers: int = 0, + crop_nms_thresh: float = 0.7, + crop_overlap_ratio: float = 512 / 1500, + crop_n_points_downscale_factor: int = 1, + point_grids: Optional[List[np.ndarray]] = None, + min_mask_region_area: int = 0, + output_mode: str = "binary_mask", + use_m2m: bool = False, + multimask_output: bool = True, + ) -> None: + """ + Using a SAM 2 model, generates masks for the entire image. + Generates a grid of point prompts over the image, then filters + low quality and duplicate masks. The default settings are chosen + for SAM 2 with a HieraL backbone. + + Arguments: + model (Sam): The SAM 2 model to use for mask prediction. + points_per_side (int or None): The number of points to be sampled + along one side of the image. The total number of points is + points_per_side**2. If None, 'point_grids' must provide explicit + point sampling. + points_per_batch (int): Sets the number of points run simultaneously + by the model. Higher numbers may be faster but use more GPU memory. + pred_iou_thresh (float): A filtering threshold in [0,1], using the + model's predicted mask quality. + stability_score_thresh (float): A filtering threshold in [0,1], using + the stability of the mask under changes to the cutoff used to binarize + the model's mask predictions. + stability_score_offset (float): The amount to shift the cutoff when + calculated the stability score. + mask_threshold (float): Threshold for binarizing the mask logits + box_nms_thresh (float): The box IoU cutoff used by non-maximal + suppression to filter duplicate masks. + crop_n_layers (int): If >0, mask prediction will be run again on + crops of the image. Sets the number of layers to run, where each + layer has 2**i_layer number of image crops. + crop_nms_thresh (float): The box IoU cutoff used by non-maximal + suppression to filter duplicate masks between different crops. + crop_overlap_ratio (float): Sets the degree to which crops overlap. + In the first crop layer, crops will overlap by this fraction of + the image length. Later layers with more crops scale down this overlap. + crop_n_points_downscale_factor (int): The number of points-per-side + sampled in layer n is scaled down by crop_n_points_downscale_factor**n. + point_grids (list(np.ndarray) or None): A list over explicit grids + of points used for sampling, normalized to [0,1]. The nth grid in the + list is used in the nth crop layer. Exclusive with points_per_side. + min_mask_region_area (int): If >0, postprocessing will be applied + to remove disconnected regions and holes in masks with area smaller + than min_mask_region_area. Requires opencv. + output_mode (str): The form masks are returned in. Can be 'binary_mask', + 'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools. + For large resolutions, 'binary_mask' may consume large amounts of + memory. + use_m2m (bool): Whether to add a one step refinement using previous mask predictions. + multimask_output (bool): Whether to output multimask at each point of the grid. + """ + + assert (points_per_side is None) != ( + point_grids is None + ), "Exactly one of points_per_side or point_grid must be provided." + if points_per_side is not None: + self.point_grids = build_all_layer_point_grids( + points_per_side, + crop_n_layers, + crop_n_points_downscale_factor, + ) + elif point_grids is not None: + self.point_grids = point_grids + else: + raise ValueError("Can't have both points_per_side and point_grid be None.") + + assert output_mode in [ + "binary_mask", + "uncompressed_rle", + "coco_rle", + ], f"Unknown output_mode {output_mode}." + if output_mode == "coco_rle": + try: + from pycocotools import mask as mask_utils # type: ignore # noqa: F401 + except ImportError as e: + print("Please install pycocotools") + raise e + + self.predictor = SAM2ImagePredictor( + model, + max_hole_area=min_mask_region_area, + max_sprinkle_area=min_mask_region_area, + ) + self.points_per_batch = points_per_batch + self.pred_iou_thresh = pred_iou_thresh + self.stability_score_thresh = stability_score_thresh + self.stability_score_offset = stability_score_offset + self.mask_threshold = mask_threshold + self.box_nms_thresh = box_nms_thresh + self.crop_n_layers = crop_n_layers + self.crop_nms_thresh = crop_nms_thresh + self.crop_overlap_ratio = crop_overlap_ratio + self.crop_n_points_downscale_factor = crop_n_points_downscale_factor + self.min_mask_region_area = min_mask_region_area + self.output_mode = output_mode + self.use_m2m = use_m2m + self.multimask_output = multimask_output + + @torch.no_grad() + def generate(self, image: np.ndarray) -> List[Dict[str, Any]]: + """ + Generates masks for the given image. + + Arguments: + image (np.ndarray): The image to generate masks for, in HWC uint8 format. + + Returns: + list(dict(str, any)): A list over records for masks. Each record is + a dict containing the following keys: + segmentation (dict(str, any) or np.ndarray): The mask. If + output_mode='binary_mask', is an array of shape HW. Otherwise, + is a dictionary containing the RLE. + bbox (list(float)): The box around the mask, in XYWH format. + area (int): The area in pixels of the mask. + predicted_iou (float): The model's own prediction of the mask's + quality. This is filtered by the pred_iou_thresh parameter. + point_coords (list(list(float))): The point coordinates input + to the model to generate this mask. + stability_score (float): A measure of the mask's quality. This + is filtered on using the stability_score_thresh parameter. + crop_box (list(float)): The crop of the image used to generate + the mask, given in XYWH format. + """ + + # Generate masks + mask_data = self._generate_masks(image) + + # Encode masks + if self.output_mode == "coco_rle": + mask_data["segmentations"] = [ + coco_encode_rle(rle) for rle in mask_data["rles"] + ] + elif self.output_mode == "binary_mask": + mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]] + else: + mask_data["segmentations"] = mask_data["rles"] + + # Write mask records + curr_anns = [] + for idx in range(len(mask_data["segmentations"])): + ann = { + "segmentation": mask_data["segmentations"][idx], + "area": area_from_rle(mask_data["rles"][idx]), + "bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(), + "predicted_iou": mask_data["iou_preds"][idx].item(), + "point_coords": [mask_data["points"][idx].tolist()], + "stability_score": mask_data["stability_score"][idx].item(), + "crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(), + } + curr_anns.append(ann) + + return curr_anns + + def _generate_masks(self, image: np.ndarray) -> MaskData: + orig_size = image.shape[:2] + crop_boxes, layer_idxs = generate_crop_boxes( + orig_size, self.crop_n_layers, self.crop_overlap_ratio + ) + + # Iterate over image crops + data = MaskData() + for crop_box, layer_idx in zip(crop_boxes, layer_idxs): + crop_data = self._process_crop(image, crop_box, layer_idx, orig_size) + data.cat(crop_data) + + # Remove duplicate masks between crops + if len(crop_boxes) > 1: + # Prefer masks from smaller crops + scores = 1 / box_area(data["crop_boxes"]) + scores = scores.to(data["boxes"].device) + keep_by_nms = batched_nms( + data["boxes"].float(), + scores, + torch.zeros_like(data["boxes"][:, 0]), # categories + iou_threshold=self.crop_nms_thresh, + ) + data.filter(keep_by_nms) + data.to_numpy() + return data + + def _process_crop( + self, + image: np.ndarray, + crop_box: List[int], + crop_layer_idx: int, + orig_size: Tuple[int, ...], + ) -> MaskData: + # Crop the image and calculate embeddings + x0, y0, x1, y1 = crop_box + cropped_im = image[y0:y1, x0:x1, :] + cropped_im_size = cropped_im.shape[:2] + self.predictor.set_image(cropped_im) + + # Get points for this crop + points_scale = np.array(cropped_im_size)[None, ::-1] + points_for_image = self.point_grids[crop_layer_idx] * points_scale + + # Generate masks for this crop in batches + data = MaskData() + for (points,) in batch_iterator(self.points_per_batch, points_for_image): + batch_data = self._process_batch( + points, cropped_im_size, crop_box, orig_size, normalize=True + ) + data.cat(batch_data) + del batch_data + self.predictor.reset_predictor() + + # Remove duplicates within this crop. + keep_by_nms = batched_nms( + data["boxes"].float(), + data["iou_preds"], + torch.zeros_like(data["boxes"][:, 0]), # categories + iou_threshold=self.box_nms_thresh, + ) + data.filter(keep_by_nms) + + # Return to the original image frame + data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box) + data["points"] = uncrop_points(data["points"], crop_box) + data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))]) + + return data + + def _process_batch( + self, + points: np.ndarray, + im_size: Tuple[int, ...], + crop_box: List[int], + orig_size: Tuple[int, ...], + normalize=False, + ) -> MaskData: + orig_h, orig_w = orig_size + + # Run model on this batch + points = torch.as_tensor(points, device=self.predictor.device) + in_points = self.predictor._transforms.transform_coords( + points, normalize=normalize, orig_hw=im_size + ) + in_labels = torch.ones( + in_points.shape[0], dtype=torch.int, device=in_points.device + ) + masks, iou_preds, low_res_masks = self.predictor._predict( + in_points[:, None, :], + in_labels[:, None], + multimask_output=self.multimask_output, + return_logits=True, + ) + + # Serialize predictions and store in MaskData + data = MaskData( + masks=masks.flatten(0, 1), + iou_preds=iou_preds.flatten(0, 1), + points=points.repeat_interleave(masks.shape[1], dim=0), + low_res_masks=low_res_masks.flatten(0, 1), + ) + del masks + + if not self.use_m2m: + # Filter by predicted IoU + if self.pred_iou_thresh > 0.0: + keep_mask = data["iou_preds"] > self.pred_iou_thresh + data.filter(keep_mask) + + # Calculate and filter by stability score + data["stability_score"] = calculate_stability_score( + data["masks"], self.mask_threshold, self.stability_score_offset + ) + if self.stability_score_thresh > 0.0: + keep_mask = data["stability_score"] >= self.stability_score_thresh + data.filter(keep_mask) + else: + # One step refinement using previous mask predictions + in_points = self.predictor._transforms.transform_coords( + data["points"], normalize=normalize, orig_hw=im_size + ) + labels = torch.ones( + in_points.shape[0], dtype=torch.int, device=in_points.device + ) + masks, ious = self.refine_with_m2m( + in_points, labels, data["low_res_masks"], self.points_per_batch + ) + data["masks"] = masks.squeeze(1) + data["iou_preds"] = ious.squeeze(1) + + if self.pred_iou_thresh > 0.0: + keep_mask = data["iou_preds"] > self.pred_iou_thresh + data.filter(keep_mask) + + data["stability_score"] = calculate_stability_score( + data["masks"], self.mask_threshold, self.stability_score_offset + ) + if self.stability_score_thresh > 0.0: + keep_mask = data["stability_score"] >= self.stability_score_thresh + data.filter(keep_mask) + + # Threshold masks and calculate boxes + data["masks"] = data["masks"] > self.mask_threshold + data["boxes"] = batched_mask_to_box(data["masks"]) + + # Filter boxes that touch crop boundaries + keep_mask = ~is_box_near_crop_edge( + data["boxes"], crop_box, [0, 0, orig_w, orig_h] + ) + if not torch.all(keep_mask): + data.filter(keep_mask) + + # Compress to RLE + data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w) + data["rles"] = mask_to_rle_pytorch(data["masks"]) + del data["masks"] + + return data + + @staticmethod + def postprocess_small_regions( + mask_data: MaskData, min_area: int, nms_thresh: float + ) -> MaskData: + """ + Removes small disconnected regions and holes in masks, then reruns + box NMS to remove any new duplicates. + + Edits mask_data in place. + + Requires open-cv as a dependency. + """ + if len(mask_data["rles"]) == 0: + return mask_data + + # Filter small disconnected regions and holes + new_masks = [] + scores = [] + for rle in mask_data["rles"]: + mask = rle_to_mask(rle) + + mask, changed = remove_small_regions(mask, min_area, mode="holes") + unchanged = not changed + mask, changed = remove_small_regions(mask, min_area, mode="islands") + unchanged = unchanged and not changed + + new_masks.append(torch.as_tensor(mask).unsqueeze(0)) + # Give score=0 to changed masks and score=1 to unchanged masks + # so NMS will prefer ones that didn't need postprocessing + scores.append(float(unchanged)) + + # Recalculate boxes and remove any new duplicates + masks = torch.cat(new_masks, dim=0) + boxes = batched_mask_to_box(masks) + keep_by_nms = batched_nms( + boxes.float(), + torch.as_tensor(scores), + torch.zeros_like(boxes[:, 0]), # categories + iou_threshold=nms_thresh, + ) + + # Only recalculate RLEs for masks that have changed + for i_mask in keep_by_nms: + if scores[i_mask] == 0.0: + mask_torch = masks[i_mask].unsqueeze(0) + mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0] + mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly + mask_data.filter(keep_by_nms) + + return mask_data + + def refine_with_m2m(self, points, point_labels, low_res_masks, points_per_batch): + new_masks = [] + new_iou_preds = [] + + for cur_points, cur_point_labels, low_res_mask in batch_iterator( + points_per_batch, points, point_labels, low_res_masks + ): + best_masks, best_iou_preds, _ = self.predictor._predict( + cur_points[:, None, :], + cur_point_labels[:, None], + mask_input=low_res_mask[:, None, :], + multimask_output=False, + return_logits=True, + ) + new_masks.append(best_masks) + new_iou_preds.append(best_iou_preds) + masks = torch.cat(new_masks, dim=0) + return masks, torch.cat(new_iou_preds, dim=0) diff --git a/segment-anything-2/packages/sam2/build_sam.py b/segment-anything-2/packages/sam2/build_sam.py new file mode 100644 index 00000000..39defc46 --- /dev/null +++ b/segment-anything-2/packages/sam2/build_sam.py @@ -0,0 +1,89 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import logging + +import torch +from hydra import compose +from hydra.utils import instantiate +from omegaconf import OmegaConf + + +def build_sam2( + config_file, + ckpt_path=None, + device="cuda", + mode="eval", + hydra_overrides_extra=[], + apply_postprocessing=True, +): + + if apply_postprocessing: + hydra_overrides_extra = hydra_overrides_extra.copy() + hydra_overrides_extra += [ + # dynamically fall back to multi-mask if the single mask is not stable + "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true", + "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05", + "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98", + ] + # Read config and init model + cfg = compose(config_name=config_file, overrides=hydra_overrides_extra) + OmegaConf.resolve(cfg) + model = instantiate(cfg.model, _recursive_=True) + _load_checkpoint(model, ckpt_path) + model = model.to(device) + if mode == "eval": + model.eval() + return model + + +def build_sam2_video_predictor( + config_file, + ckpt_path=None, + device="cuda", + mode="eval", + hydra_overrides_extra=[], + apply_postprocessing=True, +): + hydra_overrides = [ + "++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor", + ] + if apply_postprocessing: + hydra_overrides_extra = hydra_overrides_extra.copy() + hydra_overrides_extra += [ + # dynamically fall back to multi-mask if the single mask is not stable + "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true", + "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05", + "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98", + # the sigmoid mask logits on interacted frames with clicks in the memory encoder so that the encoded masks are exactly as what users see from clicking + "++model.binarize_mask_from_pts_for_mem_enc=true", + # fill small holes in the low-res masks up to `fill_hole_area` (before resizing them to the original video resolution) + "++model.fill_hole_area=8", + ] + hydra_overrides.extend(hydra_overrides_extra) + + # Read config and init model + cfg = compose(config_name=config_file, overrides=hydra_overrides) + OmegaConf.resolve(cfg) + model = instantiate(cfg.model, _recursive_=True) + _load_checkpoint(model, ckpt_path) + model = model.to(device) + if mode == "eval": + model.eval() + return model + + +def _load_checkpoint(model, ckpt_path): + if ckpt_path is not None: + sd = torch.load(ckpt_path, map_location="cpu")["model"] + missing_keys, unexpected_keys = model.load_state_dict(sd) + if missing_keys: + logging.error(missing_keys) + raise RuntimeError() + if unexpected_keys: + logging.error(unexpected_keys) + raise RuntimeError() + logging.info("Loaded checkpoint sucessfully") diff --git a/segment-anything-2/packages/sam2/csrc/connected_components.cu b/segment-anything-2/packages/sam2/csrc/connected_components.cu new file mode 100644 index 00000000..ced21eb3 --- /dev/null +++ b/segment-anything-2/packages/sam2/csrc/connected_components.cu @@ -0,0 +1,289 @@ +// Copyright (c) Meta Platforms, Inc. and affiliates. +// All rights reserved. + +// This source code is licensed under the license found in the +// LICENSE file in the root directory of this source tree. + +// adapted from https://github.com/zsef123/Connected_components_PyTorch +// with license found in the LICENSE_cctorch file in the root directory. +#include +#include +#include +#include +#include +#include + +// 2d +#define BLOCK_ROWS 16 +#define BLOCK_COLS 16 + +namespace cc2d { + +template +__device__ __forceinline__ unsigned char hasBit(T bitmap, unsigned char pos) { + return (bitmap >> pos) & 1; +} + +__device__ int32_t find(const int32_t* s_buf, int32_t n) { + while (s_buf[n] != n) + n = s_buf[n]; + return n; +} + +__device__ int32_t find_n_compress(int32_t* s_buf, int32_t n) { + const int32_t id = n; + while (s_buf[n] != n) { + n = s_buf[n]; + s_buf[id] = n; + } + return n; +} + +__device__ void union_(int32_t* s_buf, int32_t a, int32_t b) { + bool done; + do { + a = find(s_buf, a); + b = find(s_buf, b); + + if (a < b) { + int32_t old = atomicMin(s_buf + b, a); + done = (old == b); + b = old; + } else if (b < a) { + int32_t old = atomicMin(s_buf + a, b); + done = (old == a); + a = old; + } else + done = true; + + } while (!done); +} + +__global__ void +init_labeling(int32_t* label, const uint32_t W, const uint32_t H) { + const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2; + const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2; + const uint32_t idx = row * W + col; + + if (row < H && col < W) + label[idx] = idx; +} + +__global__ void +merge(uint8_t* img, int32_t* label, const uint32_t W, const uint32_t H) { + const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2; + const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2; + const uint32_t idx = row * W + col; + + if (row >= H || col >= W) + return; + + uint32_t P = 0; + + if (img[idx]) + P |= 0x777; + if (row + 1 < H && img[idx + W]) + P |= 0x777 << 4; + if (col + 1 < W && img[idx + 1]) + P |= 0x777 << 1; + + if (col == 0) + P &= 0xEEEE; + if (col + 1 >= W) + P &= 0x3333; + else if (col + 2 >= W) + P &= 0x7777; + + if (row == 0) + P &= 0xFFF0; + if (row + 1 >= H) + P &= 0xFF; + + if (P > 0) { + // If need check about top-left pixel(if flag the first bit) and hit the + // top-left pixel + if (hasBit(P, 0) && img[idx - W - 1]) { + union_(label, idx, idx - 2 * W - 2); // top left block + } + + if ((hasBit(P, 1) && img[idx - W]) || (hasBit(P, 2) && img[idx - W + 1])) + union_(label, idx, idx - 2 * W); // top bottom block + + if (hasBit(P, 3) && img[idx + 2 - W]) + union_(label, idx, idx - 2 * W + 2); // top right block + + if ((hasBit(P, 4) && img[idx - 1]) || (hasBit(P, 8) && img[idx + W - 1])) + union_(label, idx, idx - 2); // just left block + } +} + +__global__ void compression(int32_t* label, const int32_t W, const int32_t H) { + const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2; + const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2; + const uint32_t idx = row * W + col; + + if (row < H && col < W) + find_n_compress(label, idx); +} + +__global__ void final_labeling( + const uint8_t* img, + int32_t* label, + const int32_t W, + const int32_t H) { + const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2; + const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2; + const uint32_t idx = row * W + col; + + if (row >= H || col >= W) + return; + + int32_t y = label[idx] + 1; + + if (img[idx]) + label[idx] = y; + else + label[idx] = 0; + + if (col + 1 < W) { + if (img[idx + 1]) + label[idx + 1] = y; + else + label[idx + 1] = 0; + + if (row + 1 < H) { + if (img[idx + W + 1]) + label[idx + W + 1] = y; + else + label[idx + W + 1] = 0; + } + } + + if (row + 1 < H) { + if (img[idx + W]) + label[idx + W] = y; + else + label[idx + W] = 0; + } +} + +__global__ void init_counting( + const int32_t* label, + int32_t* count_init, + const int32_t W, + const int32_t H) { + const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y); + const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x); + const uint32_t idx = row * W + col; + + if (row >= H || col >= W) + return; + + int32_t y = label[idx]; + if (y > 0) { + int32_t count_idx = y - 1; + atomicAdd(count_init + count_idx, 1); + } +} + +__global__ void final_counting( + const int32_t* label, + const int32_t* count_init, + int32_t* count_final, + const int32_t W, + const int32_t H) { + const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y); + const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x); + const uint32_t idx = row * W + col; + + if (row >= H || col >= W) + return; + + int32_t y = label[idx]; + if (y > 0) { + int32_t count_idx = y - 1; + count_final[idx] = count_init[count_idx]; + } else { + count_final[idx] = 0; + } +} + +} // namespace cc2d + +std::vector get_connected_componnets( + const torch::Tensor& inputs) { + AT_ASSERTM(inputs.is_cuda(), "inputs must be a CUDA tensor"); + AT_ASSERTM(inputs.ndimension() == 4, "inputs must be [N, 1, H, W] shape"); + AT_ASSERTM( + inputs.scalar_type() == torch::kUInt8, "inputs must be a uint8 type"); + + const uint32_t N = inputs.size(0); + const uint32_t C = inputs.size(1); + const uint32_t H = inputs.size(2); + const uint32_t W = inputs.size(3); + + AT_ASSERTM(C == 1, "inputs must be [N, 1, H, W] shape"); + AT_ASSERTM((H % 2) == 0, "height must be an even number"); + AT_ASSERTM((W % 2) == 0, "width must be an even number"); + + // label must be uint32_t + auto label_options = + torch::TensorOptions().dtype(torch::kInt32).device(inputs.device()); + torch::Tensor labels = torch::zeros({N, C, H, W}, label_options); + torch::Tensor counts_init = torch::zeros({N, C, H, W}, label_options); + torch::Tensor counts_final = torch::zeros({N, C, H, W}, label_options); + + dim3 grid = dim3( + ((W + 1) / 2 + BLOCK_COLS - 1) / BLOCK_COLS, + ((H + 1) / 2 + BLOCK_ROWS - 1) / BLOCK_ROWS); + dim3 block = dim3(BLOCK_COLS, BLOCK_ROWS); + dim3 grid_count = + dim3((W + BLOCK_COLS) / BLOCK_COLS, (H + BLOCK_ROWS) / BLOCK_ROWS); + dim3 block_count = dim3(BLOCK_COLS, BLOCK_ROWS); + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + for (int n = 0; n < N; n++) { + uint32_t offset = n * H * W; + + cc2d::init_labeling<<>>( + labels.data_ptr() + offset, W, H); + cc2d::merge<<>>( + inputs.data_ptr() + offset, + labels.data_ptr() + offset, + W, + H); + cc2d::compression<<>>( + labels.data_ptr() + offset, W, H); + cc2d::final_labeling<<>>( + inputs.data_ptr() + offset, + labels.data_ptr() + offset, + W, + H); + + // get the counting of each pixel + cc2d::init_counting<<>>( + labels.data_ptr() + offset, + counts_init.data_ptr() + offset, + W, + H); + cc2d::final_counting<<>>( + labels.data_ptr() + offset, + counts_init.data_ptr() + offset, + counts_final.data_ptr() + offset, + W, + H); + } + + // returned values are [labels, counts] + std::vector outputs; + outputs.push_back(labels); + outputs.push_back(counts_final); + return outputs; +} + +PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { + m.def( + "get_connected_componnets", + &get_connected_componnets, + "get_connected_componnets"); +} diff --git a/segment-anything-2/packages/sam2/modeling/__init__.py b/segment-anything-2/packages/sam2/modeling/__init__.py new file mode 100644 index 00000000..5277f461 --- /dev/null +++ b/segment-anything-2/packages/sam2/modeling/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. diff --git a/segment-anything-2/packages/sam2/modeling/backbones/__init__.py b/segment-anything-2/packages/sam2/modeling/backbones/__init__.py new file mode 100644 index 00000000..5277f461 --- /dev/null +++ b/segment-anything-2/packages/sam2/modeling/backbones/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. diff --git a/segment-anything-2/packages/sam2/modeling/backbones/hieradet.py b/segment-anything-2/packages/sam2/modeling/backbones/hieradet.py new file mode 100644 index 00000000..1ae7d4c0 --- /dev/null +++ b/segment-anything-2/packages/sam2/modeling/backbones/hieradet.py @@ -0,0 +1,295 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from functools import partial +from typing import List, Tuple, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from sam2.modeling.backbones.utils import ( + PatchEmbed, + window_partition, + window_unpartition, +) + +from sam2.modeling.sam2_utils import DropPath, MLP + + +def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor: + if pool is None: + return x + # (B, H, W, C) -> (B, C, H, W) + x = x.permute(0, 3, 1, 2) + x = pool(x) + # (B, C, H', W') -> (B, H', W', C) + x = x.permute(0, 2, 3, 1) + if norm: + x = norm(x) + + return x + + +class MultiScaleAttention(nn.Module): + def __init__( + self, + dim: int, + dim_out: int, + num_heads: int, + q_pool: nn.Module = None, + ): + super().__init__() + + self.dim = dim + self.dim_out = dim_out + + self.num_heads = num_heads + head_dim = dim_out // num_heads + self.scale = head_dim**-0.5 + + self.q_pool = q_pool + self.qkv = nn.Linear(dim, dim_out * 3) + self.proj = nn.Linear(dim_out, dim_out) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + B, H, W, _ = x.shape + # qkv with shape (B, H * W, 3, nHead, C) + qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1) + # q, k, v with shape (B, H * W, nheads, C) + q, k, v = torch.unbind(qkv, 2) + + # Q pooling (for downsample at stage changes) + if self.q_pool: + q = do_pool(q.reshape(B, H, W, -1), self.q_pool) + H, W = q.shape[1:3] # downsampled shape + q = q.reshape(B, H * W, self.num_heads, -1) + + # Torch's SDPA expects [B, nheads, H*W, C] so we transpose + x = F.scaled_dot_product_attention( + q.transpose(1, 2), + k.transpose(1, 2), + v.transpose(1, 2), + ) + # Transpose back + x = x.transpose(1, 2) + x = x.reshape(B, H, W, -1) + + x = self.proj(x) + + return x + + +class MultiScaleBlock(nn.Module): + def __init__( + self, + dim: int, + dim_out: int, + num_heads: int, + mlp_ratio: float = 4.0, + drop_path: float = 0.0, + norm_layer: Union[nn.Module, str] = "LayerNorm", + q_stride: Tuple[int, int] = None, + act_layer: nn.Module = nn.GELU, + window_size: int = 0, + ): + super().__init__() + + if isinstance(norm_layer, str): + norm_layer = partial(getattr(nn, norm_layer), eps=1e-6) + + self.dim = dim + self.dim_out = dim_out + self.norm1 = norm_layer(dim) + + self.window_size = window_size + + self.pool, self.q_stride = None, q_stride + if self.q_stride: + self.pool = nn.MaxPool2d( + kernel_size=q_stride, stride=q_stride, ceil_mode=False + ) + + self.attn = MultiScaleAttention( + dim, + dim_out, + num_heads=num_heads, + q_pool=self.pool, + ) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + self.norm2 = norm_layer(dim_out) + self.mlp = MLP( + dim_out, + int(dim_out * mlp_ratio), + dim_out, + num_layers=2, + activation=act_layer, + ) + + if dim != dim_out: + self.proj = nn.Linear(dim, dim_out) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + shortcut = x # B, H, W, C + x = self.norm1(x) + + # Skip connection + if self.dim != self.dim_out: + shortcut = do_pool(self.proj(x), self.pool) + + # Window partition + window_size = self.window_size + if window_size > 0: + H, W = x.shape[1], x.shape[2] + x, pad_hw = window_partition(x, window_size) + + # Window Attention + Q Pooling (if stage change) + x = self.attn(x) + if self.q_stride: + # Shapes have changed due to Q pooling + window_size = self.window_size // self.q_stride[0] + H, W = shortcut.shape[1:3] + + pad_h = (window_size - H % window_size) % window_size + pad_w = (window_size - W % window_size) % window_size + pad_hw = (H + pad_h, W + pad_w) + + # Reverse window partition + if self.window_size > 0: + x = window_unpartition(x, window_size, pad_hw, (H, W)) + + x = shortcut + self.drop_path(x) + # MLP + x = x + self.drop_path(self.mlp(self.norm2(x))) + return x + + +class Hiera(nn.Module): + """ + Reference: https://arxiv.org/abs/2306.00989 + """ + + def __init__( + self, + embed_dim: int = 96, # initial embed dim + num_heads: int = 1, # initial number of heads + drop_path_rate: float = 0.0, # stochastic depth + q_pool: int = 3, # number of q_pool stages + q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages + stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage + dim_mul: float = 2.0, # dim_mul factor at stage shift + head_mul: float = 2.0, # head_mul factor at stage shift + window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14), + # window size per stage, when not using global att. + window_spec: Tuple[int, ...] = ( + 8, + 4, + 14, + 7, + ), + # global attn in these blocks + global_att_blocks: Tuple[int, ...] = ( + 12, + 16, + 20, + ), + return_interm_layers=True, # return feats from every stage + ): + super().__init__() + + assert len(stages) == len(window_spec) + self.window_spec = window_spec + + depth = sum(stages) + self.q_stride = q_stride + self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)] + assert 0 <= q_pool <= len(self.stage_ends[:-1]) + self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool] + self.return_interm_layers = return_interm_layers + + self.patch_embed = PatchEmbed( + embed_dim=embed_dim, + ) + # Which blocks have global att? + self.global_att_blocks = global_att_blocks + + # Windowed positional embedding (https://arxiv.org/abs/2311.05613) + self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size + self.pos_embed = nn.Parameter( + torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size) + ) + self.pos_embed_window = nn.Parameter( + torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0]) + ) + + dpr = [ + x.item() for x in torch.linspace(0, drop_path_rate, depth) + ] # stochastic depth decay rule + + cur_stage = 1 + self.blocks = nn.ModuleList() + + for i in range(depth): + dim_out = embed_dim + # lags by a block, so first block of + # next stage uses an initial window size + # of previous stage and final window size of current stage + window_size = self.window_spec[cur_stage - 1] + + if self.global_att_blocks is not None: + window_size = 0 if i in self.global_att_blocks else window_size + + if i - 1 in self.stage_ends: + dim_out = int(embed_dim * dim_mul) + num_heads = int(num_heads * head_mul) + cur_stage += 1 + + block = MultiScaleBlock( + dim=embed_dim, + dim_out=dim_out, + num_heads=num_heads, + drop_path=dpr[i], + q_stride=self.q_stride if i in self.q_pool_blocks else None, + window_size=window_size, + ) + + embed_dim = dim_out + self.blocks.append(block) + + self.channel_list = ( + [self.blocks[i].dim_out for i in self.stage_ends[::-1]] + if return_interm_layers + else [self.blocks[-1].dim_out] + ) + + def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor: + h, w = hw + window_embed = self.pos_embed_window + pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic") + pos_embed = pos_embed + window_embed.tile( + [x // y for x, y in zip(pos_embed.shape, window_embed.shape)] + ) + pos_embed = pos_embed.permute(0, 2, 3, 1) + return pos_embed + + def forward(self, x: torch.Tensor) -> List[torch.Tensor]: + x = self.patch_embed(x) + # x: (B, H, W, C) + + # Add pos embed + x = x + self._get_pos_embed(x.shape[1:3]) + + outputs = [] + for i, blk in enumerate(self.blocks): + x = blk(x) + if (i == self.stage_ends[-1]) or ( + i in self.stage_ends and self.return_interm_layers + ): + feats = x.permute(0, 3, 1, 2) + outputs.append(feats) + + return outputs diff --git a/segment-anything-2/packages/sam2/modeling/backbones/image_encoder.py b/segment-anything-2/packages/sam2/modeling/backbones/image_encoder.py new file mode 100644 index 00000000..5f92baf4 --- /dev/null +++ b/segment-anything-2/packages/sam2/modeling/backbones/image_encoder.py @@ -0,0 +1,133 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from typing import List, Optional + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +class ImageEncoder(nn.Module): + def __init__( + self, + trunk: nn.Module, + neck: nn.Module, + scalp: int = 0, + ): + super().__init__() + self.trunk = trunk + self.neck = neck + self.scalp = scalp + assert ( + self.trunk.channel_list == self.neck.backbone_channel_list + ), f"Channel dims of trunk and neck do not match. Trunk: {self.trunk.channel_list}, neck: {self.neck.backbone_channel_list}" + + def forward(self, sample: torch.Tensor): + # Forward through backbone + features, pos = self.neck(self.trunk(sample)) + if self.scalp > 0: + # Discard the lowest resolution features + features, pos = features[: -self.scalp], pos[: -self.scalp] + + src = features[-1] + output = { + "vision_features": src, + "vision_pos_enc": pos, + "backbone_fpn": features, + } + return output + + +class FpnNeck(nn.Module): + """ + A modified variant of Feature Pyramid Network (FPN) neck + (we remove output conv and also do bicubic interpolation similar to ViT + pos embed interpolation) + """ + + def __init__( + self, + position_encoding: nn.Module, + d_model: int, + backbone_channel_list: List[int], + kernel_size: int = 1, + stride: int = 1, + padding: int = 0, + fpn_interp_model: str = "bilinear", + fuse_type: str = "sum", + fpn_top_down_levels: Optional[List[int]] = None, + ): + """Initialize the neck + :param trunk: the backbone + :param position_encoding: the positional encoding to use + :param d_model: the dimension of the model + :param neck_norm: the normalization to use + """ + super().__init__() + self.position_encoding = position_encoding + self.convs = nn.ModuleList() + self.backbone_channel_list = backbone_channel_list + for dim in backbone_channel_list: + current = nn.Sequential() + current.add_module( + "conv", + nn.Conv2d( + in_channels=dim, + out_channels=d_model, + kernel_size=kernel_size, + stride=stride, + padding=padding, + ), + ) + + self.convs.append(current) + self.fpn_interp_model = fpn_interp_model + assert fuse_type in ["sum", "avg"] + self.fuse_type = fuse_type + + # levels to have top-down features in its outputs + # e.g. if fpn_top_down_levels is [2, 3], then only outputs of level 2 and 3 + # have top-down propagation, while outputs of level 0 and level 1 have only + # lateral features from the same backbone level. + if fpn_top_down_levels is None: + # default is to have top-down features on all levels + fpn_top_down_levels = range(len(self.convs)) + self.fpn_top_down_levels = list(fpn_top_down_levels) + + def forward(self, xs: List[torch.Tensor]): + + out = [None] * len(self.convs) + pos = [None] * len(self.convs) + assert len(xs) == len(self.convs) + # fpn forward pass + # see https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/fpn.py + prev_features = None + # forward in top-down order (from low to high resolution) + n = len(self.convs) - 1 + for i in range(n, -1, -1): + x = xs[i] + lateral_features = self.convs[n - i](x) + if i in self.fpn_top_down_levels and prev_features is not None: + top_down_features = F.interpolate( + prev_features.to(dtype=torch.float32), + scale_factor=2.0, + mode=self.fpn_interp_model, + align_corners=( + None if self.fpn_interp_model == "nearest" else False + ), + antialias=False, + ) + prev_features = lateral_features + top_down_features + if self.fuse_type == "avg": + prev_features /= 2 + else: + prev_features = lateral_features + x_out = prev_features + out[i] = x_out + pos[i] = self.position_encoding(x_out).to(x_out.dtype) + + return out, pos diff --git a/segment-anything-2/packages/sam2/modeling/backbones/utils.py b/segment-anything-2/packages/sam2/modeling/backbones/utils.py new file mode 100644 index 00000000..32d55c75 --- /dev/null +++ b/segment-anything-2/packages/sam2/modeling/backbones/utils.py @@ -0,0 +1,95 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +"""Some utilities for backbones, in particular for windowing""" + +from typing import Tuple + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +def window_partition(x, window_size): + """ + Partition into non-overlapping windows with padding if needed. + Args: + x (tensor): input tokens with [B, H, W, C]. + window_size (int): window size. + Returns: + windows: windows after partition with [B * num_windows, window_size, window_size, C]. + (Hp, Wp): padded height and width before partition + """ + B, H, W, C = x.shape + + pad_h = (window_size - H % window_size) % window_size + pad_w = (window_size - W % window_size) % window_size + if pad_h > 0 or pad_w > 0: + x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) + Hp, Wp = H + pad_h, W + pad_w + + x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) + windows = ( + x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) + ) + return windows, (Hp, Wp) + + +def window_unpartition(windows, window_size, pad_hw, hw): + """ + Window unpartition into original sequences and removing padding. + Args: + x (tensor): input tokens with [B * num_windows, window_size, window_size, C]. + window_size (int): window size. + pad_hw (Tuple): padded height and width (Hp, Wp). + hw (Tuple): original height and width (H, W) before padding. + Returns: + x: unpartitioned sequences with [B, H, W, C]. + """ + Hp, Wp = pad_hw + H, W = hw + B = windows.shape[0] // (Hp * Wp // window_size // window_size) + x = windows.view( + B, Hp // window_size, Wp // window_size, window_size, window_size, -1 + ) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) + + if Hp > H or Wp > W: + x = x[:, :H, :W, :].contiguous() + return x + + +class PatchEmbed(nn.Module): + """ + Image to Patch Embedding. + """ + + def __init__( + self, + kernel_size: Tuple[int, ...] = (7, 7), + stride: Tuple[int, ...] = (4, 4), + padding: Tuple[int, ...] = (3, 3), + in_chans: int = 3, + embed_dim: int = 768, + ): + """ + Args: + kernel_size (Tuple): kernel size of the projection layer. + stride (Tuple): stride of the projection layer. + padding (Tuple): padding size of the projection layer. + in_chans (int): Number of input image channels. + embed_dim (int): embed_dim (int): Patch embedding dimension. + """ + super().__init__() + self.proj = nn.Conv2d( + in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.proj(x) + # B C H W -> B H W C + x = x.permute(0, 2, 3, 1) + return x diff --git a/segment-anything-2/packages/sam2/modeling/memory_attention.py b/segment-anything-2/packages/sam2/modeling/memory_attention.py new file mode 100644 index 00000000..557f8354 --- /dev/null +++ b/segment-anything-2/packages/sam2/modeling/memory_attention.py @@ -0,0 +1,166 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from typing import Optional + +import torch +from sam2.modeling.sam2_utils import get_activation_fn, get_clones +from sam2.modeling.sam.transformer import RoPEAttention +from torch import Tensor, nn + + +class MemoryAttentionLayer(nn.Module): + def __init__( + self, + activation: str, + cross_attention: nn.Module, + d_model: int, + dim_feedforward: int, + dropout: float, + pos_enc_at_attn: bool, + pos_enc_at_cross_attn_keys: bool, + pos_enc_at_cross_attn_queries: bool, + self_attention: nn.Module, + ): + super().__init__() + self.d_model = d_model + self.dim_feedforward = dim_feedforward + self.dropout_value = dropout + self.self_attn = self_attention + self.cross_attn_image = cross_attention + + # Implementation of Feedforward model + self.linear1 = nn.Linear(d_model, dim_feedforward) + self.dropout = nn.Dropout(dropout) + self.linear2 = nn.Linear(dim_feedforward, d_model) + + self.norm1 = nn.LayerNorm(d_model) + self.norm2 = nn.LayerNorm(d_model) + self.norm3 = nn.LayerNorm(d_model) + self.dropout1 = nn.Dropout(dropout) + self.dropout2 = nn.Dropout(dropout) + self.dropout3 = nn.Dropout(dropout) + + self.activation_str = activation + self.activation = get_activation_fn(activation) + + # Where to add pos enc + self.pos_enc_at_attn = pos_enc_at_attn + self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries + self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys + + def _forward_sa(self, tgt, query_pos): + # Self-Attention + tgt2 = self.norm1(tgt) + q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2 + tgt2 = self.self_attn(q, k, v=tgt2) + tgt = tgt + self.dropout1(tgt2) + return tgt + + def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0): + kwds = {} + if num_k_exclude_rope > 0: + assert isinstance(self.cross_attn_image, RoPEAttention) + kwds = {"num_k_exclude_rope": num_k_exclude_rope} + + # Cross-Attention + tgt2 = self.norm2(tgt) + tgt2 = self.cross_attn_image( + q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2, + k=memory + pos if self.pos_enc_at_cross_attn_keys else memory, + v=memory, + **kwds, + ) + tgt = tgt + self.dropout2(tgt2) + return tgt + + def forward( + self, + tgt, + memory, + pos: Optional[Tensor] = None, + query_pos: Optional[Tensor] = None, + num_k_exclude_rope: int = 0, + ) -> torch.Tensor: + + # Self-Attn, Cross-Attn + tgt = self._forward_sa(tgt, query_pos) + tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope) + # MLP + tgt2 = self.norm3(tgt) + tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) + tgt = tgt + self.dropout3(tgt2) + return tgt + + +class MemoryAttention(nn.Module): + def __init__( + self, + d_model: int, + pos_enc_at_input: bool, + layer: nn.Module, + num_layers: int, + batch_first: bool = True, # Do layers expect batch first input? + ): + super().__init__() + self.d_model = d_model + self.layers = get_clones(layer, num_layers) + self.num_layers = num_layers + self.norm = nn.LayerNorm(d_model) + self.pos_enc_at_input = pos_enc_at_input + self.batch_first = batch_first + + def forward( + self, + curr: torch.Tensor, # self-attention inputs + memory: torch.Tensor, # cross-attention inputs + curr_pos: Optional[Tensor] = None, # pos_enc for self-attention inputs + memory_pos: Optional[Tensor] = None, # pos_enc for cross-attention inputs + num_obj_ptr_tokens: int = 0, # number of object pointer *tokens* + ): + if isinstance(curr, list): + assert isinstance(curr_pos, list) + assert len(curr) == len(curr_pos) == 1 + curr, curr_pos = ( + curr[0], + curr_pos[0], + ) + + assert ( + curr.shape[1] == memory.shape[1] + ), "Batch size must be the same for curr and memory" + + output = curr + if self.pos_enc_at_input and curr_pos is not None: + output = output + 0.1 * curr_pos + + if self.batch_first: + # Convert to batch first + output = output.transpose(0, 1) + curr_pos = curr_pos.transpose(0, 1) + memory = memory.transpose(0, 1) + memory_pos = memory_pos.transpose(0, 1) + + for layer in self.layers: + kwds = {} + if isinstance(layer.cross_attn_image, RoPEAttention): + kwds = {"num_k_exclude_rope": num_obj_ptr_tokens} + + output = layer( + tgt=output, + memory=memory, + pos=memory_pos, + query_pos=curr_pos, + **kwds, + ) + normed_output = self.norm(output) + + if self.batch_first: + # Convert back to seq first + normed_output = normed_output.transpose(0, 1) + curr_pos = curr_pos.transpose(0, 1) + + return normed_output diff --git a/segment-anything-2/packages/sam2/modeling/memory_encoder.py b/segment-anything-2/packages/sam2/modeling/memory_encoder.py new file mode 100644 index 00000000..f60202df --- /dev/null +++ b/segment-anything-2/packages/sam2/modeling/memory_encoder.py @@ -0,0 +1,181 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import math +from typing import Tuple + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from sam2.modeling.sam2_utils import DropPath, get_clones, LayerNorm2d + + +class MaskDownSampler(nn.Module): + """ + Progressively downsample a mask by total_stride, each time by stride. + Note that LayerNorm is applied per *token*, like in ViT. + + With each downsample (by a factor stride**2), channel capacity increases by the same factor. + In the end, we linearly project to embed_dim channels. + """ + + def __init__( + self, + embed_dim=256, + kernel_size=4, + stride=4, + padding=0, + total_stride=16, + activation=nn.GELU, + ): + super().__init__() + num_layers = int(math.log2(total_stride) // math.log2(stride)) + assert stride**num_layers == total_stride + self.encoder = nn.Sequential() + mask_in_chans, mask_out_chans = 1, 1 + for _ in range(num_layers): + mask_out_chans = mask_in_chans * (stride**2) + self.encoder.append( + nn.Conv2d( + mask_in_chans, + mask_out_chans, + kernel_size=kernel_size, + stride=stride, + padding=padding, + ) + ) + self.encoder.append(LayerNorm2d(mask_out_chans)) + self.encoder.append(activation()) + mask_in_chans = mask_out_chans + + self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1)) + + def forward(self, x): + return self.encoder(x) + + +# Lightly adapted from ConvNext (https://github.com/facebookresearch/ConvNeXt) +class CXBlock(nn.Module): + r"""ConvNeXt Block. There are two equivalent implementations: + (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) + (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back + We use (2) as we find it slightly faster in PyTorch + + Args: + dim (int): Number of input channels. + drop_path (float): Stochastic depth rate. Default: 0.0 + layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. + """ + + def __init__( + self, + dim, + kernel_size=7, + padding=3, + drop_path=0.0, + layer_scale_init_value=1e-6, + use_dwconv=True, + ): + super().__init__() + self.dwconv = nn.Conv2d( + dim, + dim, + kernel_size=kernel_size, + padding=padding, + groups=dim if use_dwconv else 1, + ) # depthwise conv + self.norm = LayerNorm2d(dim, eps=1e-6) + self.pwconv1 = nn.Linear( + dim, 4 * dim + ) # pointwise/1x1 convs, implemented with linear layers + self.act = nn.GELU() + self.pwconv2 = nn.Linear(4 * dim, dim) + self.gamma = ( + nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) + if layer_scale_init_value > 0 + else None + ) + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, x): + input = x + x = self.dwconv(x) + x = self.norm(x) + x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) + x = self.pwconv1(x) + x = self.act(x) + x = self.pwconv2(x) + if self.gamma is not None: + x = self.gamma * x + x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) + + x = input + self.drop_path(x) + return x + + +class Fuser(nn.Module): + def __init__(self, layer, num_layers, dim=None, input_projection=False): + super().__init__() + self.proj = nn.Identity() + self.layers = get_clones(layer, num_layers) + + if input_projection: + assert dim is not None + self.proj = nn.Conv2d(dim, dim, kernel_size=1) + + def forward(self, x): + # normally x: (N, C, H, W) + x = self.proj(x) + for layer in self.layers: + x = layer(x) + return x + + +class MemoryEncoder(nn.Module): + def __init__( + self, + out_dim, + mask_downsampler, + fuser, + position_encoding, + in_dim=256, # in_dim of pix_feats + ): + super().__init__() + + self.mask_downsampler = mask_downsampler + + self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1) + self.fuser = fuser + self.position_encoding = position_encoding + self.out_proj = nn.Identity() + if out_dim != in_dim: + self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1) + + def forward( + self, + pix_feat: torch.Tensor, + masks: torch.Tensor, + skip_mask_sigmoid: bool = False, + ) -> Tuple[torch.Tensor, torch.Tensor]: + ## Process masks + # sigmoid, so that less domain shift from gt masks which are bool + if not skip_mask_sigmoid: + masks = F.sigmoid(masks) + masks = self.mask_downsampler(masks) + + ## Fuse pix_feats and downsampled masks + # in case the visual features are on CPU, cast them to CUDA + pix_feat = pix_feat.to(masks.device) + + x = self.pix_feat_proj(pix_feat) + x = x + masks + x = self.fuser(x) + x = self.out_proj(x) + + pos = self.position_encoding(x).to(x.dtype) + + return {"vision_features": x, "vision_pos_enc": [pos]} diff --git a/segment-anything-2/packages/sam2/modeling/position_encoding.py b/segment-anything-2/packages/sam2/modeling/position_encoding.py new file mode 100644 index 00000000..f4b57ae7 --- /dev/null +++ b/segment-anything-2/packages/sam2/modeling/position_encoding.py @@ -0,0 +1,216 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import math +from typing import Any, Optional, Tuple + +import numpy as np + +import torch +from torch import nn + + +class PositionEmbeddingSine(nn.Module): + """ + This is a more standard version of the position embedding, very similar to the one + used by the Attention is all you need paper, generalized to work on images. + """ + + def __init__( + self, + num_pos_feats, + temperature: int = 10000, + normalize: bool = True, + scale: Optional[float] = None, + ): + super().__init__() + assert num_pos_feats % 2 == 0, "Expecting even model width" + self.num_pos_feats = num_pos_feats // 2 + self.temperature = temperature + self.normalize = normalize + if scale is not None and normalize is False: + raise ValueError("normalize should be True if scale is passed") + if scale is None: + scale = 2 * math.pi + self.scale = scale + + self.cache = {} + + def _encode_xy(self, x, y): + # The positions are expected to be normalized + assert len(x) == len(y) and x.ndim == y.ndim == 1 + x_embed = x * self.scale + y_embed = y * self.scale + + dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) + dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) + + pos_x = x_embed[:, None] / dim_t + pos_y = y_embed[:, None] / dim_t + pos_x = torch.stack( + (pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2 + ).flatten(1) + pos_y = torch.stack( + (pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2 + ).flatten(1) + return pos_x, pos_y + + @torch.no_grad() + def encode_boxes(self, x, y, w, h): + pos_x, pos_y = self._encode_xy(x, y) + pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1) + return pos + + encode = encode_boxes # Backwards compatibility + + @torch.no_grad() + def encode_points(self, x, y, labels): + (bx, nx), (by, ny), (bl, nl) = x.shape, y.shape, labels.shape + assert bx == by and nx == ny and bx == bl and nx == nl + pos_x, pos_y = self._encode_xy(x.flatten(), y.flatten()) + pos_x, pos_y = pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1) + pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2) + return pos + + @torch.no_grad() + def forward(self, x: torch.Tensor): + cache_key = (x.shape[-2], x.shape[-1]) + if cache_key in self.cache: + return self.cache[cache_key][None].repeat(x.shape[0], 1, 1, 1) + y_embed = ( + torch.arange(1, x.shape[-2] + 1, dtype=torch.float32, device=x.device) + .view(1, -1, 1) + .repeat(x.shape[0], 1, x.shape[-1]) + ) + x_embed = ( + torch.arange(1, x.shape[-1] + 1, dtype=torch.float32, device=x.device) + .view(1, 1, -1) + .repeat(x.shape[0], x.shape[-2], 1) + ) + + if self.normalize: + eps = 1e-6 + y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale + x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale + + dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) + dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) + + pos_x = x_embed[:, :, :, None] / dim_t + pos_y = y_embed[:, :, :, None] / dim_t + pos_x = torch.stack( + (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 + ).flatten(3) + pos_y = torch.stack( + (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 + ).flatten(3) + pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) + self.cache[cache_key] = pos[0] + return pos + + +class PositionEmbeddingRandom(nn.Module): + """ + Positional encoding using random spatial frequencies. + """ + + def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None: + super().__init__() + if scale is None or scale <= 0.0: + scale = 1.0 + self.register_buffer( + "positional_encoding_gaussian_matrix", + scale * torch.randn((2, num_pos_feats)), + ) + + def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: + """Positionally encode points that are normalized to [0,1].""" + # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape + coords = 2 * coords - 1 + coords = coords @ self.positional_encoding_gaussian_matrix + coords = 2 * np.pi * coords + # outputs d_1 x ... x d_n x C shape + return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) + + def forward(self, size: Tuple[int, int]) -> torch.Tensor: + """Generate positional encoding for a grid of the specified size.""" + h, w = size + device: Any = self.positional_encoding_gaussian_matrix.device + grid = torch.ones((h, w), device=device, dtype=torch.float32) + y_embed = grid.cumsum(dim=0) - 0.5 + x_embed = grid.cumsum(dim=1) - 0.5 + y_embed = y_embed / h + x_embed = x_embed / w + + pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) + return pe.permute(2, 0, 1) # C x H x W + + def forward_with_coords( + self, coords_input: torch.Tensor, image_size: Tuple[int, int] + ) -> torch.Tensor: + """Positionally encode points that are not normalized to [0,1].""" + coords = coords_input.clone() + coords[:, :, 0] = coords[:, :, 0] / image_size[1] + coords[:, :, 1] = coords[:, :, 1] / image_size[0] + return self._pe_encoding(coords.to(torch.float)) # B x N x C + + +# Rotary Positional Encoding, adapted from: +# 1. https://github.com/meta-llama/codellama/blob/main/llama/model.py +# 2. https://github.com/naver-ai/rope-vit +# 3. https://github.com/lucidrains/rotary-embedding-torch + + +def init_t_xy(end_x: int, end_y: int): + t = torch.arange(end_x * end_y, dtype=torch.float32) + t_x = (t % end_x).float() + t_y = torch.div(t, end_x, rounding_mode="floor").float() + return t_x, t_y + + +def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float = 10000.0): + freqs_x = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim)) + freqs_y = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim)) + + t_x, t_y = init_t_xy(end_x, end_y) + freqs_x = torch.outer(t_x, freqs_x) + freqs_y = torch.outer(t_y, freqs_y) + freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x) + freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y) + return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1) + + +def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): + ndim = x.ndim + assert 0 <= 1 < ndim + assert freqs_cis.shape == (x.shape[-2], x.shape[-1]) + shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)] + return freqs_cis.view(*shape) + + +def apply_rotary_enc( + xq: torch.Tensor, + xk: torch.Tensor, + freqs_cis: torch.Tensor, + repeat_freqs_k: bool = False, +): + xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) + xk_ = ( + torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) + if xk.shape[-2] != 0 + else None + ) + freqs_cis = reshape_for_broadcast(freqs_cis, xq_) + xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) + if xk_ is None: + # no keys to rotate, due to dropout + return xq_out.type_as(xq).to(xq.device), xk + # repeat freqs along seq_len dim to match k seq_len + if repeat_freqs_k: + r = xk_.shape[-2] // xq_.shape[-2] + freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1) + xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) + return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device) diff --git a/segment-anything-2/packages/sam2/modeling/sam/__init__.py b/segment-anything-2/packages/sam2/modeling/sam/__init__.py new file mode 100644 index 00000000..5277f461 --- /dev/null +++ b/segment-anything-2/packages/sam2/modeling/sam/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. diff --git a/segment-anything-2/packages/sam2/modeling/sam/mask_decoder.py b/segment-anything-2/packages/sam2/modeling/sam/mask_decoder.py new file mode 100644 index 00000000..b7c7dfdb --- /dev/null +++ b/segment-anything-2/packages/sam2/modeling/sam/mask_decoder.py @@ -0,0 +1,295 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from typing import List, Optional, Tuple, Type + +import torch +from torch import nn + +from sam2.modeling.sam2_utils import LayerNorm2d, MLP + + +class MaskDecoder(nn.Module): + def __init__( + self, + *, + transformer_dim: int, + transformer: nn.Module, + num_multimask_outputs: int = 3, + activation: Type[nn.Module] = nn.GELU, + iou_head_depth: int = 3, + iou_head_hidden_dim: int = 256, + use_high_res_features: bool = False, + iou_prediction_use_sigmoid=False, + dynamic_multimask_via_stability=False, + dynamic_multimask_stability_delta=0.05, + dynamic_multimask_stability_thresh=0.98, + pred_obj_scores: bool = False, + pred_obj_scores_mlp: bool = False, + use_multimask_token_for_obj_ptr: bool = False, + ) -> None: + """ + Predicts masks given an image and prompt embeddings, using a + transformer architecture. + + Arguments: + transformer_dim (int): the channel dimension of the transformer + transformer (nn.Module): the transformer used to predict masks + num_multimask_outputs (int): the number of masks to predict + when disambiguating masks + activation (nn.Module): the type of activation to use when + upscaling masks + iou_head_depth (int): the depth of the MLP used to predict + mask quality + iou_head_hidden_dim (int): the hidden dimension of the MLP + used to predict mask quality + """ + super().__init__() + self.transformer_dim = transformer_dim + self.transformer = transformer + + self.num_multimask_outputs = num_multimask_outputs + + self.iou_token = nn.Embedding(1, transformer_dim) + self.num_mask_tokens = num_multimask_outputs + 1 + self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) + + self.pred_obj_scores = pred_obj_scores + if self.pred_obj_scores: + self.obj_score_token = nn.Embedding(1, transformer_dim) + self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr + + self.output_upscaling = nn.Sequential( + nn.ConvTranspose2d( + transformer_dim, transformer_dim // 4, kernel_size=2, stride=2 + ), + LayerNorm2d(transformer_dim // 4), + activation(), + nn.ConvTranspose2d( + transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2 + ), + activation(), + ) + self.use_high_res_features = use_high_res_features + if use_high_res_features: + self.conv_s0 = nn.Conv2d( + transformer_dim, transformer_dim // 8, kernel_size=1, stride=1 + ) + self.conv_s1 = nn.Conv2d( + transformer_dim, transformer_dim // 4, kernel_size=1, stride=1 + ) + + self.output_hypernetworks_mlps = nn.ModuleList( + [ + MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) + for i in range(self.num_mask_tokens) + ] + ) + + self.iou_prediction_head = MLP( + transformer_dim, + iou_head_hidden_dim, + self.num_mask_tokens, + iou_head_depth, + sigmoid_output=iou_prediction_use_sigmoid, + ) + if self.pred_obj_scores: + self.pred_obj_score_head = nn.Linear(transformer_dim, 1) + if pred_obj_scores_mlp: + self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3) + + # When outputting a single mask, optionally we can dynamically fall back to the best + # multimask output token if the single mask output token gives low stability scores. + self.dynamic_multimask_via_stability = dynamic_multimask_via_stability + self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta + self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh + + def forward( + self, + image_embeddings: torch.Tensor, + image_pe: torch.Tensor, + sparse_prompt_embeddings: torch.Tensor, + dense_prompt_embeddings: torch.Tensor, + multimask_output: bool, + repeat_image: bool, + high_res_features: Optional[List[torch.Tensor]] = None, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Predict masks given image and prompt embeddings. + + Arguments: + image_embeddings (torch.Tensor): the embeddings from the image encoder + image_pe (torch.Tensor): positional encoding with the shape of image_embeddings + sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes + dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs + multimask_output (bool): Whether to return multiple masks or a single + mask. + + Returns: + torch.Tensor: batched predicted masks + torch.Tensor: batched predictions of mask quality + torch.Tensor: batched SAM token for mask output + """ + masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks( + image_embeddings=image_embeddings, + image_pe=image_pe, + sparse_prompt_embeddings=sparse_prompt_embeddings, + dense_prompt_embeddings=dense_prompt_embeddings, + repeat_image=repeat_image, + high_res_features=high_res_features, + ) + + # Select the correct mask or masks for output + if multimask_output: + masks = masks[:, 1:, :, :] + iou_pred = iou_pred[:, 1:] + elif self.dynamic_multimask_via_stability and not self.training: + masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred) + else: + masks = masks[:, 0:1, :, :] + iou_pred = iou_pred[:, 0:1] + + if multimask_output and self.use_multimask_token_for_obj_ptr: + sam_tokens_out = mask_tokens_out[:, 1:] # [b, 3, c] shape + else: + # Take the mask output token. Here we *always* use the token for single mask output. + # At test time, even if we track after 1-click (and using multimask_output=True), + # we still take the single mask token here. The rationale is that we always track + # after multiple clicks during training, so the past tokens seen during training + # are always the single mask token (and we'll let it be the object-memory token). + sam_tokens_out = mask_tokens_out[:, 0:1] # [b, 1, c] shape + + # Prepare output + return masks, iou_pred, sam_tokens_out, object_score_logits + + def predict_masks( + self, + image_embeddings: torch.Tensor, + image_pe: torch.Tensor, + sparse_prompt_embeddings: torch.Tensor, + dense_prompt_embeddings: torch.Tensor, + repeat_image: bool, + high_res_features: Optional[List[torch.Tensor]] = None, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """Predicts masks. See 'forward' for more details.""" + # Concatenate output tokens + s = 0 + if self.pred_obj_scores: + output_tokens = torch.cat( + [ + self.obj_score_token.weight, + self.iou_token.weight, + self.mask_tokens.weight, + ], + dim=0, + ) + s = 1 + else: + output_tokens = torch.cat( + [self.iou_token.weight, self.mask_tokens.weight], dim=0 + ) + output_tokens = output_tokens.unsqueeze(0).expand( + sparse_prompt_embeddings.size(0), -1, -1 + ) + tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) + + # Expand per-image data in batch direction to be per-mask + if repeat_image: + src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) + else: + assert image_embeddings.shape[0] == tokens.shape[0] + src = image_embeddings + src = src + dense_prompt_embeddings + assert ( + image_pe.size(0) == 1 + ), "image_pe should have size 1 in batch dim (from `get_dense_pe()`)" + pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) + b, c, h, w = src.shape + + # Run the transformer + hs, src = self.transformer(src, pos_src, tokens) + iou_token_out = hs[:, s, :] + mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :] + + # Upscale mask embeddings and predict masks using the mask tokens + src = src.transpose(1, 2).view(b, c, h, w) + if not self.use_high_res_features: + upscaled_embedding = self.output_upscaling(src) + else: + dc1, ln1, act1, dc2, act2 = self.output_upscaling + feat_s0, feat_s1 = high_res_features + upscaled_embedding = act1(ln1(dc1(src) + feat_s1)) + upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0) + + hyper_in_list: List[torch.Tensor] = [] + for i in range(self.num_mask_tokens): + hyper_in_list.append( + self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) + ) + hyper_in = torch.stack(hyper_in_list, dim=1) + b, c, h, w = upscaled_embedding.shape + masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) + + # Generate mask quality predictions + iou_pred = self.iou_prediction_head(iou_token_out) + if self.pred_obj_scores: + assert s == 1 + object_score_logits = self.pred_obj_score_head(hs[:, 0, :]) + else: + # Obj scores logits - default to 10.0, i.e. assuming the object is present, sigmoid(10)=1 + object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1) + + return masks, iou_pred, mask_tokens_out, object_score_logits + + def _get_stability_scores(self, mask_logits): + """ + Compute stability scores of the mask logits based on the IoU between upper and + lower thresholds, similar to https://github.com/fairinternal/onevision/pull/568. + """ + mask_logits = mask_logits.flatten(-2) + stability_delta = self.dynamic_multimask_stability_delta + area_i = torch.sum(mask_logits > stability_delta, dim=-1).float() + area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float() + stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0) + return stability_scores + + def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores): + """ + When outputting a single mask, if the stability score from the current single-mask + output (based on output token 0) falls below a threshold, we instead select from + multi-mask outputs (based on output token 1~3) the mask with the highest predicted + IoU score. This is intended to ensure a valid mask for both clicking and tracking. + """ + # The best mask from multimask output tokens (1~3) + multimask_logits = all_mask_logits[:, 1:, :, :] + multimask_iou_scores = all_iou_scores[:, 1:] + best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1) + batch_inds = torch.arange( + multimask_iou_scores.size(0), device=all_iou_scores.device + ) + best_multimask_logits = multimask_logits[batch_inds, best_scores_inds] + best_multimask_logits = best_multimask_logits.unsqueeze(1) + best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds] + best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1) + + # The mask from singlemask output token 0 and its stability score + singlemask_logits = all_mask_logits[:, 0:1, :, :] + singlemask_iou_scores = all_iou_scores[:, 0:1] + stability_scores = self._get_stability_scores(singlemask_logits) + is_stable = stability_scores >= self.dynamic_multimask_stability_thresh + + # Dynamically fall back to best multimask output upon low stability scores. + mask_logits_out = torch.where( + is_stable[..., None, None].expand_as(singlemask_logits), + singlemask_logits, + best_multimask_logits, + ) + iou_scores_out = torch.where( + is_stable.expand_as(singlemask_iou_scores), + singlemask_iou_scores, + best_multimask_iou_scores, + ) + return mask_logits_out, iou_scores_out diff --git a/segment-anything-2/packages/sam2/modeling/sam/prompt_encoder.py b/segment-anything-2/packages/sam2/modeling/sam/prompt_encoder.py new file mode 100644 index 00000000..6b3bbb95 --- /dev/null +++ b/segment-anything-2/packages/sam2/modeling/sam/prompt_encoder.py @@ -0,0 +1,182 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from typing import Optional, Tuple, Type + +import torch +from torch import nn + +from sam2.modeling.position_encoding import PositionEmbeddingRandom + +from sam2.modeling.sam2_utils import LayerNorm2d + + +class PromptEncoder(nn.Module): + def __init__( + self, + embed_dim: int, + image_embedding_size: Tuple[int, int], + input_image_size: Tuple[int, int], + mask_in_chans: int, + activation: Type[nn.Module] = nn.GELU, + ) -> None: + """ + Encodes prompts for input to SAM's mask decoder. + + Arguments: + embed_dim (int): The prompts' embedding dimension + image_embedding_size (tuple(int, int)): The spatial size of the + image embedding, as (H, W). + input_image_size (int): The padded size of the image as input + to the image encoder, as (H, W). + mask_in_chans (int): The number of hidden channels used for + encoding input masks. + activation (nn.Module): The activation to use when encoding + input masks. + """ + super().__init__() + self.embed_dim = embed_dim + self.input_image_size = input_image_size + self.image_embedding_size = image_embedding_size + self.pe_layer = PositionEmbeddingRandom(embed_dim // 2) + + self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners + point_embeddings = [ + nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings) + ] + self.point_embeddings = nn.ModuleList(point_embeddings) + self.not_a_point_embed = nn.Embedding(1, embed_dim) + + self.mask_input_size = ( + 4 * image_embedding_size[0], + 4 * image_embedding_size[1], + ) + self.mask_downscaling = nn.Sequential( + nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2), + LayerNorm2d(mask_in_chans // 4), + activation(), + nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2), + LayerNorm2d(mask_in_chans), + activation(), + nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1), + ) + self.no_mask_embed = nn.Embedding(1, embed_dim) + + def get_dense_pe(self) -> torch.Tensor: + """ + Returns the positional encoding used to encode point prompts, + applied to a dense set of points the shape of the image encoding. + + Returns: + torch.Tensor: Positional encoding with shape + 1x(embed_dim)x(embedding_h)x(embedding_w) + """ + return self.pe_layer(self.image_embedding_size).unsqueeze(0) + + def _embed_points( + self, + points: torch.Tensor, + labels: torch.Tensor, + pad: bool, + ) -> torch.Tensor: + """Embeds point prompts.""" + points = points + 0.5 # Shift to center of pixel + if pad: + padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device) + padding_label = -torch.ones((labels.shape[0], 1), device=labels.device) + points = torch.cat([points, padding_point], dim=1) + labels = torch.cat([labels, padding_label], dim=1) + point_embedding = self.pe_layer.forward_with_coords( + points, self.input_image_size + ) + point_embedding[labels == -1] = 0.0 + point_embedding[labels == -1] += self.not_a_point_embed.weight + point_embedding[labels == 0] += self.point_embeddings[0].weight + point_embedding[labels == 1] += self.point_embeddings[1].weight + point_embedding[labels == 2] += self.point_embeddings[2].weight + point_embedding[labels == 3] += self.point_embeddings[3].weight + return point_embedding + + def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: + """Embeds box prompts.""" + boxes = boxes + 0.5 # Shift to center of pixel + coords = boxes.reshape(-1, 2, 2) + corner_embedding = self.pe_layer.forward_with_coords( + coords, self.input_image_size + ) + corner_embedding[:, 0, :] += self.point_embeddings[2].weight + corner_embedding[:, 1, :] += self.point_embeddings[3].weight + return corner_embedding + + def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor: + """Embeds mask inputs.""" + mask_embedding = self.mask_downscaling(masks) + return mask_embedding + + def _get_batch_size( + self, + points: Optional[Tuple[torch.Tensor, torch.Tensor]], + boxes: Optional[torch.Tensor], + masks: Optional[torch.Tensor], + ) -> int: + """ + Gets the batch size of the output given the batch size of the input prompts. + """ + if points is not None: + return points[0].shape[0] + elif boxes is not None: + return boxes.shape[0] + elif masks is not None: + return masks.shape[0] + else: + return 1 + + def _get_device(self) -> torch.device: + return self.point_embeddings[0].weight.device + + def forward( + self, + points: Optional[Tuple[torch.Tensor, torch.Tensor]], + boxes: Optional[torch.Tensor], + masks: Optional[torch.Tensor], + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Embeds different types of prompts, returning both sparse and dense + embeddings. + + Arguments: + points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates + and labels to embed. + boxes (torch.Tensor or none): boxes to embed + masks (torch.Tensor or none): masks to embed + + Returns: + torch.Tensor: sparse embeddings for the points and boxes, with shape + BxNx(embed_dim), where N is determined by the number of input points + and boxes. + torch.Tensor: dense embeddings for the masks, in the shape + Bx(embed_dim)x(embed_H)x(embed_W) + """ + bs = self._get_batch_size(points, boxes, masks) + sparse_embeddings = torch.empty( + (bs, 0, self.embed_dim), device=self._get_device() + ) + if points is not None: + coords, labels = points + point_embeddings = self._embed_points(coords, labels, pad=(boxes is None)) + sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1) + if boxes is not None: + box_embeddings = self._embed_boxes(boxes) + sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1) + + if masks is not None: + dense_embeddings = self._embed_masks(masks) + else: + dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand( + bs, -1, self.image_embedding_size[0], self.image_embedding_size[1] + ) + + return sparse_embeddings, dense_embeddings diff --git a/segment-anything-2/packages/sam2/modeling/sam/transformer.py b/segment-anything-2/packages/sam2/modeling/sam/transformer.py new file mode 100644 index 00000000..9bed544d --- /dev/null +++ b/segment-anything-2/packages/sam2/modeling/sam/transformer.py @@ -0,0 +1,328 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import math +import warnings +from functools import partial +from typing import Tuple, Type + +import torch +import torch.nn.functional as F +from sam2.modeling.position_encoding import apply_rotary_enc, compute_axial_cis +from sam2.modeling.sam2_utils import MLP +from sam2.utils.misc import get_sdpa_settings +from torch import Tensor, nn + +warnings.simplefilter(action="ignore", category=FutureWarning) +# OLD_GPU, USE_FLASH_ATTN, MATH_KERNEL_ON = get_sdpa_settings() +OLD_GPU = True +USE_FLASH_ATTN = True +MATH_KERNEL_ON = True + + +class TwoWayTransformer(nn.Module): + def __init__( + self, + depth: int, + embedding_dim: int, + num_heads: int, + mlp_dim: int, + activation: Type[nn.Module] = nn.ReLU, + attention_downsample_rate: int = 2, + ) -> None: + """ + A transformer decoder that attends to an input image using + queries whose positional embedding is supplied. + + Args: + depth (int): number of layers in the transformer + embedding_dim (int): the channel dimension for the input embeddings + num_heads (int): the number of heads for multihead attention. Must + divide embedding_dim + mlp_dim (int): the channel dimension internal to the MLP block + activation (nn.Module): the activation to use in the MLP block + """ + super().__init__() + self.depth = depth + self.embedding_dim = embedding_dim + self.num_heads = num_heads + self.mlp_dim = mlp_dim + self.layers = nn.ModuleList() + + for i in range(depth): + self.layers.append( + TwoWayAttentionBlock( + embedding_dim=embedding_dim, + num_heads=num_heads, + mlp_dim=mlp_dim, + activation=activation, + attention_downsample_rate=attention_downsample_rate, + skip_first_layer_pe=(i == 0), + ) + ) + + self.final_attn_token_to_image = Attention( + embedding_dim, num_heads, downsample_rate=attention_downsample_rate + ) + self.norm_final_attn = nn.LayerNorm(embedding_dim) + + def forward( + self, + image_embedding: Tensor, + image_pe: Tensor, + point_embedding: Tensor, + ) -> Tuple[Tensor, Tensor]: + """ + Args: + image_embedding (torch.Tensor): image to attend to. Should be shape + B x embedding_dim x h x w for any h and w. + image_pe (torch.Tensor): the positional encoding to add to the image. Must + have the same shape as image_embedding. + point_embedding (torch.Tensor): the embedding to add to the query points. + Must have shape B x N_points x embedding_dim for any N_points. + + Returns: + torch.Tensor: the processed point_embedding + torch.Tensor: the processed image_embedding + """ + # BxCxHxW -> BxHWxC == B x N_image_tokens x C + bs, c, h, w = image_embedding.shape + image_embedding = image_embedding.flatten(2).permute(0, 2, 1) + image_pe = image_pe.flatten(2).permute(0, 2, 1) + + # Prepare queries + queries = point_embedding + keys = image_embedding + + # Apply transformer blocks and final layernorm + for layer in self.layers: + queries, keys = layer( + queries=queries, + keys=keys, + query_pe=point_embedding, + key_pe=image_pe, + ) + + # Apply the final attention layer from the points to the image + q = queries + point_embedding + k = keys + image_pe + attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys) + queries = queries + attn_out + queries = self.norm_final_attn(queries) + + return queries, keys + + +class TwoWayAttentionBlock(nn.Module): + def __init__( + self, + embedding_dim: int, + num_heads: int, + mlp_dim: int = 2048, + activation: Type[nn.Module] = nn.ReLU, + attention_downsample_rate: int = 2, + skip_first_layer_pe: bool = False, + ) -> None: + """ + A transformer block with four layers: (1) self-attention of sparse + inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp + block on sparse inputs, and (4) cross attention of dense inputs to sparse + inputs. + + Arguments: + embedding_dim (int): the channel dimension of the embeddings + num_heads (int): the number of heads in the attention layers + mlp_dim (int): the hidden dimension of the mlp block + activation (nn.Module): the activation of the mlp block + skip_first_layer_pe (bool): skip the PE on the first layer + """ + super().__init__() + self.self_attn = Attention(embedding_dim, num_heads) + self.norm1 = nn.LayerNorm(embedding_dim) + + self.cross_attn_token_to_image = Attention( + embedding_dim, num_heads, downsample_rate=attention_downsample_rate + ) + self.norm2 = nn.LayerNorm(embedding_dim) + + self.mlp = MLP( + embedding_dim, mlp_dim, embedding_dim, num_layers=2, activation=activation + ) + self.norm3 = nn.LayerNorm(embedding_dim) + + self.norm4 = nn.LayerNorm(embedding_dim) + self.cross_attn_image_to_token = Attention( + embedding_dim, num_heads, downsample_rate=attention_downsample_rate + ) + + self.skip_first_layer_pe = skip_first_layer_pe + + def forward( + self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor + ) -> Tuple[Tensor, Tensor]: + # Self attention block + if self.skip_first_layer_pe: + queries = self.self_attn(q=queries, k=queries, v=queries) + else: + q = queries + query_pe + attn_out = self.self_attn(q=q, k=q, v=queries) + queries = queries + attn_out + queries = self.norm1(queries) + + # Cross attention block, tokens attending to image embedding + q = queries + query_pe + k = keys + key_pe + attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys) + queries = queries + attn_out + queries = self.norm2(queries) + + # MLP block + mlp_out = self.mlp(queries) + queries = queries + mlp_out + queries = self.norm3(queries) + + # Cross attention block, image embedding attending to tokens + q = queries + query_pe + k = keys + key_pe + attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries) + keys = keys + attn_out + keys = self.norm4(keys) + + return queries, keys + + +class Attention(nn.Module): + """ + An attention layer that allows for downscaling the size of the embedding + after projection to queries, keys, and values. + """ + + def __init__( + self, + embedding_dim: int, + num_heads: int, + downsample_rate: int = 1, + dropout: float = 0.0, + kv_in_dim: int = None, + ) -> None: + super().__init__() + self.embedding_dim = embedding_dim + self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim + self.internal_dim = embedding_dim // downsample_rate + self.num_heads = num_heads + assert ( + self.internal_dim % num_heads == 0 + ), "num_heads must divide embedding_dim." + + self.q_proj = nn.Linear(embedding_dim, self.internal_dim) + self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim) + self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim) + self.out_proj = nn.Linear(self.internal_dim, embedding_dim) + + self.dropout_p = dropout + + def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor: + b, n, c = x.shape + x = x.reshape(b, n, num_heads, c // num_heads) + return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head + + def _recombine_heads(self, x: Tensor) -> Tensor: + b, n_heads, n_tokens, c_per_head = x.shape + x = x.transpose(1, 2) + return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C + + def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor: + # Input projections + q = self.q_proj(q) + k = self.k_proj(k) + v = self.v_proj(v) + + # Separate into heads + q = self._separate_heads(q, self.num_heads) + k = self._separate_heads(k, self.num_heads) + v = self._separate_heads(v, self.num_heads) + + dropout_p = self.dropout_p if self.training else 0.0 + # Attention + with torch.backends.cuda.sdp_kernel( + enable_flash=USE_FLASH_ATTN, + # if Flash attention kernel is off, then math kernel needs to be enabled + enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON, + enable_mem_efficient=OLD_GPU, + ): + out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) + + out = self._recombine_heads(out) + out = self.out_proj(out) + + return out + + +class RoPEAttention(Attention): + """Attention with rotary position encoding.""" + + def __init__( + self, + *args, + rope_theta=10000.0, + # whether to repeat q rope to match k length + # this is needed for cross-attention to memories + rope_k_repeat=False, + feat_sizes=(32, 32), # [w, h] for stride 16 feats at 512 resolution + **kwargs, + ): + super().__init__(*args, **kwargs) + + self.compute_cis = partial( + compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta + ) + freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1]) + self.freqs_cis = freqs_cis + self.rope_k_repeat = rope_k_repeat + + def forward( + self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int = 0 + ) -> Tensor: + # Input projections + q = self.q_proj(q) + k = self.k_proj(k) + v = self.v_proj(v) + + # Separate into heads + q = self._separate_heads(q, self.num_heads) + k = self._separate_heads(k, self.num_heads) + v = self._separate_heads(v, self.num_heads) + + # Apply rotary position encoding + w = h = math.sqrt(q.shape[-2]) + self.freqs_cis = self.freqs_cis.to(q.device) + if self.freqs_cis.shape[0] != q.shape[-2]: + self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device) + if q.shape[-2] != k.shape[-2]: + assert self.rope_k_repeat + + num_k_rope = k.size(-2) - num_k_exclude_rope + q, k[:, :, :num_k_rope] = apply_rotary_enc( + q, + k[:, :, :num_k_rope], + freqs_cis=self.freqs_cis, + repeat_freqs_k=self.rope_k_repeat, + ) + + dropout_p = self.dropout_p if self.training else 0.0 + # Attention + with torch.backends.cuda.sdp_kernel( + enable_flash=USE_FLASH_ATTN, + # if Flash attention kernel is off, then math kernel needs to be enabled + enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON, + enable_mem_efficient=OLD_GPU, + ): + out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) + + out = self._recombine_heads(out) + out = self.out_proj(out) + + return out diff --git a/segment-anything-2/packages/sam2/modeling/sam2_base.py b/segment-anything-2/packages/sam2/modeling/sam2_base.py new file mode 100644 index 00000000..2b5251f8 --- /dev/null +++ b/segment-anything-2/packages/sam2/modeling/sam2_base.py @@ -0,0 +1,829 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import torch +import torch.distributed +import torch.nn.functional as F + +from torch.nn.init import trunc_normal_ + +from sam2.modeling.sam.mask_decoder import MaskDecoder +from sam2.modeling.sam.prompt_encoder import PromptEncoder +from sam2.modeling.sam.transformer import TwoWayTransformer +from sam2.modeling.sam2_utils import get_1d_sine_pe, MLP, select_closest_cond_frames + +# a large negative value as a placeholder score for missing objects +NO_OBJ_SCORE = -1024.0 + + +class SAM2Base(torch.nn.Module): + def __init__( + self, + image_encoder, + memory_attention, + memory_encoder, + num_maskmem=7, # default 1 input frame + 6 previous frames + image_size=512, + backbone_stride=16, # stride of the image backbone output + sigmoid_scale_for_mem_enc=1.0, # scale factor for mask sigmoid prob + sigmoid_bias_for_mem_enc=0.0, # bias factor for mask sigmoid prob + # During evaluation, whether to binarize the sigmoid mask logits on interacted frames with clicks + binarize_mask_from_pts_for_mem_enc=False, + use_mask_input_as_output_without_sam=False, # on frames with mask input, whether to directly output the input mask without using a SAM prompt encoder + mask decoder + # The maximum number of conditioning frames to participate in the memory attention (-1 means no limit; if there are more conditioning frames than this limit, + # we only cross-attend to the temporally closest `max_cond_frames_in_attn` conditioning frames in the encoder when tracking each frame). This gives the model + # a temporal locality when handling a large number of annotated frames (since closer frames should be more important) and also avoids GPU OOM. + max_cond_frames_in_attn=-1, + # on the first frame, whether to directly add the no-memory embedding to the image feature + # (instead of using the transformer encoder) + directly_add_no_mem_embed=False, + # whether to use high-resolution feature maps in the SAM mask decoder + use_high_res_features_in_sam=False, + # whether to output multiple (3) masks for the first click on initial conditioning frames + multimask_output_in_sam=False, + # the minimum and maximum number of clicks to use multimask_output_in_sam (only relevant when `multimask_output_in_sam=True`; + # default is 1 for both, meaning that only the first click gives multimask output; also note that a box counts as two points) + multimask_min_pt_num=1, + multimask_max_pt_num=1, + # whether to also use multimask output for tracking (not just for the first click on initial conditioning frames; only relevant when `multimask_output_in_sam=True`) + multimask_output_for_tracking=False, + # Whether to use multimask tokens for obj ptr; Only relevant when both + # use_obj_ptrs_in_encoder=True and multimask_output_for_tracking=True + use_multimask_token_for_obj_ptr: bool = False, + # whether to use sigmoid to restrict ious prediction to [0-1] + iou_prediction_use_sigmoid=False, + # The memory bank's temporal stride during evaluation (i.e. the `r` parameter in XMem and Cutie; XMem and Cutie use r=5). + # For r>1, the (self.num_maskmem - 1) non-conditioning memory frames consist of + # (self.num_maskmem - 2) nearest frames from every r-th frames, plus the last frame. + memory_temporal_stride_for_eval=1, + # if `add_all_frames_to_correct_as_cond` is True, we also append to the conditioning frame list any frame that receives a later correction click + # if `add_all_frames_to_correct_as_cond` is False, we conditioning frame list to only use those initial conditioning frames + add_all_frames_to_correct_as_cond=False, + # whether to apply non-overlapping constraints on the object masks in the memory encoder during evaluation (to avoid/alleviate superposing masks) + non_overlap_masks_for_mem_enc=False, + # whether to cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder + use_obj_ptrs_in_encoder=False, + # the maximum number of object pointers from other frames in encoder cross attention (only relevant when `use_obj_ptrs_in_encoder=True`) + max_obj_ptrs_in_encoder=16, + # whether to add temporal positional encoding to the object pointers in the encoder (only relevant when `use_obj_ptrs_in_encoder=True`) + add_tpos_enc_to_obj_ptrs=True, + # whether to add an extra linear projection layer for the temporal positional encoding in the object pointers to avoid potential interference + # with spatial positional encoding (only relevant when both `use_obj_ptrs_in_encoder=True` and `add_tpos_enc_to_obj_ptrs=True`) + proj_tpos_enc_in_obj_ptrs=False, + # whether to only attend to object pointers in the past (before the current frame) in the encoder during evaluation + # (only relevant when `use_obj_ptrs_in_encoder=True`; this might avoid pointer information too far in the future to distract the initial tracking) + only_obj_ptrs_in_the_past_for_eval=False, + # Whether to predict if there is an object in the frame + pred_obj_scores: bool = False, + # Whether to use an MLP to predict object scores + pred_obj_scores_mlp: bool = False, + # Only relevant if pred_obj_scores=True and use_obj_ptrs_in_encoder=True; + # Whether to have a fixed no obj pointer when there is no object present + # or to use it as an additive embedding with obj_ptr produced by decoder + fixed_no_obj_ptr: bool = False, + # Soft no object, i.e. mix in no_obj_ptr softly, + # hope to make recovery easier if there is a mistake and mitigate accumulation of errors + soft_no_obj_ptr: bool = False, + use_mlp_for_obj_ptr_proj: bool = False, + # extra arguments used to construct the SAM mask decoder; if not None, it should be a dict of kwargs to be passed into `MaskDecoder` class. + sam_mask_decoder_extra_args=None, + compile_image_encoder: bool = False, + ): + super().__init__() + + # Part 1: the image backbone + self.image_encoder = image_encoder + # Use level 0, 1, 2 for high-res setting, or just level 2 for the default setting + self.use_high_res_features_in_sam = use_high_res_features_in_sam + self.num_feature_levels = 3 if use_high_res_features_in_sam else 1 + self.use_obj_ptrs_in_encoder = use_obj_ptrs_in_encoder + self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder + if use_obj_ptrs_in_encoder: + # A conv layer to downsample the mask prompt to stride 4 (the same stride as + # low-res SAM mask logits) and to change its scales from 0~1 to SAM logit scale, + # so that it can be fed into the SAM mask decoder to generate a pointer. + self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4) + self.add_tpos_enc_to_obj_ptrs = add_tpos_enc_to_obj_ptrs + if proj_tpos_enc_in_obj_ptrs: + assert add_tpos_enc_to_obj_ptrs # these options need to be used together + self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs + self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval + + # Part 2: memory attention to condition current frame's visual features + # with memories (and obj ptrs) from past frames + self.memory_attention = memory_attention + self.hidden_dim = memory_attention.d_model + + # Part 3: memory encoder for the previous frame's outputs + self.memory_encoder = memory_encoder + self.mem_dim = self.hidden_dim + if hasattr(self.memory_encoder, "out_proj") and hasattr( + self.memory_encoder.out_proj, "weight" + ): + # if there is compression of memories along channel dim + self.mem_dim = self.memory_encoder.out_proj.weight.shape[0] + self.num_maskmem = num_maskmem # Number of memories accessible + # Temporal encoding of the memories + self.maskmem_tpos_enc = torch.nn.Parameter( + torch.zeros(num_maskmem, 1, 1, self.mem_dim) + ) + trunc_normal_(self.maskmem_tpos_enc, std=0.02) + # a single token to indicate no memory embedding from previous frames + self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim)) + self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim)) + trunc_normal_(self.no_mem_embed, std=0.02) + trunc_normal_(self.no_mem_pos_enc, std=0.02) + self.directly_add_no_mem_embed = directly_add_no_mem_embed + # Apply sigmoid to the output raw mask logits (to turn them from + # range (-inf, +inf) to range (0, 1)) before feeding them into the memory encoder + self.sigmoid_scale_for_mem_enc = sigmoid_scale_for_mem_enc + self.sigmoid_bias_for_mem_enc = sigmoid_bias_for_mem_enc + self.binarize_mask_from_pts_for_mem_enc = binarize_mask_from_pts_for_mem_enc + self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc + self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval + # On frames with mask input, whether to directly output the input mask without + # using a SAM prompt encoder + mask decoder + self.use_mask_input_as_output_without_sam = use_mask_input_as_output_without_sam + self.multimask_output_in_sam = multimask_output_in_sam + self.multimask_min_pt_num = multimask_min_pt_num + self.multimask_max_pt_num = multimask_max_pt_num + self.multimask_output_for_tracking = multimask_output_for_tracking + self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr + self.iou_prediction_use_sigmoid = iou_prediction_use_sigmoid + + # Part 4: SAM-style prompt encoder (for both mask and point inputs) + # and SAM-style mask decoder for the final mask output + self.image_size = image_size + self.backbone_stride = backbone_stride + self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args + self.pred_obj_scores = pred_obj_scores + self.pred_obj_scores_mlp = pred_obj_scores_mlp + self.fixed_no_obj_ptr = fixed_no_obj_ptr + self.soft_no_obj_ptr = soft_no_obj_ptr + if self.fixed_no_obj_ptr: + assert self.pred_obj_scores + assert self.use_obj_ptrs_in_encoder + if self.pred_obj_scores and self.use_obj_ptrs_in_encoder: + self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim)) + trunc_normal_(self.no_obj_ptr, std=0.02) + self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj + + self._build_sam_heads() + self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond + self.max_cond_frames_in_attn = max_cond_frames_in_attn + + # Model compilation + if compile_image_encoder: + # Compile the forward function (not the full module) to allow loading checkpoints. + print( + "Image encoder compilation is enabled. First forward pass will be slow." + ) + self.image_encoder.forward = torch.compile( + self.image_encoder.forward, + mode="max-autotune", + fullgraph=True, + dynamic=False, + ) + + @property + def device(self): + return next(self.parameters()).device + + def forward(self, *args, **kwargs): + raise NotImplementedError( + "Please use the corresponding methods in SAM2VideoPredictor for inference." + "See notebooks/video_predictor_example.ipynb for an example." + ) + + def _build_sam_heads(self): + """Build SAM-style prompt encoder and mask decoder.""" + self.sam_prompt_embed_dim = self.hidden_dim + self.sam_image_embedding_size = self.image_size // self.backbone_stride + + # build PromptEncoder and MaskDecoder from SAM + # (their hyperparameters like `mask_in_chans=16` are from SAM code) + self.sam_prompt_encoder = PromptEncoder( + embed_dim=self.sam_prompt_embed_dim, + image_embedding_size=( + self.sam_image_embedding_size, + self.sam_image_embedding_size, + ), + input_image_size=(self.image_size, self.image_size), + mask_in_chans=16, + ) + self.sam_mask_decoder = MaskDecoder( + num_multimask_outputs=3, + transformer=TwoWayTransformer( + depth=2, + embedding_dim=self.sam_prompt_embed_dim, + mlp_dim=2048, + num_heads=8, + ), + transformer_dim=self.sam_prompt_embed_dim, + iou_head_depth=3, + iou_head_hidden_dim=256, + use_high_res_features=self.use_high_res_features_in_sam, + iou_prediction_use_sigmoid=self.iou_prediction_use_sigmoid, + pred_obj_scores=self.pred_obj_scores, + pred_obj_scores_mlp=self.pred_obj_scores_mlp, + use_multimask_token_for_obj_ptr=self.use_multimask_token_for_obj_ptr, + **(self.sam_mask_decoder_extra_args or {}), + ) + if self.use_obj_ptrs_in_encoder: + # a linear projection on SAM output tokens to turn them into object pointers + self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim) + if self.use_mlp_for_obj_ptr_proj: + self.obj_ptr_proj = MLP( + self.hidden_dim, self.hidden_dim, self.hidden_dim, 3 + ) + else: + self.obj_ptr_proj = torch.nn.Identity() + if self.proj_tpos_enc_in_obj_ptrs: + # a linear projection on temporal positional encoding in object pointers to + # avoid potential interference with spatial positional encoding + self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim) + else: + self.obj_ptr_tpos_proj = torch.nn.Identity() + + def _forward_sam_heads( + self, + backbone_features, + point_inputs=None, + mask_inputs=None, + high_res_features=None, + multimask_output=False, + ): + """ + Forward SAM prompt encoders and mask heads. + + Inputs: + - backbone_features: image features of [B, C, H, W] shape + - point_inputs: a dictionary with "point_coords" and "point_labels", where + 1) "point_coords" has [B, P, 2] shape and float32 dtype and contains the + absolute pixel-unit coordinate in (x, y) format of the P input points + 2) "point_labels" has shape [B, P] and int32 dtype, where 1 means + positive clicks, 0 means negative clicks, and -1 means padding + - mask_inputs: a mask of [B, 1, H*16, W*16] shape, float or bool, with the + same spatial size as the image. + - high_res_features: either 1) None or 2) or a list of length 2 containing + two feature maps of [B, C, 4*H, 4*W] and [B, C, 2*H, 2*W] shapes respectively, + which will be used as high-resolution feature maps for SAM decoder. + - multimask_output: if it's True, we output 3 candidate masks and their 3 + corresponding IoU estimates, and if it's False, we output only 1 mask and + its corresponding IoU estimate. + + Outputs: + - low_res_multimasks: [B, M, H*4, W*4] shape (where M = 3 if + `multimask_output=True` and M = 1 if `multimask_output=False`), the SAM + output mask logits (before sigmoid) for the low-resolution masks, with 4x + the resolution (1/4 stride) of the input backbone_features. + - high_res_multimasks: [B, M, H*16, W*16] shape (where M = 3 + if `multimask_output=True` and M = 1 if `multimask_output=False`), + upsampled from the low-resolution masks, with shape size as the image + (stride is 1 pixel). + - ious, [B, M] shape, where (where M = 3 if `multimask_output=True` and M = 1 + if `multimask_output=False`), the estimated IoU of each output mask. + - low_res_masks: [B, 1, H*4, W*4] shape, the best mask in `low_res_multimasks`. + If `multimask_output=True`, it's the mask with the highest IoU estimate. + If `multimask_output=False`, it's the same as `low_res_multimasks`. + - high_res_masks: [B, 1, H*16, W*16] shape, the best mask in `high_res_multimasks`. + If `multimask_output=True`, it's the mask with the highest IoU estimate. + If `multimask_output=False`, it's the same as `high_res_multimasks`. + - obj_ptr: [B, C] shape, the object pointer vector for the output mask, extracted + based on the output token from the SAM mask decoder. + """ + B = backbone_features.size(0) + device = backbone_features.device + assert backbone_features.size(1) == self.sam_prompt_embed_dim + assert backbone_features.size(2) == self.sam_image_embedding_size + assert backbone_features.size(3) == self.sam_image_embedding_size + + # a) Handle point prompts + if point_inputs is not None: + sam_point_coords = point_inputs["point_coords"] + sam_point_labels = point_inputs["point_labels"] + assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B + else: + # If no points are provide, pad with an empty point (with label -1) + sam_point_coords = torch.zeros(B, 1, 2, device=device) + sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device) + + # b) Handle mask prompts + if mask_inputs is not None: + # If mask_inputs is provided, downsize it into low-res mask input if needed + # and feed it as a dense mask prompt into the SAM mask encoder + assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1) + if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size: + sam_mask_prompt = F.interpolate( + mask_inputs.float(), + size=self.sam_prompt_encoder.mask_input_size, + align_corners=False, + mode="bilinear", + antialias=True, # use antialias for downsampling + ) + else: + sam_mask_prompt = mask_inputs + else: + # Otherwise, simply feed None (and SAM's prompt encoder will add + # a learned `no_mask_embed` to indicate no mask input in this case). + sam_mask_prompt = None + + sparse_embeddings, dense_embeddings = self.sam_prompt_encoder( + points=(sam_point_coords, sam_point_labels), + boxes=None, + masks=sam_mask_prompt, + ) + ( + low_res_multimasks, + ious, + sam_output_tokens, + object_score_logits, + ) = self.sam_mask_decoder( + image_embeddings=backbone_features, + image_pe=self.sam_prompt_encoder.get_dense_pe(), + sparse_prompt_embeddings=sparse_embeddings, + dense_prompt_embeddings=dense_embeddings, + multimask_output=multimask_output, + repeat_image=False, # the image is already batched + high_res_features=high_res_features, + ) + if self.pred_obj_scores: + is_obj_appearing = object_score_logits > 0 + + # Mask used for spatial memories is always a *hard* choice between obj and no obj, + # consistent with the actual mask prediction + low_res_multimasks = torch.where( + is_obj_appearing[:, None, None], + low_res_multimasks, + NO_OBJ_SCORE, + ) + + # convert masks from possibly bfloat16 (or float16) to float32 + # (older PyTorch versions before 2.1 don't support `interpolate` on bf16) + low_res_multimasks = low_res_multimasks.float() + high_res_multimasks = F.interpolate( + low_res_multimasks, + size=(self.image_size, self.image_size), + mode="bilinear", + align_corners=False, + ) + + sam_output_token = sam_output_tokens[:, 0] + if multimask_output: + # take the best mask prediction (with the highest IoU estimation) + best_iou_inds = torch.argmax(ious, dim=-1) + batch_inds = torch.arange(B, device=device) + low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1) + high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1) + if sam_output_tokens.size(1) > 1: + sam_output_token = sam_output_tokens[batch_inds, best_iou_inds] + else: + low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks + + # Extract object pointer from the SAM output token (with occlusion handling) + obj_ptr = self.obj_ptr_proj(sam_output_token) + if self.pred_obj_scores: + # Allow *soft* no obj ptr, unlike for masks + if self.soft_no_obj_ptr: + # Only hard possible with gt + assert not self.teacher_force_obj_scores_for_mem + lambda_is_obj_appearing = object_score_logits.sigmoid() + else: + lambda_is_obj_appearing = is_obj_appearing.float() + + if self.fixed_no_obj_ptr: + obj_ptr = lambda_is_obj_appearing * obj_ptr + obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr + + return ( + low_res_multimasks, + high_res_multimasks, + ious, + low_res_masks, + high_res_masks, + obj_ptr, + object_score_logits, + ) + + def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs): + """ + Directly turn binary `mask_inputs` into a output mask logits without using SAM. + (same input and output shapes as in _forward_sam_heads above). + """ + # Use -10/+10 as logits for neg/pos pixels (very close to 0/1 in prob after sigmoid). + out_scale, out_bias = 20.0, -10.0 # sigmoid(-10.0)=4.5398e-05 + mask_inputs_float = mask_inputs.float() + high_res_masks = mask_inputs_float * out_scale + out_bias + low_res_masks = F.interpolate( + high_res_masks, + size=(high_res_masks.size(-2) // 4, high_res_masks.size(-1) // 4), + align_corners=False, + mode="bilinear", + antialias=True, # use antialias for downsampling + ) + # a dummy IoU prediction of all 1's under mask input + ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float() + if not self.use_obj_ptrs_in_encoder: + # all zeros as a dummy object pointer (of shape [B, C]) + obj_ptr = torch.zeros( + mask_inputs.size(0), self.hidden_dim, device=mask_inputs.device + ) + else: + # produce an object pointer using the SAM decoder from the mask input + _, _, _, _, _, obj_ptr, _ = self._forward_sam_heads( + backbone_features=backbone_features, + mask_inputs=self.mask_downsample(mask_inputs_float), + high_res_features=high_res_features, + ) + # In this method, we are treating mask_input as output, e.g. using it directly to create spatial mem; + # Below, we follow the same design axiom to use mask_input to decide if obj appears or not instead of relying + # on the object_scores from the SAM decoder. + is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1) + is_obj_appearing = is_obj_appearing[..., None] + lambda_is_obj_appearing = is_obj_appearing.float() + object_score_logits = out_scale * lambda_is_obj_appearing + out_bias + if self.pred_obj_scores: + if self.fixed_no_obj_ptr: + obj_ptr = lambda_is_obj_appearing * obj_ptr + obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr + + return ( + low_res_masks, + high_res_masks, + ious, + low_res_masks, + high_res_masks, + obj_ptr, + object_score_logits, + ) + + def forward_image(self, img_batch: torch.Tensor): + """Get the image feature on the input batch.""" + backbone_out = self.image_encoder(img_batch) + if self.use_high_res_features_in_sam: + # precompute projected level 0 and level 1 features in SAM decoder + # to avoid running it again on every SAM click + backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0( + backbone_out["backbone_fpn"][0] + ) + backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1( + backbone_out["backbone_fpn"][1] + ) + return backbone_out + + def _prepare_backbone_features(self, backbone_out): + """Prepare and flatten visual features.""" + backbone_out = backbone_out.copy() + assert len(backbone_out["backbone_fpn"]) == len(backbone_out["vision_pos_enc"]) + assert len(backbone_out["backbone_fpn"]) >= self.num_feature_levels + + feature_maps = backbone_out["backbone_fpn"][-self.num_feature_levels :] + vision_pos_embeds = backbone_out["vision_pos_enc"][-self.num_feature_levels :] + + feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds] + # flatten NxCxHxW to HWxNxC + vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps] + vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds] + + return backbone_out, vision_feats, vision_pos_embeds, feat_sizes + + def _prepare_memory_conditioned_features( + self, + frame_idx, + is_init_cond_frame, + current_vision_feats, + current_vision_pos_embeds, + feat_sizes, + output_dict, + num_frames, + track_in_reverse=False, # tracking in reverse time order (for demo usage) + ): + """Fuse the current frame's visual feature map with previous memory.""" + B = current_vision_feats[-1].size(1) # batch size on this frame + C = self.hidden_dim + H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size + device = current_vision_feats[-1].device + # The case of `self.num_maskmem == 0` below is primarily used for reproducing SAM on images. + # In this case, we skip the fusion with any memory. + if self.num_maskmem == 0: # Disable memory and skip fusion + pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W) + return pix_feat + + num_obj_ptr_tokens = 0 + # Step 1: condition the visual features of the current frame on previous memories + if not is_init_cond_frame: + # Retrieve the memories encoded with the maskmem backbone + to_cat_memory, to_cat_memory_pos_embed = [], [] + # Add conditioning frames's output first (all cond frames have t_pos=0 for + # when getting temporal positional embedding below) + assert len(output_dict["cond_frame_outputs"]) > 0 + # Select a maximum number of temporally closest cond frames for cross attention + cond_outputs = output_dict["cond_frame_outputs"] + selected_cond_outputs, unselected_cond_outputs = select_closest_cond_frames( + frame_idx, cond_outputs, self.max_cond_frames_in_attn + ) + t_pos_and_prevs = [(0, out) for out in selected_cond_outputs.values()] + # Add last (self.num_maskmem - 1) frames before current frame for non-conditioning memory + # the earliest one has t_pos=1 and the latest one has t_pos=self.num_maskmem-1 + # We also allow taking the memory frame non-consecutively (with r>1), in which case + # we take (self.num_maskmem - 2) frames among every r-th frames plus the last frame. + r = self.memory_temporal_stride_for_eval + for t_pos in range(1, self.num_maskmem): + t_rel = self.num_maskmem - t_pos # how many frames before current frame + if t_rel == 1: + # for t_rel == 1, we take the last frame (regardless of r) + if not track_in_reverse: + # the frame immediately before this frame (i.e. frame_idx - 1) + prev_frame_idx = frame_idx - t_rel + else: + # the frame immediately after this frame (i.e. frame_idx + 1) + prev_frame_idx = frame_idx + t_rel + else: + # for t_rel >= 2, we take the memory frame from every r-th frames + if not track_in_reverse: + # first find the nearest frame among every r-th frames before this frame + # for r=1, this would be (frame_idx - 2) + prev_frame_idx = ((frame_idx - 2) // r) * r + # then seek further among every r-th frames + prev_frame_idx = prev_frame_idx - (t_rel - 2) * r + else: + # first find the nearest frame among every r-th frames after this frame + # for r=1, this would be (frame_idx + 2) + prev_frame_idx = -(-(frame_idx + 2) // r) * r + # then seek further among every r-th frames + prev_frame_idx = prev_frame_idx + (t_rel - 2) * r + out = output_dict["non_cond_frame_outputs"].get(prev_frame_idx, None) + if out is None: + # If an unselected conditioning frame is among the last (self.num_maskmem - 1) + # frames, we still attend to it as if it's a non-conditioning frame. + out = unselected_cond_outputs.get(prev_frame_idx, None) + t_pos_and_prevs.append((t_pos, out)) + + for t_pos, prev in t_pos_and_prevs: + if prev is None: + continue # skip padding frames + # "maskmem_features" might have been offloaded to CPU in demo use cases, + # so we load it back to GPU (it's a no-op if it's already on GPU). + feats = prev["maskmem_features"].cuda(non_blocking=True) + to_cat_memory.append(feats.flatten(2).permute(2, 0, 1)) + # Spatial positional encoding (it might have been offloaded to CPU in eval) + maskmem_enc = prev["maskmem_pos_enc"][-1].cuda() + maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1) + # Temporal positional encoding + maskmem_enc = ( + maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t_pos - 1] + ) + to_cat_memory_pos_embed.append(maskmem_enc) + + # Construct the list of past object pointers + if self.use_obj_ptrs_in_encoder: + max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder) + # First add those object pointers from selected conditioning frames + # (optionally, only include object pointers in the past during evaluation) + if not self.training and self.only_obj_ptrs_in_the_past_for_eval: + ptr_cond_outputs = { + t: out + for t, out in selected_cond_outputs.items() + if (t >= frame_idx if track_in_reverse else t <= frame_idx) + } + else: + ptr_cond_outputs = selected_cond_outputs + pos_and_ptrs = [ + # Temporal pos encoding contains how far away each pointer is from current frame + (abs(frame_idx - t), out["obj_ptr"]) + for t, out in ptr_cond_outputs.items() + ] + # Add up to (max_obj_ptrs_in_encoder - 1) non-conditioning frames before current frame + for t_diff in range(1, max_obj_ptrs_in_encoder): + t = frame_idx + t_diff if track_in_reverse else frame_idx - t_diff + if t < 0 or (num_frames is not None and t >= num_frames): + break + out = output_dict["non_cond_frame_outputs"].get( + t, unselected_cond_outputs.get(t, None) + ) + if out is not None: + pos_and_ptrs.append((t_diff, out["obj_ptr"])) + # If we have at least one object pointer, add them to the across attention + if len(pos_and_ptrs) > 0: + pos_list, ptrs_list = zip(*pos_and_ptrs) + # stack object pointers along dim=0 into [ptr_seq_len, B, C] shape + obj_ptrs = torch.stack(ptrs_list, dim=0) + # a temporal positional embedding based on how far each object pointer is from + # the current frame (sine embedding normalized by the max pointer num). + if self.add_tpos_enc_to_obj_ptrs: + t_diff_max = max_obj_ptrs_in_encoder - 1 + tpos_dim = C if self.proj_tpos_enc_in_obj_ptrs else self.mem_dim + obj_pos = torch.tensor(pos_list, device=device) + obj_pos = get_1d_sine_pe(obj_pos / t_diff_max, dim=tpos_dim) + obj_pos = self.obj_ptr_tpos_proj(obj_pos) + obj_pos = obj_pos.unsqueeze(1).expand(-1, B, self.mem_dim) + else: + obj_pos = obj_ptrs.new_zeros(len(pos_list), B, self.mem_dim) + if self.mem_dim < C: + # split a pointer into (C // self.mem_dim) tokens for self.mem_dim < C + obj_ptrs = obj_ptrs.reshape( + -1, B, C // self.mem_dim, self.mem_dim + ) + obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1) + obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0) + to_cat_memory.append(obj_ptrs) + to_cat_memory_pos_embed.append(obj_pos) + num_obj_ptr_tokens = obj_ptrs.shape[0] + else: + num_obj_ptr_tokens = 0 + else: + # for initial conditioning frames, encode them without using any previous memory + if self.directly_add_no_mem_embed: + # directly add no-mem embedding (instead of using the transformer encoder) + pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed + pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W) + return pix_feat_with_mem + + # Use a dummy token on the first frame (to avoid emtpy memory input to tranformer encoder) + to_cat_memory = [self.no_mem_embed.expand(1, B, self.mem_dim)] + to_cat_memory_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)] + + # Step 2: Concatenate the memories and forward through the transformer encoder + memory = torch.cat(to_cat_memory, dim=0) + memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0) + + pix_feat_with_mem = self.memory_attention( + curr=current_vision_feats, + curr_pos=current_vision_pos_embeds, + memory=memory, + memory_pos=memory_pos_embed, + num_obj_ptr_tokens=num_obj_ptr_tokens, + ) + # reshape the output (HW)BC => BCHW + pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W) + return pix_feat_with_mem + + def _encode_new_memory( + self, + current_vision_feats, + feat_sizes, + pred_masks_high_res, + is_mask_from_pts, + ): + """Encode the current image and its prediction into a memory feature.""" + B = current_vision_feats[-1].size(1) # batch size on this frame + C = self.hidden_dim + H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size + # top-level feature, (HW)BC => BCHW + pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W) + if self.non_overlap_masks_for_mem_enc and not self.training: + # optionally, apply non-overlapping constraints to the masks (it's applied + # in the batch dimension and should only be used during eval, where all + # the objects come from the same video under batch size 1). + pred_masks_high_res = self._apply_non_overlapping_constraints( + pred_masks_high_res + ) + # scale the raw mask logits with a temperature before applying sigmoid + binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts + if binarize and not self.training: + mask_for_mem = (pred_masks_high_res > 0).float() + else: + # apply sigmoid on the raw mask logits to turn them into range (0, 1) + mask_for_mem = torch.sigmoid(pred_masks_high_res) + # apply scale and bias terms to the sigmoid probabilities + if self.sigmoid_scale_for_mem_enc != 1.0: + mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc + if self.sigmoid_bias_for_mem_enc != 0.0: + mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc + maskmem_out = self.memory_encoder( + pix_feat, mask_for_mem, skip_mask_sigmoid=True # sigmoid already applied + ) + maskmem_features = maskmem_out["vision_features"] + maskmem_pos_enc = maskmem_out["vision_pos_enc"] + + return maskmem_features, maskmem_pos_enc + + def track_step( + self, + frame_idx, + is_init_cond_frame, + current_vision_feats, + current_vision_pos_embeds, + feat_sizes, + point_inputs, + mask_inputs, + output_dict, + num_frames, + track_in_reverse=False, # tracking in reverse time order (for demo usage) + # Whether to run the memory encoder on the predicted masks. Sometimes we might want + # to skip the memory encoder with `run_mem_encoder=False`. For example, + # in demo we might call `track_step` multiple times for each user click, + # and only encode the memory when the user finalizes their clicks. And in ablation + # settings like SAM training on static images, we don't need the memory encoder. + run_mem_encoder=True, + # The previously predicted SAM mask logits (which can be fed together with new clicks in demo). + prev_sam_mask_logits=None, + ): + current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs} + # High-resolution feature maps for the SAM head, reshape (HW)BC => BCHW + if len(current_vision_feats) > 1: + high_res_features = [ + x.permute(1, 2, 0).view(x.size(1), x.size(2), *s) + for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1]) + ] + else: + high_res_features = None + if mask_inputs is not None and self.use_mask_input_as_output_without_sam: + # When use_mask_input_as_output_without_sam=True, we directly output the mask input + # (see it as a GT mask) without using a SAM prompt encoder + mask decoder. + pix_feat = current_vision_feats[-1].permute(1, 2, 0) + pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1]) + sam_outputs = self._use_mask_as_output( + pix_feat, high_res_features, mask_inputs + ) + else: + # fused the visual feature with previous memory features in the memory bank + pix_feat_with_mem = self._prepare_memory_conditioned_features( + frame_idx=frame_idx, + is_init_cond_frame=is_init_cond_frame, + current_vision_feats=current_vision_feats[-1:], + current_vision_pos_embeds=current_vision_pos_embeds[-1:], + feat_sizes=feat_sizes[-1:], + output_dict=output_dict, + num_frames=num_frames, + track_in_reverse=track_in_reverse, + ) + # apply SAM-style segmentation head + # here we might feed previously predicted low-res SAM mask logits into the SAM mask decoder, + # e.g. in demo where such logits come from earlier interaction instead of correction sampling + # (in this case, any `mask_inputs` shouldn't reach here as they are sent to _use_mask_as_output instead) + if prev_sam_mask_logits is not None: + assert point_inputs is not None and mask_inputs is None + mask_inputs = prev_sam_mask_logits + multimask_output = self._use_multimask(is_init_cond_frame, point_inputs) + sam_outputs = self._forward_sam_heads( + backbone_features=pix_feat_with_mem, + point_inputs=point_inputs, + mask_inputs=mask_inputs, + high_res_features=high_res_features, + multimask_output=multimask_output, + ) + ( + _, + _, + _, + low_res_masks, + high_res_masks, + obj_ptr, + _, + ) = sam_outputs + + current_out["pred_masks"] = low_res_masks + current_out["pred_masks_high_res"] = high_res_masks + current_out["obj_ptr"] = obj_ptr + + # Finally run the memory encoder on the predicted mask to encode + # it into a new memory feature (that can be used in future frames) + if run_mem_encoder and self.num_maskmem > 0: + high_res_masks_for_mem_enc = high_res_masks + maskmem_features, maskmem_pos_enc = self._encode_new_memory( + current_vision_feats=current_vision_feats, + feat_sizes=feat_sizes, + pred_masks_high_res=high_res_masks_for_mem_enc, + is_mask_from_pts=(point_inputs is not None), + ) + current_out["maskmem_features"] = maskmem_features + current_out["maskmem_pos_enc"] = maskmem_pos_enc + else: + current_out["maskmem_features"] = None + current_out["maskmem_pos_enc"] = None + + return current_out + + def _use_multimask(self, is_init_cond_frame, point_inputs): + """Whether to use multimask output in the SAM head.""" + num_pts = 0 if point_inputs is None else point_inputs["point_labels"].size(1) + multimask_output = ( + self.multimask_output_in_sam + and (is_init_cond_frame or self.multimask_output_for_tracking) + and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num) + ) + return multimask_output + + def _apply_non_overlapping_constraints(self, pred_masks): + """ + Apply non-overlapping constraints to the object scores in pred_masks. Here we + keep only the highest scoring object at each spatial location in pred_masks. + """ + batch_size = pred_masks.size(0) + if batch_size == 1: + return pred_masks + + device = pred_masks.device + # "max_obj_inds": object index of the object with the highest score at each location + max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True) + # "batch_obj_inds": object index of each object slice (along dim 0) in `pred_masks` + batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None] + keep = max_obj_inds == batch_obj_inds + # suppress overlapping regions' scores below -10.0 so that the foreground regions + # don't overlap (here sigmoid(-10.0)=4.5398e-05) + pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0)) + return pred_masks diff --git a/segment-anything-2/packages/sam2/modeling/sam2_utils.py b/segment-anything-2/packages/sam2/modeling/sam2_utils.py new file mode 100644 index 00000000..6d970596 --- /dev/null +++ b/segment-anything-2/packages/sam2/modeling/sam2_utils.py @@ -0,0 +1,149 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + + +import copy + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num): + """ + Select up to `max_cond_frame_num` conditioning frames from `cond_frame_outputs` + that are temporally closest to the current frame at `frame_idx`. Here, we take + - a) the closest conditioning frame before `frame_idx` (if any); + - b) the closest conditioning frame after `frame_idx` (if any); + - c) any other temporally closest conditioning frames until reaching a total + of `max_cond_frame_num` conditioning frames. + + Outputs: + - selected_outputs: selected items (keys & values) from `cond_frame_outputs`. + - unselected_outputs: items (keys & values) not selected in `cond_frame_outputs`. + """ + if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num: + selected_outputs = cond_frame_outputs + unselected_outputs = {} + else: + assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames" + selected_outputs = {} + + # the closest conditioning frame before `frame_idx` (if any) + idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None) + if idx_before is not None: + selected_outputs[idx_before] = cond_frame_outputs[idx_before] + + # the closest conditioning frame after `frame_idx` (if any) + idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None) + if idx_after is not None: + selected_outputs[idx_after] = cond_frame_outputs[idx_after] + + # add other temporally closest conditioning frames until reaching a total + # of `max_cond_frame_num` conditioning frames. + num_remain = max_cond_frame_num - len(selected_outputs) + inds_remain = sorted( + (t for t in cond_frame_outputs if t not in selected_outputs), + key=lambda x: abs(x - frame_idx), + )[:num_remain] + selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain) + unselected_outputs = { + t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs + } + + return selected_outputs, unselected_outputs + + +def get_1d_sine_pe(pos_inds, dim, temperature=10000): + """ + Get 1D sine positional embedding as in the original Transformer paper. + """ + pe_dim = dim // 2 + dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device) + dim_t = temperature ** (2 * (dim_t // 2) / pe_dim) + + pos_embed = pos_inds.unsqueeze(-1) / dim_t + pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1) + return pos_embed + + +def get_activation_fn(activation): + """Return an activation function given a string""" + if activation == "relu": + return F.relu + if activation == "gelu": + return F.gelu + if activation == "glu": + return F.glu + raise RuntimeError(f"activation should be relu/gelu, not {activation}.") + + +def get_clones(module, N): + return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) + + +class DropPath(nn.Module): + # adapted from https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/drop.py + def __init__(self, drop_prob=0.0, scale_by_keep=True): + super(DropPath, self).__init__() + self.drop_prob = drop_prob + self.scale_by_keep = scale_by_keep + + def forward(self, x): + if self.drop_prob == 0.0 or not self.training: + return x + keep_prob = 1 - self.drop_prob + shape = (x.shape[0],) + (1,) * (x.ndim - 1) + random_tensor = x.new_empty(shape).bernoulli_(keep_prob) + if keep_prob > 0.0 and self.scale_by_keep: + random_tensor.div_(keep_prob) + return x * random_tensor + + +# Lightly adapted from +# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa +class MLP(nn.Module): + def __init__( + self, + input_dim: int, + hidden_dim: int, + output_dim: int, + num_layers: int, + activation: nn.Module = nn.ReLU, + sigmoid_output: bool = False, + ) -> None: + super().__init__() + self.num_layers = num_layers + h = [hidden_dim] * (num_layers - 1) + self.layers = nn.ModuleList( + nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) + ) + self.sigmoid_output = sigmoid_output + self.act = activation() + + def forward(self, x): + for i, layer in enumerate(self.layers): + x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x) + if self.sigmoid_output: + x = F.sigmoid(x) + return x + + +# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa +# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa +class LayerNorm2d(nn.Module): + def __init__(self, num_channels: int, eps: float = 1e-6) -> None: + super().__init__() + self.weight = nn.Parameter(torch.ones(num_channels)) + self.bias = nn.Parameter(torch.zeros(num_channels)) + self.eps = eps + + def forward(self, x: torch.Tensor) -> torch.Tensor: + u = x.mean(1, keepdim=True) + s = (x - u).pow(2).mean(1, keepdim=True) + x = (x - u) / torch.sqrt(s + self.eps) + x = self.weight[:, None, None] * x + self.bias[:, None, None] + return x diff --git a/segment-anything-2/packages/sam2/sam2_image_predictor.py b/segment-anything-2/packages/sam2/sam2_image_predictor.py new file mode 100644 index 00000000..94111316 --- /dev/null +++ b/segment-anything-2/packages/sam2/sam2_image_predictor.py @@ -0,0 +1,446 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import logging + +from typing import List, Optional, Tuple, Union + +import numpy as np +import torch +from PIL.Image import Image + +from sam2.modeling.sam2_base import SAM2Base + +from sam2.utils.transforms import SAM2Transforms + + +class SAM2ImagePredictor: + def __init__( + self, + sam_model: SAM2Base, + mask_threshold=0.0, + max_hole_area=0.0, + max_sprinkle_area=0.0, + ) -> None: + """ + Uses SAM-2 to calculate the image embedding for an image, and then + allow repeated, efficient mask prediction given prompts. + + Arguments: + sam_model (Sam-2): The model to use for mask prediction. + mask_threshold (float): The threshold to use when converting mask logits + to binary masks. Masks are thresholded at 0 by default. + fill_hole_area (int): If fill_hole_area > 0, we fill small holes in up to + the maximum area of fill_hole_area in low_res_masks. + """ + super().__init__() + self.model = sam_model + self._transforms = SAM2Transforms( + resolution=self.model.image_size, + mask_threshold=mask_threshold, + max_hole_area=max_hole_area, + max_sprinkle_area=max_sprinkle_area, + ) + + # Predictor state + self._is_image_set = False + self._features = None + self._orig_hw = None + # Whether the predictor is set for single image or a batch of images + self._is_batch = False + + # Predictor config + self.mask_threshold = mask_threshold + + # Spatial dim for backbone feature maps + self._bb_feat_sizes = [ + (256, 256), + (128, 128), + (64, 64), + ] + + @torch.no_grad() + def set_image( + self, + image: Union[np.ndarray, Image], + ) -> None: + """ + Calculates the image embeddings for the provided image, allowing + masks to be predicted with the 'predict' method. + + Arguments: + image (np.ndarray or PIL Image): The input image to embed in RGB format. The image should be in HWC format if np.ndarray, or WHC format if PIL Image + with pixel values in [0, 255]. + image_format (str): The color format of the image, in ['RGB', 'BGR']. + """ + self.reset_predictor() + # Transform the image to the form expected by the model + if isinstance(image, np.ndarray): + logging.info("For numpy array image, we assume (HxWxC) format") + self._orig_hw = [image.shape[:2]] + elif isinstance(image, Image): + w, h = image.size + self._orig_hw = [(h, w)] + else: + raise NotImplementedError("Image format not supported") + + input_image = self._transforms(image) + input_image = input_image[None, ...].to(self.device) + + assert ( + len(input_image.shape) == 4 and input_image.shape[1] == 3 + ), f"input_image must be of size 1x3xHxW, got {input_image.shape}" + logging.info("Computing image embeddings for the provided image...") + backbone_out = self.model.forward_image(input_image) + _, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out) + # Add no_mem_embed, which is added to the lowest rest feat. map during training on videos + if self.model.directly_add_no_mem_embed: + vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed + + feats = [ + feat.permute(1, 2, 0).view(1, -1, *feat_size) + for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1]) + ][::-1] + self._features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]} + self._is_image_set = True + logging.info("Image embeddings computed.") + + @torch.no_grad() + def set_image_batch( + self, + image_list: List[Union[np.ndarray]], + ) -> None: + """ + Calculates the image embeddings for the provided image batch, allowing + masks to be predicted with the 'predict_batch' method. + + Arguments: + image_list (List[np.ndarray]): The input images to embed in RGB format. The image should be in HWC format if np.ndarray + with pixel values in [0, 255]. + """ + self.reset_predictor() + assert isinstance(image_list, list) + self._orig_hw = [] + for image in image_list: + assert isinstance( + image, np.ndarray + ), "Images are expected to be an np.ndarray in RGB format, and of shape HWC" + self._orig_hw.append(image.shape[:2]) + # Transform the image to the form expected by the model + img_batch = self._transforms.forward_batch(image_list) + img_batch = img_batch.to(self.device) + batch_size = img_batch.shape[0] + assert ( + len(img_batch.shape) == 4 and img_batch.shape[1] == 3 + ), f"img_batch must be of size Bx3xHxW, got {img_batch.shape}" + logging.info("Computing image embeddings for the provided images...") + backbone_out = self.model.forward_image(img_batch) + _, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out) + # Add no_mem_embed, which is added to the lowest rest feat. map during training on videos + if self.model.directly_add_no_mem_embed: + vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed + + feats = [ + feat.permute(1, 2, 0).view(batch_size, -1, *feat_size) + for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1]) + ][::-1] + self._features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]} + self._is_image_set = True + self._is_batch = True + logging.info("Image embeddings computed.") + + def predict_batch( + self, + point_coords_batch: List[np.ndarray] = None, + point_labels_batch: List[np.ndarray] = None, + box_batch: List[np.ndarray] = None, + mask_input_batch: List[np.ndarray] = None, + multimask_output: bool = True, + return_logits: bool = False, + normalize_coords=True, + ) -> Tuple[List[np.ndarray], List[np.ndarray], List[np.ndarray]]: + """This function is very similar to predict(...), however it is used for batched mode, when the model is expected to generate predictions on multiple images. + It returns a tupele of lists of masks, ious, and low_res_masks_logits. + """ + assert self._is_batch, "This function should only be used when in batched mode" + if not self._is_image_set: + raise RuntimeError( + "An image must be set with .set_image_batch(...) before mask prediction." + ) + num_images = len(self._features["image_embed"]) + all_masks = [] + all_ious = [] + all_low_res_masks = [] + for img_idx in range(num_images): + # Transform input prompts + point_coords = ( + point_coords_batch[img_idx] if point_coords_batch is not None else None + ) + point_labels = ( + point_labels_batch[img_idx] if point_labels_batch is not None else None + ) + box = box_batch[img_idx] if box_batch is not None else None + mask_input = ( + mask_input_batch[img_idx] if mask_input_batch is not None else None + ) + mask_input, unnorm_coords, labels, unnorm_box = self._prep_prompts( + point_coords, + point_labels, + box, + mask_input, + normalize_coords, + img_idx=img_idx, + ) + masks, iou_predictions, low_res_masks = self._predict( + unnorm_coords, + labels, + unnorm_box, + mask_input, + multimask_output, + return_logits=return_logits, + img_idx=img_idx, + ) + masks_np = masks.squeeze(0).float().detach().cpu().numpy() + iou_predictions_np = ( + iou_predictions.squeeze(0).float().detach().cpu().numpy() + ) + low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy() + all_masks.append(masks_np) + all_ious.append(iou_predictions_np) + all_low_res_masks.append(low_res_masks_np) + + return all_masks, all_ious, all_low_res_masks + + def predict( + self, + point_coords: Optional[np.ndarray] = None, + point_labels: Optional[np.ndarray] = None, + box: Optional[np.ndarray] = None, + mask_input: Optional[np.ndarray] = None, + multimask_output: bool = True, + return_logits: bool = False, + normalize_coords=True, + ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: + """ + Predict masks for the given input prompts, using the currently set image. + + Arguments: + point_coords (np.ndarray or None): A Nx2 array of point prompts to the + model. Each point is in (X,Y) in pixels. + point_labels (np.ndarray or None): A length N array of labels for the + point prompts. 1 indicates a foreground point and 0 indicates a + background point. + box (np.ndarray or None): A length 4 array given a box prompt to the + model, in XYXY format. + mask_input (np.ndarray): A low resolution mask input to the model, typically + coming from a previous prediction iteration. Has form 1xHxW, where + for SAM, H=W=256. + multimask_output (bool): If true, the model will return three masks. + For ambiguous input prompts (such as a single click), this will often + produce better masks than a single prediction. If only a single + mask is needed, the model's predicted quality score can be used + to select the best mask. For non-ambiguous prompts, such as multiple + input prompts, multimask_output=False can give better results. + return_logits (bool): If true, returns un-thresholded masks logits + instead of a binary mask. + normalize_coords (bool): If true, the point coordinates will be normalized to the range [0,1] and point_coords is expected to be wrt. image dimensions. + + Returns: + (np.ndarray): The output masks in CxHxW format, where C is the + number of masks, and (H, W) is the original image size. + (np.ndarray): An array of length C containing the model's + predictions for the quality of each mask. + (np.ndarray): An array of shape CxHxW, where C is the number + of masks and H=W=256. These low resolution logits can be passed to + a subsequent iteration as mask input. + """ + if not self._is_image_set: + raise RuntimeError( + "An image must be set with .set_image(...) before mask prediction." + ) + + # Transform input prompts + + mask_input, unnorm_coords, labels, unnorm_box = self._prep_prompts( + point_coords, point_labels, box, mask_input, normalize_coords + ) + + masks, iou_predictions, low_res_masks = self._predict( + unnorm_coords, + labels, + unnorm_box, + mask_input, + multimask_output, + return_logits=return_logits, + ) + + masks_np = masks.squeeze(0).float().detach().cpu().numpy() + iou_predictions_np = iou_predictions.squeeze(0).float().detach().cpu().numpy() + low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy() + return masks_np, iou_predictions_np, low_res_masks_np + + def _prep_prompts( + self, point_coords, point_labels, box, mask_logits, normalize_coords, img_idx=-1 + ): + + unnorm_coords, labels, unnorm_box, mask_input = None, None, None, None + if point_coords is not None: + assert ( + point_labels is not None + ), "point_labels must be supplied if point_coords is supplied." + point_coords = torch.as_tensor( + point_coords, dtype=torch.float, device=self.device + ) + unnorm_coords = self._transforms.transform_coords( + point_coords, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx] + ) + labels = torch.as_tensor(point_labels, dtype=torch.int, device=self.device) + if len(unnorm_coords.shape) == 2: + unnorm_coords, labels = unnorm_coords[None, ...], labels[None, ...] + if box is not None: + box = torch.as_tensor(box, dtype=torch.float, device=self.device) + unnorm_box = self._transforms.transform_boxes( + box, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx] + ) # Bx2x2 + if mask_logits is not None: + mask_input = torch.as_tensor( + mask_logits, dtype=torch.float, device=self.device + ) + if len(mask_input.shape) == 3: + mask_input = mask_input[None, :, :, :] + return mask_input, unnorm_coords, labels, unnorm_box + + @torch.no_grad() + def _predict( + self, + point_coords: Optional[torch.Tensor], + point_labels: Optional[torch.Tensor], + boxes: Optional[torch.Tensor] = None, + mask_input: Optional[torch.Tensor] = None, + multimask_output: bool = True, + return_logits: bool = False, + img_idx: int = -1, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Predict masks for the given input prompts, using the currently set image. + Input prompts are batched torch tensors and are expected to already be + transformed to the input frame using SAM2Transforms. + + Arguments: + point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the + model. Each point is in (X,Y) in pixels. + point_labels (torch.Tensor or None): A BxN array of labels for the + point prompts. 1 indicates a foreground point and 0 indicates a + background point. + boxes (np.ndarray or None): A Bx4 array given a box prompt to the + model, in XYXY format. + mask_input (np.ndarray): A low resolution mask input to the model, typically + coming from a previous prediction iteration. Has form Bx1xHxW, where + for SAM, H=W=256. Masks returned by a previous iteration of the + predict method do not need further transformation. + multimask_output (bool): If true, the model will return three masks. + For ambiguous input prompts (such as a single click), this will often + produce better masks than a single prediction. If only a single + mask is needed, the model's predicted quality score can be used + to select the best mask. For non-ambiguous prompts, such as multiple + input prompts, multimask_output=False can give better results. + return_logits (bool): If true, returns un-thresholded masks logits + instead of a binary mask. + + Returns: + (torch.Tensor): The output masks in BxCxHxW format, where C is the + number of masks, and (H, W) is the original image size. + (torch.Tensor): An array of shape BxC containing the model's + predictions for the quality of each mask. + (torch.Tensor): An array of shape BxCxHxW, where C is the number + of masks and H=W=256. These low res logits can be passed to + a subsequent iteration as mask input. + """ + if not self._is_image_set: + raise RuntimeError( + "An image must be set with .set_image(...) before mask prediction." + ) + + if point_coords is not None: + concat_points = (point_coords, point_labels) + else: + concat_points = None + + # Embed prompts + if boxes is not None: + box_coords = boxes.reshape(-1, 2, 2) + box_labels = torch.tensor([[2, 3]], dtype=torch.int, device=boxes.device) + box_labels = box_labels.repeat(boxes.size(0), 1) + # we merge "boxes" and "points" into a single "concat_points" input (where + # boxes are added at the beginning) to sam_prompt_encoder + if concat_points is not None: + concat_coords = torch.cat([box_coords, concat_points[0]], dim=1) + concat_labels = torch.cat([box_labels, concat_points[1]], dim=1) + concat_points = (concat_coords, concat_labels) + else: + concat_points = (box_coords, box_labels) + + sparse_embeddings, dense_embeddings = self.model.sam_prompt_encoder( + points=concat_points, + boxes=None, + masks=mask_input, + ) + + # Predict masks + batched_mode = ( + concat_points is not None and concat_points[0].shape[0] > 1 + ) # multi object prediction + high_res_features = [ + feat_level[img_idx].unsqueeze(0) + for feat_level in self._features["high_res_feats"] + ] + low_res_masks, iou_predictions, _, _ = self.model.sam_mask_decoder( + image_embeddings=self._features["image_embed"][img_idx].unsqueeze(0), + image_pe=self.model.sam_prompt_encoder.get_dense_pe(), + sparse_prompt_embeddings=sparse_embeddings, + dense_prompt_embeddings=dense_embeddings, + multimask_output=multimask_output, + repeat_image=batched_mode, + high_res_features=high_res_features, + ) + + # Upscale the masks to the original image resolution + masks = self._transforms.postprocess_masks( + low_res_masks, self._orig_hw[img_idx] + ) + low_res_masks = torch.clamp(low_res_masks, -32.0, 32.0) + if not return_logits: + masks = masks > self.mask_threshold + + return masks, iou_predictions, low_res_masks + + def get_image_embedding(self) -> torch.Tensor: + """ + Returns the image embeddings for the currently set image, with + shape 1xCxHxW, where C is the embedding dimension and (H,W) are + the embedding spatial dimension of SAM (typically C=256, H=W=64). + """ + if not self._is_image_set: + raise RuntimeError( + "An image must be set with .set_image(...) to generate an embedding." + ) + assert ( + self._features is not None + ), "Features must exist if an image has been set." + return self._features["image_embed"] + + @property + def device(self) -> torch.device: + return self.model.device + + def reset_predictor(self) -> None: + """ + Resets the image embeddings and other state variables. + """ + self._is_image_set = False + self._features = None + self._orig_hw = None + self._is_batch = False diff --git a/segment-anything-2/packages/sam2/sam2_video_predictor.py b/segment-anything-2/packages/sam2/sam2_video_predictor.py new file mode 100644 index 00000000..0defcecb --- /dev/null +++ b/segment-anything-2/packages/sam2/sam2_video_predictor.py @@ -0,0 +1,898 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from collections import OrderedDict + +import torch + +from tqdm import tqdm + +from sam2.modeling.sam2_base import NO_OBJ_SCORE, SAM2Base +from sam2.utils.misc import concat_points, fill_holes_in_mask_scores, load_video_frames + + +class SAM2VideoPredictor(SAM2Base): + """The predictor class to handle user interactions and manage inference states.""" + + def __init__( + self, + fill_hole_area=0, + # whether to apply non-overlapping constraints on the output object masks + non_overlap_masks=False, + # whether to clear non-conditioning memory of the surrounding frames (which may contain outdated information) after adding correction clicks; + # note that this would only apply to *single-object tracking* unless `clear_non_cond_mem_for_multi_obj` is also set to True) + clear_non_cond_mem_around_input=False, + # whether to also clear non-conditioning memory of the surrounding frames (only effective when `clear_non_cond_mem_around_input` is True). + clear_non_cond_mem_for_multi_obj=False, + **kwargs, + ): + super().__init__(**kwargs) + self.fill_hole_area = fill_hole_area + self.non_overlap_masks = non_overlap_masks + self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input + self.clear_non_cond_mem_for_multi_obj = clear_non_cond_mem_for_multi_obj + + @torch.inference_mode() + def init_state( + self, + video_path, + offload_video_to_cpu=False, + offload_state_to_cpu=False, + async_loading_frames=False, + ): + """Initialize a inference state.""" + images, video_height, video_width = load_video_frames( + video_path=video_path, + image_size=self.image_size, + offload_video_to_cpu=offload_video_to_cpu, + async_loading_frames=async_loading_frames, + ) + inference_state = {} + inference_state["images"] = images + inference_state["num_frames"] = len(images) + # whether to offload the video frames to CPU memory + # turning on this option saves the GPU memory with only a very small overhead + inference_state["offload_video_to_cpu"] = offload_video_to_cpu + # whether to offload the inference state to CPU memory + # turning on this option saves the GPU memory at the cost of a lower tracking fps + # (e.g. in a test case of 768x768 model, fps dropped from 27 to 24 when tracking one object + # and from 24 to 21 when tracking two objects) + inference_state["offload_state_to_cpu"] = offload_state_to_cpu + # the original video height and width, used for resizing final output scores + inference_state["video_height"] = video_height + inference_state["video_width"] = video_width + inference_state["device"] = torch.device("cuda") + if offload_state_to_cpu: + inference_state["storage_device"] = torch.device("cpu") + else: + inference_state["storage_device"] = torch.device("cuda") + # inputs on each frame + inference_state["point_inputs_per_obj"] = {} + inference_state["mask_inputs_per_obj"] = {} + # visual features on a small number of recently visited frames for quick interactions + inference_state["cached_features"] = {} + # values that don't change across frames (so we only need to hold one copy of them) + inference_state["constants"] = {} + # mapping between client-side object id and model-side object index + inference_state["obj_id_to_idx"] = OrderedDict() + inference_state["obj_idx_to_id"] = OrderedDict() + inference_state["obj_ids"] = [] + # A storage to hold the model's tracking results and states on each frame + inference_state["output_dict"] = { + "cond_frame_outputs": {}, # dict containing {frame_idx: } + "non_cond_frame_outputs": {}, # dict containing {frame_idx: } + } + # Slice (view) of each object tracking results, sharing the same memory with "output_dict" + inference_state["output_dict_per_obj"] = {} + # A temporary storage to hold new outputs when user interact with a frame + # to add clicks or mask (it's merged into "output_dict" before propagation starts) + inference_state["temp_output_dict_per_obj"] = {} + # Frames that already holds consolidated outputs from click or mask inputs + # (we directly use their consolidated outputs during tracking) + inference_state["consolidated_frame_inds"] = { + "cond_frame_outputs": set(), # set containing frame indices + "non_cond_frame_outputs": set(), # set containing frame indices + } + # metadata for each tracking frame (e.g. which direction it's tracked) + inference_state["tracking_has_started"] = False + inference_state["frames_already_tracked"] = {} + # Warm up the visual backbone and cache the image feature on frame 0 + self._get_image_feature(inference_state, frame_idx=0, batch_size=1) + return inference_state + + def _obj_id_to_idx(self, inference_state, obj_id): + """Map client-side object id to model-side object index.""" + obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None) + if obj_idx is not None: + return obj_idx + + # This is a new object id not sent to the server before. We only allow adding + # new objects *before* the tracking starts. + allow_new_object = not inference_state["tracking_has_started"] + if allow_new_object: + # get the next object slot + obj_idx = len(inference_state["obj_id_to_idx"]) + inference_state["obj_id_to_idx"][obj_id] = obj_idx + inference_state["obj_idx_to_id"][obj_idx] = obj_id + inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"]) + # set up input and output structures for this object + inference_state["point_inputs_per_obj"][obj_idx] = {} + inference_state["mask_inputs_per_obj"][obj_idx] = {} + inference_state["output_dict_per_obj"][obj_idx] = { + "cond_frame_outputs": {}, # dict containing {frame_idx: } + "non_cond_frame_outputs": {}, # dict containing {frame_idx: } + } + inference_state["temp_output_dict_per_obj"][obj_idx] = { + "cond_frame_outputs": {}, # dict containing {frame_idx: } + "non_cond_frame_outputs": {}, # dict containing {frame_idx: } + } + return obj_idx + else: + raise RuntimeError( + f"Cannot add new object id {obj_id} after tracking starts. " + f"All existing object ids: {inference_state['obj_ids']}. " + f"Please call 'reset_state' to restart from scratch." + ) + + def _obj_idx_to_id(self, inference_state, obj_idx): + """Map model-side object index to client-side object id.""" + return inference_state["obj_idx_to_id"][obj_idx] + + def _get_obj_num(self, inference_state): + """Get the total number of unique object ids received so far in this session.""" + return len(inference_state["obj_idx_to_id"]) + + @torch.inference_mode() + def add_new_points( + self, + inference_state, + frame_idx, + obj_id, + points, + labels, + clear_old_points=True, + normalize_coords=True, + ): + """Add new points to a frame.""" + obj_idx = self._obj_id_to_idx(inference_state, obj_id) + point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx] + mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx] + + if not isinstance(points, torch.Tensor): + points = torch.tensor(points, dtype=torch.float32) + if not isinstance(labels, torch.Tensor): + labels = torch.tensor(labels, dtype=torch.int32) + if points.dim() == 2: + points = points.unsqueeze(0) # add batch dimension + if labels.dim() == 1: + labels = labels.unsqueeze(0) # add batch dimension + if normalize_coords: + video_H = inference_state["video_height"] + video_W = inference_state["video_width"] + points = points / torch.tensor([video_W, video_H]).to(points.device) + # scale the (normalized) coordinates by the model's internal image size + points = points * self.image_size + points = points.to(inference_state["device"]) + labels = labels.to(inference_state["device"]) + + if not clear_old_points: + point_inputs = point_inputs_per_frame.get(frame_idx, None) + else: + point_inputs = None + point_inputs = concat_points(point_inputs, points, labels) + + point_inputs_per_frame[frame_idx] = point_inputs + mask_inputs_per_frame.pop(frame_idx, None) + # If this frame hasn't been tracked before, we treat it as an initial conditioning + # frame, meaning that the inputs points are to generate segments on this frame without + # using any memory from other frames, like in SAM. Otherwise (if it has been tracked), + # the input points will be used to correct the already tracked masks. + is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"] + # whether to track in reverse time order + if is_init_cond_frame: + reverse = False + else: + reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"] + obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] + obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] + # Add a frame to conditioning output if it's an initial conditioning frame or + # if the model sees all frames receiving clicks/mask as conditioning frames. + is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond + storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" + + # Get any previously predicted mask logits on this object and feed it along with + # the new clicks into the SAM mask decoder. + prev_sam_mask_logits = None + # lookup temporary output dict first, which contains the most recent output + # (if not found, then lookup conditioning and non-conditioning frame output) + prev_out = obj_temp_output_dict[storage_key].get(frame_idx) + if prev_out is None: + prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx) + if prev_out is None: + prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx) + + if prev_out is not None and prev_out["pred_masks"] is not None: + prev_sam_mask_logits = prev_out["pred_masks"].cuda(non_blocking=True) + # Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues. + prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0) + current_out, _ = self._run_single_frame_inference( + inference_state=inference_state, + output_dict=obj_output_dict, # run on the slice of a single object + frame_idx=frame_idx, + batch_size=1, # run on the slice of a single object + is_init_cond_frame=is_init_cond_frame, + point_inputs=point_inputs, + mask_inputs=None, + reverse=reverse, + # Skip the memory encoder when adding clicks or mask. We execute the memory encoder + # at the beginning of `propagate_in_video` (after user finalize their clicks). This + # allows us to enforce non-overlapping constraints on all objects before encoding + # them into memory. + run_mem_encoder=False, + prev_sam_mask_logits=prev_sam_mask_logits, + ) + # Add the output to the output dict (to be used as future memory) + obj_temp_output_dict[storage_key][frame_idx] = current_out + + # Resize the output mask to the original video resolution + obj_ids = inference_state["obj_ids"] + consolidated_out = self._consolidate_temp_output_across_obj( + inference_state, + frame_idx, + is_cond=is_cond, + run_mem_encoder=False, + consolidate_at_video_res=True, + ) + _, video_res_masks = self._get_orig_video_res_output( + inference_state, consolidated_out["pred_masks_video_res"] + ) + return frame_idx, obj_ids, video_res_masks + + @torch.inference_mode() + def add_new_mask( + self, + inference_state, + frame_idx, + obj_id, + mask, + ): + """Add new mask to a frame.""" + obj_idx = self._obj_id_to_idx(inference_state, obj_id) + point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx] + mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx] + + if not isinstance(mask, torch.Tensor): + mask = torch.tensor(mask, dtype=torch.bool) + assert mask.dim() == 2 + mask_H, mask_W = mask.shape + mask_inputs_orig = mask[None, None] # add batch and channel dimension + mask_inputs_orig = mask_inputs_orig.float().to(inference_state["device"]) + + # resize the mask if it doesn't match the model's image size + if mask_H != self.image_size or mask_W != self.image_size: + mask_inputs = torch.nn.functional.interpolate( + mask_inputs_orig, + size=(self.image_size, self.image_size), + align_corners=False, + mode="bilinear", + antialias=True, # use antialias for downsampling + ) + mask_inputs = (mask_inputs >= 0.5).float() + else: + mask_inputs = mask_inputs_orig + + mask_inputs_per_frame[frame_idx] = mask_inputs + point_inputs_per_frame.pop(frame_idx, None) + # If this frame hasn't been tracked before, we treat it as an initial conditioning + # frame, meaning that the inputs points are to generate segments on this frame without + # using any memory from other frames, like in SAM. Otherwise (if it has been tracked), + # the input points will be used to correct the already tracked masks. + is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"] + # whether to track in reverse time order + if is_init_cond_frame: + reverse = False + else: + reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"] + obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] + obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] + # Add a frame to conditioning output if it's an initial conditioning frame or + # if the model sees all frames receiving clicks/mask as conditioning frames. + is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond + storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" + + current_out, _ = self._run_single_frame_inference( + inference_state=inference_state, + output_dict=obj_output_dict, # run on the slice of a single object + frame_idx=frame_idx, + batch_size=1, # run on the slice of a single object + is_init_cond_frame=is_init_cond_frame, + point_inputs=None, + mask_inputs=mask_inputs, + reverse=reverse, + # Skip the memory encoder when adding clicks or mask. We execute the memory encoder + # at the beginning of `propagate_in_video` (after user finalize their clicks). This + # allows us to enforce non-overlapping constraints on all objects before encoding + # them into memory. + run_mem_encoder=False, + ) + # Add the output to the output dict (to be used as future memory) + obj_temp_output_dict[storage_key][frame_idx] = current_out + + # Resize the output mask to the original video resolution + obj_ids = inference_state["obj_ids"] + consolidated_out = self._consolidate_temp_output_across_obj( + inference_state, + frame_idx, + is_cond=is_cond, + run_mem_encoder=False, + consolidate_at_video_res=True, + ) + _, video_res_masks = self._get_orig_video_res_output( + inference_state, consolidated_out["pred_masks_video_res"] + ) + return frame_idx, obj_ids, video_res_masks + + def _get_orig_video_res_output(self, inference_state, any_res_masks): + """ + Resize the object scores to the original video resolution (video_res_masks) + and apply non-overlapping constraints for final output. + """ + device = inference_state["device"] + video_H = inference_state["video_height"] + video_W = inference_state["video_width"] + any_res_masks = any_res_masks.to(device, non_blocking=True) + if any_res_masks.shape[-2:] == (video_H, video_W): + video_res_masks = any_res_masks + else: + video_res_masks = torch.nn.functional.interpolate( + any_res_masks, + size=(video_H, video_W), + mode="bilinear", + align_corners=False, + ) + if self.non_overlap_masks: + video_res_masks = self._apply_non_overlapping_constraints(video_res_masks) + return any_res_masks, video_res_masks + + def _consolidate_temp_output_across_obj( + self, + inference_state, + frame_idx, + is_cond, + run_mem_encoder, + consolidate_at_video_res=False, + ): + """ + Consolidate the per-object temporary outputs in `temp_output_dict_per_obj` on + a frame into a single output for all objects, including + 1) fill any missing objects either from `output_dict_per_obj` (if they exist in + `output_dict_per_obj` for this frame) or leave them as placeholder values + (if they don't exist in `output_dict_per_obj` for this frame); + 2) if specified, rerun memory encoder after apply non-overlapping constraints + on the object scores. + """ + batch_size = self._get_obj_num(inference_state) + storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" + # Optionally, we allow consolidating the temporary outputs at the original + # video resolution (to provide a better editing experience for mask prompts). + if consolidate_at_video_res: + assert not run_mem_encoder, "memory encoder cannot run at video resolution" + consolidated_H = inference_state["video_height"] + consolidated_W = inference_state["video_width"] + consolidated_mask_key = "pred_masks_video_res" + else: + consolidated_H = consolidated_W = self.image_size // 4 + consolidated_mask_key = "pred_masks" + + # Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc" + # will be added when rerunning the memory encoder after applying non-overlapping + # constraints to object scores. Its "pred_masks" are prefilled with a large + # negative value (NO_OBJ_SCORE) to represent missing objects. + consolidated_out = { + "maskmem_features": None, + "maskmem_pos_enc": None, + consolidated_mask_key: torch.full( + size=(batch_size, 1, consolidated_H, consolidated_W), + fill_value=NO_OBJ_SCORE, + dtype=torch.float32, + device=inference_state["storage_device"], + ), + "obj_ptr": torch.full( + size=(batch_size, self.hidden_dim), + fill_value=NO_OBJ_SCORE, + dtype=torch.float32, + device=inference_state["device"], + ), + } + empty_mask_ptr = None + for obj_idx in range(batch_size): + obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] + obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] + out = obj_temp_output_dict[storage_key].get(frame_idx, None) + # If the object doesn't appear in "temp_output_dict_per_obj" on this frame, + # we fall back and look up its previous output in "output_dict_per_obj". + # We look up both "cond_frame_outputs" and "non_cond_frame_outputs" in + # "output_dict_per_obj" to find a previous output for this object. + if out is None: + out = obj_output_dict["cond_frame_outputs"].get(frame_idx, None) + if out is None: + out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx, None) + # If the object doesn't appear in "output_dict_per_obj" either, we skip it + # and leave its mask scores to the default scores (i.e. the NO_OBJ_SCORE + # placeholder above) and set its object pointer to be a dummy pointer. + if out is None: + # Fill in dummy object pointers for those objects without any inputs or + # tracking outcomes on this frame (only do it under `run_mem_encoder=True`, + # i.e. when we need to build the memory for tracking). + if run_mem_encoder: + if empty_mask_ptr is None: + empty_mask_ptr = self._get_empty_mask_ptr( + inference_state, frame_idx + ) + # fill object pointer with a dummy pointer (based on an empty mask) + consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = empty_mask_ptr + continue + # Add the temporary object output mask to consolidated output mask + obj_mask = out["pred_masks"] + consolidated_pred_masks = consolidated_out[consolidated_mask_key] + if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]: + consolidated_pred_masks[obj_idx : obj_idx + 1] = obj_mask + else: + # Resize first if temporary object mask has a different resolution + resized_obj_mask = torch.nn.functional.interpolate( + obj_mask, + size=consolidated_pred_masks.shape[-2:], + mode="bilinear", + align_corners=False, + ) + consolidated_pred_masks[obj_idx : obj_idx + 1] = resized_obj_mask + consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"] + + # Optionally, apply non-overlapping constraints on the consolidated scores + # and rerun the memory encoder + if run_mem_encoder: + device = inference_state["device"] + high_res_masks = torch.nn.functional.interpolate( + consolidated_out["pred_masks"].to(device, non_blocking=True), + size=(self.image_size, self.image_size), + mode="bilinear", + align_corners=False, + ) + if self.non_overlap_masks_for_mem_enc: + high_res_masks = self._apply_non_overlapping_constraints(high_res_masks) + maskmem_features, maskmem_pos_enc = self._run_memory_encoder( + inference_state=inference_state, + frame_idx=frame_idx, + batch_size=batch_size, + high_res_masks=high_res_masks, + is_mask_from_pts=True, # these frames are what the user interacted with + ) + consolidated_out["maskmem_features"] = maskmem_features + consolidated_out["maskmem_pos_enc"] = maskmem_pos_enc + + return consolidated_out + + def _get_empty_mask_ptr(self, inference_state, frame_idx): + """Get a dummy object pointer based on an empty mask on the current frame.""" + # A dummy (empty) mask with a single object + batch_size = 1 + mask_inputs = torch.zeros( + (batch_size, 1, self.image_size, self.image_size), + dtype=torch.float32, + device=inference_state["device"], + ) + + # Retrieve correct image features + ( + _, + _, + current_vision_feats, + current_vision_pos_embeds, + feat_sizes, + ) = self._get_image_feature(inference_state, frame_idx, batch_size) + + # Feed the empty mask and image feature above to get a dummy object pointer + current_out = self.track_step( + frame_idx=frame_idx, + is_init_cond_frame=True, + current_vision_feats=current_vision_feats, + current_vision_pos_embeds=current_vision_pos_embeds, + feat_sizes=feat_sizes, + point_inputs=None, + mask_inputs=mask_inputs, + output_dict={}, + num_frames=inference_state["num_frames"], + track_in_reverse=False, + run_mem_encoder=False, + prev_sam_mask_logits=None, + ) + return current_out["obj_ptr"] + + @torch.inference_mode() + def propagate_in_video_preflight(self, inference_state): + """Prepare inference_state and consolidate temporary outputs before tracking.""" + # Tracking has started and we don't allow adding new objects until session is reset. + inference_state["tracking_has_started"] = True + batch_size = self._get_obj_num(inference_state) + + # Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and + # add them into "output_dict". + temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"] + output_dict = inference_state["output_dict"] + # "consolidated_frame_inds" contains indices of those frames where consolidated + # temporary outputs have been added (either in this call or any previous calls + # to `propagate_in_video_preflight`). + consolidated_frame_inds = inference_state["consolidated_frame_inds"] + for is_cond in [False, True]: + # Separately consolidate conditioning and non-conditioning temp outptus + storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" + # Find all the frames that contain temporary outputs for any objects + # (these should be the frames that have just received clicks for mask inputs + # via `add_new_points` or `add_new_mask`) + temp_frame_inds = set() + for obj_temp_output_dict in temp_output_dict_per_obj.values(): + temp_frame_inds.update(obj_temp_output_dict[storage_key].keys()) + consolidated_frame_inds[storage_key].update(temp_frame_inds) + # consolidate the temprary output across all objects on this frame + for frame_idx in temp_frame_inds: + consolidated_out = self._consolidate_temp_output_across_obj( + inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=True + ) + # merge them into "output_dict" and also create per-object slices + output_dict[storage_key][frame_idx] = consolidated_out + self._add_output_per_object( + inference_state, frame_idx, consolidated_out, storage_key + ) + clear_non_cond_mem = self.clear_non_cond_mem_around_input and ( + self.clear_non_cond_mem_for_multi_obj or batch_size <= 1 + ) + if clear_non_cond_mem: + # clear non-conditioning memory of the surrounding frames + self._clear_non_cond_mem_around_input(inference_state, frame_idx) + + # clear temporary outputs in `temp_output_dict_per_obj` + for obj_temp_output_dict in temp_output_dict_per_obj.values(): + obj_temp_output_dict[storage_key].clear() + + # edge case: if an output is added to "cond_frame_outputs", we remove any prior + # output on the same frame in "non_cond_frame_outputs" + for frame_idx in output_dict["cond_frame_outputs"]: + output_dict["non_cond_frame_outputs"].pop(frame_idx, None) + for obj_output_dict in inference_state["output_dict_per_obj"].values(): + for frame_idx in obj_output_dict["cond_frame_outputs"]: + obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None) + for frame_idx in consolidated_frame_inds["cond_frame_outputs"]: + assert frame_idx in output_dict["cond_frame_outputs"] + consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx) + + # Make sure that the frame indices in "consolidated_frame_inds" are exactly those frames + # with either points or mask inputs (which should be true under a correct workflow). + all_consolidated_frame_inds = ( + consolidated_frame_inds["cond_frame_outputs"] + | consolidated_frame_inds["non_cond_frame_outputs"] + ) + input_frames_inds = set() + for point_inputs_per_frame in inference_state["point_inputs_per_obj"].values(): + input_frames_inds.update(point_inputs_per_frame.keys()) + for mask_inputs_per_frame in inference_state["mask_inputs_per_obj"].values(): + input_frames_inds.update(mask_inputs_per_frame.keys()) + assert all_consolidated_frame_inds == input_frames_inds + + @torch.inference_mode() + def propagate_in_video( + self, + inference_state, + start_frame_idx=None, + max_frame_num_to_track=None, + reverse=False, + ): + """Propagate the input points across frames to track in the entire video.""" + self.propagate_in_video_preflight(inference_state) + + output_dict = inference_state["output_dict"] + consolidated_frame_inds = inference_state["consolidated_frame_inds"] + obj_ids = inference_state["obj_ids"] + num_frames = inference_state["num_frames"] + batch_size = self._get_obj_num(inference_state) + if len(output_dict["cond_frame_outputs"]) == 0: + raise RuntimeError("No points are provided; please add points first") + clear_non_cond_mem = self.clear_non_cond_mem_around_input and ( + self.clear_non_cond_mem_for_multi_obj or batch_size <= 1 + ) + + # set start index, end index, and processing order + if start_frame_idx is None: + # default: start from the earliest frame with input points + start_frame_idx = min(output_dict["cond_frame_outputs"]) + if max_frame_num_to_track is None: + # default: track all the frames in the video + max_frame_num_to_track = num_frames + if reverse: + end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0) + if start_frame_idx > 0: + processing_order = range(start_frame_idx, end_frame_idx - 1, -1) + else: + processing_order = [] # skip reverse tracking if starting from frame 0 + else: + end_frame_idx = min( + start_frame_idx + max_frame_num_to_track, num_frames - 1 + ) + processing_order = range(start_frame_idx, end_frame_idx + 1) + + for frame_idx in tqdm(processing_order, desc="propagate in video"): + # We skip those frames already in consolidated outputs (these are frames + # that received input clicks or mask). Note that we cannot directly run + # batched forward on them via `_run_single_frame_inference` because the + # number of clicks on each object might be different. + if frame_idx in consolidated_frame_inds["cond_frame_outputs"]: + storage_key = "cond_frame_outputs" + current_out = output_dict[storage_key][frame_idx] + pred_masks = current_out["pred_masks"] + if clear_non_cond_mem: + # clear non-conditioning memory of the surrounding frames + self._clear_non_cond_mem_around_input(inference_state, frame_idx) + elif frame_idx in consolidated_frame_inds["non_cond_frame_outputs"]: + storage_key = "non_cond_frame_outputs" + current_out = output_dict[storage_key][frame_idx] + pred_masks = current_out["pred_masks"] + else: + storage_key = "non_cond_frame_outputs" + current_out, pred_masks = self._run_single_frame_inference( + inference_state=inference_state, + output_dict=output_dict, + frame_idx=frame_idx, + batch_size=batch_size, + is_init_cond_frame=False, + point_inputs=None, + mask_inputs=None, + reverse=reverse, + run_mem_encoder=True, + ) + output_dict[storage_key][frame_idx] = current_out + # Create slices of per-object outputs for subsequent interaction with each + # individual object after tracking. + self._add_output_per_object( + inference_state, frame_idx, current_out, storage_key + ) + inference_state["frames_already_tracked"][frame_idx] = {"reverse": reverse} + + # Resize the output mask to the original video resolution (we directly use + # the mask scores on GPU for output to avoid any CPU conversion in between) + _, video_res_masks = self._get_orig_video_res_output( + inference_state, pred_masks + ) + yield frame_idx, obj_ids, video_res_masks + + def _add_output_per_object( + self, inference_state, frame_idx, current_out, storage_key + ): + """ + Split a multi-object output into per-object output slices and add them into + `output_dict_per_obj`. The resulting slices share the same tensor storage. + """ + maskmem_features = current_out["maskmem_features"] + assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor) + + maskmem_pos_enc = current_out["maskmem_pos_enc"] + assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list) + + output_dict_per_obj = inference_state["output_dict_per_obj"] + for obj_idx, obj_output_dict in output_dict_per_obj.items(): + obj_slice = slice(obj_idx, obj_idx + 1) + obj_out = { + "maskmem_features": None, + "maskmem_pos_enc": None, + "pred_masks": current_out["pred_masks"][obj_slice], + "obj_ptr": current_out["obj_ptr"][obj_slice], + } + if maskmem_features is not None: + obj_out["maskmem_features"] = maskmem_features[obj_slice] + if maskmem_pos_enc is not None: + obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc] + obj_output_dict[storage_key][frame_idx] = obj_out + + @torch.inference_mode() + def reset_state(self, inference_state): + """Remove all input points or mask in all frames throughout the video.""" + self._reset_tracking_results(inference_state) + # Remove all object ids + inference_state["obj_id_to_idx"].clear() + inference_state["obj_idx_to_id"].clear() + inference_state["obj_ids"].clear() + inference_state["point_inputs_per_obj"].clear() + inference_state["mask_inputs_per_obj"].clear() + inference_state["output_dict_per_obj"].clear() + inference_state["temp_output_dict_per_obj"].clear() + + def _reset_tracking_results(self, inference_state): + """Reset all tracking inputs and results across the videos.""" + for v in inference_state["point_inputs_per_obj"].values(): + v.clear() + for v in inference_state["mask_inputs_per_obj"].values(): + v.clear() + for v in inference_state["output_dict_per_obj"].values(): + v["cond_frame_outputs"].clear() + v["non_cond_frame_outputs"].clear() + for v in inference_state["temp_output_dict_per_obj"].values(): + v["cond_frame_outputs"].clear() + v["non_cond_frame_outputs"].clear() + inference_state["output_dict"]["cond_frame_outputs"].clear() + inference_state["output_dict"]["non_cond_frame_outputs"].clear() + inference_state["consolidated_frame_inds"]["cond_frame_outputs"].clear() + inference_state["consolidated_frame_inds"]["non_cond_frame_outputs"].clear() + inference_state["tracking_has_started"] = False + inference_state["frames_already_tracked"].clear() + + def _get_image_feature(self, inference_state, frame_idx, batch_size): + """Compute the image features on a given frame.""" + # Look up in the cache first + image, backbone_out = inference_state["cached_features"].get( + frame_idx, (None, None) + ) + if backbone_out is None: + # Cache miss -- we will run inference on a single image + image = inference_state["images"][frame_idx].cuda().float().unsqueeze(0) + backbone_out = self.forward_image(image) + # Cache the most recent frame's feature (for repeated interactions with + # a frame; we can use an LRU cache for more frames in the future). + inference_state["cached_features"] = {frame_idx: (image, backbone_out)} + + # expand the features to have the same dimension as the number of objects + expanded_image = image.expand(batch_size, -1, -1, -1) + expanded_backbone_out = { + "backbone_fpn": backbone_out["backbone_fpn"].copy(), + "vision_pos_enc": backbone_out["vision_pos_enc"].copy(), + } + for i, feat in enumerate(expanded_backbone_out["backbone_fpn"]): + expanded_backbone_out["backbone_fpn"][i] = feat.expand( + batch_size, -1, -1, -1 + ) + for i, pos in enumerate(expanded_backbone_out["vision_pos_enc"]): + pos = pos.expand(batch_size, -1, -1, -1) + expanded_backbone_out["vision_pos_enc"][i] = pos + + features = self._prepare_backbone_features(expanded_backbone_out) + features = (expanded_image,) + features + return features + + def _run_single_frame_inference( + self, + inference_state, + output_dict, + frame_idx, + batch_size, + is_init_cond_frame, + point_inputs, + mask_inputs, + reverse, + run_mem_encoder, + prev_sam_mask_logits=None, + ): + """Run tracking on a single frame based on current inputs and previous memory.""" + # Retrieve correct image features + ( + _, + _, + current_vision_feats, + current_vision_pos_embeds, + feat_sizes, + ) = self._get_image_feature(inference_state, frame_idx, batch_size) + + # point and mask should not appear as input simultaneously on the same frame + assert point_inputs is None or mask_inputs is None + current_out = self.track_step( + frame_idx=frame_idx, + is_init_cond_frame=is_init_cond_frame, + current_vision_feats=current_vision_feats, + current_vision_pos_embeds=current_vision_pos_embeds, + feat_sizes=feat_sizes, + point_inputs=point_inputs, + mask_inputs=mask_inputs, + output_dict=output_dict, + num_frames=inference_state["num_frames"], + track_in_reverse=reverse, + run_mem_encoder=run_mem_encoder, + prev_sam_mask_logits=prev_sam_mask_logits, + ) + + # optionally offload the output to CPU memory to save GPU space + storage_device = inference_state["storage_device"] + maskmem_features = current_out["maskmem_features"] + if maskmem_features is not None: + maskmem_features = maskmem_features.to(torch.bfloat16) + maskmem_features = maskmem_features.to(storage_device, non_blocking=True) + pred_masks_gpu = current_out["pred_masks"] + # potentially fill holes in the predicted masks + if self.fill_hole_area > 0: + pred_masks_gpu = fill_holes_in_mask_scores( + pred_masks_gpu, self.fill_hole_area + ) + pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True) + # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it + maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, current_out) + # object pointer is a small tensor, so we always keep it on GPU memory for fast access + obj_ptr = current_out["obj_ptr"] + # make a compact version of this frame's output to reduce the state size + compact_current_out = { + "maskmem_features": maskmem_features, + "maskmem_pos_enc": maskmem_pos_enc, + "pred_masks": pred_masks, + "obj_ptr": obj_ptr, + } + return compact_current_out, pred_masks_gpu + + def _run_memory_encoder( + self, inference_state, frame_idx, batch_size, high_res_masks, is_mask_from_pts + ): + """ + Run the memory encoder on `high_res_masks`. This is usually after applying + non-overlapping constraints to object scores. Since their scores changed, their + memory also need to be computed again with the memory encoder. + """ + # Retrieve correct image features + _, _, current_vision_feats, _, feat_sizes = self._get_image_feature( + inference_state, frame_idx, batch_size + ) + maskmem_features, maskmem_pos_enc = self._encode_new_memory( + current_vision_feats=current_vision_feats, + feat_sizes=feat_sizes, + pred_masks_high_res=high_res_masks, + is_mask_from_pts=is_mask_from_pts, + ) + + # optionally offload the output to CPU memory to save GPU space + storage_device = inference_state["storage_device"] + maskmem_features = maskmem_features.to(torch.bfloat16) + maskmem_features = maskmem_features.to(storage_device, non_blocking=True) + # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it + maskmem_pos_enc = self._get_maskmem_pos_enc( + inference_state, {"maskmem_pos_enc": maskmem_pos_enc} + ) + return maskmem_features, maskmem_pos_enc + + def _get_maskmem_pos_enc(self, inference_state, current_out): + """ + `maskmem_pos_enc` is the same across frames and objects, so we cache it as + a constant in the inference session to reduce session storage size. + """ + model_constants = inference_state["constants"] + # "out_maskmem_pos_enc" should be either a list of tensors or None + out_maskmem_pos_enc = current_out["maskmem_pos_enc"] + if out_maskmem_pos_enc is not None: + if "maskmem_pos_enc" not in model_constants: + assert isinstance(out_maskmem_pos_enc, list) + # only take the slice for one object, since it's same across objects + maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc] + model_constants["maskmem_pos_enc"] = maskmem_pos_enc + else: + maskmem_pos_enc = model_constants["maskmem_pos_enc"] + # expand the cached maskmem_pos_enc to the actual batch size + batch_size = out_maskmem_pos_enc[0].size(0) + expanded_maskmem_pos_enc = [ + x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc + ] + else: + expanded_maskmem_pos_enc = None + return expanded_maskmem_pos_enc + + def _clear_non_cond_mem_around_input(self, inference_state, frame_idx): + """ + Remove the non-conditioning memory around the input frame. When users provide + correction clicks, the surrounding frames' non-conditioning memories can still + contain outdated object appearance information and could confuse the model. + + This method clears those non-conditioning memories surrounding the interacted + frame to avoid giving the model both old and new information about the object. + """ + r = self.memory_temporal_stride_for_eval + frame_idx_begin = frame_idx - r * self.num_maskmem + frame_idx_end = frame_idx + r * self.num_maskmem + output_dict = inference_state["output_dict"] + non_cond_frame_outputs = output_dict["non_cond_frame_outputs"] + for t in range(frame_idx_begin, frame_idx_end + 1): + non_cond_frame_outputs.pop(t, None) + for obj_output_dict in inference_state["output_dict_per_obj"].values(): + obj_output_dict["non_cond_frame_outputs"].pop(t, None) diff --git a/segment-anything-2/packages/sam2/utils/__init__.py b/segment-anything-2/packages/sam2/utils/__init__.py new file mode 100644 index 00000000..5277f461 --- /dev/null +++ b/segment-anything-2/packages/sam2/utils/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. diff --git a/segment-anything-2/packages/sam2/utils/amg.py b/segment-anything-2/packages/sam2/utils/amg.py new file mode 100644 index 00000000..98684296 --- /dev/null +++ b/segment-anything-2/packages/sam2/utils/amg.py @@ -0,0 +1,348 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import math +from copy import deepcopy +from itertools import product +from typing import Any, Dict, Generator, ItemsView, List, Tuple + +import numpy as np +import torch + +# Very lightly adapted from https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/utils/amg.py + + +class MaskData: + """ + A structure for storing masks and their related data in batched format. + Implements basic filtering and concatenation. + """ + + def __init__(self, **kwargs) -> None: + for v in kwargs.values(): + assert isinstance( + v, (list, np.ndarray, torch.Tensor) + ), "MaskData only supports list, numpy arrays, and torch tensors." + self._stats = dict(**kwargs) + + def __setitem__(self, key: str, item: Any) -> None: + assert isinstance( + item, (list, np.ndarray, torch.Tensor) + ), "MaskData only supports list, numpy arrays, and torch tensors." + self._stats[key] = item + + def __delitem__(self, key: str) -> None: + del self._stats[key] + + def __getitem__(self, key: str) -> Any: + return self._stats[key] + + def items(self) -> ItemsView[str, Any]: + return self._stats.items() + + def filter(self, keep: torch.Tensor) -> None: + for k, v in self._stats.items(): + if v is None: + self._stats[k] = None + elif isinstance(v, torch.Tensor): + self._stats[k] = v[torch.as_tensor(keep, device=v.device)] + elif isinstance(v, np.ndarray): + self._stats[k] = v[keep.detach().cpu().numpy()] + elif isinstance(v, list) and keep.dtype == torch.bool: + self._stats[k] = [a for i, a in enumerate(v) if keep[i]] + elif isinstance(v, list): + self._stats[k] = [v[i] for i in keep] + else: + raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.") + + def cat(self, new_stats: "MaskData") -> None: + for k, v in new_stats.items(): + if k not in self._stats or self._stats[k] is None: + self._stats[k] = deepcopy(v) + elif isinstance(v, torch.Tensor): + self._stats[k] = torch.cat([self._stats[k], v], dim=0) + elif isinstance(v, np.ndarray): + self._stats[k] = np.concatenate([self._stats[k], v], axis=0) + elif isinstance(v, list): + self._stats[k] = self._stats[k] + deepcopy(v) + else: + raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.") + + def to_numpy(self) -> None: + for k, v in self._stats.items(): + if isinstance(v, torch.Tensor): + self._stats[k] = v.float().detach().cpu().numpy() + + +def is_box_near_crop_edge( + boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0 +) -> torch.Tensor: + """Filter masks at the edge of a crop, but not at the edge of the original image.""" + crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device) + orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device) + boxes = uncrop_boxes_xyxy(boxes, crop_box).float() + near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0) + near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0) + near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge) + return torch.any(near_crop_edge, dim=1) + + +def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor: + box_xywh = deepcopy(box_xyxy) + box_xywh[2] = box_xywh[2] - box_xywh[0] + box_xywh[3] = box_xywh[3] - box_xywh[1] + return box_xywh + + +def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]: + assert len(args) > 0 and all( + len(a) == len(args[0]) for a in args + ), "Batched iteration must have inputs of all the same size." + n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0) + for b in range(n_batches): + yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args] + + +def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]: + """ + Encodes masks to an uncompressed RLE, in the format expected by + pycoco tools. + """ + # Put in fortran order and flatten h,w + b, h, w = tensor.shape + tensor = tensor.permute(0, 2, 1).flatten(1) + + # Compute change indices + diff = tensor[:, 1:] ^ tensor[:, :-1] + change_indices = diff.nonzero() + + # Encode run length + out = [] + for i in range(b): + cur_idxs = change_indices[change_indices[:, 0] == i, 1] + cur_idxs = torch.cat( + [ + torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device), + cur_idxs + 1, + torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device), + ] + ) + btw_idxs = cur_idxs[1:] - cur_idxs[:-1] + counts = [] if tensor[i, 0] == 0 else [0] + counts.extend(btw_idxs.detach().cpu().tolist()) + out.append({"size": [h, w], "counts": counts}) + return out + + +def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray: + """Compute a binary mask from an uncompressed RLE.""" + h, w = rle["size"] + mask = np.empty(h * w, dtype=bool) + idx = 0 + parity = False + for count in rle["counts"]: + mask[idx : idx + count] = parity + idx += count + parity ^= True + mask = mask.reshape(w, h) + return mask.transpose() # Put in C order + + +def area_from_rle(rle: Dict[str, Any]) -> int: + return sum(rle["counts"][1::2]) + + +def calculate_stability_score( + masks: torch.Tensor, mask_threshold: float, threshold_offset: float +) -> torch.Tensor: + """ + Computes the stability score for a batch of masks. The stability + score is the IoU between the binary masks obtained by thresholding + the predicted mask logits at high and low values. + """ + # One mask is always contained inside the other. + # Save memory by preventing unnecessary cast to torch.int64 + intersections = ( + (masks > (mask_threshold + threshold_offset)) + .sum(-1, dtype=torch.int16) + .sum(-1, dtype=torch.int32) + ) + unions = ( + (masks > (mask_threshold - threshold_offset)) + .sum(-1, dtype=torch.int16) + .sum(-1, dtype=torch.int32) + ) + return intersections / unions + + +def build_point_grid(n_per_side: int) -> np.ndarray: + """Generates a 2D grid of points evenly spaced in [0,1]x[0,1].""" + offset = 1 / (2 * n_per_side) + points_one_side = np.linspace(offset, 1 - offset, n_per_side) + points_x = np.tile(points_one_side[None, :], (n_per_side, 1)) + points_y = np.tile(points_one_side[:, None], (1, n_per_side)) + points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2) + return points + + +def build_all_layer_point_grids( + n_per_side: int, n_layers: int, scale_per_layer: int +) -> List[np.ndarray]: + """Generates point grids for all crop layers.""" + points_by_layer = [] + for i in range(n_layers + 1): + n_points = int(n_per_side / (scale_per_layer**i)) + points_by_layer.append(build_point_grid(n_points)) + return points_by_layer + + +def generate_crop_boxes( + im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float +) -> Tuple[List[List[int]], List[int]]: + """ + Generates a list of crop boxes of different sizes. Each layer + has (2**i)**2 boxes for the ith layer. + """ + crop_boxes, layer_idxs = [], [] + im_h, im_w = im_size + short_side = min(im_h, im_w) + + # Original image + crop_boxes.append([0, 0, im_w, im_h]) + layer_idxs.append(0) + + def crop_len(orig_len, n_crops, overlap): + return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops)) + + for i_layer in range(n_layers): + n_crops_per_side = 2 ** (i_layer + 1) + overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side)) + + crop_w = crop_len(im_w, n_crops_per_side, overlap) + crop_h = crop_len(im_h, n_crops_per_side, overlap) + + crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)] + crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)] + + # Crops in XYWH format + for x0, y0 in product(crop_box_x0, crop_box_y0): + box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)] + crop_boxes.append(box) + layer_idxs.append(i_layer + 1) + + return crop_boxes, layer_idxs + + +def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor: + x0, y0, _, _ = crop_box + offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device) + # Check if boxes has a channel dimension + if len(boxes.shape) == 3: + offset = offset.unsqueeze(1) + return boxes + offset + + +def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor: + x0, y0, _, _ = crop_box + offset = torch.tensor([[x0, y0]], device=points.device) + # Check if points has a channel dimension + if len(points.shape) == 3: + offset = offset.unsqueeze(1) + return points + offset + + +def uncrop_masks( + masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int +) -> torch.Tensor: + x0, y0, x1, y1 = crop_box + if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h: + return masks + # Coordinate transform masks + pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0) + pad = (x0, pad_x - x0, y0, pad_y - y0) + return torch.nn.functional.pad(masks, pad, value=0) + + +def remove_small_regions( + mask: np.ndarray, area_thresh: float, mode: str +) -> Tuple[np.ndarray, bool]: + """ + Removes small disconnected regions and holes in a mask. Returns the + mask and an indicator of if the mask has been modified. + """ + import cv2 # type: ignore + + assert mode in ["holes", "islands"] + correct_holes = mode == "holes" + working_mask = (correct_holes ^ mask).astype(np.uint8) + n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8) + sizes = stats[:, -1][1:] # Row 0 is background label + small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh] + if len(small_regions) == 0: + return mask, False + fill_labels = [0] + small_regions + if not correct_holes: + fill_labels = [i for i in range(n_labels) if i not in fill_labels] + # If every region is below threshold, keep largest + if len(fill_labels) == 0: + fill_labels = [int(np.argmax(sizes)) + 1] + mask = np.isin(regions, fill_labels) + return mask, True + + +def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]: + from pycocotools import mask as mask_utils # type: ignore + + h, w = uncompressed_rle["size"] + rle = mask_utils.frPyObjects(uncompressed_rle, h, w) + rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json + return rle + + +def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor: + """ + Calculates boxes in XYXY format around masks. Return [0,0,0,0] for + an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4. + """ + # torch.max below raises an error on empty inputs, just skip in this case + if torch.numel(masks) == 0: + return torch.zeros(*masks.shape[:-2], 4, device=masks.device) + + # Normalize shape to CxHxW + shape = masks.shape + h, w = shape[-2:] + if len(shape) > 2: + masks = masks.flatten(0, -3) + else: + masks = masks.unsqueeze(0) + + # Get top and bottom edges + in_height, _ = torch.max(masks, dim=-1) + in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :] + bottom_edges, _ = torch.max(in_height_coords, dim=-1) + in_height_coords = in_height_coords + h * (~in_height) + top_edges, _ = torch.min(in_height_coords, dim=-1) + + # Get left and right edges + in_width, _ = torch.max(masks, dim=-2) + in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :] + right_edges, _ = torch.max(in_width_coords, dim=-1) + in_width_coords = in_width_coords + w * (~in_width) + left_edges, _ = torch.min(in_width_coords, dim=-1) + + # If the mask is empty the right edge will be to the left of the left edge. + # Replace these boxes with [0, 0, 0, 0] + empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges) + out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1) + out = out * (~empty_filter).unsqueeze(-1) + + # Return to original shape + if len(shape) > 2: + out = out.reshape(*shape[:-2], 4) + else: + out = out[0] + + return out diff --git a/segment-anything-2/packages/sam2/utils/misc.py b/segment-anything-2/packages/sam2/utils/misc.py new file mode 100644 index 00000000..bf6a1799 --- /dev/null +++ b/segment-anything-2/packages/sam2/utils/misc.py @@ -0,0 +1,238 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import os +import warnings +from threading import Thread + +import numpy as np +import torch +from PIL import Image +from tqdm import tqdm + + +def get_sdpa_settings(): + if torch.cuda.is_available(): + old_gpu = torch.cuda.get_device_properties(0).major < 7 + # only use Flash Attention on Ampere (8.0) or newer GPUs + use_flash_attn = torch.cuda.get_device_properties(0).major >= 8 + if not use_flash_attn: + warnings.warn( + "Flash Attention is disabled as it requires a GPU with Ampere (8.0) CUDA capability.", + category=UserWarning, + stacklevel=2, + ) + # keep math kernel for PyTorch versions before 2.2 (Flash Attention v2 is only + # available on PyTorch 2.2+, while Flash Attention v1 cannot handle all cases) + pytorch_version = tuple(int(v) for v in torch.__version__.split(".")[:2]) + if pytorch_version < (2, 2): + warnings.warn( + f"You are using PyTorch {torch.__version__} without Flash Attention v2 support. " + "Consider upgrading to PyTorch 2.2+ for Flash Attention v2 (which could be faster).", + category=UserWarning, + stacklevel=2, + ) + math_kernel_on = pytorch_version < (2, 2) or not use_flash_attn + else: + old_gpu = True + use_flash_attn = False + math_kernel_on = True + + return old_gpu, use_flash_attn, math_kernel_on + + +def get_connected_components(mask): + """ + Get the connected components (8-connectivity) of binary masks of shape (N, 1, H, W). + + Inputs: + - mask: A binary mask tensor of shape (N, 1, H, W), where 1 is foreground and 0 is + background. + + Outputs: + - labels: A tensor of shape (N, 1, H, W) containing the connected component labels + for foreground pixels and 0 for background pixels. + - counts: A tensor of shape (N, 1, H, W) containing the area of the connected + components for foreground pixels and 0 for background pixels. + """ + from sam2 import _C + + return _C.get_connected_componnets(mask.to(torch.uint8).contiguous()) + + +def mask_to_box(masks: torch.Tensor): + """ + compute bounding box given an input mask + + Inputs: + - masks: [B, 1, H, W] boxes, dtype=torch.Tensor + + Returns: + - box_coords: [B, 1, 4], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.Tensor + """ + B, _, h, w = masks.shape + device = masks.device + xs = torch.arange(w, device=device, dtype=torch.int32) + ys = torch.arange(h, device=device, dtype=torch.int32) + grid_xs, grid_ys = torch.meshgrid(xs, ys, indexing="xy") + grid_xs = grid_xs[None, None, ...].expand(B, 1, h, w) + grid_ys = grid_ys[None, None, ...].expand(B, 1, h, w) + min_xs, _ = torch.min(torch.where(masks, grid_xs, w).flatten(-2), dim=-1) + max_xs, _ = torch.max(torch.where(masks, grid_xs, -1).flatten(-2), dim=-1) + min_ys, _ = torch.min(torch.where(masks, grid_ys, h).flatten(-2), dim=-1) + max_ys, _ = torch.max(torch.where(masks, grid_ys, -1).flatten(-2), dim=-1) + bbox_coords = torch.stack((min_xs, min_ys, max_xs, max_ys), dim=-1) + + return bbox_coords + + +def _load_img_as_tensor(img_path, image_size): + img_pil = Image.open(img_path) + img_np = np.array(img_pil.convert("RGB").resize((image_size, image_size))) + if img_np.dtype == np.uint8: # np.uint8 is expected for JPEG images + img_np = img_np / 255.0 + else: + raise RuntimeError(f"Unknown image dtype: {img_np.dtype} on {img_path}") + img = torch.from_numpy(img_np).permute(2, 0, 1) + video_width, video_height = img_pil.size # the original video size + return img, video_height, video_width + + +class AsyncVideoFrameLoader: + """ + A list of video frames to be load asynchronously without blocking session start. + """ + + def __init__(self, img_paths, image_size, offload_video_to_cpu, img_mean, img_std): + self.img_paths = img_paths + self.image_size = image_size + self.offload_video_to_cpu = offload_video_to_cpu + self.img_mean = img_mean + self.img_std = img_std + # items in `self._images` will be loaded asynchronously + self.images = [None] * len(img_paths) + # catch and raise any exceptions in the async loading thread + self.exception = None + # video_height and video_width be filled when loading the first image + self.video_height = None + self.video_width = None + + # load the first frame to fill video_height and video_width and also + # to cache it (since it's most likely where the user will click) + self.__getitem__(0) + + # load the rest of frames asynchronously without blocking the session start + def _load_frames(): + try: + for n in tqdm(range(len(self.images)), desc="frame loading (JPEG)"): + self.__getitem__(n) + except Exception as e: + self.exception = e + + self.thread = Thread(target=_load_frames, daemon=True) + self.thread.start() + + def __getitem__(self, index): + if self.exception is not None: + raise RuntimeError("Failure in frame loading thread") from self.exception + + img = self.images[index] + if img is not None: + return img + + img, video_height, video_width = _load_img_as_tensor( + self.img_paths[index], self.image_size + ) + self.video_height = video_height + self.video_width = video_width + # normalize by mean and std + img -= self.img_mean + img /= self.img_std + if not self.offload_video_to_cpu: + img = img.cuda(non_blocking=True) + self.images[index] = img + return img + + def __len__(self): + return len(self.images) + + +def load_video_frames( + video_path, + image_size, + offload_video_to_cpu, + img_mean=(0.485, 0.456, 0.406), + img_std=(0.229, 0.224, 0.225), + async_loading_frames=False, +): + """ + Load the video frames from a directory of JPEG files (".jpg" format). + + The frames are resized to image_size x image_size and are loaded to GPU if + `offload_video_to_cpu` is `False` and to CPU if `offload_video_to_cpu` is `True`. + + You can load a frame asynchronously by setting `async_loading_frames` to `True`. + """ + if isinstance(video_path, str) and os.path.isdir(video_path): + jpg_folder = video_path + else: + raise NotImplementedError("Only JPEG frames are supported at this moment") + + frame_names = [ + p + for p in os.listdir(jpg_folder) + if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"] + ] + frame_names.sort(key=lambda p: int(os.path.splitext(p)[0])) + num_frames = len(frame_names) + if num_frames == 0: + raise RuntimeError(f"no images found in {jpg_folder}") + img_paths = [os.path.join(jpg_folder, frame_name) for frame_name in frame_names] + img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None] + img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None] + + if async_loading_frames: + lazy_images = AsyncVideoFrameLoader( + img_paths, image_size, offload_video_to_cpu, img_mean, img_std + ) + return lazy_images, lazy_images.video_height, lazy_images.video_width + + images = torch.zeros(num_frames, 3, image_size, image_size, dtype=torch.float32) + for n, img_path in enumerate(tqdm(img_paths, desc="frame loading (JPEG)")): + images[n], video_height, video_width = _load_img_as_tensor(img_path, image_size) + if not offload_video_to_cpu: + images = images.cuda() + img_mean = img_mean.cuda() + img_std = img_std.cuda() + # normalize by mean and std + images -= img_mean + images /= img_std + return images, video_height, video_width + + +def fill_holes_in_mask_scores(mask, max_area): + """ + A post processor to fill small holes in mask scores with area under `max_area`. + """ + # Holes are those connected components in background with area <= self.max_area + # (background regions are those with mask scores <= 0) + assert max_area > 0, "max_area must be positive" + labels, areas = get_connected_components(mask <= 0) + is_hole = (labels > 0) & (areas <= max_area) + # We fill holes with a small positive mask score (0.1) to change them to foreground. + mask = torch.where(is_hole, 0.1, mask) + return mask + + +def concat_points(old_point_inputs, new_points, new_labels): + """Add new points and labels to previous point inputs (add at the end).""" + if old_point_inputs is None: + points, labels = new_points, new_labels + else: + points = torch.cat([old_point_inputs["point_coords"], new_points], dim=1) + labels = torch.cat([old_point_inputs["point_labels"], new_labels], dim=1) + + return {"point_coords": points, "point_labels": labels} diff --git a/segment-anything-2/packages/sam2/utils/transforms.py b/segment-anything-2/packages/sam2/utils/transforms.py new file mode 100644 index 00000000..d05cd3e5 --- /dev/null +++ b/segment-anything-2/packages/sam2/utils/transforms.py @@ -0,0 +1,99 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import torch +import torch.nn as nn +import torch.nn.functional as F +from torchvision.transforms import Normalize, Resize, ToTensor + + +class SAM2Transforms(nn.Module): + def __init__( + self, resolution, mask_threshold, max_hole_area=0.0, max_sprinkle_area=0.0 + ): + """ + Transforms for SAM2. + """ + super().__init__() + self.resolution = resolution + self.mask_threshold = mask_threshold + self.max_hole_area = max_hole_area + self.max_sprinkle_area = max_sprinkle_area + self.mean = [0.485, 0.456, 0.406] + self.std = [0.229, 0.224, 0.225] + self.to_tensor = ToTensor() + self.transforms = torch.jit.script( + nn.Sequential( + Resize((self.resolution, self.resolution)), + Normalize(self.mean, self.std), + ) + ) + + def __call__(self, x): + x = self.to_tensor(x) + return self.transforms(x) + + def forward_batch(self, img_list): + img_batch = [self.transforms(self.to_tensor(img)) for img in img_list] + img_batch = torch.stack(img_batch, dim=0) + return img_batch + + def transform_coords( + self, coords: torch.Tensor, normalize=False, orig_hw=None + ) -> torch.Tensor: + """ + Expects a torch tensor with length 2 in the last dimension. The coordinates can be in absolute image or normalized coordinates, + If the coords are in absolute image coordinates, normalize should be set to True and original image size is required. + + Returns + Un-normalized coordinates in the range of [0, 1] which is expected by the SAM2 model. + """ + if normalize: + assert orig_hw is not None + h, w = orig_hw + coords = coords.clone() + coords[..., 0] = coords[..., 0] / w + coords[..., 1] = coords[..., 1] / h + + coords = coords * self.resolution # unnormalize coords + return coords + + def transform_boxes( + self, boxes: torch.Tensor, normalize=False, orig_hw=None + ) -> torch.Tensor: + """ + Expects a tensor of shape Bx4. The coordinates can be in absolute image or normalized coordinates, + if the coords are in absolute image coordinates, normalize should be set to True and original image size is required. + """ + boxes = self.transform_coords(boxes.reshape(-1, 2, 2), normalize, orig_hw) + return boxes + + def postprocess_masks(self, masks: torch.Tensor, orig_hw) -> torch.Tensor: + """ + Perform PostProcessing on output masks. + """ + from sam2.utils.misc import get_connected_components + + masks = masks.float() + if self.max_hole_area > 0: + # Holes are those connected components in background with area <= self.fill_hole_area + # (background regions are those with mask scores <= self.mask_threshold) + mask_flat = masks.flatten(0, 1).unsqueeze(1) # flatten as 1-channel image + labels, areas = get_connected_components(mask_flat <= self.mask_threshold) + is_hole = (labels > 0) & (areas <= self.max_hole_area) + is_hole = is_hole.reshape_as(masks) + # We fill holes with a small positive mask score (10.0) to change them to foreground. + masks = torch.where(is_hole, self.mask_threshold + 10.0, masks) + + if self.max_sprinkle_area > 0: + labels, areas = get_connected_components(mask_flat > self.mask_threshold) + is_hole = (labels > 0) & (areas <= self.max_sprinkle_area) + is_hole = is_hole.reshape_as(masks) + # We fill holes with negative mask score (-10.0) to change them to background. + masks = torch.where(is_hole, self.mask_threshold - 10.0, masks) + + masks = F.interpolate(masks, orig_hw, mode="bilinear", align_corners=False) + return masks diff --git a/segment-anything-2/packages/sam2_configs/__init__.py b/segment-anything-2/packages/sam2_configs/__init__.py new file mode 100644 index 00000000..5277f461 --- /dev/null +++ b/segment-anything-2/packages/sam2_configs/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. diff --git a/segment-anything-2/packages/sam2_configs/sam2_hiera_b+.yaml b/segment-anything-2/packages/sam2_configs/sam2_hiera_b+.yaml new file mode 100644 index 00000000..58f3eb81 --- /dev/null +++ b/segment-anything-2/packages/sam2_configs/sam2_hiera_b+.yaml @@ -0,0 +1,113 @@ +# @package _global_ + +# Model +model: + _target_: sam2.modeling.sam2_base.SAM2Base + image_encoder: + _target_: sam2.modeling.backbones.image_encoder.ImageEncoder + scalp: 1 + trunk: + _target_: sam2.modeling.backbones.hieradet.Hiera + embed_dim: 112 + num_heads: 2 + neck: + _target_: sam2.modeling.backbones.image_encoder.FpnNeck + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 256 + normalize: true + scale: null + temperature: 10000 + d_model: 256 + backbone_channel_list: [896, 448, 224, 112] + fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features + fpn_interp_model: nearest + + memory_attention: + _target_: sam2.modeling.memory_attention.MemoryAttention + d_model: 256 + pos_enc_at_input: true + layer: + _target_: sam2.modeling.memory_attention.MemoryAttentionLayer + activation: relu + dim_feedforward: 2048 + dropout: 0.1 + pos_enc_at_attn: false + self_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + d_model: 256 + pos_enc_at_cross_attn_keys: true + pos_enc_at_cross_attn_queries: false + cross_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + rope_k_repeat: True + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + kv_in_dim: 64 + num_layers: 4 + + memory_encoder: + _target_: sam2.modeling.memory_encoder.MemoryEncoder + out_dim: 64 + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 64 + normalize: true + scale: null + temperature: 10000 + mask_downsampler: + _target_: sam2.modeling.memory_encoder.MaskDownSampler + kernel_size: 3 + stride: 2 + padding: 1 + fuser: + _target_: sam2.modeling.memory_encoder.Fuser + layer: + _target_: sam2.modeling.memory_encoder.CXBlock + dim: 256 + kernel_size: 7 + padding: 3 + layer_scale_init_value: 1e-6 + use_dwconv: True # depth-wise convs + num_layers: 2 + + num_maskmem: 7 + image_size: 1024 + # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask + sigmoid_scale_for_mem_enc: 20.0 + sigmoid_bias_for_mem_enc: -10.0 + use_mask_input_as_output_without_sam: true + # Memory + directly_add_no_mem_embed: true + # use high-resolution feature map in the SAM mask decoder + use_high_res_features_in_sam: true + # output 3 masks on the first click on initial conditioning frames + multimask_output_in_sam: true + # SAM heads + iou_prediction_use_sigmoid: True + # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder + use_obj_ptrs_in_encoder: true + add_tpos_enc_to_obj_ptrs: false + only_obj_ptrs_in_the_past_for_eval: true + # object occlusion prediction + pred_obj_scores: true + pred_obj_scores_mlp: true + fixed_no_obj_ptr: true + # multimask tracking settings + multimask_output_for_tracking: true + use_multimask_token_for_obj_ptr: true + multimask_min_pt_num: 0 + multimask_max_pt_num: 1 + use_mlp_for_obj_ptr_proj: true + # Compilation flag + compile_image_encoder: False diff --git a/segment-anything-2/packages/sam2_configs/sam2_hiera_l.yaml b/segment-anything-2/packages/sam2_configs/sam2_hiera_l.yaml new file mode 100644 index 00000000..918667f5 --- /dev/null +++ b/segment-anything-2/packages/sam2_configs/sam2_hiera_l.yaml @@ -0,0 +1,117 @@ +# @package _global_ + +# Model +model: + _target_: sam2.modeling.sam2_base.SAM2Base + image_encoder: + _target_: sam2.modeling.backbones.image_encoder.ImageEncoder + scalp: 1 + trunk: + _target_: sam2.modeling.backbones.hieradet.Hiera + embed_dim: 144 + num_heads: 2 + stages: [2, 6, 36, 4] + global_att_blocks: [23, 33, 43] + window_pos_embed_bkg_spatial_size: [7, 7] + window_spec: [8, 4, 16, 8] + neck: + _target_: sam2.modeling.backbones.image_encoder.FpnNeck + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 256 + normalize: true + scale: null + temperature: 10000 + d_model: 256 + backbone_channel_list: [1152, 576, 288, 144] + fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features + fpn_interp_model: nearest + + memory_attention: + _target_: sam2.modeling.memory_attention.MemoryAttention + d_model: 256 + pos_enc_at_input: true + layer: + _target_: sam2.modeling.memory_attention.MemoryAttentionLayer + activation: relu + dim_feedforward: 2048 + dropout: 0.1 + pos_enc_at_attn: false + self_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + d_model: 256 + pos_enc_at_cross_attn_keys: true + pos_enc_at_cross_attn_queries: false + cross_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + rope_k_repeat: True + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + kv_in_dim: 64 + num_layers: 4 + + memory_encoder: + _target_: sam2.modeling.memory_encoder.MemoryEncoder + out_dim: 64 + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 64 + normalize: true + scale: null + temperature: 10000 + mask_downsampler: + _target_: sam2.modeling.memory_encoder.MaskDownSampler + kernel_size: 3 + stride: 2 + padding: 1 + fuser: + _target_: sam2.modeling.memory_encoder.Fuser + layer: + _target_: sam2.modeling.memory_encoder.CXBlock + dim: 256 + kernel_size: 7 + padding: 3 + layer_scale_init_value: 1e-6 + use_dwconv: True # depth-wise convs + num_layers: 2 + + num_maskmem: 7 + image_size: 1024 + # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask + sigmoid_scale_for_mem_enc: 20.0 + sigmoid_bias_for_mem_enc: -10.0 + use_mask_input_as_output_without_sam: true + # Memory + directly_add_no_mem_embed: true + # use high-resolution feature map in the SAM mask decoder + use_high_res_features_in_sam: true + # output 3 masks on the first click on initial conditioning frames + multimask_output_in_sam: true + # SAM heads + iou_prediction_use_sigmoid: True + # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder + use_obj_ptrs_in_encoder: true + add_tpos_enc_to_obj_ptrs: false + only_obj_ptrs_in_the_past_for_eval: true + # object occlusion prediction + pred_obj_scores: true + pred_obj_scores_mlp: true + fixed_no_obj_ptr: true + # multimask tracking settings + multimask_output_for_tracking: true + use_multimask_token_for_obj_ptr: true + multimask_min_pt_num: 0 + multimask_max_pt_num: 1 + use_mlp_for_obj_ptr_proj: true + # Compilation flag + compile_image_encoder: False diff --git a/segment-anything-2/packages/sam2_configs/sam2_hiera_s.yaml b/segment-anything-2/packages/sam2_configs/sam2_hiera_s.yaml new file mode 100644 index 00000000..26e5d4d3 --- /dev/null +++ b/segment-anything-2/packages/sam2_configs/sam2_hiera_s.yaml @@ -0,0 +1,116 @@ +# @package _global_ + +# Model +model: + _target_: sam2.modeling.sam2_base.SAM2Base + image_encoder: + _target_: sam2.modeling.backbones.image_encoder.ImageEncoder + scalp: 1 + trunk: + _target_: sam2.modeling.backbones.hieradet.Hiera + embed_dim: 96 + num_heads: 1 + stages: [1, 2, 11, 2] + global_att_blocks: [7, 10, 13] + window_pos_embed_bkg_spatial_size: [7, 7] + neck: + _target_: sam2.modeling.backbones.image_encoder.FpnNeck + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 256 + normalize: true + scale: null + temperature: 10000 + d_model: 256 + backbone_channel_list: [768, 384, 192, 96] + fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features + fpn_interp_model: nearest + + memory_attention: + _target_: sam2.modeling.memory_attention.MemoryAttention + d_model: 256 + pos_enc_at_input: true + layer: + _target_: sam2.modeling.memory_attention.MemoryAttentionLayer + activation: relu + dim_feedforward: 2048 + dropout: 0.1 + pos_enc_at_attn: false + self_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + d_model: 256 + pos_enc_at_cross_attn_keys: true + pos_enc_at_cross_attn_queries: false + cross_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + rope_k_repeat: True + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + kv_in_dim: 64 + num_layers: 4 + + memory_encoder: + _target_: sam2.modeling.memory_encoder.MemoryEncoder + out_dim: 64 + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 64 + normalize: true + scale: null + temperature: 10000 + mask_downsampler: + _target_: sam2.modeling.memory_encoder.MaskDownSampler + kernel_size: 3 + stride: 2 + padding: 1 + fuser: + _target_: sam2.modeling.memory_encoder.Fuser + layer: + _target_: sam2.modeling.memory_encoder.CXBlock + dim: 256 + kernel_size: 7 + padding: 3 + layer_scale_init_value: 1e-6 + use_dwconv: True # depth-wise convs + num_layers: 2 + + num_maskmem: 7 + image_size: 1024 + # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask + sigmoid_scale_for_mem_enc: 20.0 + sigmoid_bias_for_mem_enc: -10.0 + use_mask_input_as_output_without_sam: true + # Memory + directly_add_no_mem_embed: true + # use high-resolution feature map in the SAM mask decoder + use_high_res_features_in_sam: true + # output 3 masks on the first click on initial conditioning frames + multimask_output_in_sam: true + # SAM heads + iou_prediction_use_sigmoid: True + # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder + use_obj_ptrs_in_encoder: true + add_tpos_enc_to_obj_ptrs: false + only_obj_ptrs_in_the_past_for_eval: true + # object occlusion prediction + pred_obj_scores: true + pred_obj_scores_mlp: true + fixed_no_obj_ptr: true + # multimask tracking settings + multimask_output_for_tracking: true + use_multimask_token_for_obj_ptr: true + multimask_min_pt_num: 0 + multimask_max_pt_num: 1 + use_mlp_for_obj_ptr_proj: true + # Compilation flag + compile_image_encoder: False diff --git a/segment-anything-2/packages/sam2_configs/sam2_hiera_t.yaml b/segment-anything-2/packages/sam2_configs/sam2_hiera_t.yaml new file mode 100644 index 00000000..a62c903a --- /dev/null +++ b/segment-anything-2/packages/sam2_configs/sam2_hiera_t.yaml @@ -0,0 +1,118 @@ +# @package _global_ + +# Model +model: + _target_: sam2.modeling.sam2_base.SAM2Base + image_encoder: + _target_: sam2.modeling.backbones.image_encoder.ImageEncoder + scalp: 1 + trunk: + _target_: sam2.modeling.backbones.hieradet.Hiera + embed_dim: 96 + num_heads: 1 + stages: [1, 2, 7, 2] + global_att_blocks: [5, 7, 9] + window_pos_embed_bkg_spatial_size: [7, 7] + neck: + _target_: sam2.modeling.backbones.image_encoder.FpnNeck + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 256 + normalize: true + scale: null + temperature: 10000 + d_model: 256 + backbone_channel_list: [768, 384, 192, 96] + fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features + fpn_interp_model: nearest + + memory_attention: + _target_: sam2.modeling.memory_attention.MemoryAttention + d_model: 256 + pos_enc_at_input: true + layer: + _target_: sam2.modeling.memory_attention.MemoryAttentionLayer + activation: relu + dim_feedforward: 2048 + dropout: 0.1 + pos_enc_at_attn: false + self_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + d_model: 256 + pos_enc_at_cross_attn_keys: true + pos_enc_at_cross_attn_queries: false + cross_attention: + _target_: sam2.modeling.sam.transformer.RoPEAttention + rope_theta: 10000.0 + feat_sizes: [32, 32] + rope_k_repeat: True + embedding_dim: 256 + num_heads: 1 + downsample_rate: 1 + dropout: 0.1 + kv_in_dim: 64 + num_layers: 4 + + memory_encoder: + _target_: sam2.modeling.memory_encoder.MemoryEncoder + out_dim: 64 + position_encoding: + _target_: sam2.modeling.position_encoding.PositionEmbeddingSine + num_pos_feats: 64 + normalize: true + scale: null + temperature: 10000 + mask_downsampler: + _target_: sam2.modeling.memory_encoder.MaskDownSampler + kernel_size: 3 + stride: 2 + padding: 1 + fuser: + _target_: sam2.modeling.memory_encoder.Fuser + layer: + _target_: sam2.modeling.memory_encoder.CXBlock + dim: 256 + kernel_size: 7 + padding: 3 + layer_scale_init_value: 1e-6 + use_dwconv: True # depth-wise convs + num_layers: 2 + + num_maskmem: 7 + image_size: 1024 + # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask + # SAM decoder + sigmoid_scale_for_mem_enc: 20.0 + sigmoid_bias_for_mem_enc: -10.0 + use_mask_input_as_output_without_sam: true + # Memory + directly_add_no_mem_embed: true + # use high-resolution feature map in the SAM mask decoder + use_high_res_features_in_sam: true + # output 3 masks on the first click on initial conditioning frames + multimask_output_in_sam: true + # SAM heads + iou_prediction_use_sigmoid: True + # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder + use_obj_ptrs_in_encoder: true + add_tpos_enc_to_obj_ptrs: false + only_obj_ptrs_in_the_past_for_eval: true + # object occlusion prediction + pred_obj_scores: true + pred_obj_scores_mlp: true + fixed_no_obj_ptr: true + # multimask tracking settings + multimask_output_for_tracking: true + use_multimask_token_for_obj_ptr: true + multimask_min_pt_num: 0 + multimask_max_pt_num: 1 + use_mlp_for_obj_ptr_proj: true + # Compilation flag + # HieraT does not currently support compilation, should always be set to False + compile_image_encoder: False diff --git a/segment-anything-2/packages/sav_dataset/LICENSE b/segment-anything-2/packages/sav_dataset/LICENSE new file mode 100644 index 00000000..34df32d5 --- /dev/null +++ b/segment-anything-2/packages/sav_dataset/LICENSE @@ -0,0 +1,30 @@ +BSD License + +For SAM 2 Eval software + +Copyright (c) Meta Platforms, Inc. and affiliates. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + + * Neither the name Meta nor the names of its contributors may be used to + endorse or promote products derived from this software without specific + prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR +ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON +ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/segment-anything-2/packages/sav_dataset/LICENSE_DAVIS b/segment-anything-2/packages/sav_dataset/LICENSE_DAVIS new file mode 100644 index 00000000..4d78d712 --- /dev/null +++ b/segment-anything-2/packages/sav_dataset/LICENSE_DAVIS @@ -0,0 +1,29 @@ +BSD 3-Clause License + +Copyright (c) 2020, DAVIS: Densely Annotated VIdeo Segmentation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +3. Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/segment-anything-2/packages/sav_dataset/LICENSE_VOS_BENCHMARK b/segment-anything-2/packages/sav_dataset/LICENSE_VOS_BENCHMARK new file mode 100644 index 00000000..b9e5da45 --- /dev/null +++ b/segment-anything-2/packages/sav_dataset/LICENSE_VOS_BENCHMARK @@ -0,0 +1,7 @@ +Copyright 2023 Rex Cheng + +Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. diff --git a/segment-anything-2/packages/sav_dataset/README.md b/segment-anything-2/packages/sav_dataset/README.md new file mode 100644 index 00000000..bb33ea64 --- /dev/null +++ b/segment-anything-2/packages/sav_dataset/README.md @@ -0,0 +1,164 @@ +# Segment Anything Video (SA-V) Dataset + +## Overview + +[Segment Anything Video (SA-V)](https://ai.meta.com/datasets/segment-anything-video/), consists of 51K diverse videos and 643K high-quality spatio-temporal segmentation masks (i.e., masklets). The dataset is released under the CC by 4.0 license. Browse the dataset [here](https://sam2.metademolab.com/dataset). + +![SA-V dataset](../assets/sa_v_dataset.jpg?raw=true) + +## Getting Started + +### Download the dataset + +Visit [here](https://ai.meta.com/datasets/segment-anything-video-downloads/) to download SA-V including the training, val and test sets. + +### Dataset Stats + +| | Num Videos | Num Masklets | +| ---------- | ---------- | ----------------------------------------- | +| SA-V train | 50,583 | 642,036 (auto 451,720 and manual 190,316) | +| SA-V val | 155 | 293 | +| SA-V test | 150 | 278 | + +### Notebooks + +To load and visualize the SA-V training set annotations, refer to the example [sav_visualization_example.ipynb](./sav_visualization_example.ipynb) notebook. + +### SA-V train + +For SA-V training set we release the mp4 videos and store the masklet annotations per video as json files . Automatic masklets and manual masklets are stored separately as two json files: `{video_id}_auto.json` and `{video_id}_manual.json`. They can be loaded as dictionaries in python in the format below. + +``` +{ + "video_id" : str; video id + "video_duration" : float64; the duration in seconds of this video + "video_frame_count" : float64; the number of frames in the video + "video_height" : float64; the height of the video + "video_width" : float64; the width of the video + "video_resolution" : float64; video_height $\times$ video_width + "video_environment" : List[str]; "Indoor" or "Outdoor" + "video_split" : str; "train" for training set + "masklet" : List[List[Dict]]; masklet annotations in list of list of RLEs. + The outer list is over frames in the video and the inner list + is over objects in the video. + "masklet_id" : List[int]; the masklet ids + "masklet_size_rel" : List[float]; the average mask area normalized by resolution + across all the frames where the object is visible + "masklet_size_abs" : List[float]; the average mask area (in pixels) + across all the frames where the object is visible + "masklet_size_bucket" : List[str]; "small": $1$ <= masklet_size_abs < $32^2$, + "medium": $32^2$ <= masklet_size_abs < $96^2$, + and "large": masklet_size_abs > $96^2$ + "masklet_visibility_changes" : List[int]; the number of times where the visibility changes + after the first appearance (e.g., invisible -> visible + or visible -> invisible) + "masklet_first_appeared_frame" : List[int]; the index of the frame where the object appears + the first time in the video. Always 0 for auto masklets. + "masklet_frame_count" : List[int]; the number of frames being annotated. Note that + videos are annotated at 6 fps (annotated every 4 frames) + while the videos are at 24 fps. + "masklet_edited_frame_count" : List[int]; the number of frames being edited by human annotators. + Always 0 for auto masklets. + "masklet_type" : List[str]; "auto" or "manual" + "masklet_stability_score" : Optional[List[List[float]]]; per-mask stability scores. Auto annotation only. + "masklet_num" : int; the number of manual/auto masklets in the video + +} +``` + +Note that in SA-V train, there are in total 50,583 videos where all of them have manual annotations. Among the 50,583 videos there are 48,436 videos that also have automatic annotations. + +### SA-V val and test + +For SA-V val and test sets, we release the extracted frames as jpeg files, and the masks as png files with the following directory structure: + +``` +sav_val(sav_test) +├── sav_val.txt (sav_test.txt): a list of video ids in the split +├── JPEGImages_24fps # videos are extracted at 24 fps +│ ├── {video_id} +│ │ ├── 00000.jpg # video frame +│ │ ├── 00001.jpg # video frame +│ │ ├── 00002.jpg # video frame +│ │ ├── 00003.jpg # video frame +│ │ └── ... +│ ├── {video_id} +│ ├── {video_id} +│ └── ... +└── Annotations_6fps # videos are annotated at 6 fps + ├── {video_id} + │ ├── 000 # obj 000 + │ │ ├── 00000.png # mask for object 000 in 00000.jpg + │ │ ├── 00004.png # mask for object 000 in 00004.jpg + │ │ ├── 00008.png # mask for object 000 in 00008.jpg + │ │ ├── 00012.png # mask for object 000 in 00012.jpg + │ │ └── ... + │ ├── 001 # obj 001 + │ ├── 002 # obj 002 + │ └── ... + ├── {video_id} + ├── {video_id} + └── ... +``` + +All masklets in val and test sets are manually annotated in every frame by annotators. For each annotated object in a video, we store the annotated masks in a single png. This is because the annotated objects may overlap, e.g., it is possible in our SA-V dataset for there to be a mask for the whole person as well as a separate mask for their hands. + +## SA-V Val and Test Evaluation + +We provide an evaluator to compute the common J and F metrics on SA-V val and test sets. To run the evaluation, we need to first install a few dependencies as follows: + +``` +pip install -r requirements.txt +``` + +Then we can evaluate the predictions as follows: + +``` +python sav_evaluator.py --gt_root {GT_ROOT} --pred_root {PRED_ROOT} +``` + +or run + +``` +python sav_evaluator.py --help +``` + +to print a complete help message. + +The evaluator expects the `GT_ROOT` to be one of the following folder structures, and `GT_ROOT` and `PRED_ROOT` to have the same structure. + +- Same as SA-V val and test directory structure + +``` +{GT_ROOT} # gt root folder +├── {video_id} +│ ├── 000 # all masks associated with obj 000 +│ │ ├── 00000.png # mask for object 000 in frame 00000 (binary mask) +│ │ └── ... +│ ├── 001 # all masks associated with obj 001 +│ ├── 002 # all masks associated with obj 002 +│ └── ... +├── {video_id} +├── {video_id} +└── ... +``` + +In the paper for the experiments on SA-V val and test, we run inference on the 24 fps videos, and evaluate on the subset of frames where we have ground truth annotations (first and last annotated frames dropped). The evaluator will ignore the masks in frames where we don't have ground truth annotations. + +- Same as [DAVIS](https://github.com/davisvideochallenge/davis2017-evaluation) directory structure + +``` +{GT_ROOT} # gt root folder +├── {video_id} +│ ├── 00000.png # annotations in frame 00000 (may contain multiple objects) +│ └── ... +├── {video_id} +├── {video_id} +└── ... +``` + +## License + +The evaluation code is licensed under the [BSD 3 license](./LICENSE). Please refer to the paper for more details on the models. The videos and annotations in SA-V Dataset are released under CC BY 4.0. + +Third-party code: the evaluation software is heavily adapted from [`VOS-Benchmark`](https://github.com/hkchengrex/vos-benchmark) and [`DAVIS`](https://github.com/davisvideochallenge/davis2017-evaluation) (with their licenses in [`LICENSE_DAVIS`](./LICENSE_DAVIS) and [`LICENSE_VOS_BENCHMARK`](./LICENSE_VOS_BENCHMARK)). diff --git a/segment-anything-2/packages/sav_dataset/example/sav_000001.mp4 b/segment-anything-2/packages/sav_dataset/example/sav_000001.mp4 new file mode 100644 index 00000000..42e0b86f Binary files /dev/null and b/segment-anything-2/packages/sav_dataset/example/sav_000001.mp4 differ diff --git a/segment-anything-2/packages/sav_dataset/example/sav_000001_auto.json b/segment-anything-2/packages/sav_dataset/example/sav_000001_auto.json new file mode 100644 index 00000000..7e73a20c --- /dev/null +++ b/segment-anything-2/packages/sav_dataset/example/sav_000001_auto.json @@ -0,0 +1 @@ +{"video_id": "sav_000001", "video_duration": 20.125, "video_frame_count": 483.0, "video_height": 848.0, "video_width": 480.0, "video_resolution": 407040.0, "video_environment": "Indoor", "video_split": "train", "masklet": [[{"size": [848, 480], "counts": "ka0e8ka001O1O001O1O2N2N2N2N2N1O2N1O2N1O2N2N1O2N2N2N2N1O2N1O2N2N2N1O2N2N2N1O2N1O2N1O2N2N2N1O2N2N2N1O2N1O2N2N1O2N1O2N2N2N2N2N1O2N1O2N2N1O2N2N2N1O2N2N1O2N1O2N1O2N2N1O2N2N2N2N1O2N2N1O2N2N1O2N1O2N2N2N1O2N2N1O1O2N1O2N2N2N2N2N2N2N2N2N1O2N1O2N2N1O2N2N1O2N2N2N1O2N2N1O2N1O2N2N1O2N2N1O2N1O2N2N2N1O2N2N1O2N2N1O2N1O2N2N2N2N1O2N2N1O2N2N2N1O1O2N1O2N3M2NR\\R8"}, {"size": [848, 480], "counts": "[3j0fi0000001O1O002N3N3L3L5L3L^l>3^SA7K4L3M2N2M2O1O00001O00000000O2N1N3J5L4M3O1O001000000001O1N2O1O2N2N2N2N1O1O1O001O001O001O01N100O1O1O1N3N1O2O000O2O0010O01O0001O001O00010O1O2N1O3M3M4L2O0O001O001O1O00001O1O1O001O01O01O0010O01O1O1O1O1O2N1O1O1O1O000001O0000001N4Kh]^1jN^caN5L2O0000O10O1N2M2mNT1M20100001O01O001O00000000001O00O101O000000001O0000000000000001O01O2Oh0XO7I4L1O00O001N2O0N2M3L4L5D;H8N2001O4]NYWOU1Wi0J4L2N3M1O1O1O000O01O1N1H9^Ob0N1001M3L4J6K5J6L4K5M4K5K\\V40fiK3L4N1N2O1001O2N2M5IoTg0f0YjXO>fVOQO[h0f1M3N2N1O100000000010O0001O00001O01O0001O0000001O00010O00010O0001O01O00001O00001O000000001O0001O000000001O01O00001O000001O01O0000001O01O01O0000000001O000000000000000000001O00010O0000000001O01O0000000000001O00000O10001O0O10001O0O1N2H8H8J6F:FS@An?>R@Bo?=R@Bn?=S@Bo?=Q@CP`0F:000001O00000000000000000000O10000O10000O100O1O1O1N2O1L4E;H8J6E;J6YOg0G9G9_Oa0IgbX1"}, {"size": [848, 480], "counts": "WQe3=oi06J6K4M4L4L4M4L3L4M3M3M4M2M4L4L2O1N2O0O100O100O01000O01O0O2N2N2N2N2N3M2O1O1O01000O0100000000000000010O0000000000001N10000O101N2O0O2N2N2N1O2N1O2M2O2M2O1N2N3N2M3O1N2N2N2O0O3N1N2N2N3MdS]6"}, {"size": [848, 480], "counts": "d0\\1Ti00O1O0010O1N1N3N2O1O10O101O2N2N2M3N1O001O001O0O100000000001O002N1O2N2N>B3M2M3L5C^c60i\\I9H7J5L6J8H9G2N1O1O0001O0O10O1000O100000000000000000001O000000001O003M3M7I7H8HYhS:"}, {"size": [848, 480], "counts": "ZbV85Zj02N2gYO0hLM[d03f^OU1Ya0lNX^Oc1ga0]NW^Of1ga0\\NV^Of1ja0[NS^Of1na0\\Nm]Og1Sb0\\NV]OX2jb0\\N`\\Of1`c0]N\\\\Od1ec0]NX\\Od1hc0_NT\\Oa1mc0bNo[O_1Qd0gNh[OX1[d0lN_[OT1dd0mNW[OPO5?^e04UZO\\Oe02ce0\\1l1F9J7L3M3M4M2N3L5K5K6I9FX\\\\3"}], [{"size": [848, 480], "counts": "`b0P8ab0O1O1O2N1O2N1O2N2N2N1O2N1O2N1O3M2N1O2N1O2N2N2N1O2N2N2N1O2N1O2N2N2N2N1O1O2N2N2N2N2N1O2N1O2N1O3M2N1O2N2N1O2N2N2N2N2N2N1O2N2N1O2N2N2N1O1O2N2N2N1O2N2N1O2N1O2N1O2N2N2N1O2N2N1O2N2N2N1O2N2N2N2N2N2N2N2N1O2N2N2N2N2N2N1O2N2N1O2N2N1O2N2N1O2N1O2N2N1O2N2N2N2N1O2N2N1O2N2N1O2N2N2N2N1O1O2N2N2N1O2N2N1O3M2N1O2N2NSYa8"}, {"size": [848, 480], "counts": "onh06Yj07J2M4M2N1O2N1O1O0O100000N201O0O2N1O1O10000O100001O00001N2O1O1O2N1O1O001O0000001O000000O100O1O1O2N1O1O1N3M200O101N10001O1O01O1O010O001O1O1O100O1O2N2M3N2O1N1O1O001O00001O1O1O1O001O001O10O01O001O1O1O1O1O1O2O0O1O10O000000001O3Lc0fN^VOa0TPe1_ORj[N5mNT1H7N2O1O1O1O1O0000O11O00000001OO2OO2O0O100000000000001O000001O000001O10C=B2N11N1O0O2O0O2J5DF:M0012M3M3J6J6L4K4M5M4IR_T12f`kNa0Ec0]O`0B4O000O101O00010O000000001O0010O000010O00001O0000010O000000001O01O000001O00000000010O00001O00010O0000010O00000000001O000010O000001O00001O0000000001O0000001O00000000000000001O00000001O000001O000000000O101O00000000001O0O1O1O1O1M4J5G9H9G9BgU95VjF;D=Cji0J6A?@?L4H8L4L4M2N3N1N2N3M2K6K5M3N1N3O0O101O1O0102M5K4M1N01O010O01O01O00ZKd]OX1\\b0cNl]O[1Sb0bNS^O[1ma0cNZ^OX1ga0dN^^O[1aa0cNf^OX1Za0dNm^OY1Sa0eNQ_OY1o`0fNT_OX1l`0gNV_OX1j`0fNZ_OX1g`0dN^_OZ1b`0dNa_O[1_`0cNd_O\\1\\`0cNg_O[1Y`0cNi_O]1V`0cNk_O\\1V`0bNm_O]1S`0aNo_O_1Q`0`NQ@_1P`0^NS@a1m?^NT@b1l?]NV@b1j?]NX@b1h?]NZ@a1h?]NY@c1g?\\N[@c1e?]N\\@b1e?\\N]@c1c?]N]@c1d?[N^@c1b?]N`@b1a?\\N`@d1`?\\Na@c1`?\\N`@c1a?]N_@c1b?[N`@c1b?\\N_@c1a?]N_@b1c?]N^@b1c?]N]@c1d?\\N\\@c1g?ZNZ@f1g?YNY@f1j?WNW@i1l?TNT@k1Yd0O1O2O0O011N101N3M101O0O2NTiP7"}, {"size": [848, 480], "counts": "T:P1`i00O1000000000000O10O1000O1000O10O100000O0100000O100000O10O100000O10O1000O100000O10O1000O100000O010000000O10O100000O010000000O0100000000O10O100000O10000O10O100000O1000O1000O1000O100O0100000000O10O1000000O0100000000O010000000O10000O1N2M2N3L5L3N2O1N2N3M3MSYm10ofRN5J101O0O00101M10001O1O1O1O1N110L5N010O1O1N2O11O0000O1000O0010000O1O010O10O01000000O010000000000O010000000O100O10000000000O100000000O10000O100000000O1000000O010000O010O100O10O01000000O1000000O0100O010O1000O100000O10O1000000O0100O0100O10000O10O1000000000O10O10000000O10O10000000O10O10O1000000O0100000O10O10000000O010000000O1000O10O1000O10O1000O10O1000O1000O10O1000O10O100000O1000O100000O01000000O10O1000000O01000O10000O1000000O10000O10001O0000000O10000O0100000O10000000O1000O1000000O10O10000O001001O001O001O1N100O1O1O2Nj_?"}, {"size": [848, 480], "counts": "nSn9T1gh0f0^Oa0^Oc0XOg0ZOf0WOi00000000001O000000000000O100O100O1000000O100O1O1O1O1M3K5L4C=H8H8E;E;E;A?@Pm[1"}, {"size": [848, 480], "counts": "\\\\Y3;li0f0@5J6K5L3N3M2N3M2N3M3M2O2N2M2O2M3N2N2M3N1O1O0000000O10O1000000O100O010O1N3K4H8N1N3O1N2O1O1O2O000O100000001O000O101O000O2O0O100O1O100O2O0O101N100O3M101O0O2N1O2N2N1O2N2N2M3L5M4K8Hlbi6"}, {"size": [848, 480], "counts": "Q1d1lh0O100O1O1K5O001O100000O110O101N2N1O1O1N101O00000001O0000001O001N2O1O2N4LAegS:"}, {"size": [848, 480], "counts": "\\hU87Xj02O2eYOF[b0@\\Zf0b0ReYO5Ih0WO:I201N11O0001O0000001O01O000001O000010O0001O001O01O0001O0001O01O0000000000001O00000000001O001O01O001O01O01O000001O000010O0001O000001O01O00000000000000000000010O000000000000000001O01OO11O01O0000000000001O0O100000000O101N1O1O1M3I7G:DA>D]Oc0ZOe0B?L3H9K4M4L3M4M2N2M4L4M2N3N1O2N1O101N1O1O100O101O0O1O10001N1001OO2N10SJZ^OP3fa0kLg^On2Xa0nLQ_Om2o`0nL]_Ok2c`0nLi_Om2W`0PMQ@k2o?RMX@k2g?RM_@k2a?QMe@m2[?RMj@j2V?SMPAk2o>SMVAj2j>UMYAi2g>RM_An2`>QMbAn2^>PMgAn2Y>PMjAn2V>PMnAn2R>QMPBo2o=PMTBn2l=PMWBo2i=PMXBQ3g=nL\\BP3e=mL^BR3b=mL`BR3`=mLbBS3]=mLcBS3^=kLdBT3\\=kLfBT3Z=lLfBS3\\=lLeBS3\\=kLeBU3\\=iLfBV3[=hLfBX3\\=eLeBZ3Zb0O000O10000000000000O100O100O1O1O1O1O10O01O1O001N1O2N2M2O20TL]ZOj2Yg0\\Oe0ZO=C9H6J6JRj03M3M4L2N3M2N2N2N1O1O2N3M2N3M2N3M3M1O001O0000000000000000000000O100O100O1N2N2O1O1M3InVOnNTi0o08L4M3O1O1O1O1N2O1000000001O000000001O0000000000000000000000O10000O11O0000O100O100O1000000O1O1O1O1K5M3M3OQf`6"}, {"size": [848, 480], "counts": "n1Y1Wi0000000001O001O1O1N200O1O1O1O0O101O10O01N21L3N1000001O00O10000001O001O0O3O0O5eNjVOR1ei0D5Kgh5@iWJ3N1M5L3N4K5L4L8G8I5J3M10000O1000000000000O100000000000000O11O0O2O1O001O2N5J:G;B\\lR:"}, {"size": [848, 480], "counts": "ZTT84Zj05L2O2WYO6ZMCbd09P]OIWNc1hd0eNo\\OJUNd1ld0cNl\\OOQNa1Se0aNj\\OU2Uc0RNb\\Oo1_c0SN^\\Om1cc0SN\\\\On1dc0QN\\\\OP2ec0oMZ\\OQ2gc0nMY\\OR2ic0mMV\\OS2oc0gMQ\\O8oNd0Tg0\\OWYO7mf0H[YOJkf05j1E;M2M4O[Xf3"}], [{"size": [848, 480], "counts": "cd0m5ed0N2N2N1O2N2N1O2N2N1O2N2N2N1O2N3M1O2N2N2N2N2N2N2N1O2N2N2N2N2N2N2N2N2N1O2N2N1O2N2N2N2N2N2N2N2N2N2N2N2N2N1O2N2N2N2N2N2N2N1O2N2N2N2N2N1O2N2N2N2N2N2N2N1O2N2N2N2N2N2N2N2N2N2N2N2N1O2N2N2N2N2N2N2N1O2N2N2N3Mcki9"}, {"size": [848, 480], "counts": "kg`05Zj05K3N2N1O2N1O2N1N2O1O2N001O0O1000000000000O100000010O100O1O1O01O0O11O00001N01001O00001N10000000001O00000010O0O100O1O1O1N2N2M3O100O2O0000001O001O01O00010O1O00100O1O1O001O10N1M3K7FQVOKU]n2:g\\RMe0A>B5K3N0O1OO1O1N201N101O1O2Md0[Omm9<`QFA?B>D;M4M2O1O101O000000001O1O00000000000fH"}, {"size": [848, 480], "counts": "k9m1ch00000000000O100000O1000O1000000000000O10O1000000000O0100000O1000O1000O10000O01000000000O10O10O10000000000O0100000000000O10O10O10000000O01000000000O10O100000000O10O10000000O10O100000O10O10000000O10O1000O100000O010000000O10O01K54L1N7J4Lc0]O;D7J2M4KQ\\i2:fcVM5L3M4L5K4K4M3M6J3M2N00000O100000O010000000O010XOUWOKkh04WWOKih05WWOJjh05WWOKhh05ZWOJfh06ZWOJgh04[WOJeh06\\WOJdh05]WOKch03_WOMah02`WON`h00bWO0^h0NdWO1]h0JhWO6Yh0EkWO;Ui00O001O1O1M3M3M2O2N2N2O0O2N2M3M3N2O0O2O100000O10001O0\\OPWOHPi03VWOKkh0M^WO2dh0I`WO6_i0N1O0O10000000O010O1N20O010000O010O1000000O1O010O1N2O100H_O_VOb0^i0:N2O0100000001N10000000001O0O101O0O101O001O00001N10001O000O2O000000001O0O10000000001N10001O0O101O0O101O0O1000000O101O0O2O001O1N1OfmV2"}, {"size": [848, 480], "counts": "m[f2`0ji07F:G8I8B=G:lNT1\\Oc0I7H9E:B>ZOg0H7J6J6M3M3N2M4L3N2N2N3M2N2O1N2N2N2N3L3M3M3N2N2N2O2L3M3N200O1O2N100O100O1O101O0O10gIh^OcMBc5ea0eLb_Ol2^`0kLR@n2n?oLZ@m2c?QMe@k2[?RMl@j2T?SMRAj2n>TMWAi2i>UM\\Ah2d>VM`Ai2_>UMfAh2Z>VMkAg2U>VMPBh2P>UMTBj2l=UMWBj2h=UMYBk2g=SM]Bk2c=TM`Bj2`=TMcBl2\\=SMfBl2Z=oLmBo2S=QMmBo2S=PMoBP3P=oLQCQ3oQOk0mNT1YOe0\\Oc0O3O0O100O100O1000000O1000000O0100O010O100000O01O1O1N2N3K4J6C=H8H9A>_Ob0_Oe0lN`da1"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "R3V1Zi0001O001O1N2O001O1O1O001N110OO100001O000000000000000000000001O0000001O002N1O1O001O3M;D6IYc6DT]I3M4L5L4L5K8H8H3M2M101O0000O100000000000000000O100000O2OO2O01N101O1O1O8H=C>@nUQ:"}, {"size": [848, 480], "counts": "\\UT893I[43o`0`MSA_2n>_MTA`2k>`MVA`2j>`MVA`2j>_MWAa2j>^MVAb2j>]MXAb2h>]MYAc2g>\\MZAd2f>[M[Ae2e>ZM\\Af2d>ZM\\Af2d>YM]Ag2c>XM^Ah2c>VM^Aj2b>VM]Ak2d>SM]Am2c>RM^An2b>RM\\AP3d>PM\\AP3e>nL\\AR3d>mL]AS3c>lL]AU3e>iL[AW3f>gL[AY3g>dLZA\\3i>`LXA`3j>]LXAb3kb000O10O1000O1000000000O11VNPZOQOQf0i0_ZOmNae0Q1eZOjN\\e0T1mZObNWe0c0j2@[VX6"}, {"size": [848, 480], "counts": "e_O`0A?K5M3N100000010O0000001O001O000001O01O000000001O1O000001O01O0000000001O000000RG"}, {"size": [848, 480], "counts": "U;k1eh00O1000O1000000000O010000000000O010000000O1000O10O100000000O10O10000000O0100000O100000O1000O10000O10O100000000000O10O100000O10000000O1000O1000000O01000000000O10O1000000O1000O100000000O10O100000O10O1000O100000O10O10000000000O10O100000O10000000O0100000000000O0100000O100000O10000O10O1000O1M2O2M3L4M3N1N3M4K9H;CbRP3LcmoL6J4L5N0101N3N1O1N101O1O0O100000000000O1N2N2O10O10O100001O00O01000O1O1O1N2N1O2M3N2N2O1N2000O10001O000000000O2O0000001O0O2O00000O2O000O1000001O0O1000001O0O1000001O000O2O00001N10001N10001O0O101O0000001N101O1OO11Ognd2"}, {"size": [848, 480], "counts": "Th]3:oi09J6H6L5J7J5K5L4K5K6H8G8J6K4M4K4M4L4L3L5M2M4L3M4M2N3L3K5L5L3L4K5N3L3M3N2M4M2N2N2N2O2M2M3N2N3N1N2O2N1O1N2O101N1N2O1O100OaKo\\Ob1ob0VN^]Of1bb0WNc]Og1\\b0WNh]Oh1Wb0WNm]Og1Rb0WNS^Og1la0WNZ^Of1ea0YN_^Of1_a0XNf^Of1Za0XNj^Of1Ua0ZNm^Oe1Sa0YNo^Og1Qa0WNS_Og1l`0YNV_Og1i`0WN[_Og1e`0XN]_Og1c`0XN__Og1``0YNa_Og1_`0XNb_Oh1]`0XNe_Og1[`0XNg_Og1Y`0XNi_Og1W`0XNk_Og1V`0WNk_Oi1U`0VNm_Oi1S`0WNn_Oh1R`0XNo_Og1Q`0XNQ@f1Q`0XNS@e1m?[NV@b1j?^NZ@^1g?`N_A:b>FdA4\\>LgA1Z>MiA1W>OjA0V>0kANW>1iAOW>1jANV>2kAMV>2jANV>2iANY>1hANX>3hALY>3hAKZ>4fALZ>4gAJ[>5fAI\\>7jABV>>o5O10000O10001O001N1O10000O11O1O0O11O01O00010O2N2O2N2N2M1100N9BZS[5"}, {"size": [848, 480], "counts": "P=o0ai0000O1000O100000O100000000O0100O10O10000000O10O1000O1000O10O1000O1000O10000000O010000000O010O100000O1000000O0100000O1000O1000O1000O10O100000O10000000O100000O01000000O10O100000000O0100000000O01000000O01000000O10O1000000000O0100000O10000000O01000000O10O10000000000000O1001OO1O1N2N2K4O3IgeV30YZiL8M2L4N1O1000O0100O10000O0100000O10O1000000O10O11O000O01000000000O010000000O10O100000O10000O10O1000O100000000O010000000O01000000O100000O1000O100000O1000O01000O1000O10000000O01000000O0100O1000O1000O10O2OO10000000O1000O10000000O100O1000000O1000000000O10O2O00O1000O1000000O10001O00000O1000000O1000000O10O11O00010O0O2O1O2M10O04L2M_WX1"}, {"size": [848, 480], "counts": "baY96di0i0POn0XOh0SOl0TOm0F9N2O1O1000000O1000000000000000O10000000000O100O2N1N3M3J6J6EA`0QOZ1lN^nR2"}, {"size": [848, 480], "counts": "kZX54Wj0>C7I6K5K6J6K4M2N2O001N1N3N1O2O0O2N1O10000O2O1O0O1O10001N0011N1O1O1O1N2M3M3N2N2O1O1O1N200O1O2O0O101O0001O01O000000001O01OO2O00001O00000O101N2O2M102N1N3M2N3M2N3M2N3N2N3L4K]nm4"}, {"size": [848, 480], "counts": "]4b1nh00O0110O00O13M1O001O00000000001O000001O000000000001O0000000O5L>^Oem9AmRF5K7J8G>C3M1N1000000000001OO10000000O1000O11O0000O11O00O2O001O2N5K5JRS[:"}, {"size": [848, 480], "counts": "PZe76Xj03WZOKUa08]^O4ba03\\\\OBeN]1nd0VOT\\Oh1lc0\\No[Oe1Qd0_Nj[Oc1Ud0`Ng[O`1Zd0bNc[O_1^d0bN^[O`1bd0bN[[O^1gd0gNR[OX1Qe0kNiZOV1Ze0kN_ZOYO:?ce0Q1cZOgNie0m0bZO`Nle0X1k1H8J8I6K4M3J8ASYT4"}], [{"size": [848, 480], "counts": "Vi0Z1Wi0O2N2N2N2N2N1O1O3M2N1O2N2N3M2N2N2N2N2N2N2Nb^j;"}, {"size": [848, 480], "counts": "T7l0di00000001O0000001O000O101O0000O100001O01O000000010OO01000001O00O1000000000001N101O001O0000O1O2O00000O1O1O1N3O0O1O1000001O00001O00010O010O01O100O1O1O1O2N3N0O001O001O1O00001O01O0000000000000001O10O01O1O1O1O1O101ON2N8Ae]^1_OScaN3M2N2O000O1L5WOh0E;0O100O1O1O100O10000O1001O00000010O4L3N2N3M4L2M3M4L2M6EoW=6ogB7E9@>L4M3N20O6J1OO11O2NO1N21N10O10000O10000000O1O0O2M4H7L4I7J8K6GUk51nTJ4K3K5O1M22O2M2N``e0J__ZO>G8Gd0^O9H3M10O2O0001O00000000010O00001O0000000010O0001O00001O01O01O00000001O01O0000000000010O001O00001OO110O000001O01O0001O0000001O0001O0001O000001O000001O000000000001O0000000000000010O000000O10000000001O000O2O00000O100N2K5G:H8AkU9B`jFe0@<]Od0J5L5M2O101O000000001O0000010O001O000000010O000000001O001O000000010O0000001O000000010O0000001O0001O01O0000000000JSXOhMng0W2XG"}, {"size": [848, 480], "counts": "o:i1fh0010000000000O01000O10000000O10O1000000O10O1000000000O10O10000000O1000O1000000000O100000O010000000O1000O1000000000O010000000000O100000O1000O100000000O10O1000O1000000000O10O1000000000000O1000O100000O0100000O100000O10000000O10O10000000O1000O1000O1000000O0100000000000O2O1O4L8G9oN^VOd0[_e0@e`ZO2ki0e0D`?Ba@`?B`@=b?B_@=a?C_@l?_OU@a0md0O2O000O2O0O2N101N1O3Mcg0KW^Na0ci0>I77B?ZOoUONZid5"}, {"size": [848, 480], "counts": "hWe0W1R[O^N]e0R1[2D8J7J7J3J6Ib[b4"}], [{"size": [848, 480], "counts": "ii0g0ji0O1O2N3M1O2N2N1O2N2N2N2NRmQ<"}, {"size": [848, 480], "counts": "m6l0di00000001O0000O1000O10000000O0100O100000000000001O1O0001O0O100O1O2N1O1O1O1O2O000000001O010O1O01O001O1O100O1O2N1O1O1O101N1O1O001O000010O00000000000001O1O001O1O010O1OO2O5J^]^1UO\\caN5J6L3N2N000O1SOLTWO?hh0f0O2N101O2N1O10O0N2O2O100O1L5N3O5E;E>D:FeSf29okYMC5K4L2N1N10000000O010000001O0O2O4L7H5L4L3M2N3M1O0O2O1O1O1O2N2Mina2JUQ^Md0C4L3O0O1O1O2OO2O00000O2O0000001O0O101O0O100O101O00001N10000O2O000O2O00000O1000001N10000000000O101O00000O10001O001N100O10001O0O3N0000001O0000gam3"}, {"size": [848, 480], "counts": "afa3`0ii09H7I7K5J5G9E;A?M3M3L4H8I7F:E;H8F:J6K5M3M3L5I6M3M3N2M3N2O1N3M2N2O1N2N2O1O1O2M101N3M2M3N2L4N2N3N1N2N3N1O101O00001N100O2O00001O00001O001O0O101O0000XJc]O^3\\b0^LU^OU3ka0hLb^On2^a0oLl^Oj2Ta0QMW_Oi2i`0TM^_Oh2b`0WMd_Od2\\`0ZMi_Oc2W`0[Mn_Oc2Q`0\\MS@a2m?]MX@`2h?^M\\@`2d?^M`@`2`?^Md@`2]?^Mf@`2Z?^Mi@a2X?]Mj@b2V?\\Mm@c2T?YMPAf2P?XMSAg2n>WMTAi2k>UMWAk2k>RMWAl2m>oLUAQ3k>nLVAR3Tc00000000001O00000001O0000O1O1N2L4K5M3G9G9F:F;@`0I8ETPf5"}, {"size": [848, 480], "counts": "SB6J2O1N4K2O1O_b6Fj]I5L5K2N2N2O0O2N2N2N3M1O1O101N3M1O2N2N2N1O7lVObNih0j1H1O00000001N1O1000001L5PO[WO\\Og]POUAo0k>POWAo0j>POXAn0h>UOWAh0j>YOXAc0j>]OXAEWAKV?5c50O2O0O11O001O001O1N2N120O1N1N3N1O2N2OW[V5"}, {"size": [848, 480], "counts": "kB8I4J_hc6"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "XWo1e0hi09H3M100M4M3M3N1O200000000000001O0010O01O00000000001O00000001O0000000000000100O0000100O1O1O010O0001O001O001O00001O0000001O00O100001O000O1O1M3K5J6L4J6K9GUYU1<_fjN:Fh0[O5M000000001O00001O01O000001O0001O0001O0001O01O01O000001O000010O0001O00001O01O000001O00001O01O0010O0000001O010O001O0000000010O0000000000001O00001O000001OO2O0001O00000000O10001O0000000O2N10000O1K6G8D=Aco9EnVEa0nh0k0@?M3N100000000O2O00010O001O0000000010O000001O000010O000001O000000010O000000010O0000001O0001O000000000L5J5I7J6O1O10000O2O0000000000001N11O0000O100000001O00000O10001O0000000O1000001O00000O1000001N10000000001O0O10001O00000O1000001OO10O2O001O001O0O2O000000000O1000000000001N10001O0O100000000O2O0000O1000O1000000000000O1000000000001N10cE"}, {"size": [848, 480], "counts": "U;f1jh00O1000O100000000O1000000000000O0100000O10O1000O10000O011O2N2M7J9Dh`e0]Ok_ZO:H`0@4M2M2O000O2N010O100O100O100O100O10O101O0000000000000O10O1000O10000000O1000O10000000000000000O10000000000O10000O01000000O0100ZOQWOKoh04TWOJlh05VWOJjh06WWOIhh08XWOHhh08XWOGih08XWOHhh08WWOIih06YWOIgh06ZWOJeh06[WOJfh04\\WOLdh03]WOMch02^WONbh00_WO1bh0KaWO4`h0IdWO6Zi01O1N2O1O1O1N2N2N2L4O1N2N1N3M3N2O1O1000O0100001O000]OmVOITi04oVOKQi0LYWO3hh0DaWO:]i0N00O10O01O10000O1000O02O0000O2OO100000000O10O01O1N2M3M3M3N1O2000000001N1000001N1000001N100000001O000O101O0000001O0O2O000O110O00001N1000001N100O10001O1O000O101N100O2O00Roi5"}, {"size": [848, 480], "counts": "egQ4F3L4N1N2N2O1O1O2N1O1O1O100O1O1O10O01000000O01O100O100O100O10000O10001O002O0O0010O01O100O001O002N100O1N3M3M3M3L7FYUg4"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "WSf43\\j03M4M2QYO0Zc02X\\OT1nb0SOg\\OR1Xc0SOa\\OP1^c0UOo[OZ1Pd0hNh[O^1Xd0dNe[O]1[d0eNb[O\\1_d0eN][O]1dd0dNY[O\\1id0gNR[OY1Pe0lNhZOU1Ze0nNaZOR1ae0UOSZOQO`0`0ae0U1jZO]N_e0]1mZOlMhe0j1i1C8J4N5J5L6I4L5I7HQ[o6"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "aVW17Qj0c0A8I6H;G3N3N3N2NO1K`WOZN`h0g14O1M300O101N101OO10010O00001O01O01O00O1001O00O20O0000O10001O01O001O1O00010O1O1O1O010O000001O1O00001O0000001O001O000000000000000N2L4N2H8L4J7J5Jge6JbZI4M3L4M2M4O01O2M8@PVOOVog0h0YjXOj0VO6K200000001O001O000000010O001O000001O0001O01O01O0001O01O00010O000001O0001O000000010O001O00000000010O001O01O01O001O001O000001O000001O0001O000000001O000000001O000000001O000O11O0000O2O00001N100O2L3C=@g0ZO_U96RjFm0[Oc0D9N3O000O101O000010O0001O0000000010O0001O000010O00000001O0001O01O00001O0001O0001O000001O01O0001O0O1J6I7J7L3O1000000O101O00000000001O0000000O101O00000000000O2O00000000000O10001O0000000O2O0000001O0O1000000O10001O000000000O1000000000001N2O001O001O00000O101O00001O000O10001O0O10001O00000O10000000000O1000O1000000000O2O0O10000000001N10000000001O0O10000O2O0000000O1000000000000O1000dE"}, {"size": [848, 480], "counts": "k:d1lh00001O0O2O1N;Ee0VO_`e0MeeYOKgi0l0F:G3L100000000O1000000O10O1000N2O100O1000O100000000O10000000O100000O1000000000000000000O011O0000O10000000000000O1000O1000O1000000ZOoVOMQi02RWOLnh04SWOJnh05UWOIkh06WWOIhh08YWOGgh09YWOGgh09YWOGgh08ZWOHfh07[WOIeh07[WOHfh06\\WOJdh05]WOLbh02_WONbh01_WOOah0OaWO1_h0LdWO3]i00O1O1N1M4N2O1O0O2N2N3M1N3N2N2M2O200O1O01000000O20O@kVOEUi09nVOFRi08QWOGPi03WWOJlh00YWOOdi00001N10000O10O1O1O1O1O001O100000001O00000000O01O1N3M2M3M2M400O11O01OO1000000O2O00001O0000001O0O1O10000O2O001O000O101O0000001O0000000O2O0000001O0O101O000O10001O0O2O0O100O1O2O0OjfY6"}, {"size": [848, 480], "counts": "`cl37Wj02O2N1O1O1O1O2N100O10000O10000000001O00001N101O001O00001O00001O1O001O1O1O1O1O3M4L4L6J4]XO[NSf0j1eYOYN[f0l1`YOUN_f0o1VYOmMA6Yg0l21O0000001O000O101O001O001O0O101O000O1000000O2O001N100000001N101O0O10000O10001N100O2O00001N100O2O0dNXXO0hg0LaXON`g00fXOL[g02iXOJXg05jXOJWg03mXOJTg06mXOITg05nXOJRg05PYOHSg07c1O101O0O10001O00001O001O1O0010O01O1O1O003N]fW5"}, {"size": [848, 480], "counts": "`Pj06SVOD[i0m0K:G2O0O100O1001O001N2O1O001O1O001O0O101N101O1O1O1O1N2O001O1O001O1O001O1O1N2O1O1O1O1O1N101O1N2O1O001O1O1N3N001O10O01O0O2O[`a:"}, {"size": [848, 480], "counts": "k^`45Xj06J9H5M3L3M4L5L3M3L5L3L4M2N1O001N101O000O2N100O2O000O2O1N10001O0O01000O10000O100000000O100000000O2O000O101N101N101M2O1O1N2O2N1O1O1bNQMZ[OP3ed0SMX[Oo2gd0SMV[On2jd0TMS[Om2md0VMnZOg2TOQMne0;jZO\\2CXMbe0?gZOU2L\\M]e0c0bZOo1Vf0VNbYOi1af0P13M3L4M4K4L5L4J5N3M2N3O1M3O1J6J6oNgWOYOWfa5"}, {"size": [848, 480], "counts": "Uk72\\j01O2COZVO1gi0;01O100O1O010N2000O100000000O0100O10000000O1000O10000O100000O1000O1000O0100000O2OO100O1000O1000000000O10O2O000000000O2O1O001O001O000O2O001O1O000O2O1N101NPcR:"}, {"size": [848, 480], "counts": "fjZ5f0Qi0l0\\Nc1WOh0Dii0=G7L3M3N1M3O2L3M3L3M4K5XOh0H8M3O1001O100O001O0010O10O010O010O01O010O100O100O1O010O100O2N1O2O0O010O0001O000O2N1N2N3M2N2N3N1O1N3M2O1N3M2N200N2N3N1N2N2N2O1O1O1O1O1O1O1O001O100001O1N2O1L4M2N001N20N2O1M2N4N2M3K5M3N2M4L3N2M3J6M4I8I\\cP6"}, {"size": [848, 480], "counts": "e;f0ji0O1000O100000O0100000000O10O1000O10O100000000O1000000000O1000O1000000000O01000O1000O1000000000000O10O1000000O1000O1000O1000O01000000000O10O100000000000O010000000000000000000O10000000000O2O0000O10000O1000O1000000O1000000O10O100000O1000O10000O010000000O01000000000000000O0100000000000O000100O2LRlX2E]TgM0I6O1O2O000001O2N2N1N2MRio5"}, {"size": [848, 480], "counts": "e^\\57Wj06J3N5J;E?A?A4L5L3L2O1O1N01O2H7G\\OQ[a6"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "[gR31^j05L2M3N2N001O1O7fYO_O\\LNee0f0P\\O^OdN`1Ye0lNY\\OITNa1ce0cNZ\\Ol1fc0SNZ\\On1fc0QNZ\\OP2gc0nMX\\OT2ic0jM[\\OS2Vf0K3L6J3M6J8G:Fgcg8"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "n7h0\\i0=^Oa0O2N101O01O00000001O01O00000O1000000O2O0O100000001N11O00O11O000010O0000000010O00000000001O01O00000001O00010O001O1O0010O00001O100O1O001O00001O1O0000000000O1000O110OON3L5L3I7H8H8LcZ8JdeG4N2M3K6M1001O5@QVO5]og04]jXO>Eb0_O9I2O1O1O00001O000000001O0010O0001O01O01O00000010O00010O00000010O000010O01O00001O0010O0001O00O10001O0O100O1O1N2N3L3M3N2O1N3M2O1N2N2O1N3M2O1O2N1N2O1O1O100O2O0O100O2O0000000000001O00001O1N2O0O7Ic]<3XbC7J3O1N101O0000000010O01O001O001O00100O1O1O00100O1O1O1O2N1O10O01O2N100O1O2N1O1O2N101N1O1O2N1O1O010O00O1O100000001O0000001O00001O00000O100000001O0000000O2O000000000O100000001N10000000001O0O1000001O0O1000001O0O100000001O0O100000000O10001O001O0O101O000O101O00000000000O101O00001O000O1000000O1000000000000O10000000000O2O00000000001N10000000001O0O10001N1000000000000O2O0000000O101O1O0O2Nf`m0"}, {"size": [848, 480], "counts": "c9d1lh000000000O10O1000O10000000000O1000000O1001N100000O100000000000000O100000O1000O10000O1000O100000O10000O100000000O10O10O1O1O100N2_Oa0O10000O100000O10O100O2N1O1N2M4I]j52bUJ8J5L4K5K3L4O1M4N1N200O100001O0000001O001O6hNTWO?di0K1O00000000O1O1O1N0110O01001O1O001O0O010000O100N2O1N2O1N2M3L4O1O11O0000000O10001N1000001N1010O0001N1000001O00001O000O2O0000001N2O001O00000O101O00001N101M6H^e`7"}, {"size": [848, 480], "counts": "kgR22[j06L2M3O1N1O1O1mMBSZO`0je0CUZO=ke0CVZOie0DmYOe0Sf0\\OlYOd0Sf0_OjYOb0Vf0@fYOc0Yf0_OcYOc0\\f0A`YO`0`f0CWYOc0hf0IgXO=Xg0_1O0O101NROSYO[Nlf0d1XYOZNhf0d1[YO[Ndf0e1_YOYN`f0g1bYOXN^f0f1fYOXNZf0g1gYOYNXf0g1iYOYNWf0f1kYOYNUf0f1mYOYNSf0g1mYOYNSf0f1oYOYNPf0g1RZOXNne0h1RZOXNme0h1UZOWNke0i1UZOWNje0i1XZOVNhe0j1XZOVNge0j1ZZOVNfe0j1_110O0100O001O001O1O00100O1O001O1O1O1O1O011N1O100O100O10001O0O2O000010O10O002O0000O010O1O1000O1000O100O100O1O1O1O1O1O1N2O2N1O1O2M2O1N2O1N2O1O1O1N3N1N1M5L3L5G8I8G:CSPP7"}, {"size": [848, 480], "counts": "W;e0ki0O1000O1O100O10O01000000000O1000O100000O10000O10000000000O0100000000000O01000000000O01000O01000000O10O100000000O100000O010001O2M3N002N2O0O1O2N3L2O`l>4\\SA2N001O0N5M1O0O10000M30O1000000000O010000000O11O000O0100O1000000000O100000O10O100000000O1000000000000O0100000O1000O10000O1000O10001OO1000000000O1000000O1000O1000000000O10000O10O10O1N1O3M2NTZb7"}, {"size": [848, 480], "counts": "hfl4d1\\h0b0UNi1YOg0O1O10001N1000000000000000000000O1001O00O2O0O1O2N1N2N3M2L6F;\\On0cNVmc6"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "ZlQ31^j05K5L3M4L2N3oWO@jNLZf0h0gZO@cNY1_e0YOi[Oa1Sd0`Nk[Ob1Td0`Ni[Oa1Xd0_Nf[Ob1[d0_Nb[Ob1`d0^N\\[Od1ed0^NW[Oc1ld0^NoZOb1Ue0`NeZOa1^e0cNZZO]1ke0bNoYO_1Vf0[12QNWZOROme0h0`ZOkNfe0n0R2J6L4M5L4L3L4M3L3M4K4M3Lnb^8"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "[7=Sj0000O100N3L3ROo0L4O1O1O00001O01N100000000O2O000O100O2O000O1000000000001O0001O001O01O000000000000010O00000001O0000010O001O001O1O00100O1O00010O01O1O001O001O00001O00000000000000000O1N3L3M3J6H8K6HohW1KTWhNb0C]Od^m6"}, {"size": [848, 480], "counts": "^:e0ki0O1000O10000O010O100000000O0100000O1000O1000O100000000000O0100000000000O10O10000000O10000O010000000O1000O10000O0100000O01000000O1000O1000O10000000000O01000000001N01000000000000000O1000000O1000O100O1000O100000O10O10000000O0100000O10O100000O10000O01000001O00000O1000O10000O01000000O100000000O100000000O010000000000000O100000O1000O10O100000O1000000O010000000O10000000O1000O1000O10000O01000O1O10000O0100000O1000O1000000O01000O10000O01000000000O1000000000O10000000O100001O00O0100000000000000001O1O0O2O0O3N1N5Knek5"}, {"size": [848, 480], "counts": "l^R5R2Sf0]2F9M201N10000000000O1000001O000001O00O11N10001O0O2N2N2M3K7J6Cb0[Oh0POan^6"}, {"size": [848, 480], "counts": "PkQ2>oi05L4K4M4M2M3N2M3N2N3M1O2O1N1O2O0O1O100O1O100O100O10O10O10O2O0O1000000O2\\NXWO^1ih0`NXWO_1nh0NLcNWWO]1ih0dNVWO[1kh042O1N2O0hNVWOi0kh0TOXWOl0hh0SOYWOl0hh0TO`WOd0gkS9"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "YjV35[j02N2N2M4M4L5L1QXOAeNZ1Qe0XOU\\Od1jc0_NQ\\Od1nc0`Nn[O`1Sd0aNk[O`1Ud0aNh[O`1Yd0bNb[O_1_d0dN][O]1dd0fNW[O[1kd0hNoZOX1Se0lNfZOU1^e0l17I3mMaZOnNee0i0fZOkNbe0m0V2J6L5L4J6K4M4K4L3M4M2K]_Z8"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "lZ45Xj07K4M1O000O2N2M2POQ1N3N1N10010O0000001O01O0000000O1O1O2O0O1O10000O2O00000000001O01O00001O0001O01O00001O00000001O0O11O000000010O1O1O0010O0001O01O00100O001O001O00000000001N1000000000000O1O1N2J6I7L4J6I8GhZ80]eG4L5J4O1O2N14L6]OQVO8Xog02ejXOC3L:G4K4N3L3L4M3M3M3N2M3N1O1N3N1O2N1O2O0O1O1O10O100O100O1O001N1M4K4N3K4K5N3M2J6N2N2N3L3M3M3L4M3N2M3M4M2N2N2O1O1O1N2NSXOBme0oi05L5K3M4M2N3M1O2O2M101N3M2O1N3N00001N101O0O2O0000000O0100O1O101N100MWWO_Nih0a13O1N2N3N1M301N1O2O1K5O1O1N3K4L9H^^R7"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "gb\\37Xj03N2M2O2N3L6K4M2mXOIgc09][OYObNb1Ve0WOT\\O^1jc0dNR\\O_1mc0bNQ\\O_1Pd0cNk[O_1Vd0bNg[O_1Zd0cNa[O_1`d0dN[[O]1gd0fNS[OZ1Re0fNhZO[1ae0e14K5kM[ZOWOie0a0cZOVObe0d0gZORO`e0c0]2K4M5L9C>_OnPX8"}], [{"size": [848, 480], "counts": "Pj0`0Pj00001O2N1O1O2N1O2N1O2N1ORmQ<"}, {"size": [848, 480], "counts": "oW>;Tj02O1N2O1N1O2M3VOZOUWO06n0]h0i0O1O2O100O001O0001O000001O00O100O101N10000O101N10000000001O000001O1O1O0001O01O00O100000001O0000000010O001O00001O1O10O01O01O001O1O001O010O0000001N11O0000O100000000O100O1O1L3H8M5G9G:JdZ8KbeG5J5L5L201OO3N5LYUg0LdjXO=E9Hb0_O9I1O1N20N2O00010O000001O00000010O0000010O000001O0010O0000010O000001O0000001O01O01O00000001O01O001O000010O000001O01O01O000000000000010O001O000001O0000000000001O001O0000000O10001O0000000O1000001N1O2J6Bf0ROlU9GcjFe0[O`0YOg0I7M2O2O00001O0000001O001O0001O0001O0000001O01OO1010O000001O01O0001O00010O000000001O01O00000000001O0O1M3G9J6L5N1O100O2O0000000000001O0O100000001O000000000O2O0000000000001O0O100000001N100000001O0O100000001N10000000001N100000000O10001O000000O11O0O2O000000001N1000000000000O2O001O0000001O1N101O0O100000000000000O100000000O01001O00000O10001O000O10001N1000001O000O100O2O000000001N1000000O2O00000O10_I"}, {"size": [848, 480], "counts": "bca07Wj0?Bb0_O3M7I1O1O00001O0000O010000000O10000000000000000O1000O100000000000O1000O1000O1000000O10000000O100000O100000000000O10O10000000O01000000XOSWOMlh03VWOLjh03WWOMih02XWONhh02XWOMih02YWOMgh02[WOMeh03ZWONeh02\\WOMeh02\\WONdh01]WOOch00^WO0bh0N`WO2`h0KcWO5]h0HfWO7Yh0IjWO6Vh0DoWO=Qh0@RXO`0nh01O1O0O2N2M3N2N1O2M3O1N2L4N1O2N2N10100001O0000001N10000[OSWOGnh04XWOJhi0N2O00000O1000O1O1O1N20O01000000000O10000000O010O1O1O1O1L4L4M3N2O1000000001N10000O10001O00001N1000001O000000001O0O101N10001O0000001O000O2O00000O2O000O101O00001N11O01O0O10001N100O2N101O1N10Qo]6"}, {"size": [848, 480], "counts": "dhe22Uj0f0^O8K3N2O101N1O2N1O1O100106I1O1OO2O001O1O1N1O2N2N1O001O1O1N101N101O0O2O001N101N101N2O001N2O0O2O0O2O1O0O2O00cNaXOJ]g05iXOGWg05RYOGmf07XYOFhf08\\YOFdf09^YOGaf07dYOF[f09jYODVf0;P2O1O01O0O2O1N2O11O00001O010O01O0100O0100O001O101O0O2\\VOBSi0T1I5L3M>B00O2N1O1O2N1O2M3N2N2N2N2M3N1O1N2O1N2O2M3M2N4M3L5K7I4KPZd6"}, {"size": [848, 480], "counts": "XZc0`0ni02O1O010O10000000000O10O100000O10000000O1000O01000000O10O10O1000000O10000000O10O100000O100000O100000000O1000O1000O1000O1000000O1000O10000000O10O10000000O1000O1000000O010000O1000O10000000O10O1000O10O1000O100000O100000O010000000000O1000O1000000O10O1000000000000O0100000O10O100000O10000000000O1000O1000000O10O1000000O0100000000O10O1000000000O10O10O10O1000000O100000O010000O0101N0100000000O100000O0100000O1000O10O10O10000000000O1000O1000O10O10O100000000O100000000O010001OO1000000000000000000000000O2O2N1N102M\\fX5"}, {"size": [848, 480], "counts": "Vjc5[1gf0_2nN\\L^ZO]4Ze0a0O000000001O000000000000000000000000O100000000O100O1O1N2L7F:ROS1QO]1fNPok5"}, {"size": [848, 480], "counts": "U]b2=oi09I4L4M2M4M2O1N2N2N100O2O0O1O2O1N2O2M3N5J4M1N1000000O101O1O00O100O100O100N2O1L4O1O1O1010ON2L5IVWOeNlh0X18O0011O0000N2M4N1O2N2N2L5Kb0]OPmV8"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "k_f33[j05L3N2M3N3M2N5TYO\\OlM6_d0b0Y]ON`MMTe09T]Ok0kb0VOo\\Oo0Qc0SO]\\O]1dc0dNV\\O`1jc0bNR\\O`1oc0aNn[O`1Sd0cNg[O_1Zd0cNa[O^1bd0eNX[O\\1od0bNkZO^1]e0aN[ZO`1he0b13jMcZOSObe0e0hZOQO_e0g0lZOoN[e0i0\\2J4M4M5J8F:C:Kc^l7"}], [{"size": [848, 480], "counts": "dh0l1eh0O2N2N3M2N2N1O1O1O2N1O2N2N2N1O1O1O2N1O1O2N2N1O2N1O2N1O1O1O2N2N1O2N1O2N1O1O2NR\\\\;"}, {"size": [848, 480], "counts": "S[g08Uj07L2N0O1UVO_Ogi0e0O001O2oNQ1M3N010010O00000001O00010O00O1O1O1O2N1000000O100000001O0001O01O0001O001O0000O2O01O00000001O0O11O0000010O00001O100O001O1O01O10O0001O001O001O00001O0000000O10000000000O1N2M3H8K5J6F;HY`7Lo_H6K4I6N1O1N3N12N8Geog09moWO:Ie0]O7J1O0000000010O000001O01O01O000010O0001O010O000000010O00001O0001O000001O00000010O000001O00001O01O01O00010O00000010O0001O000000010O00001O0000000001O000000001O00000O2O000000001O000O1000001N101O000N2M4]Ob0A]P:@goEP1^O>C=K4O2N1O101O00000010O000001O000010O00000001O0001O01O0000001O01O01O0000000010O00000000000010O0000O101L3G9L4L4M3O2N10000000001O0O100000001O00000000001N10000000001O000O10000000001N10000000000O2O00001O000O100000001O0O1000001O0O101O0000000O10001O000000001N10001O00000O2O00O11O0000001N1000001O00000O2O001O000O01000000000O10O10000000O2O0000000O10001O0O2O0000000O10001O0O101O000OoI"}, {"size": [848, 480], "counts": "k6b1nh00000O101O0O:G:D8I5DQVOLT[a0OP__Oi0^O;F4L6J2N2M101O000000O1001O00O0100000O100000000O10O10000000000000O100000O100000O100000000O1000O100000000000O10O1000000000O1000O10O10000WOUWOMkh03UWOMkh02WWOMih02YWOMfh04[WOKeh05\\WOJdh05]WOKch05]WOKch04^WOKbh05_WOKah04`WOL`h02cWOM]h01dWOO\\h00fWO0Zh0NhWO2Xh0GoWO8Ui000000O1O1M3M3O1N1N3N2M3M201M3N1N3M20100O1001O00000O11O00[ORWOHoh05UWOImh0M\\WO2bi0O1N2O000O010O01O001N3N1O100001O0O10001OO01000O00100N2O2L3M3M2O2O1O100000000001N100O1010OO10001O000O101O00001O000O101O0O100010O000001O000O101O0O10001N101O00001O00001O000O1O2N1O2N101N10^[W6"}, {"size": [848, 480], "counts": "jVk1?mi09H5L4L4L3M4L3M3O1N2N2O1O100O1OfN^WOg0ah0UOeWOk0Zh0POkWOP1kh000000O1O10O0000O1000000000000O10001O001N101O0O2N2O1N10001N1O2N2O0O101O0OXOoWOTOog0j0VXOSOjg0l0n0M2N2O1O2M2O2O1O0O1001O000O2000O101O0O100010O01O00001O0010O010O01O01O01000O101N3N3L;F1N4L5L2M4M5K;E00O001O2N1O2M3N1N3N2N2M3N2M3N2M2O1O2M2O2M3N3L5L3L8G5KdXS7"}, {"size": [848, 480], "counts": "^8e0ki000O0100000O1000000O1000001N6K5J3N2N1OaX86VgG;G1N20O01000000O010000O100000O100000O1000O10O100000000O01000O100000O010000000000O0100000O1000000000O02O00O10000000O100000O100000O1000O100000O1000000000O10O10O100000O010000O1000O10000000O1000O10O100000000O10O010000000O1000000O10000000O0100000O010O100001N10000000O10000000O01000000000O1000000O10O10000000O100000O1000O010000000O10000000O10O1000O100O1000O1000000O1000000O1000O10000O01000000O100000O10000O010O10000O10O100000000O0100000O100000O10O10000O10000O1000O100000000000000000000000N200O10001N2O2N2M3N1OTmR5"}, {"size": [848, 480], "counts": "]Sl5a0Tg0Q3WOd0@`0O1O0000O10000001O0000000000000000O10000000000O100N2O1O1L4K5I7XOh0UO[1fNZlb5"}, {"size": [848, 480], "counts": "eok1=oi07K6J4L3N3M2N2N2N2N2N2O0O2N100O2O0O2O1N101O1N1O10001O0O1000O100003M2N0O110OO1O1O1000000O1N2O1O2N1O1N3K5M2N3N2O1N2N2N2L4M3M4M3K6K4M5HPQj8"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "lbo34Zj04M2O2M4M3M6J5QYOKfMBjd0g0`\\OUOfNe1gd0XO^\\OZOcNb1od0VO[\\O`1dc0aNZ\\O`1gc0aNV\\O`1jc0bNR\\O`1oc0bNm[O_1Td0dNf[O^1\\d0eN^[O[1ed0gNV[OZ1Pe0fNhZO[1be0c14hMfZOTO]e0g0lZOQOZe0f0Q[OnNYe0g0^2K5M3K7J9C^ke7"}], [{"size": [848, 480], "counts": "Rh0^2Sh0O2N1O1O2N2N001O2N1O2N2N2N1O1O1O2N1O2N1O2N1O1O2N1O2N1O2N2N1O1O2N1O1O1O2N2N1O2N1O2N1O1O2N2N1O2N2N1O1O2N1O1Obno:"}, {"size": [848, 480], "counts": "lco08Wj05K3N000O101N3L3BYOkVOm0ah0l0N1O2O0001O00000001OO2O0O100O100O101O000O10001O00000001O0001O0001O0001O00000000000001O0001O0000000010O001O1O1O001O10O010O001O0010O000001O00001O1N1000000000O01010NO2N2K5I7J6J6I9H[`7GP`H8H6L3K4O2O0010O:EWUg00cjXO=G:Fg0ZO4N001O001O00001O01O0001O0001O01O000010O0000000010O00001O0010O000001O0001O01O00001O000001O01O00001O00010O001O01O01O000001O01O0000001O000001O000000001O000000001O0000001O00000O101O000O1000001O0O101K4H9F9Aa0CbU94PjFf0C=B>J6M20000O2O00001O00010O00001O00000010O000001O0000010O0000001O0001O01O00001O0001O00010O000000001N100H8J6L4M3M4O0O1000001O000O1001O0001N10000000001O0O1000001O0000000O10001O0000000O101O000O1000001O00000O101O000000000O101O000000000O101O0000000O10001O1O0O101O001O0O10001O0000001N10001O00000O2O00000O100000000O100000000000000O02OO10001O000O101O000O1000001OTJ"}, {"size": [848, 480], "counts": "`6j1fh0O100000000O2O0000001O0O2O2M:F6K;D7H;FbUb0?oi]O`0A;E3M2M101O00000000000O10000000O10O1000O100000000O11O000O1000O1000O1000000000O100000O01000000000000O100000000000O1000O1000000O10O10VOUWONlh01VWONjh01XWONhh02XWOOgh01[WOMeh03[WOMeh02]WOMch02^WONah02`WOMah03_WOMah02`WONah0OaWO1_h0NbWO1_h0OaWO1_h0KeWO5[h0HhWO8Xh0EkWO;Uh0AoWO>Qi0100O1N2O1N2L3N3N2O1N2N1N3M3N2N2N101O02O00001O0000001O0ZOQWOJPi0OXWO0jh0H^WO6_i0O1O000O0100O1O001O1O100O100001O000O10000000O010O1N2O1N2N1N3L5M2000O1000001O0O10001N100001O01O00001N1000001O00001N1O101O00001O0000000O101O00001O0O101N11O000001O0O101N2O00001O0O2N101O000O2O00000ORnj5"}, {"size": [848, 480], "counts": "Y]e1`0oi04K5K5K4M3M3M3L4M3M3M3M2O1N3N1N3M2O2N1N3N1N2O2M2O1O2N101N101NcM_XOl1bg0PNaXOQ2og000O1001N100O1O2N1O001O1O1O1O1O001O1O00RO_XOnN`g0n0fXOPOZg0l0lXOSOSg0k0oXOUOQg0h0RYOYOmf0f0UYOYOkf0e0XYO[Ogf0c0\\YO]Ocf0`0aYO_O_f0?dYOA[f0>fYOBYf0=jYOCUf0mZOASe0?mZOASe0?nZO@Te0>lZOAVe0>jZOBVe0?iZOAXe0>hZOAZe0?eZOA\\e0>eZO@\\e0a0Z2O0010010O010O10O2O0O3N3L4\\VOTO\\i0P101O2OO11O01O2N3M1N3M1N2N3M2M5K6IVjc7"}, {"size": [848, 480], "counts": "Z8c0li01000000O100000O1000O10000000O100000O010002N3L5L2N4L1O1OPh:OoWE;dUOGni0>O2OO010O100000O100000O10O1000000000O1000O1000O100000000O1000O1000000000O10O100O10O10O10000000O1000O100000O1000000000O10O1000O1000000000O100000000O01000000000O0100000O100000O100000O100000O10O1000O1O10000000O100000000O1000O1000O100000O10000O0100000000O10O10000000O01000000O10O100000000000000O100000O10O10O100000O100000000O10000000O010O1000O10O100001O0000O01000000000O10O1000O10O100000000000O01000O10O10O1000O100000000O01000000O1000O100000000O10O1000000000000O10O10000O0100000O100000O1000O2O1O001O0O3N4I^oh4"}, {"size": [848, 480], "counts": "i[T6S1^h0R1iNU1lNT1L301O0000001O0000000000000000O1000000O100000000O1O1N2N2L4L4DXOn0YOU1_NchY5"}, {"size": [848, 480], "counts": "W]X2?mi08J4L4M3L3N2N2N2N2N2N2O2M3N1N2O0O2O2N1N100O10001N101O0000000000000O10O1O100O2N10O11O0O1K`WOYNah0d17N2N3N100O2O0O2O0O3N1N2M3M3M3M3M4L4O1IUVOEZR`8"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "SfX47Xj04M2M4M5K4VYOEWc0?_\\Oi0_b0ZOY]Ol0fb0WOU]Ol0jb0VOi\\OV1Vc0lNa\\O[1`c0fNY\\O_1gc0cNU\\O_1lc0bNQ\\O^1Qd0eNj[O\\1Wd0iNb[OW1ad0kNX[OX1kd0iNoZOX1Ze0L`ZOlNhe0f0iZOoN\\e0j0nZOkNYe0o0R[OWNce0_1n1H8K4L6J5J9I5G]m[7"}], [{"size": [848, 480], "counts": "Th0\\2Uh0O1O1O2N2N1O1O1O2N1O1O2N1O2N1O2N1O2N1O1O2N1O1O2N2N1O1O2N1O1O2N1O2N1O2N1O2N1O1O2N2N2N1O2N2N1O1O2N2N2N1ObcQ;"}, {"size": [848, 480], "counts": "\\RW18Wj06J3N1N2O1N4L001VOXOVWO38m0Zh0j0O100000000001O00000O1O100O100O2O000O10001O0000000010O0000001O000001O00000000001O01O0000000001N1001O00100O1O001O1O1O0100O0010O0001O0010O0001N2O000000O100001O0O1O1N2M3K5I7J6I7J8Ihe6M]ZI6I6L2L5N1O11O007I:DQUg0=^jXO?Dg0YO4M201O1O00001O00010O00001O01O0001O01O0001O0010O0001O00010O00001O0001O01O0000010O0000001O00010O00001O00001O01O01O0000010O0000001O01O00000001O0001O000O2O01OO10001O000000001O00000O10001O0000000O2N1N3H7F:F;BiU9JYjFd0B;B?G8K5O2O0O2O0000001O00010O00001O0000001O0001O01O0000010O00001O0001O01O0000010O0000000010O000000000N2J7I6L4L4N2O1O2O000000001O00000000001N10001O000000000O2O00000000001O0O10000000000O10001O0000000O101O000O10001O00000O2O0000001O000O1000000000000O101O001O001O0O101O1O0000000O2O001O000O2O0000000O2O0000000000000O10000000000O0100000O1000000OUJ"}, {"size": [848, 480], "counts": "`6j1fh00000O100000000O100000000O101O0000000O2O1O2M7I7J=A`0_Oejc0d0iT\\O?B;E1O1O1O0O10000000000O1000000000O100000O0100000000000000000O1000O10000000000O10000O1000O100000000000O1000O1000000000O1000O010000VOTWO0lh0OVWO0jh0OXWO0hh00YWOOfh02[WOMeh02\\WONdh01]WOOch01^WONbh01_WOOah00`WOOah00`WO0`h0ObWO0^h00bWO0^h0OcWO1]h0MeWO3[h0JhWO5Yh0GkWO9Vi0000O1O1O1O0O2K5M3N2N2N1O2N2M3M3N101O0011O000000001O0O1\\OoVOIQi04SWOKnh0OYWOOih0J^WO3ai0O00000000O010O1O002N1O10000000000000O100000O010O1N2O1N2M3M3K5O100001N1000001O0O10001O0000001O00001N10001O000O2O000O2O0001O01O000O101O0000001N100O101O00001O00001N101N101O000O2N100O2O000NSdg5"}, {"size": [848, 480], "counts": "aTl1\\1eh0d0D:J5L4L3M4M2M3N2N2N2N2N1O2N101N2N101N2N100O2N101O1N101N101O0O2O001O1O010O01O1O3N1N5K5K2N2N000gNQYOQOQg0j0SYOUOof0f0TYOZOmf0c0VYO\\Okf0b0VYO^Ojf0a0WYO_Ojf0>XYOBhf0=YYOCgf0Qj02N2O1O0O2O0N5K2YOg0H8O10001O0000000001O00000O1O1O101O0O1000001N1001O00000010O01O0000001OO101O0001O0001O0O1000001O0001O001O10O01O1O00100O0001O01O01O001O00010O00001O1N10000000000O1O1O1L4J5L6I6H8I8Kge6L]ZI9I3L4M2O1N2002N8Gjog0OSPXOC:Eced02[Z[O6[VOTO[i0X1I6J2M2O1O00O10000000000000000O10O1000O1000000000000000000O01000000000000000O100000O0100000000000000000000O01000000000O10O10O100WOUWOMkh02VWONih02YWOMgh03YWOMgh03ZWOLfh03[WOMdh04]WOKch05]WOKch04^WOKch04^WOLbh03_WOMah01aWOO_h0OcWO1]h0NeWO1[h0MgWO3Yh0HkWO8Vh0DnWOaf0A_YO>cf0@]YO?hf0]OXYOb0]h0L3N3M3K]ai7"}, {"size": [848, 480], "counts": "\\8e0ki000O100000O100O1000O2O0000000000000000000O010000O10O10000000001N1000001O7Hga`0L\\^_OH8ZOf0_Oa0^ORal4"}, {"size": [848, 480], "counts": "nPT46Vj0:G6J4M3M3N2M4N2M3L3N2O0O2N6J2O1N10001N101N2O1O0000001OO100001O00EfWO`NYh0`1iWO^NXh0b1E\\SA8J7I2M110000000O10O100000000000O10O10O10000000000O0100000O0100000000000O10O100000000O10O1000O10000000000000O10O100000O100000O10O100001OO01000000000O10O1000000000O010000000000O010000000000000O100000O100O11O000O100000000000O10O10000000O010000000000O10O100000O10O1000000O01000O10000000O10000000000000000O0100O1000O10000O10000000000O10O10000O1000O1000000000000O01000000O100000O010000000O100000O1000O10O1000O100000000O01000000000O1000O1000O1000000000000O10000000O1000000000000O10O100000000O101O1O1O2N1N3MmP_4"}, {"size": [848, 480], "counts": "ko_6a0Wi0k0VOh0[Oe0[Od0ZOf0XOh0J7O0000000000001O000000O1000000O1000000O1O1O1O1N2M3K5J6A?DBn`71h^He0A?E:G:G8M3O2O0O101O00001O00001O00010O00000010O0001O0000010O00001O000010O00000001O01O000010O0000000000N3H7K5L4L4N3N1O101O00000O1010O000000O101O00000000001O0O1000001O0000000O10000000001O000O101O000000001N100000001O0O10001O0000000O10001O0000000O10001O001O0O2O001O0000000O2O0000001O0O101O0000000O2O00000000000O1000000000000O10000000000O101O00\\I"}, {"size": [848, 480], "counts": "R7g1ih00000O10001OO10000000000000000O1000O1000001N1O4M3M;EJ6L4M4N1O1N2O1O2N1O1N4M2O6I2N2N3M101N2O1N2O1N2O1N101N101O0O2O1O1N2O1O0O3N1O1O2NoVOEng0:oWOKPh04kWO1Wh0MhWO4Yh0LdWO5_h0IWWO`0lh0_ORWOa0Pi0_OnVOa0Ti0<3L5K5K9^Omaf5"}, {"size": [848, 480], "counts": "i8f0ji000O0100000000000O10000000000000000000000O010000000000001N2O1O1N6K3L3NQR>=amA1O1O10O010000O10000000000O010000000000O010000000O1000000O1000O1000O10000000000O1000O1000000000O100000000000000000O01000O100000O1000000000000O1000O100O100000000O0100000O10O1000000000O1000O100000O1000O1000000000000O1000O100000O100000O0100000000O1000O10000000O100000O10000O1000O10001O0000O1000O10000000O1000O100000000000000O100000O1000O1000O10000O10O100000000O10000000O1000O10O1000000O10O10000000O1000O0100O0100O10000O1001O00O10O1000000000O1000000000000000O010000000000000O10O10000000001O0O2O1O001N3N3JW`a4"}, {"size": [848, 480], "counts": "W`]6n0Qi0c0ROm0ZOe0YOg0B?]Ob0J6N2O1O1000001O00000O100000O100O10000O100O1O1N3M2L5I6G9H9@`0A`0@a0Ab0WN^WOe0cho4"}, {"size": [848, 480], "counts": "Zca54Wj09I7J4K5M3L5K5L3M2N1O2O0O2O0O2N10001O0O2O00O100O1O001O1O1O1O1O100O1O2N100O100O2O00000O2O1O0O2O0O2N2O1O0O2O1N2O1N3L5J7IoVZ5"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "f^d45Si0]1ZLfNg]O`1Vb0dNf]O_1Xb0dNc]O`1\\b0dNn\\OGoMi1Re0bNl\\On1Tc0UNg\\Om1Yc0ZN_\\Og1ac0]NY\\Oe1gc0_NT\\Oa1mc0cNn[O^1Rd0fNh[O[1Yd0lN^[OV1cd0nNW[OQ1kd0TOnZOnN4c0Re0_1[[OPNod0k1a[OYMPe0b2b1I8E:Ma0^O=B9Dh^T7"}], [{"size": [848, 480], "counts": "ci0m0di0O2N2N1O2N1O2N1O1O3M2N1O2N1O1O2N2Nbhm;"}, {"size": [848, 480], "counts": "gmW1:Uj02N2O1O1O1N2M3M2]Oc0ECQ[86mdG9_O`0C=E:K6N2N1O10001O00000010O0001O0000010O0000001O010O00001O01O0001O00000010O0001O0001O0000010O000O1O1K5J6L5K4M3O1O1000001O00000000001O0000001N10000000001O00000O1000001O0000000O2O000000000O2O00000000001N1000001O00000O101O00000O2O000000000O2O000000001O1N2O001O0000000O101O00000O10001O000O2O0000001O000O100000000000000000O10O100000001O0O100000001O00RI"}, {"size": [848, 480], "counts": "Z7f1jh0000000000000000000O100000000000001N101O0O5Kf0XOmed0_O_Z[Og0@=D9H2L100000000000000O10000000O1000000000000000O01001O00O10000000000O10000000O1000O1000000000O100000O100000O1000O100000000O10000XORWONnh01TWONlh01VWONjh01XWONgh03YWOMgh03ZWOLfh04[WOKeh04\\WOLdh03]WOMch02^WONbh02^WONbh01_WONbh00aWOO_h0OcWO1]h0NdWO2]h0JfWO6Zh0GiWO8Yh0CkWO=Si0100O1O0O2N2N2M3N2M3N2N2M3N1O2N2N101O1000000000000000[OSWOGnh05VWOJkh00[WONei0O1O001OO01000O1O1O1O1O1O100001O000000000O010O1000O1N2O1M3N2M3N2N2O100000O2O0000001N1000001O000000001O000O2O00000O2O0000001O0000001O0000001N101O0O2O000O2O00001O001O001N100O101N100O2O1O1OcRj5"}, {"size": [848, 480], "counts": "lXe38Vj04J6K4M4L3M4M2M3M4M2M3M3M3N2N2M2N3M3L4M3M3M3N1N3M2M3N3L4M2N2O1N3M2O2L3M4M2M3M5L3N1M3N3N1N2O1O1N2O1O1O1O1O1O100O010000O0100000O10000O100N3J5G9ZNnYOgNZf0T1VZO[Noe0c1a1N2M3N2N2M2O2N2M3M3N2N101N2N1O2N2O0O2N2O1N2N2O0O2N2O1O1N2N3N001N3N3L[kn5"}, {"size": [848, 480], "counts": "o8g0ii000O10000000000000O10000000O100000000000001N10001O00001O0O8Gkl>KZSA;F3L10100O1000O1000O100000000000O01000000000O1000O10000000O100000000O010000O100000O010000000O1000000000O1000O1000O100000000000000O010000000000000000O1000O1000O100000O10O1000000O010000000000000O10O1000000000O100000000000O1000O10000000O10O100000001OO10O1000000000O10O10O10000000O1000000000O10O10000000O1000O1000000000O1000O100000000O0100O10000000O10001O0O10O1000000O1000O010000000O1000O1000000O1000000O10O10000O010000000O1000000000000O100000000O1000O1000O10000000000000000000000000000O2O001O1O001N4M2Llid4"}, {"size": [848, 480], "counts": "cVZ6l0Pi0e0WOi0ZOe0TOl0DG9N2O1O101O000000000O100000O10000000000O1O1N3N1N2K6K4E_Oc0\\Oe0XO[TS5"}, {"size": [848, 480], "counts": "c_X5>ni06K6L2M3M4M2N2N2O1N2N3M2O1N2O1O0O2O1O0O10001O0000O100O010N2O1N2N2O1O1O2N100O100O2N101N1O101N1N2O2N2N2N2N3M3M2M4M3Mcod5"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "oTa43Zi0`0lVO0gh0Q1aL`Nh]Oe1Ub0_NR]OOQNe1jd0cNP]OKPNe1Pe0fNiZO^Ol1_2Zc0\\N`\\Of1`c0`NX\\Ob1hc0`NU\\Oa1kc0aNR\\O`1nc0cNm[O_1Sd0eNh[OZ1Zd0lN_[OT1bd0ROW[Om0kd0YOmZOf0We0;V[OQNPe0i1^[O`MPe0[2f1DhVOjN_h0i1K2M2O2O01O00010O0000010O0001O0001O01O0000010O000010O00010O00010O000001O0000010O0000001O010O00001O00010O000010O000001O0001O01O000001O01O0001O00000000000000001O001O0000001O000O10001O0000001N1N2K6G8D=EgU9CcjF`0]O`0B?G8L5M3O0O101O00001O000010O000001O01O0001O0001O0001O001O01O0001O0000010O00001O0001O0001O0000O2O0M3J6K5K6L3N200O101O000000001O0000000000001N1000001O00000000001O000000000O2O000000001N100000001O0O100000001O000O101O0O10001O00000000000O101O0000001N101O1O0000001O0O1000001O0000001N10000000001O0O2O00000000000O10000000O100000O101O00000O10001O00000000000O1000gH"}, {"size": [848, 480], "counts": "e7f1jh00000000000O10O100000O0100002N2N0O2O1N2cNXWO3Jc0Rj0Ahjc0>iT\\Ob0_O8J0N2O001N100000000000O01000000000O1000000000O01000000000000000000000O1000O100000000O1000O100000000000000000O100000O1000O1000000WOVWOLjh03WWOMih03XWOLhh04XWOLhh03YWOMgh03YWOMgh02ZWOMgh03ZWOLfh03[WOMeh02\\WONdh02\\WONdh01]WOOch0O_WO1ah0MaWO2`h0LcWO3^h0EiWO;Vi0O010000O100O1L4N2M3N2N1O2M3N2M3N2N2O0O2N200100O00001N1[OQWOIoh04UWOKkh01ZWONjh0F_WO9]i0O1O00000O100O10N2O1O1O1O1001O00000O1000O100O010O001O1O2L3K6M2N1100000000O10001N10001O01O01O000O101O00001O0O101O0O1O20O00000001O000O2O00001O0O101N11O01O000O2O001O0O101O001N100O2O0O101O0Ojal5"}, {"size": [848, 480], "counts": "l_U38Sj07L4L3L4L4H9L3L4L4L4L3M4J6J6L4L3M4M2M4K5L3M3M4K4N2M4M2L5L3L5L3N3L3N3N1N2O1N3N1O1O1O1O100O100O011O00O100000000000001O101N1\\MaZO5`e0GgZO5Ye0HlZO6Ue0HoZO5Qe0JR[O4od0KR[O4nd0JU[O4md0JV[O4kd0IY[O4hd0J[[O4gd0J[[O3gd0K\\[O3ed0L][O2ed0L][O2ed0L^[O0dd0O^[ONed0O^[ONdd01^[OMdd01_[OKdd03][OJfd06[[OGhd07[[OAld0=e2N1O2N2N110O0O2O0O2O1N2O1N3M3N3LlXe6"}, {"size": [848, 480], "counts": "[9d0ki0100000000000000O10000O0101O1O000000O010001O1N10002N2M102NX]<6`bC2000000O01000O10000000O01O1O1000000O0100000000O100000O10O100000000000O0100000000000000O10O1000000000O100000O100000O01000000O010000O1000000000O100001O00O0100000000000000000O10O101O00000000O0100000O1000O1000001O00O1000O100000O1000O100000O1O2O00000000O011O00000O010O1000O10O10000O10000000000O10000000O100000O011O000001O000000O010000O100000O010000000O10000000O020N010000000O0100000000O10O10000000O100000O10O0100000O10O1000000000000O010001O00O100000O1000000000O100000O10000000000000001O000O2O1O1N2O1O2L3NaSh4"}, {"size": [848, 480], "counts": "olV6j0Ui0b0]Oc0WOi0UOj0A`0F9_Oa0M3O1O1000000O101O00O100000O10000000O1O1O1N2O2M2L5H8DQWO^OTi0`0mVO]OXi0`0>N2N11OO2N1O4L4K\\YP7"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "o^U1:Uj03N1N2O0O2O1M3K5XOh0J5N2000001O000001O0O10000O2N1O100000000O2O000001O01O01O1O0010O00000000000000001O00000000010O0001O00100O1O001O1O0010O001O01O01O1O0000001O0O2N1K6K4K5M3N2N2N2N2O1O1O002M2O1M4KehW1O[WhN9J4M3M3O001N1O2N101N1O000010N1N21OOZWOROlg0l0SXOXOlg0e0UXO]Olg0a0UXO@jg0?VXODig09XXOIgg06YXOLfg03YXOOgg00ZXO0gg0NYXO3gg0LYXO6fg0IZXO8fg0G[XO:eg0D[XO=eg0B\\XO?cg0@]XOa0cg0^O]XOb0dg0^OZXOe0eg0YOZXOj0fg0TO[XOn0dg0ROZXOP1fg0oNZXOR1fg0nNYXOT1fg0jN[XOX1^h00O1O2M2N2M4M2O1O2N1O1M4N101N1O110O00001O00000001O01O000000000001O00000000001O000000000O2O00000000001O0O101N1K5I8G8Ab0CT[8OldG=@?C=CY2N2O1N2N2M5J^Pd7"}, {"size": [848, 480], "counts": "g9e0ki00000000O1001O0000O100000O101O000000O0101O001N101O1O1N2O2N7Hcb;=o\\D3OO010000O10O01000000O100O0100000O1000O10O1000O10000000000O1000O100000O10000000O100000O10O1000O1000000000000000O100O0010O001M2N3K6K^]Q2MibnM1O1N2N2O2N001O1O1O1O1O0O2O1O00000O10N20O10O1000O11O000O10O100000O1000O1000O1000000000000000O10O10000000O10O10O1000O10O1000000000000O0100000000O1000000000O100000000000O100000000000O10O10010O0O2O001N2O0O1O2O4KUSh4"}, {"size": [848, 480], "counts": "RmV6U1gh0e0YOg0ZOf0[Od0B>A`0K4N200O1000000000000O10O10000000000N200O1O1N3M2L4L5B=E[WOAgh0>[WOAeh0;aWOC_h08jWOCWh09PXODPh09V1L3N2N2O2N2M3NmmS2e0ZQlM>eVOnNbh0f1I4O1N20O01O0000001O01O0001O01O01O000001O01O001O01O01O00000010O0000001O01O00001O01O0001O001O00010O0000010O0000010O00100O000000010O0000001O0001O00000000001O000O10001O000000001O0000001O000O1O1M4G8E=_ObU9@ZkF5ZOe0F9F:L5K401O1O00000001O01O1O2O3L5K1O1O00100O0000001O010O00000010O000001O00010O000000010O0000000000N3H7K5L4L4N3N100000001O000000001O000O100000001O000000001O0000001N1000000000001N100000000O2O0000000O2O000000001O0O10000O2O00000000001N10000000002N002M100000001O00000O10001O00000O101O0000000O10001O0000000000000O1000O10000O0101O000O10001O000000nG"}, {"size": [848, 480], "counts": "`8i1gh000O100000000O10000000000001O000000O1000000000001O1O1O8H`0@VPR4ZO_PnK2N2N100O1N2N3L3M3N2O10000001O00000000001O00000010OO101O000000010O001O00001N1001O0001O000O10001O0O100O2O1N100000001N2O0000001O0O100O2N3MPWi5"}, {"size": [848, 480], "counts": "Wn;4Zj04M2M2O2M2N2N3M3N2N2M2O2N1O2M2O2M3M3N1O2N1N3N2N2N1O2M201M2N3N2N1O2N1N3N1O2M3N2N1N3N2M2O2N2N2M2O2N1O2M3N2M2O2N1O2N1O2M2O2N2N1O2N2N1N3N1N2O2M2O1O1N2N2O1O1O2N1O1O1O100O1O1O10O0100O10O010O1O1N2N2O2M3N2G8L5M2YNnYOoNSf0i0YZOQOie0l0\\ZOQOfe0k0]ZOQOfe0n0\\ZOoNge0o0[ZOPOge0m0\\ZOPOfe0n0\\ZOQOee0m0]ZOROee0l0\\ZOROfe0l0]ZOROde0m0]ZOPOfe0o0[ZOlNje0S1WZOjNle0U1UZOjNme0T1TZOkNme0T1TZOjNne0T1TZOkNme0T1i1N1O1O100O2N1O100O1N3O0O1O1O1O2N100O2N1O1O101N101N1O2O0O2O0O[cT8"}, {"size": [848, 480], "counts": "U:h0hi000000000O10000000O10000000001O1O0O01O1N2O1O4L1O1O1O1N2O2N2Mb^Q5KdanJ101N011O002N1O0O11O0000O2O1O1N1000000O10000000000O011O0O10000000000001O0000000000000000000000000000O1000O100O100O10000O100O1O1O100O2O0O2N2O\\Xg4"}, {"size": [848, 480], "counts": "[g\\625>Si0l0YOd0XOg0ZOg0_O`0B>D^Ok]T7"}], [{"size": [848, 480], "counts": "Pj0`0Qj0O001O2N2N1O2N2N3Mb\\T<"}, {"size": [848, 480], "counts": "g5m0bi010000000O2O0N200O100000001O0O2O00000000000O3LRke1NnTZN4O10001O0001O0O1000010O0000000000010O0000010O000001O0010O01O001O001O1O10O01O2N1O1O1O100O1O2N2N4M5J4L6J3MO2N2O0010O000001O1O000000001O00000000000O100N2N3J5K5L4J6J7J7Gge61[ZI5K5L4M2N30O2NbUg0H_jXO?Dj0VO5N2N2O00010O00000010O000001O01O01O000010O0000010O0001O010O00000001O01O0000010O001O00000010OO20O000010O000010O0001O01O0001O000001O00000000000001O01O000000001N1000000000001O000000001O0O100N3J5H8H9DA?D;L4L5L31O01O001O00001O01O01O00001O01O0001O0000010O0000001O00010O00000010O000001O000001O0000000O2K4J6K5K5N2O1O101O00000000001N1000010N1000000000001O0000000O2O0000001O0O1000000000000O10001O0O1000001O0O10001O00000O2O000000000O10001O000000001N10001O00001N10000000001N1000001O000O2O00001N1000001O00cG"}, {"size": [848, 480], "counts": "P9d1lh00000O1000000O1O1O1O1O1O1O1O1N2N102M2O1O001N2O1O1O2O0O011N1N2O1N2001OO1O1O2L300O10000O2EQVO3Wj0Nm\\V26kbiM4N2M3J6H7N2I8N1O0O2O1O10O1000O]OoVOIRi05oVOKQi04QWOKnh05SWOJnh05SWOKmh06RWOJoh05QWOKoh05RWOJnh05SWOKmh03UWOMkh02VWONjh00XWO0ih0J\\WO6dh0G_WO9\\i0000O1O1N2N2N2N2N2N2N2N1O2N2N2L4N101O1001O001O000O10001XOTWOJPi0DjVO1?:bi000N1000O11N01O1O100O100OO11000O1000O100O2O0N101O1N2N2M3M3O1O11O0O1000000O2O0000001N1000001O001O0O10001O00001O0O101O000000001O000O10001O001O000O2O00001O00001N101O00000O2O1N2O00boV5"}, {"size": [848, 480], "counts": "W=d0ji02M3M4K5L3L5L2O2M3N2N2L4N3M3L3M3N1O0O1M300O010O1O100O1N2O0O2O1OO20O1010OO10001O0kYOaM[d0`2d[ObM[d0]2e[OeMYd0[2f[OiMXd0W2g[OkMWd0U2i[OnMUd0R2k[OoMTd0Q2j[ORNTd0n1k[OUNTd0j1l[OYNRd0h1l[OZNSd0f1l[O\\NSd0c1m[O_NRd0`1n[OcNPd0]1o[OeNPd0[1n[OhNRd0W1m[OkNRd0T1n[OnNRd0Q1n[OPOQd0P1o[OROPd0m0P\\OTOPd0k0P\\OVOPd0i0P\\OXOoc0h0P\\OZOPd0d0P\\O_Ooc0`0Q\\OAoc0=Q\\OEnc0;R\\OGmc07U\\OIkc06U\\OKkc02W\\OOic0NY\\O3gc0KZ\\O6fc0H[\\O9dc0F^\\O;ac0C_\\O?ac0@_\\Oa0ac0^O_\\Oc0ac0[O_\\Og0ac0XO_\\Oi0ac0VO`\\Oj0`c0TOb\\Ol0^c0TOb\\Ol0^c0SOc\\On0]c0POe\\Oo0\\c0oNe\\OP1\\c0POe\\Oo0\\c0nNf\\OR1[c0kNh\\OT1Xc0lNi\\OS1Wc0lNj\\OS1Wc0lNj\\OT1Wc0kNj\\OT1Vc0kNk\\OU1Uc0jNm\\OT1Uc0kNk\\OU1Vc0iNl\\OU1Uc0kNk\\OU1Vc0jNk\\OU1Uc0kNk\\OU1Vc0iNk\\OV1Vc0iNk\\OW1Vc0hNj\\OX1Wc0fNk\\OX1Vc0gNk\\OY1Vc0fNi\\OZ1Xc0eNi\\OZ1Yc0eNg\\O[1Yc0eNg\\OZ1[c0eNe\\OY1^c0fNb\\OY1_c0fNb\\Og0Qd0YOo[O`0Yd0_Og[O?[d0Ad[O=`d0B`[O;dd0D\\[O:gd0EY[O7ld0HU[O3Pe0Kl2O2N1N2Ocf18RYNOmNW10N2O1N3O1N2M3O1N2N2N1O1N3N4K6J^me8"}, {"size": [848, 480], "counts": "fha32^j02N1N2O0O4L4L3N3M1O1N010000O10000O10O100000O10000000001N01000000000000O10O1000O1000O100000000O100000000000O100000O010000O1000O10000000O1000O10000O100000O100000O1000000O01000000O10O10000O010000000000O10O10000000000O100000O10000000O1000O10000000O100000O0100000000000O0100000O10O10O100000O100000000000000O100000000000000O10O10000000000000O1000O1000000000O10010O1O0O101O0O1O2N101N_Wo3"}, {"size": [848, 480], "counts": "aTn6`0Xi0j0\\Oc0[Oe0\\Oc0ZOf0^Ob0F;M2O1O100000000O1000000000O10000000000N2O1O1N3M2L5I7C=B=@b0^Oe0ZOS1_NYV_4"}, {"size": [848, 480], "counts": "Sgg1?mi0:G6K4L4L5L5K6J4K3O0O2N10000O100O10000O100000O1O100N2O1O1N2N2M3N2O1O1N200N2O100O2O0O101O001O0000001O001N20OO2O1N101N2O1O1N2N2N3L3N3L5KP_m8"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "PXX5:Z31[MHSe0=V]On0eb0WOS]On0kb0VO[\\O^O^Nb1We0UOT\\O^1lc0cNQ\\O_1nc0dNo[O]1Qd0fNk[O[1Ud0gNh[OX1Zd0kNa[OW1_d0lN\\[OU1fd0nNT[OQ1od0TOkZOj0Xe0[OaZOd0ce0=hZORN\\e0j1oZOeM\\e0T2d1F;J5M5J8I8Fb0\\OW[a6"}], [{"size": [848, 480], "counts": "mg0c2ng0O2N1O2N1O2N1O2N2N2N2N1O2N2N2N2N1O2N1O2N2N1O2N2N1O2N1O2N2N2N1O2N2N2N1O2N2N1O2N3M2N1O2N2N2N1O3MbmT;"}, {"size": [848, 480], "counts": "jT51_j03cUO0Sj0;L7I3M2N00001O10O000000000O110O01O010O2N1O2OO01O2N10O01O1OO1O11O10O00000M3O2M2O1N2O100O1000001O0000000O101O0O2O0BTVO01OR]^15R]bN2N2O1O1N2N1I8VOj0L3O10001N1000O2N1O100O1O10001N1001O000000001O010O001O0000010O00000001O0O100000001O01O001O001O100O001O000010O00001O1O00001O01OO2O0000001O0000000O1O1M3O1J6K5L4J6J8Ig^T1=n`kN<^VOnNPi0f1A5N2O001N11O00001O01O00000010O0000010O00001O01O000010O000001O00010O0000010O0000001O00000010O0001O000001O01O001O01O01O001O0000000001O01O0000000001O000000001O000O11O0000000001N10001N1000000O2M2G9I7I8C>DQ[85bdGc0E;B>G8N2O1O1O2O00001O00001O00010O00001O0000010O00001O01O000001O00000010O000001O01O00000001O0001O00000O1M3J6K6K4M3N2O101O000000000O101O0000000000001O00000O1000001O0000000O2O00000000000O101O00000O100000001O0O1000001O00000000iG"}, {"size": [848, 480], "counts": "]9h1hh000O10000000000O10000000O1000000O10O100000000000000O1000O100000O10000000O1000O10000O1000O3N00O1O10000O01000O100O100O101N8I2M4L4M3L3M3M3M3M4L3M4LXTd12fk[Nd0lUODnh0Q1N1O0000O100000000000000000O0100000000000000O01000000000000O1000O10000000000O100000OZOQWOMoh01UWOMkh03UWOMkh02VWONjh02WWOLjh03WWOMih03WWOLjh04WWOKih04YWOJhh06WWOKhh05YWOKgh04ZWOLfh02\\WONdh01^WOMch00`WO0`i00O100O1O1O1N2M3O1O0O2N2M3N2N2N2O1N1N3M20100001O000O101O0[OmVOLUi00RWOLRi0GZWO6ai0O1O0O10O1000000O0O2O1O1O10000000000000O0100O1O1O1O1O1M3L4M3O100000O10O11O00000O101O0000000O2O00000O2O00010N1000000O2O001O00000O2O0000001O00001N1000001O00001N100O100O2O1N100O2N10nZX4"}, {"size": [848, 480], "counts": "kl<71Nbi0V1ZO9K5H7G9J6L5J6J5J7I6J6J7J5J7K4L4M4L3N2M3M4N1N2N2O2M2N2N2O1O2N100O1O1O100O2O000O1O1000000000001N]JZ[O^5ld00O12N1O1O01O000000000000000000001N100001OO^LU[Oa1kd0SNl[Ob1Ud0YNS\\Oc1mc0[NX\\Ob1hc0\\N[\\Oc1ec0\\N_\\Oa1ac0]Nc\\Oa1]c0]Nh\\Oa1Wc0]Nm\\Oa1Sc0^NQ]O_1Pc0_NS]O_1mb0`NU]O_1lb0_NW]O_1jb0_NY]O_1gb0`N\\]O^1eb0`N]]O`1bb0^Na]Oa1_b0^Nd]O`1]b0_Ne]O`1Zb0_Ng]Oa1Zb0^Ng]Oa1Yb0^Ni]Oa1Yb0\\Ni]Oc1Xb0[Ni]Oc1Zb0\\Nf]Ob1]b0\\Nd]Oa1ab0\\N`]O[1kb0aNW]OZ1Rf0M3N2L4M3M3M2J8I^PX9"}, {"size": [848, 480], "counts": "S;h0hi000000000000O010000000000O0100000O10000000O10000000O100000O2O001OO0O2N2O1N2O1N1O2N2N2O1OO10O2O1O1O1O100O100N2OgV_18Ri`N2M1O00010000000O100O010O100O010O10000O1O0O2O1O1O10O1000O100O01000000O1000O10000000O1000000000O1000O10000000O100000O10000000O100000O100000O1O010000000000O010000000O100000O10O10000000O1000O1000O1000000O10O10000O01000000O0100000000O10O10000000O1000000000O1000O100000000000000O10O1000O100000000O10000000O1000O10000000O10O10O10000000O100000O1000O1000O10000000O10O1000O100000O010000000O01000O10000O0100000O10000000O100000000000000O10000000000O0100000O2O0000000O0100000000000O10000000001O001O1O1N3N0O2O2KgbP3"}, {"size": [848, 480], "counts": "khl7l0Ri0d0YOe0\\Oe0VOi0@`0B>K5N3M200O101O000000O100000O1000O10000O1O1O1N2O2L3L5H8C=^Oc0D>ZOh0YOS\\a3"}, {"size": [848, 480], "counts": "Tdc17Pj0`0D8K4K6L3M3M3M2N2N3M3M3N1O2N1N100O1000000O10O10000O1O1O1N2N2N2O1O2M2O002N1O1O100O1O2O000O101O00001O1O000O101N1O2O001N2N2N1N3N2N3M2N3L4J9FWmo8"}, {"size": [848, 480], "counts": "o2c1mh000O1001OO100O1O1000000000000O1000000O2O011AoVOZOYi0=jVOAXi0=iVODXi08jVODHOdi06eVOLdi0M^VO0lof;"}, {"size": [848, 480], "counts": "YRV62_32Zc05Z\\OV1ab0POT]OW1jb0mNo\\OW1Pc0nN^\\O_OSNh1_e0nNT\\Oa1kc0aNQ\\Oa1nc0bNn[O`1Rd0bNl[O]1Ud0eNh[O\\1Xd0eNe[O\\1\\d0gN`[OX1bd0kNY[OU1id0QOoZOm0Ve0WOcZOTO47]e0h1nZOiM\\e0R2d1I7I7G;K6K4L8G8G8I8GYQa5"}], [{"size": [848, 480], "counts": "Zd0V6[d0O2N1O1O2N2N1O2N2N2N1O1O2N2N1O2N2N2N2N2N1O2N2N3M1O2N1O2N2N2N2N2N1O2N2N2N1O1O2N2N2N1O2N2N2N1O2N2N2N2N1O2N2N2N1O2N2N2N1O2N2N1O2N2N2N1O2N2N2N2N1O2N2N1O2N2N1O2N2N2N2N2N1O2N1O2N1O2N2N1O2N1O2N1O2N2N2N1O2N2N1O2N2N1O1O2N1O2N2N1O1O2N3M3MS^]9"}, {"size": [848, 480], "counts": "h5l0di00O11O000001O000001OO10010O0000001O00001O00O1001O0000000000001O01O01O0001O0001O0000010OO00101O2N4M0N6Jhl>I_SA4M3M3M2N4M1N3M2N2N1O100O1O1O0000O101O0O10000010OO1O1L5L4N1O2N2N3N4K3N2M[\\c12bc\\N4L3N2N2N2N2J5G:]Od0L20N2002N1O10O0O1M3L40000N2001O001O1O011N00001O0001O000001OO2O0O1O1000001O0003M0000O11O01O01O000001O000010O01O000000001O001N10000000000O1O1O1N2L4K5M3J6J6K7KTYU1LPgjN5I7M3L3ZWO\\O^g0d0]XO^Ofg0f0QXO_Oog0h0eWO]O[h0]1O00001O010O001O000010O0000010O000001O0000000010O0000010O0001O00000010O000001O001O01O0001O00010O000000001O00010O0000000000000001O00000001O01O0O110O000000001O000O100000001O000O100O1O1L4J7I6J7C>Be`72Z_H=_O`0D;F;K4N3M201N1000001O0000001O00001O01O0001O0001O01O0000001O01O01O00000000010O0000001O0001O00000000010O0O1O1J6I7K6L3N200O10SH"}, {"size": [848, 480], "counts": "a9k1eh000O101O000O0100000000000O10000000O10O10000000000000000O10O10O100000000O10O100000O100000000000000O010000000000000O100O1N2M2N3K5L4K5L4K4K6L:EVo^30oPaL3L3L4L5M4K2M2O1O1O10OO3N10000O100000O100O1000000O1000000N20000@aVONai0OdVOM^i0Mofi00fYVO1N101N001M3O1N2O1O1O1O100O1O100N2N10100O1O1O100O010O1O1O1O100O11OO10O10O1001N10001O00001O000O101O000000001N1000000O2O000O101O00001O00001N10001N1000001N10001O0O101N1000001O0O2O0O3N^]Q3"}, {"size": [848, 480], "counts": "fm]1o0Ui0`0F8J5I8I5K6K4L4J6L5J5K5K6K4L4K6J5K5I7L5K4L4M4L3L4M3N3N1N2N3M2O1O1O1N2O1O2O000001O1O2N000000000000O2O00000O10000O1O100O1000000O1000000O100000001O0000dKi\\O_1Wc0SN`]Od1`b0XNh]Od1Xb0WNP^Of1Pb0WNT^Oh1la0UNX^Oj1ha0TN\\^Ok1da0RN`^Ol1`a0SNb^Ol1^a0QNe^Oo1\\a0oMf^OP2Za0oMg^OQ2Za0mMg^OT2Ya0iMi^OW2Xa0gMi^OX2Ya0eMi^O[2Ya0aMi^O_2dd0000O1O1O100O10O1O10OO2M3M3L4J6G:I6VOTWO]OiYU8"}, {"size": [848, 480], "counts": "Z;h0hi0000O1000O100000O10O100000O100000O1000000O11O00O010000000O10O1000000000O010000000000000O0100000O100000O1000O1O1M3M3K6JgdP5M_[oJ3M2N2O1N110O1O1O1O1O1N1O200O100O1000O10O100000000000O1000O10000000O1000000O10000000O1000O2O00O1000O1000O1000O010000000O1000000000000O0100O10000000O10O100000O1000O100000O01000O1000O100000O0100000000O01000000000O10O1000O10O100000000O1000000O100000000O100000000O10000000000O1000000000O10000000000001N101O1O1N3N3LWei1"}, {"size": [848, 480], "counts": "ZlR9:_i0i0XOg0^Oa0QOP1_O`0G9H8G9M3N2O101N100000000000000000O100O100O1O1O1O002M2N2K5L4G:E:A`0_Oa0[Oh0nN[jX2"}, {"size": [848, 480], "counts": "V_e2;Rj06I7J5L3M4K6L3L3N4L4L3N1N2N2O0O2O0O100O100O01000O1000O001O001O1O1O1M3N2N3N1O2N1O2N1O2O00001O01O000001O0O011O10OO2O1N2N2N2O1O2M3M2N3M4L5J6FQRn7"}, {"size": [848, 480], "counts": "g36Sj08M8I4M1N101M3TOTOPXOP1ng0POQXOR1ng0oN`WOM9Z1Uh0oNbWOY1]h0>8G4L2OO01O1O1O002N6J010N1001O01N2Nj0mN^c65e\\I5L2O3J8I7K;D6K2N10O00001N1O101OO11O1OO1O100000000000O101O001O001O2M5K;mNcVO5RX_:"}, {"size": [848, 480], "counts": "Vj]7:Uj05K5K3N2M4nWOTOZf0o0cYOTOZf0m0cYO]OUf0e0gYO]OYf0d0eYOBVf0`0fYOBZf0`0cYO^O`f0d0\\YO\\Off0l0RYOROQg0R1hXOnNZg0R23J7K4I7I9L6J6I7I8H6J7I6If^X4"}], [{"size": [848, 480], "counts": "ja0f8ka0O2N2N1O1O2N2N1O2N1O2N2N2N1O2N2N2N2N1O2N1O2N1O2N2N1O2N2N2N2N1O2N2N2N2N1O2N1O2N2N2N1O2N2N2N2N1O2N2N2N2N1O2N2N2N2N2N2N1O2N1O2N2N2N2N1O2N1O2N2N2N2N2N1O2N2N2N1O2N2N2N2N1O2N2N1O2N2N1O2N2N1O2N2N2N2N1O2N2N2N1O2N2N1O2N1O2N2N1O2N2N2N2N2N1O2N1O2N1O2N2N1O2N2N2N1O2N2N2N2N2N1O2N2N1O2N2N2N1O2N2N1O1O2N2N2N2N1O2N2N1O3M2N1O2N1O2N1O2NeUX8"}, {"size": [848, 480], "counts": "d5d0li0000000000O101O0000001O0000010O00001O0000001O0000001O0000001N100000001O000000001O0000000000000000001O000000001O001O000000001O0000001O00000001O01O01O000000000001O0001OO100000000001N3N1O001O3K7H7HlaR30T^mL5O2N1O1O1O1O1O0000000001O000O100000001O00000O10001O0O1000000O101O00000O101O0O10001O0O101N3N1ObVO2Zi03N2N2N2N1O10001N2O1N101N3N1O0O100O100O10O1M3M3L4L7FTZ80neG7J5M3M3L3002N<\\OcUg07VjXOe0[VOVOdh0`1K3O2L3O2O001O00010O0000001O000010O01O000000010O000000010O00001O01O0001O001O0010O0001O000000001O0000010O00010O000000001O0000001O01O0000000000000000010OO02O00001O001O000000000000001O0O100000001O0O100O1N2N3J6H7I7EA=@?@`0E;D<^Ob0A?\\Oe0H7O100O100O100000000O100000O100O100O1O1O1O1N2N2M3L4I7I8G9VOi0K6B>D?dN]WOBidW1"}, {"size": [848, 480], "counts": "eUh3:Sj0:F6J6K5K4M3L4L2O2N2M2O1O1O1N2O1O1O00100O010O01O1O001N2N2N2O1O1O100O1O1O2N100O1000001O000010O0000010O0001O1O1O1N101O1O1O0O2O1O1N2N2O0O2M4M2N3M3M3M4K4M_\\f6"}, {"size": [848, 480], "counts": "R42^j0OM3LMmUO3Rj0;K3M1K4M30002M01010O00O11N2M1O2O1O2N0010010N01000O1000001O00O1010O0O1O1O11O000000HiNVWOX1jh0iNUWOW1kh0iNTWOX1lh0hNSWOY1mh050000O100001O00000000002N2N001O1N2O2nNmVOa0Vi0ZOYWO3oh0MZ_70ZaH;I:F7J:G6J4L1O001O00O1000000000000000001O00000000O100001O1O1O006J4Kd0UOkT^9"}, {"size": [848, 480], "counts": "SnZ83Ti0^1H4kL\\NX]Oh1db0aNU]Oa1ib0fNP]O\\1ob0fNb\\Oh1]c0\\N^\\Oe1bc0bNV\\O_1jc0eNR\\O\\1nc0fNP\\OY1Qd0iNm[OU1Ud0mNh[OR1Zd0QOc[Om0_d0WO][Oe0gd0^OU[O?od0BoZOoNF4ce0l0gZOkNhf0S1YYOiNlf0V1X1O1O1O3N5J6I6K5J6K4L_jY3"}], [{"size": [848, 480], "counts": "Qa0_9Ra0O001O2N1O2N2N2N2N1O2N2N2N2N2N1O2N1O2N2N2N2N1O2N2N1O2N2N2N1O2N2N1O2N2N2N2N2N1O2N2N2N2N2N1O2N2N2N2N1O2N2N1O2N2N2N2N2N2N2N1O2N2N2N2N2N2N1O2N1O2N2N2N2N1O2N2N1O2N3M2N1O2N2N2N2N1O2N2N2N1O2N2N2N2N1O2N2N2N2N2N1O2N2N1O1O2N2N2N1O2N2N2N2N2N2N1O2N2N1O2N2N2N2N2N2N1O2N2N2N2N2N1O2N2N2N2N1O2N2N1O2N2N2N2N1O3M1O2N2N2N1O2N2N2N2N1O1O2N2N2N2N2N2N1O2N2N2N2Ndlo7"}, {"size": [848, 480], "counts": "Qe2;Tj05L0O20N1001O000000001O00001O000000001O00001O00001O00001N2O00010O00001O0000001O00000O1000000000001O00001O000000000000001O0000001O00001O00000000000000000000010O0001O01O00000000001O001O00000O101O000000001O001OO11O00O1O1N2M4O1N2O2L5K6K6Icof2KSPYM`0I9L4O0O11O0000000000001O0O10000000001O000O10001OPWOXOXh0h0hWOXOXh0h0hWOXOXh0h0hWOXOXh0g0iWOYOWh0g0iWOYOWh0g0hWOZOXh0f0hWOZOXh0f0hWOZOYh0d0hWO\\OXh0d0hWO\\OXh0d0hWO\\OXh0d0iWO[OWh0e0hWO\\OYh0c0gWO^OXh0b0hWO^OXh0a0iWO@Vh0`0iWOBVh0>jWOBVh0>jWOCUh0E:B?CbW8_OdbH5K2N4L7I3UVO_O`i0T1D2O1O000O101O0O1000000000000000000000000001O001O001O1N5L5lNfVOh0cPU9"}, {"size": [848, 480], "counts": "fkd8a0ci0=[Oe0J5N2nL\\Ni\\OOkMg1Ze0bN_\\OQ2_c0TN\\\\On1cc0VNY\\Ok1fc0WNX\\Oi1ic0]NP\\Oc1Pd0cNk[O[1Wd0fNg[OX1\\d0kNa[OR1bd0QOY[Om0kd0XOoZOd0Ve0@dZOUO1Ede0]1QZOmNWg0Q26K5I7L4L4K6K7J8I7H8F:G9GTRo2"}], [{"size": [848, 480], "counts": "\\a0T9^a0N2N1O2N2N2N2N1O2N2N2N2N2N1O2N2N2N2N2N1O2N2N1O3M2N1O2N2N2N2N2N2N2N1O2N2N2N1O2N3M1O2N1O2N2N2N2N2N2N1O2N2N2N2N2N2N1O2N1O2N2N2N2N2N2N1O3M2N1O2N2N2N2N1O2N2N2N2N1O3M1O2N2N2N2N2N2N1O2N2N2N1O2N1O2N2N2N2N2N2N1O2N2N1O2N1O2N2N1O2N2N2N1O2N2N2N2N2N2N1O2N2N2N2N2N1O2N2N2N2N2N2N2N1O2N2N2N2N2N1O2N1O2N2N2N2N2N1O2N2N2N2N2N1O2N1O2N2N2NdUX8"}, {"size": [848, 480], "counts": "]5`0Pj00000001O00001O1O00001O000000000000001O00001O00001O001O000000001O0000001O000000001O00000O10001O0000000000000010O00000000000001O0000001O0O10001O000000000010O001O01O01O01O00001O000O10001O001O0O10001O001O0000O2N1O1N2O1N2N2O1O1000001O1O002N3M5K4J5Lhfd0LRY[O2SVO0ii05SVONji0>N10000000000001O2N9G5KV^Y14dafN5L3N0O2N1O1N3L3L4B>F:N1100O001O2O0O100O1000001O000001O001O01O0000010O0001O0000000000000001O01O0000100O1O1O1O001O000001O000010OO2O00001O00001O001N1000000O1O1N101M3K5L4K6I6L4M4K5K]dS1=lakNDah0\\1J4K4M4M200000001O00001O0001O0001O00010O0000010O000010O0001O00010O000000001O01O01O0000001O000010O000001O01O01O00001O0001O0001O000001O0001O0000000000000001O0000000000001O0O1000001O000000001O0O1O10000O1O2I6J6L5G8H9G:G]`78V_H=E;F9H9G8M3N2O2O0O101O0000000eH"}, {"size": [848, 480], "counts": "[9f1jh00O11O0000O100000O10000000O10000000O100000000000O10O1000000000000O1000O1000000000O10000000000000O01000000000000O1000O100000O10000000O10O100000O1000O100000000O10O1000000000O10000000000000O10000000O100000000000O1000O1O1O1O1O1N2O1O001O1O1O100N2O100O1O1O00100O10000O10O10O1O100000000001N100000000000000003L4M2N2N3M2N5I_fa1KdY^N5K4L4L4A?H8O1O10O100000000001O0000O1000000000O100000O10000000000000000O10O100000000000O100000000000O10YOVWOHjh07WWOHjh08VWOHjh07WWOIih07WWOIih06XWOJhh06XWOIih06XWOJhh06XWOJhh05YWOJhh05YWOKgh03[WOMeh02\\WONdh0O_WO1bh0JbWO6\\i0O1000O1N2M3M3N101O1O1N2N2M2O2N2N2N2N2N2O00100001O0@kVOEUi07QWOGPi06TWOGmh04YWOKhh0N_WO1ai00O0000O100000O0O2O1O001O100000000000O100000O100N2O1O001N2L4M3N20000000O1000001O000000001N100000001O00001O000O2O00001O0O101O00001N1000001O00001N1000001O00001N10001N10000O3N001NY_o1"}, {"size": [848, 480], "counts": "WRl12Uj0>E8H7L4J6L4I7J5O21O0O10O010O010ROXNSYOg1gf0`NYYO_1cf0fN]YOZ1_f0iNbYOW1Zf0lNgYOT1Vf0mNlYOS1Qf0oNPZOQ1le0QOVZOP1ge0QOZZOP1be0RO_ZOn0^e0SOdZOl0Ze0VOgZOj0Ue0YOlZOf0Re0[OP[Oe0md0]OT[Ob0id0_OZ[Oa0cd0@_[Oa0]d0Ad[O?Zd0Ah[O>Vd0Cl[O=Qd0DP\\O=nc0DS\\O;kc0EX\\O;fc0D]\\O;bc0E\\[OkN3_1_d0F\\[OoN5Z1^d0G\\[ORO6V1]d0H^[ORO6V1Yd0Ia[OSO6S1Yd0Ib[OVO4Q1Xd0Id[OXO4n0Wd0Ke[OYO3k0Wd0Lg[OYO3j0Ud0Mi[OZO2i0Sd0Ml[O[O1g0Rd0Om[O[O1e0Qd00o[O[O2c0nc03P\\O[O2b0mc01T\\O]O2>ic05X\\O\\O1fc05e\\OZOF`0ec05i\\OYOBa0ec06l\\OWO_Ob0dc07P]OUO^Ob0bc08Q]OXO\\O`0bc08S]OXO[O?bc08U]OXO[O>`c09W]OYOYO=`c09Y]OZOXO;_c0:[]OZOVO<`c09[]O[OUO;_c0:^]O\\OSO9^c0;c]OYOQO9]c0=a]O\\ORO6]c0=b]O]ORO5\\c0=d]O^OPO5[c0=e]O_OPO3[c0=f]OAoN1[c0>e]OCPON[c0?e]OCQOL[c0`0d]OFQOI[c0a0d]OGPOH\\c0`0e]OIoNE]c0a0e]OJnNE]c0a0e]OKmND_c0?e]ONkNC`c0?d]OOlNB`c0?c]O1lN@ac0>c]O3lN_Obc0=b]O5jN_Odc0;b]O7iN_Ofc09a]O9gN_Ohc08`]O;fN^Okc06_]O`NCRd0N^]O`0\\NDXd0K[]Od0TNHbd0CZ]Og0nMJhd0_OY]Ol0gMIQe0ZOW]OU2jb0jMU]OW2kb0iMT]OX2mb0gMR]OZ2nb0fMQ]OZ2Qc0eMm\\O]2Sc0cMl\\O]2Vc0bMh\\O_2Yc0aMe\\O`2]c0`Ma\\O\\1aNoNod0F]\\O[1iNkNld0IY\\O\\1oNgNkd0LT\\O]1TOeNjd0MP\\O]1[OaNhd02l[OV1ce0iN[ZOR1ne0lNQZOh0^f0UObYOe0ff0ZOXYO`0Pg0AkXOa0Xg0^OfXO>`g0A^XO:lh01O0NO02402I_[X7"}, {"size": [848, 480], "counts": "Q;j0fi0000000000O01000000000000O1000O1000000000O1000O1000O10000000O1000O1000000000O10O100000000000O10O10000000O0100000000O10O10000000O10O1000000000O10O10000000000O1000O100000000O100000O2O0000O1O100O1O1N2N2N2M3N2N2N2Md[[2M^ddM5M4N2M4M2N00000O10O010O1O0010N1O2N2O1000000O010000000O100000O1000O10O100000000O10000000O10O1000000O1000000000O10O100000000000O010000000000000O1000O10O10000O01000000000000O01000000000O1000O100000O100000O100000O10000000O10O100000O100001N10O1000O1000O10000O10O1000000O10O10000000O1001OO100000O10O1000O10000000000000O100000000O10O100000O10000000O10O100000O1000O1000O10O1000000000O0100000000O0100000000O10O100000O10000O10O1000O0100000000O1000000000001O00O1000O100000000000000O1001O00O10O10000000000000O10O11O1O001O1N2O1N2O2M2MRSa0"}, {"size": [848, 480], "counts": "\\iY::mi0=^O`0C<@?F:E;H8B?@?B>Dmi09H8J4L4L5L4L3M3N0O2N2N1O2N1O100O1O1000000O010000O1O1O1N2O1N2O1N20O02N1O1O1O2O0O2O00001O00001O001N110O1O0O100O2O1N102N1N2N2O1M3N3M3L4M3MWWf6"}, {"size": [848, 480], "counts": "Va<=ii0F\\VOVc0^OS]O=mb0A\\]O8cb0Ef]O6Zb0Gk]O7Ub0Gn]O8Rb0DR^Oha0AY^O?fa0@\\^O`0da0]O_^Oc0aa0[Oa^Oe0_a0YOc^Og0]a0XOd^Oh0\\a0VOf^Oj0Ya0VOh^Oj0Xa0UOi^Ok0Wa0TOk^Ok0Va0SOk^Om0Ua0ROl^On0Ta0QOl^Oo0Ua0POl^OP1Ua0nNl^OR1Ta0mNm^OR1Ta0nNl^OR1Ua0lNl^OS1Va0kNk^OU1Ua0jNl^OV1Ta0jNl^OV1Ta0hNn^OW1Ta0fNn^OZ1Te000O100O100O0N3L4M3M4K8F]jc7"}, {"size": [848, 480], "counts": "o:j0fi0O01000000000O10O10000000O10000000O100000000O01000000000000O10O100000O100000O1000O10000000O010000000O10O100000000O10O10000000000000000O01000000000000O10000000O01000000000000O10O10000000O100000O1000000000O01000000O1000O100O1N2N2N1N300N2N200O0O200M3N3NZoi10ePVN3N100N2O1J6L4N1O200O100000000000O10O100000O1000000O01000000000O1000O1000000000O10000000O100000O1000000000O1000O100000O1000O10O1000000000O1000O10000000O10O1000000000O100000O10O100000O100000O1000O100000000000O10O10000O0100000000O0100000O10000000000O100000O100000O100000O1000000000O1000000000O10O10000000000O100000O1000O100000O10O100000O1000O10000000O1000O1000O1000O100000O10O10000000O100O100000O010O10000000000O100000000000000O1000000000000O100000000000O100000O11O000000O10O11O001O000O2O1O2M101N3MRfl0"}, {"size": [848, 480], "counts": "Vko9b0`i0a0A=B=DB=G9E;C=F:N3N100000000O01000000000O0101O0O1N2O1N1N4K4L4G9I8G8F;D\\h0AeWO?\\h0@dWO`0\\h0@dWO`0\\h0AcWO?]h0@dWO`0\\h0@dWO`0\\h0AcWO?]h0AcWO?]h0AcWO?^h0_OcWOa0]h0@bWO`0^h0@bWO`0`h0[ObWOe0Ui00\\O\\O\\WOd0bh0^O^WOb0bh0]O_WOb0bh0@\\WO`0dh0A[WO?gh0BVWO=lh0CSWO=mh0DRWO;oh0FPWO:Qi0FmVO;Si0FlVO9Ui0IiVO6Xi0a0O0100O101OO010000O1000000O100O010K6G9L3M5Ii^T1\\1l_kN5M2L4M3O101O00001O01O000001O0001O0001O000010O00010O0001O0001O01O00001O0000010O0000001O000010O000001O01O01O0010O0001O00000001O0001O000000000001O000000001O000000001O0000000000001O000O101N1000000O1N3K4K5L4J7D;J7FB>F9F:B>@a0E9FD>@j0lNhbf1"}, {"size": [848, 480], "counts": "RR_3a0ki08I5L5K3M4L4M3L4M3L5L4L2N1O101N100O1000O0100000000O10O1O1O1M3H8M3N2N2O1N2O10000000O100001O0000001O001O0O10100N2O0O2O1N2O1N2N2N2N1O2N2J6M4J5N2MZjR7"}, {"size": [848, 480], "counts": "c2a1oh001O00000000000O110OO010000000000000O11O00O1N3O0001O002N1OO01001O0001O1OO001001O00002N1O1O1O0O3M=_OfX8AlgG6K5K6K6JBSRm9"}, {"size": [848, 480], "counts": "k[j79Rj07[Oc0I8L3G9N2kL]N\\]Od1ab0cNf\\OGlM50g1]e0dN_\\Ol1ac0[NX\\Of1hc0aNP\\O_1Qd0dNk[O[1Wd0hNe[OW1\\d0lNa[OR1bd0QOY[Om0kd0YOmZOd0Ye0@`ZOZONAje0]1nYOjN\\g0R23K6K5K4J8I7M5K7I9D8J:F8Hdgh3"}], [{"size": [848, 480], "counts": "kc0e6mc0N2N1O2N2N2N1O2N2N2N1O2N2N2N2N1O2N2N2N2N2N1O2N1O2N2N2N2N1O2N1O2N2N2N2N2N2N2N1O2N1O2N2N2N2N1O2N2N2N2N1O2N2N1O2N2N2N2N1O2N2N2N2N2N2N2N2N1O2N2N1O2N2N1O2N2N2N2N2N2N2N1O2N2N2N2N1O2N2N2N2N2N2N2N2N2N1O2N2N2N1O2N2N2N2N1O2N2N2N1O2N1O2N2N2N2N2NcnZ9"}, {"size": [848, 480], "counts": "Y5i0gi00O1001O01O00001N10010O00001N10001O01O0001O0000001O0000001OO1001O0000001O01O000001O01O0000000001O00001O0O2O001O0000000000O1N2K5L4L5J6M2M4K^ok22TPTMc0K6J3N3M3M00001O1O0M3N3N2001O0000000000000010O00000000O101O0000001O01O00001O0001O01O00100O1O1O1O1O000000001O0001O1O1O1O001O1O001O1O1O0O101O0O1N3L4J5L6I6K4L^e6LhZI3L3N3L3O1N2N200:Ejog0o0ToWO5L4K5M3N1O101O0001O01O00000010O000001O01O01O0001O0001O01O01O000010O0001O0000001O00000010O0001O00010O0000010O00001O000010O00000000000010O000000000001O00000000001O0000000000001N100000001O00000O1O1M4I6K5J7D;H9Fc`74U_H>F9I8D;F:M4M201O000O110N10000010O01O00000010O0001O00001O01O01O000000010O001O000001O0001O0001O000001OO100N2K5L4M3N3O^H"}, {"size": [848, 480], "counts": "U9f1jh000O10000000O1O1000O10000000O01000000000000O100000O100000O10000000000O0100000000000O10000000O100000000000000000O1000000000O10O10000000O02O1O1O2N4K4M3N2L2O1O1O1N2O001O1O001N2O1O1O3M2N1O2M3N2M3Mf`U23R_jMa0D4K8I6K2N2N1O1O00000000000000O1000000000O100000O1000000000000O01000000000O10000000O010000000000O1[OoVOKQi03TWOJlh06VWOHjh08VWOHjh07WWOIih06XWOJhh06XWOJhh06XWOIih06XWOJgh05[WOKeh04\\WOLdh03]WOLdh01^WO0bh0O_WO1dh0H`WO8\\i000000O1O1M201N2N2O1N2M2N3O1N2M3N2N2O0O2O1O1001N10000AkVOCUi09RWOCoh0:VWODkh05\\WOJeh02_WOMci0O0O1000O100O0O2N3M2O1O010001O000000000000O10O10N2O1O1N2M3L4N2O100001O000O1000001O00000O101O000000001O0O101O000O101O00001O0000001N101O00001N10001N1000001O00001N100O100O2M20[cP3"}, {"size": [848, 480], "counts": "ola1C>_O`0B>B>DF9J6O1O10001OO10000O10O100000O100O1O1O1O1N2M3J6I7F;K4I8A?FHf0UOaUR2"}, {"size": [848, 480], "counts": "[Wl3e0hi0G9^Oc0^Oa0G9RO^LiZOh3Ve0ZLaZOm3^e0c0000000O100000O10000O0100000O1O1O1O1O1N2M3K5J7E:K6F:D@dha:"}, {"size": [848, 480], "counts": "i_V7N2N201O000O10O100O01000O1000000O100O1O1N2N2M4I6E;H9K5DE9D=F9K5M3O2N1O110O001O0000001O01O01O0000001O00010O00000010O01O00001O0001O00010O0000000001O01O01O00O2N1L4K5J6M3M3N3N1O11O00O101O000000001O00000000001O000000000O101O0000000000000OWH"}, {"size": [848, 480], "counts": "Q9f1jh0000000000000O01000000000O100000000000O1000O100000000000000000O100000O1000000000000O01001O00O10O100000000000000O1000O1000000000O10000000O100000O1000000000O10O100000000000000000O1000000000O1000O10000000O100000000000O10O2O1O1O6J:Ea0UOTVO0Ved03iT\\Oe0]O]Oc0I7_Ob0B=N2O1000001O00O10O01000000000000N2O1O1O1N2N2K5L5B=G:E;B=I8E^ORVW2NRPhMJmi0`0L2O1O000000O100000000O1O1M5IeVOKai07J4M3L3O2N1O1N2N2N2N2N2N2O0O2M3N101O1O10O2O00010\\OnVOHRi07QWOGoh05WWOIjh00]WONgh0K^WO4`i0O0O100O10O1O1N1O3N100O0100000001O00O1000O10O1O1O1O1N2N2M3M3O1000000000O100000001O000000001O001O0O101O00001O0O10001O00000O2O00000O2O0000001O0O101O000O1010O00O101O0O100O1OllP4"}, {"size": [848, 480], "counts": "nYl2;gi0e0[Oa0J4K5J5K5L5H8G9SOXMjYOn2je0S1J5M3M4M2J7K4M3N3M2N3N1O1O2N1O1O101N100O2O0O2O000OZLY[Of1fd0RNn[Ob1Rd0YNY\\Oa1gc0\\N_\\Oa1`c0]Ng\\O`1Xc0^Nl\\O`1Tc0]NQ]Oa1nb0^NW]O_1ib0`NZ]O^1fb0`N^]O^1ab0bNb]O\\1]b0cNg]O[1Yb0dNi]O[1Wb0dNl]OZ1Tb0eNo]OY1Qb0eNS^OY1ma0fNV^OX1ja0hNX^OV1ga0kN[^OS1ea0mN\\^OR1ea0lN]^OS1ca0lN`^OR1`a0nNa^OQ1`a0mNc^OQ1]a0nNe^OQ1\\a0nNe^OQ1[a0oNe^OQ1\\a0mNf^OR1[a0mNf^OR1[a0lNf^OT1Za0lNg^OS1Za0kNg^OU1Za0jNf^OV1[a0gNg^OZ1Za0cNg^O]1[a0`Ng^O^1Ve00000N1O2L4K5K5M4F;AkY]7"}, {"size": [848, 480], "counts": "e:i0gi00O010000000000O0100000000000O100000O1000000000O10O10000000O10O1000000000O010000000000000O10O1000000000O10O1000000000O100000O1000O100000000O1000O100000000000O1000000000O100000000000000O0100000000000O1000000000O10001O1N102N0000000O1O1N2KbRS2G_mlMb0J2O0O1000000O10O2O0000000O1000O1000000000000O01000O10000000O1000000O1000O100O010O1000O1000000000000O10000000000000000O0101O0000O10000000O100000O100000000000000O1000O10O1000000O10O10000000O0100000O10O1000000000O010000000000O010000000O10O1000O10000O10O10000O100000000O10O11O000000O10O100000000000000O100000000000000O1001O00O10O100001O1O1O0O2O1O0O3N1M4MPPe2"}, {"size": [848, 480], "counts": "h[X8b0Zi0g0]Oa0B=A`0D;[Oe0D^Oh0ROSZS3"}, {"size": [848, 480], "counts": "gln3;Qj0;G5J5K6L4L4M3L2N2N1N3N101N10O010000O1000O010O100O1O1N2O1O001O2L3O1O2N100000001O00010O100N2O001O001O0O2O1N101N2O001O1N2O2M3M3L9Fhhh6"}, {"size": [848, 480], "counts": "_2;Uj01O1O002N3M5K5K6J;E5K1O1O000001O001O000000O100001O001O0000N20000001O001O00O17H7J:F8FRiY;"}, {"size": [848, 480], "counts": "on`66Si0X1I7L3jL]N^]Oe1_b0cNT]Od1lb0`Nf\\Oi1Zc0^N[\\Og1ec0[NX\\Of1gc0bNP\\O_1Qd0eNj[O\\1Vd0fNg[OZ1Zd0jN`[OU1cd0oNX[OP1jd0UOoZOg0Xe0_O^ZOQO9Kbe0U2`1M2K6J7J5I9K6J8H8H5K9F9GUdT5"}], [{"size": [848, 480], "counts": "Pg0`3Qg0O2N2N2N1O2N2N2N2N1O2N2N2N1O2N2N2N2N1O1O2N3M1O2N2N2N1O2N2N2N1O2N2N2N1O2N2N2N2N2N2N1O2N1O2N2N2N2N2N2N2N1O1O2N2N2N2N1O1O2N1O2N1Oceg:"}, {"size": [848, 480], "counts": "X5R1^i0O001O1O1O1M300O11O00000000001O1O100O2N2N2O0O2N1O001O000100O010O001O001O0000001O00001O000O1O1N2N2N2N3N1N2N2O2N100O1O101O000001O001O0001G8O4MQiQ31XVnLj0J3B>AcNaWOe1\\h095K1O00001O2N2N1O000O10000O1M2M4L4L4L4J7K5J6Kh^T1>k`kNk0UO5K4L301O00000001O01O000010O00000001O010O0000010O001O00010O00000010O0000000010O00001O00010O00000010O000000010O0001O00001O0001O0001O000001O0000000000001O00000000001O00000000001O000O101O000O100M4J5I7I8E;Fod0DP[O;Qe0FmZO;Se0GkZO8Ve0JgZO7Ye0NaZO3_e0_2000O100O1N2O1N2M3K6F9H9H8_Oa0C=EB4L2N000O1O110O000000000000O10000000000000001O00001O1O011N3M5J:Ga0UOeb_;"}, {"size": [848, 480], "counts": "\\U[67Yi0S1H6J5L4M3B>K5N2O0^NhMmZOY2Qe0jMlZOW2Te0mMhZOS2Xe0QNcZOo1^e0YNYZOe1ke0`NnYOJ45Tf0;]YO]Ol0DQf0h1\\1M4K5H9J6M4M3K5H;Ha0^OPX[5"}], [{"size": [848, 480], "counts": "Wg0Y3Yg0N1O2N2N3M1O2N1O2N2N2N2N1O2N2N2N1O2N2N2N2N2N1O1O2N2N2N1O1O2N2N2N2N1O2N2N2N1O2N2N2N1O3M1O3M2N1O3M2N1O1O2N2N2N1O2N1O2NSjk:"}, {"size": [848, 480], "counts": "T5R1^i000001O01O0001O1O100O2N001O010O001O000001O01O001O010O01O1O1O1O00001O01O01O000O1O1N2N2M4L3N2N2O1O100O2O00000001O000010O01O2N00100O11^O[VO6Pe[3:bTeL8K4L3M4K7KO000M3M3N2L4I7I7N3L5IeP51[oJ6L2M4M2N3N1004K:EeZf0?jdYOk0VO6I4O2N11O000001O0010O0000001O01O00010O0001O01O000010O0001O0001O01O0000010O00001O0001O01O001O0001O01O001O00010O000010O000000001O01O00000000000001O0000000000001O000000001O000000001O0O1000001N1N2L4G:J5C>F:Cg`79Q_H;D=H7EF:I8M2N2000000O2OO10000O100000000O100O1O1O1O1N3J5I8F9J6ED=D=ARX]3"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "\\2f1jh00O11O00000000000000000O1000001O0000000000001O001O002N5K;DPbd;"}, {"size": [848, 480], "counts": "ePW6?ei0>@?G8fLcNg\\O1TNa1Ue0_Ne\\O2RNb1Ye0]Nb\\OX2^c0iMa\\OW2^c0VNU\\Ok1kc0\\Nn[Od1Rd0_Nj[Oa1Wd0bNe[O_1[d0cNb[O\\1`d0gN\\[OX1fd0mNS[OR1Pe0UOfZOSO58\\e0j0WZOmNf0J]e0T2b1J5L5C=M7J6H8H8G:H8If\\_5"}], [{"size": [848, 480], "counts": "[g0U3\\g0O1O2N2N2N1O2N2N2N1O2N2N1O2N2N2N2N2N1O2N2N1O2N2N1O2N2N1O2N2N2N2N2N1O2N2N2N1O2N2N2N2N2N1O2N2N2N2N1O2N1O2N1O2N2N2N2Nbdl:"}, {"size": [848, 480], "counts": "T5X1Xi00000001O01O01O00001O0001O000001O0001O00010O10O0001O010O1O001O0000001N1N2N2M3L5M2N2O1O1O10001O0001O00001O1O100O1O1O1O1O1O01O2M[`\\3Fo_cL9Gc0^O5K3M0000K5O1K5K5K5K6L4JgP5M`oJ1M3N3L4M3M200004L>_OP`e0d0\\_ZOb0_VOiNhh0d1J4M3N2O00001O01O000001O010O000001O0001O01O000010O000010O0001O0010O0001O0001O01O00001O00001O00010O00001O010O001O010O0000000001O00000001O000001O000000001O000000000O20O00000000O2O000000000O2O000N3I6H8J7C>F:Cb`7:S_H>D:E_O`\\n2KbcQM=F5K4M3M2O100O11O01O01N10001XORWOLQi0H[WO5ai0N2O0000O10OO2O1N2O1O10000001O0O100000000000O1O001O1O1M3M3L4N2000000000O2O0000000O2O000000001O000O101O0000001O000O101O001O001O0O101O0000001N101O000O2O00001O000O2O0O100O2N1O\\e[4"}, {"size": [848, 480], "counts": "i[a21[g0m0`ZOCRe0S3H8L3M3M4M2M4L3M3L4N2N3M2N2O1N2O2N1O100N3O0O1O1O2N1O100N2O2N1O100N2O2N1O1O2N1O100O1O1O2O00000O101N1000000O2O00kKa\\OY1_c0aNj\\O\\1Uc0bNR]OZ1nb0aNY]O]1gb0`N^]O^1bb0_Nd]O_1[b0^Ni]Oa1Wb0]Nm]Oa1Sb0\\NQ^Oc1oa0\\NT^Ob1la0\\NW^Oc1ia0\\NY^Oc1ga0[N\\^Od1da0ZN_^Oe1aa0YNb^Of1_a0WNd^Oi1[a0VNf^Oj1Za0UNg^Ok1Ya0TNh^Ol1Xa0SNi^Om1Xa0QNi^Oo1Wa0PNj^OP2Va0oMj^OQ2Wa0nMj^OR2Va0mMk^OS2Va0kMj^OV2Va0iMk^OW2Ua0iMj^OY2Ua0fMk^OZ2Wa0dMj^O\\2Va0cMj^O^2Wa0aMh^Oa2Wa0_Mi^Oa2Xa0`Me^O`2]a0^Mb^Od2_a0ZMb^Of2aa0WM^^Oj2dd000hNgXOYOYg0:_YOZOcf0C>G;_OSm^3"}, {"size": [848, 480], "counts": "jZU43Xj0:I9F5N3M2N1O1O1O001O00000000001O0000O1000000000000O1N2O1O1N2O1N2O1N200O1O1O100001O1O1O000000001O2N000000000000000000000000O1O1F[VODjTc6"}, {"size": [848, 480], "counts": "\\2d1lh0001O0000000000O10000000000000000000001O001O1O2N5K5K:DmVf;"}, {"size": [848, 480], "counts": "^aT61ni0f0VOg0F8M4M2\\O`NUXOc1jg0b0O1O001^NdMoZO]2Pe0gMlZOX2Ve0jMgZOV2Ze0mMaZOR2be0SNXZO3G`0Uf0ClYOJ<4oe09\\YOC\\h0S15K5E;N2N3N1O2L4L5L7I8FSW`5"}], [{"size": [848, 480], "counts": "[g0U3]g0N1O3M1O2N2N2N1O2N2N2N1O2N2N2N2N2N1O2N2N1O2N2N1O2N2N2N1O2N2N1O2N2N1O2N2N2N2N2N2N2N1O2N2N2N2N1O2N2N2N1O1O2N2N2N2NR_m:"}, {"size": [848, 480], "counts": "T5Y1Wi0O1001O01O0001O001O00000010O000001O0001O0010O01O10O01O001N101N1J6K5N2N3M2O1O1000001O01O001O00100O1O1O002N1O1O1O0010O01O1O01L6]Ocmj44bRUKc0Ah0WO7K2O101N101O010O000001O01O000000010O000010O0000001O01O01O0001O0000010O001O0000010O00001O0000001O010O00001O010O1O001O01O00001O0001O01O0000000000000000001O000000001O0000001O00000O10001O0O1000000M4K4G9I8C=GQ[8NndG=A>F9DA4K4[Od0M3MTZ]31mebL0O1O1O2M3M4N0O10000001O00000000O10O0100O1O1N2N2L4N2N200000000000O2O0O100000001O00000O2O0000000O2O00001O00000O2O00001O0O101O0000001O0O101O0O10001O001N101O0O2O0N2O10k_\\4"}, {"size": [848, 480], "counts": "od`2B>DC=F:E=Bcg_3"}, {"size": [848, 480], "counts": "ioR4>li0=F7J5J3O2N1N2O2O0O1O2O0O1000001O000O101O0O1000000000O1O1O1O1O1O1O1N2O1O2N1O100O1000000001O0001O1O1O0010OO101O0O2O00001N2O3L7Cd`e6"}, {"size": [848, 480], "counts": "\\2e1kh0000000000000O100000000000000000001O0000002N1O7I;E9DXQg;"}, {"size": [848, 480], "counts": "[aT61me02a]OW1Vb0kN_]O`1_b0bN^]Oa1`b0cNh\\OLSNd1Te0cNd\\O0QN`1[e0cN`\\OP2`c0SN]\\Om1bc0YNX\\Og1ic0`NP\\O`1Pd0dNk[O\\1Vd0gNf[OY1[d0iNa[OX1ad0jN[[OU1hd0POQ[OTOLa0We0`0fZOnN=JXODoe0i1UZOfNcg0o15E:K6L4N2N2N5Ke0ZO9F9BWla5"}], [{"size": [848, 480], "counts": "Rh0^2Sh0O2N1O2N2N2N2N1O1O2N2N1O2N2N2N1O2N2N2N1O2N2N1O2N2N2N1O2N2N1O2N2N2N2N2N1O2N2N2N1O3M1O2N2NR]W;"}, {"size": [848, 480], "counts": "X5V1Zi000100O001O0000O11O10O00000001O001O000001O1O0010O01O001N1O1@a0L3N3N1O100000001O00000010O001O001O101N001O1O2N001O001O1O0100O00b0]OQTn18bkQN>BBTfd06bY[O9J3O0O101OO1000000001N1000O100000O10O010000000O101O00O01000000O1N2M3M3L4M3N2O1N2N2O1O1O1O1O001O1O10000O1000000O10000000O1000O10000O11O0000O10000O2O1O0N6GoS93PlF6J7J4L5J5K7K3L3O1O01N100^OlVOHUi05PWOHQi02VWOLkh0OZWOOei0O0000000000O001N2O1O1O100O11N101O000O10000000O002N1O1N1O2N2L4N200O11O000O1000001O000000001O0O2O00001O0000001N1000001O00000O2O00001O0O10001O000O2O001O0O101O001N101N10hi_4"}, {"size": [848, 480], "counts": "bRn2Clc0@b\\O4^c0Kf\\O2Zc0Lj\\O2Vc0Ln\\O2Qc0MR]O2nb0LU]O3kb0KX]O3ib0LX]O4gb0K[]O5fb0I[]O6fb0I\\]O6eb0H\\]O8db0G]]O8db0G]]O8eb0F\\]O:eb0D\\]O;eb0D\\]OE;D=]Ob0A?DB_`7=Q_H>B?D:F:K6N1O100O2O00001O00001O01O01O00001O01O0001O00010O0000001O01O01O000000010O0000001O01O000001OO101L3I7K5M3M3N2O1O2O00000000001O000000001O00000O2O00000000001O000000000O2O0000000000000O2O000000001N100000001O0O10000000001O00fG"}, {"size": [848, 480], "counts": "W9g1ih0O100000000000O10O10000000000000000O100000O10000000O10000000O1000O100000000O100000O100000000000O1000000000O100000O10000000000000000000O100000O1000000000000000000000O010000000001N2O2M=CXQc0^OcU\\OFXi0R1E4M3N101O00N2N2^OTWO[OINTi0e0ZWOYOih0c0d0N2O1O1O1O101M[[`2Fkd_ME;DE:E=Cd0]NSWO2ie_3"}, {"size": [848, 480], "counts": "QWR48Tj07I9F9J4L3N3M2N2N2O3L2O3L101O2N0000000O11OO10000001N1O100O1N2O100N3M2N2N2N2O1O100O101O0O11O01O0O101O0O2O1N3M3M3M2N3N2L7J6Jlmg6"}, {"size": [848, 480], "counts": "i2d1lh000000000000000O10000000000000000O100000001O1O1O1O1O8Ga0\\On[e;"}, {"size": [848, 480], "counts": "fWU61]47\\a0Ma]OW1Yb0lN^]O]1`b0fNZ]O_1eb0dNf\\OISNe1We0eN`\\On1_c0WN\\\\Oj1dc0ZNX\\Oe1ic0^NS\\Oc1mc0cNl[O]1Vd0fNd[O[1]d0fNa[OY1bd0iNY[OX1hd0lNS[OXOJa0We0L3M8H5L:F5K9F6B_fb5"}], [{"size": [848, 480], "counts": "ch0m1dh0O2N2N1O2N1O2N2N2N2N2N3M2N2N2N2N2N2N2N2N2N2N1O2N2N2N1O2N1O2N1O2N1Ob``;"}, {"size": [848, 480], "counts": "o5n0bi01O1O001O00100O2N2N1O000010O01O0010O0001O01O010O0001O01O1O1O0O1D=M2M4M2O1N2O101N10000O101O0001O001O001O101N1O2N1O2N1O100O1O000001NWXi4EmgVKa0Dg0XO7K2O101O001O000001O01O1O001O0010O00001O01O000010O0001O01O01O01O000001O01O01O0000001O00010O00000010O00010O0001O1O001O0001O0001O01O000000001O01O00O1000001O00000000001O0000000000001O000O10000O2N1L4G:I6F;F:Eb`73Y_H?_O`0E9H9I6N2N201N101N11O01O0000001O01O01O0000010O000010O000001O001O01O000001O01O01O00000001O01O000000O1O2I6J6L4M4M2O100O101O000000001N100000001O0000000000001O0000000O1000001O0000000000001N100000000O2O00000O101O000000001N10000000WG"}, {"size": [848, 480], "counts": "f9f1jh00000000000O11N10O1000000000000000000O1000O100000000000O100000000000000O01000000000000000000000O01001N010000000000000O10O100000000000000000O10O11OO100000000000000000O1000000O10000O2O1NUe0CjZO?Ue0AkZO?Ue0@lZO`0Te0@lZO`0Te0@lZO`0Te0_OmZOa0Se0_OmZO`0Te0_OmZOa0Se0_OmZOa0Se0_OmZOa0Se0_OmZO`0Te0_OmZOa0Se0_OmZOa0Se0_OmZOa0Se0^OmZOb0Te0^OlZOa0Te0@lZO?Ve0_OkZO?We0AiZO=Ye0BiZO:Ze0FfZO5`e0IaZOJle06TZOCSf0AVad;"}, {"size": [848, 480], "counts": "S\\U6g0Pi0m0XOaNTXOd1gg0`NVXOb1ig0cNoWOa1Ph0`0O1O1O1O0hN`MaZO`2`e0aM^ZO_2be0eMZZOZ2he0kMRZO;G?[f0\\OfYO2:7Uf0MYYOK_h0n05D=L4M4J6L6J5InZd5"}], [{"size": [848, 480], "counts": "Vi0Z1Wi0O2N1O1O2N2N2N1O2N2N2N1O2N2N2N2N3M2N1O2N2N2NSdi;"}, {"size": [848, 480], "counts": "a6g0hi010001O0010O02N3M2N3M1O1O1O10O01O1O000010O0001O010O000001O001O10O0001O001O0O1O1O1K6J5M3N2N3N100O100O101O0O100001O0010O0100O1O2N2N2N1002JRVOFn\\h44R]XK`0C`0A=D4L3O1O001O01O0001O0000010O00001O01O01O000010O01O0001O01O000001O01O01O0000010O0001O00001O01O01O001O01O000001O001O0001O01O01O0000000010O00000000O110O000000001O00000000001O0000000O10001O0O1O1O1L5DA>A?@`0E;H8N3N1O100O100000000O0100000000O001O1O1O1O2L3K6F9H9DCe0UOlj^3"}, {"size": [848, 480], "counts": "ZjQ67Sj0;H5K5M2L4M2O2N1O2N1O1O2OO10O100O100O100O01O10O01O10O01O001O1O100O1O10001O01O2N10O0O12N10O10O01O001O100O1O2N1O2N1N3N2N1M5K8E]`g4"}, {"size": [848, 480], "counts": "\\4e0ki01N3N3L4^VOWOWi0S1N2M2N2O1O000000000O10O11O000001O00O11O0000000O10001O1N103L:E\\a_;"}, {"size": [848, 480], "counts": "PU[6;Rj09I5K5iMUOTYOOg0n0Tf0VOmXO4l0h0Uf0[OeXO3R1d0Xf0LeYO3]f01^YOGkf0>oXOZOZg0l0^XOSOeg0V1oWOhNVh0c16J7G9M6H6POhVO:bYd5"}], [{"size": [848, 480], "counts": "li0d0mi0O2N2N2N2N2N1O1O2N2NSbS<"}, {"size": [848, 480], "counts": "R7R1^i000001O001O001N101O1O01O0001O00001O00010O00001O00000001O010O0000001O001O10O01O00001O00001O00000000001O0O1O1O1N2N2M3L4N3N1O1O1O2N100O1000001O0000YUi1NajVN>I0O21M2O101N1O1N2N2O1M4M2NbPb2`0kn]M=[VO[Olh0X1J5N2O0010O01O001O00000010O01O00010O0001O01O00001O01O01O01O01O000010O0001O01O01O000000010O00001O01O0001O01O0001O000000010O00001O0001O01O00000000O2O0000000000001O0001OO10001O000000001O000O1O2M2L4G:I6EG8L4N3N101O0O110O00001O00001O01O01O00001O01O0001O00010O00001O0001O01O00000010O0001O0001O000000000O1J7I6L4L4N2O101N10000000001O00000000001O0000001O00000O10001O0000000O101O0000000000001O0O100000001O0O100000001O00000OWF"}, {"size": [848, 480], "counts": "f:e1kh0000000O100000O100000O1000000000000000O100000000000O10000000000O100000O1001OO10O1000000000000O1000000000000000O100000O10000000000O10000000000000O1000000000O1000000000000000O0100000000O1000001N5Kj0TOmPc00[U\\OH[i0j0L7G6N2N0000000000O10000000001O000O2O3JSf^2TOjZaM4M2O0O10000000O02O00O01O100O001L5L3M20100000O2O0000001O0O101O00001O0O101O0000001O0000001O0O2O00001O001O0O11O01N1000001O000O2O000000001N10001O0O2O001O1N_YX4"}, {"size": [848, 480], "counts": "dYZ37Wj03N2M3M2N3M2N3M3N1N3M2O2M3N2N2M3N2M2O1O2M2O3L3N2M2O2M3M3L4N2L4M3M2N3M3M2N3M3M3M2N3M3M2M4M2N3M2N3M2N3M2N3M2N3M2O1N3N1N1O11N1N2N3L3N2O1M4N2N1O2M2N3J6ZNe1K6N2N101O100O1O001O1O1O001O1O1O100OfZOgN^a0Y1V]O4jb0KR]O:nb0El\\Ob0Tc0]Oh\\Oh0Xc0WOe\\Om0[c0SOd\\On0\\c0QOd\\OP1\\c0oNe\\OQ1[c0nNf\\OR1Zc0nNf\\OQ1[c0nNf\\O>ZNiNQe0h0e\\O9Ud0Fl[O6Xd0Jh[O3[d0Le[O1_d0Nb[OMcd02][OKgd04Z[OHkd07T[OFPe0:nZOCWe0=iZOAYe0>gZOBZe0>fZO@]e0>cZO^Obe0b0]ZO^Ode0a0\\ZO_Oee0a0\\ZO\\Ofe0d0\\ZOYOfe0e0\\ZOWOhe0h0Q2O1N2O1O011N001O0O110O1O001O1O1O101N101O0319C0O02N001O1O2M2N4J6J^mR5"}, {"size": [848, 480], "counts": "ZSd0Al[O`0Td0_Om[Oa0Sd0]Oo[Ob0Sd0]Om[Oc0Sd0\\On[Od0Sd0[Om[Oe0Sd0ZOn[Of0Sd0YOm[Og0Td0XOl[Og0Ud0XOk[Oi0Vd0VOj[Oj0Vd0UOk[Ok0Vd0TOj[Ok0Xd0TOh[Ol0Xd0TOg[Ol0Zd0SOg[Ol0Zd0SOg[OAa0^OlU]3"}, {"size": [848, 480], "counts": "Xg]6>ni05K4M3N2O2N1N3N2N1O1O1O100O2N100000O10000O1O100O10000O100O100O1000001O0002N2O0O10O01O1O010O01O1N101N3M3M3M3L6IP]a4"}, {"size": [848, 480], "counts": "Rd26Yj04L8H6J?A7J1N1000000000000000000000000000000000O2O00000000001O0O2N8C`l];"}, {"size": [848, 480], "counts": "a[Z6X1Qi08XOiNPXO\\1ng0hNoWOZ1ee0]N\\\\OW2bc0lM[\\OT2fc0nMW\\OS2ic0PNS\\OP2oc0QNn[Oo1Td0_N\\[Oa1fd0bNU[O^1ld0fNoZOW1Ue0mNfZOBD7ke0=ZZOVO9Mfe0Q1kYOoNgg0S1RXOmNRh0^1;M5B=L4M7I8G:EiZ_5"}], [{"size": [848, 480], "counts": "Pj0`0Pj001O1O2N1O2N2N2NUWU<"}, {"size": [848, 480], "counts": "l6S1]i00000001O000O10001O00001O00001O0010O000000010O01O000000010O0001O00010O001O001O00001O0000010O0O1000001O0N2N2N2N2M3O1M4N1N2O1O1O2N10000O2O00001N2N_Vd1O]i[N8K3N3M2N4M1O2O2N2N2N5K3M2N2O1N2N001O1O00010O0000000001O0000000000001O000001O010O001O1O100O1O001O01O010O001O00001O1O0000001O00000O11O0000O2N1N2H8K4N3L5J6K5L4GVV47iiK3M2N3L3N200002N7A^`e0b0T_ZOk0VO6I5M21N1O11O001O01O0000010O0001O01O000001O010O000001O0001O0010O000001O001O010O0000001O00010O0000001O01O01O00010O001O0010O000001O00000001O000000000000001O0000001O000000001O00000000001O000O1O2N1K5G:I6A`0Ci`7KY_Hc0E9C@a0_Oa0B=F:N2O1O100000000O0100000000000000O1N2O1N2N3M2K5H8I8F9E@`0@g0SOf[\\3"}, {"size": [848, 480], "counts": "Zm^73\\j04M1N2N3M2N2O2M101N2O1N101O001O001O1O001O001O3N0O002N6gVOhNnh0_1N01O001N1O2O1O1M3N2M3N2L5L4L5IaTj3"}, {"size": [848, 480], "counts": "lc28Uj08J8I7H?A3N001O000000000001O0000000000O010001O0000000000001O00001O5Ic0VOjQ];"}, {"size": [848, 480], "counts": "jaY6L7E;F8K;CeU`5"}], [{"size": [848, 480], "counts": "]i0S1^i0O2N1O2N2N2N1O1O1O2N2N2N2N2N2N2N2N2N2NbSl;"}, {"size": [848, 480], "counts": "g6S1]i0001O0000001N10001O010O00001O1O010O000000001O01O0000000010O0001O00001O001O0010O0001O000000001N1000001O0N2N2N2L4N3M2N2N2O1O1O10000O101O00002M2KbVd12Wi[N;L3N1O2M3M3N2O2N2N2N1O2N1O3N3L2N1O1O00001O01O0001O01O01O00000001O01O00000000010O1O001O1O100O1O001O0001O1O00001O1O001O001O00001O0O100001O00O100M3G9L3M4L5K4L5LgoQ1FVPnNc0J3L4L5N10000000001O00010O000010O01O001O01O01O0010O01O1O010O002N1O1O2O0O2N001O3M4L3N1N2N3M2O0O001O00O1O20O1O0001O01O000000000010O0001O0001O000000000000000O10001O10O000000O2O000000001O0000000O1O2N1J7H7J7@`0Ch`7K\\_Hb0C9E;F9EJ3O10O10K@YVOa0fi041000000O100000O1000O1000000O10O10000000O100000000000000000O1000M3N2L5M1O2N00N22O1N2O1N2N2001OOgZX30WegL:J0O2N1N2O1O1N10000000O0100000O0100000O1000000000000O10O100000000000O100000000000000O100000000000O01000001O1O002N1N2O2NS\\Q3"}, {"size": [848, 480], "counts": "VTP8f0[i0a0@>B>F;@?E;\\Od0E;G9M4N1O1O10000000000O100000O10000O1O1O1O2L3L4L5G8I7F;E;B`0@`0Bd0]NPWO71HkT]3"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "Yi14Wj0:J9H;E;D3N0O101O000000000000000000O11OO100000000000001O000000001O4L8Edl];"}, {"size": [848, 480], "counts": "^R[61^j02N2N2O001O1kWOHmN0Rf0?VYODW12ZONZf0j0XZOCROFef0i0VZO6ke0MPZO3Rf00hYO[Oof0l0hXORO^g0P1]XOnNgg0U1SXOjNQh0]1kWO[N\\h0b1;J5H=G:A?EhU`5"}], [{"size": [848, 480], "counts": "Ri0^1Ti0N2N2N2N2N2N1O1O2N2N2N2N2N2N2N1O2N2N2N2N1O2N2N2NRog;"}, {"size": [848, 480], "counts": "e6S1]i0001O0000000O2O001O10O01O00001O0010O00000001O000001O0001O01O0000001O00001O1O01O0001O0000001N10000O101N1O1M3M3N2N3M2N2O1N2O101N1000001O1N11O00O5Ih[c15Rd\\N7J5L4L4M3M4N5J3M8H3MO101O0000000001O10O00000010O00000000100O000000000001O00000001O010O1O00100O001O01O1O4L7I6J2N1O2N1O1O3M2N2N4K7J4Jfj`11YU_N5L3M2O2N1O100O1O001O1O1O10O01O010O001O00010O000010O0001O0010O01O00010O001O1O2O1N2N2N2N3M3M3N2M4L5K3N2M1O1O1O001O01O00000001O01O00000O10001O01O00O10001O000000001O000000001O00000O101N1O1M4M2H9H8B>Cg`7M[_H`0C;G8E_O`0CK6ZOf0D=L3O1O101N1000O1000000000000O100O1O1O1N2N2M3M4I6G9G:C>@`0B?Dl0aNk[\\3"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "Si1]VOkNPi0c1E5N00L5H8J6N2O2M2N2O1N2M4M2O1O1N3O0O2O0O1000001N1000001O00001O01O0001O0001O001O01O01O0010O00000O101O000001O00O2O0O1000000000001N1001O000000000001O01O001O10O02N01O01O001O1O0010O01O1O00100O001O10O001N2HSo93kPF8B?H7L5L2O3M1N3N3M2N4M3L3M3M1O1O1O0010O000000010O000001O00001O01O000001O0000010O0000010O000000O1O1N3J5J6L4M3N201N10000000001O0000000O2O000000001O0000001O000000001N1000000000001O0O1000000000000O2O00000000001O0O10hF"}, {"size": [848, 480], "counts": "X:d1lh0000000000000O10O10000000000000O10O11OO10000000O10000000O10O100000000O100001OO100000O1000O1000000000000000000000O010000000000O10000000000O01000000000O1000000O100000O100000000000O100000000O2O002N5I=Cgkc0ZOlT\\Oe0gUO_O1OXi0W1I3O1O0O10000000000O1000O10O1001N10000000000O010000000000000O1000000000O1000O10000000000000000000000O10O1000000000000000WOSWOOmh00WWOMih03XWOLhh04XWOKih05WWOKih04XWOLhh04XWOLgh04ZWOLfh03[WOMfh02ZWONgh00YWO1hh0MYWO3gh0LZWO4fh0I]WO7ch0F`WO9bh0CaWO=Yi0O01N2L4O1N2O001N2N2N1O2N2O1M201N3N0O2O10O101O1O00001]OkVOIVi02PWOLRi0KVWO3fi0N001O0O0100000OO2O1O1O01000001N11O000000O01000O3K`Ui5"}, {"size": [848, 480], "counts": "Y`R41_j03L1QN3[YONcf04\\YOLdf05[YOLcf05]YOLaf06^YOJaf07^YOJbf06^YOJaf07_YOJ`f06`YOJ_f07`YOJ`f06]YONaf04[YOOef03PYO7nf0MTXO[O033OMg0lg0e1O2O00001N10gNbXO@^g0>gXO_OXg0a0lXO\\OTg0c0PYOZOof0g0UYOVOif0j0ZYOTOff0k0\\YOTOcf0m0]YOTOaf0m0`YORO_f0o0aYOQO_f0n0bYOSO\\f0n0dYOROZf0P1gYOPOWf0P1jYOPOVf0P1kYOPOSf0Q1nYOnNQf0R1PZOoNne0R1SZOmNme0S1SZOmNle0T1TZOmNke0S1UZOmNje0T1WZOlNhe0S1YZOmNfe0T1[ZOkNee0U1[ZOlNce0U1]ZOkNce0U1]ZOkNbe0V1^ZOjNbe0V1^ZOjNae0W1_ZOiN`e0X1`ZOgNae0Y1^ZOhNae0Y1_ZOgN`e0Z1`ZOeN`e0\\1`ZOdN`e0]1_ZObN`e0`1aZO^N`e0b1_ZO_N`e0b1`ZO]Nae0c1`ZOZNae0g1_ZOXNbe0h1^ZOVNde0j1\\ZOSNfe0n1^11O0O1O1O100O2O0O2O00001O001O010001O1O1N1O101N1O2O1N1O1O1O10O01O010O001O1O001O2N1O2N1O1O1O1O1O1O1O00001O1N10001N2O1O1N2O0O2O1N2N3L4M2M_Rl4"}, {"size": [848, 480], "counts": "l;h0hi00O10O10000000000000O01000000000000000O10O100000O100000O10000000O100000O10000000O1000O1000O10O10000000000000000O100000O10O10000000O10000000O10O100000000O1000O1000000000000O1000O10000000O1000000000001O1N3N1O3M]R>LdmA5M2N1O1N2O1000000000O100000O10000000O01000000000O1000000O0100000000000O10O10000000000O100000O1000000000000O10O100000O10000000O01001OO1000000000001OO01000O1000000O1000O100000O100000000000O0100000000O010000000000000000O0100O01000000O100O10O10000000000000O1000000O100N4JeZh5"}, {"size": [848, 480], "counts": "cTP81ji0j0\\O`0A?A>A`0]Ob0B>C=B>M4N1O10O01000000000000000000000O100N2M3N2M3L5I6I7H9D;C?@`0F=@P1`NXa[3"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "Ui14Xj0:I8H7I>B5L1N10000000000001O01O0O0101OO1001O0000000000000O101O001N3N=jN`VON55Rf^;"}, {"size": [848, 480], "counts": "i[Z6570Ri0V1D9M3lL\\Ng\\O1RNc1Ve0_Nd\\O6mM^1_e0^Na\\OU2_c0lM_\\OU2ac0mM[\\OU2ec0mMX\\OS2ic0aNb[O`1_d0cN\\[O]1ed0fNX[OV1md0nNmZOYOI9de0c0]ZOQOH7O2N1O2O000000001O00001O01O01O000010O000001O0001O01O0000001O01O01O00000010O000001O0001O0000000O1L5H7L4L5M2N200O1000000000001O00000000001O000O1000001O00000000000O2O0000000000000O101O000000001N1000001O0O10001OjF"}, {"size": [848, 480], "counts": "W:c1mh000000000O0100000000000O10000000O100000000000000O01000000000000O1000O100000000000O100000000000O01000000000000000000O1000O10O1000000000000O100000000000O010000000000000000O10000000000O1000000O2O003L;B\\fd0OcY[O>F5K3N100000000O10000O1001O00O02O00000O1000000000000000000O1000O1000000000000000000000O10O10O2OO1000O10000000000O1000O10XORWONnh02TWOLmh02UWOMjh04VWOKkh04VWOLjh04VWOLjh03WWOMih02YWOMgh03YWOLhh03YWOMhh01XWO0hh0OYWO1hh0LZWO4fh0J]WO5fh0D]WO<\\i000001M1O2O1O1N2N2M3N2M3O1N1O2N2N2N2O001O10O10001O001N1^OlVOHUi02RWOLRi0GYWO7ai0O0O2OO1000O10N2O1N200O1000000001O0000O100000O01M3M3M3M3O1O1O100O11O000000000O10001O00001O0O10001O00000O101O1O0O2O00001O0O10001O00001O0O10001O000O101N101O01OO2O0O101O0MVZX4"}, {"size": [848, 480], "counts": "PRk3`0mi06J5L3M2O1O1O2O0O2O0O2O0O101N1000001N10001O000N3N3N1O001N2O1O1N4M000O101N1O101N2O0O2O1N2N2O2M2N3N00QNbXOn0[g0oNkXOP1Tg0nNQYOP1mf0nNWYOR1gf0mN\\YOS1af0lNbYOV1\\f0hNhYOW1Vf0iNkYOX1Sf0fNQZOZ1me0eNWZOZ1ge0gNZZOY1de0hN\\ZOY1ae0iN_ZOW1_e0kNbZOT1^e0lNbZOU1\\e0kNfZOU1Ye0kNgZOV1Xe0jNiZOU1We0kNiZOV1Ve0iNmZOU1Se0kNnZOU1Qe0kNR[OR1nd0mNU[OR1kd0lNY[OQ1hd0nNZ[OQ1ed0oN][OP1cd0oN^[OP1cd0mN`[OS1nf0001O000010OO100010O0O100O2O1N3N2M2OnMWO^ZOg0ce0\\O\\ZOa0ee0CYZO:ie0IVZO4je00UZOLme06RZOFPf0=oYO@Tf0b0jYOZOXf0j0f14K2O2M5K2N2O1N1O2O1N3N001O0O100O100O100000O1O101M3N1N3L3N3M2N2N3N1N4K7Iodm4"}, {"size": [848, 480], "counts": "i;i0gi000000000000O10O1000000000000O1000O100000000000O10O10000000O10000000O1000O1000O1000O1000000000O10O100000000000O01000000000O10O10000000000000000O0100000000000O01000000000O100000O100000000000O0100001O1O3L3N1O3L8Hcl>1ZY@Mhi0?N1N2N200O10000000O100000O10O100000000000O010000000O10O10000000000000000O100000O100000O10O100000000O10O10000000000O0100000000000O10O1000000000O10O10000000000000O10O1000000O1000O100000O10000000O01000O1O10O1000000000O010000000000O02OO1000000000O101O00O100000O10000000000O10O1001OO10O10000000000000O0100000O10O1000000000O0100000O10000000O10O10000000O10O10000000O0100000000O100000O10O100000O10000O100000000000000O1000000000O0100000000000000O1000000000000O100010O00O10001N2O1O2M\\\\Q3"}, {"size": [848, 480], "counts": "YnP8l0Ti0a0A?A>@a0]Ob0C=C=D=M2O1O1O10000000000000000O10000000N2O2M2N2M3L5I6H9G8E=_Oa0B>Gb0oNS\\\\3"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "Ri1:Tj07J8H>B6J3M2O00000000000001O0000000000O100000000001O0O10001O001O2N6Ij0ROVl];"}, {"size": [848, 480], "counts": "T[Z6=h0E\\h0]1bLcN[]Oe1db0_Nf\\ONTNc1Ve0aNc\\O0SNa1Xe0bNa\\O4oM]1`e0bN]\\OQ2cc0SNX\\On1hc0YNP\\Og1Qd0`Ng[Oa1Yd0bNc[O^1_d0dN][OZ1fd0iNW[Oo0Re0UOhZOZOF7ge0d0\\ZOQOXg0V1]XOkNfg0j16I7E=J8I5K7G9I9EPa^5"}], [{"size": [848, 480], "counts": "oh0a1Pi0O1O2N2N2N1O1O2N1O2N2N2N2N2N1O2N2N2N2N2N2N2N1O2N2N2N2Nb_e;"}, {"size": [848, 480], "counts": "a6S1]i00O1000001O000O101O01O0001O000000001O0000010O001O001O0001O001O001O00001O01O01O00001O0000001N1O1N2M3L5L3L4N2O2N1O100O101O0000000000010N4Icef15XZYN7K4N4L6J5K8H8I2M00000001N100001O00001O10O000000010O00000000000000001O0001O010O0000100O1O1O1O0010O00001O001O001O00001O001O00001O000000000O1O1O1L4J6L4K4M5K5K5KdP5O^oJ4L3N2N2N2001O00;^OY`e0c0X_ZO`0]VOQOhh0b1G5M20O1O1001O000001O01O000010O0001O0010O0001O0001O01O00010O0000010O0000001O01O01O00001O01O0001O00010O0000000010O000001O001O0001O01O000000000001O00000000001O000000001O0O10001O000000001O0O100O1N3G8H8C>ER[8LReGee0_O\\ZOc0ce0[O^ZOg0dg010O001O1M3O3KUhg4"}, {"size": [848, 480], "counts": "g;j0fi000O10000000O1000O10000000O100000O10000000O010000000000O10O10000000000O01000000O1000O10000000000O01000000000000O10000000O100000O100000O10000000O1000O1000000000O100000O100000000O11N10O10000000O11O01N2O1O1O1O8GjW=2ShB4M1O1O001O1O100O10O1000000000000O10000000O100000O1000O10O100000O10O100001OO010000000000O0100000000O10O100000000000O10O10000000O1000O10000000000O10O1000000O10O10000000O10O10O100000O100000O1000O100000O1000O1000000000O1000O10000000O100000000O01000000O1000O10000000000O1000000000O0100000000000000O10O100000000O10O10000000000O010000000O10O10O1000000000O0100000O10000O0100000O10000O100000000000O1000000O10000000000O1000000000000O10O10O101O000000O010000000000O1000000000001O001O1N101O2M4LlaP3"}, {"size": [848, 480], "counts": "gYo75mi0d0ZOb0@>D=@?]Oc0YOg0DC>Aa0\\Ol0TO^V]3"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "oh1c0li05Jb0@3L2O1N101O0000000000O2O0000000000O100000O1000001O002N1N3N8YOeVOHdi0LaVO1Q[`;"}, {"size": [848, 480], "counts": "T]Y61Z42gK4ge00^]OU1`b0lNb\\OL[N`1Re0fN_\\OOYN^1We0fN^\\OMWN`1[e0eN]\\ONPNa1be0eNX\\Ol1hc0\\No[Oe1Qd0^Nk[Ob1Vd0aNf[O`1Zd0cNb[O]1_d0eN^[O[1dd0gNW[OX1ld0lNoZOP1We0UOaZOTO95\\e0l0SZOnNeg0k14I8HiWOQN\\h0e1`0I5K6K5K6J7I4L6Ifk\\5"}], [{"size": [848, 480], "counts": "gh0i1hh0O2N2N1O2N2N2N2N1O3M2N1O2N2N1O2N2N2N2N2N1O2N1O3M2N2N1O2N2N1O2NbUb;"}, {"size": [848, 480], "counts": "]6T1\\i00O101O0001OO101O00000010O0001O000010O000001O000010O0000001O1O0000001O001O01O01O0000001N1O1O1J7K4M3M3N2O1N3O0O1000001O00000000O10101OMoje17kTZN6K5K4L7ICa0_O4N1O20O01O000000001O001O01O01O0001O01O0010O000000010O000001O01O0001O000010O0001O001O00010O00001O01O00000001O000010O0001O0000000001O0001O000000O2O0001O0001O00000000001O000O101O000000001N1O1O1L5D;H9C=FmZ84ldG>B=B>G8M3N3N101O001O00001O0000010O00001O0000010O00000010O0001O00000010O000001O01O0001O0000010OO10000O1N2I8J5M3M3N2O1O2O000000001O0000000000001O0O100000001O000000000O2O000000000O2O00000000000O101O0000000000001N100000000O2O0000UG"}, {"size": [848, 480], "counts": "o9d1lh000000000O10O10000O01000000000000000O10O10000000000O10000000000000O01000000000000000000O11OO1000000O01001OO10O1000000O10000000O100000O10000000000000000O100000000000000O10000000002M2N2O5J?_Oked04QZ[Oa0B7H2O000O20O00O10000O010O10000000O100000000000000O011OO10000000O10000000O1000O1000000000000O10000000O1000O1000000O100ZORWOJnh05TWOJlh05UWOKkh05UWOJlh05UWOKkh05UWOKjh05WWOKjh03WWOMih03XWOLhh03YWOMgh03YWOMgh02ZWONfh00\\WO0ch0O_WO0ch0L`WO4dh0CaWO=Yi0000O100O1N2N2N2M2O2O1N2M2O2M3M3O1N1O2O1O020O0000O2O001XORWOLoh0NYWOOei01N00000000000OO2N11O1O100O100O10000000O10O01000O1O1O1O1N1L5L4O100000O1000001O000O101O00001O00001O0O10001O00001O0O10001O00001O00001N1000001N10001N10001O001O0O100O2O00001N2O[d[4"}, {"size": [848, 480], "counts": "]]T53\\j0[1dN8I5YXO`NUf0j1\\YOhNWf0m2K2O1N1O2O0O2O0O10001N1O10000001O0000001O1O00001O001O000000000000001O0000O1O10000000000N200O100O01000O100O100O100O1O1O1O1001O000O2O00000O101N10000O2O00001N2O1N`ZOnNb00\\e0l1g1J7E=G9J4L8I5K6I8F8DVka5"}], [{"size": [848, 480], "counts": "ah0o1bh0O2N2N1O2N2N1O1O2N1O2N2N2N2N2N2N1O2N2N2N1O2N1O2N2N2N2N3M2N2N2N3M3Mb``;"}, {"size": [848, 480], "counts": "U6W1Yi0001O1O010O00100O0000001O01O000000000010O0001O001O0000001O001O0000001O0000001O0000000O101N1L4H8K5N2O2M201O00000000000O4L_ef19a`XN8dh0o0M1N11O01O000000O100O101N10000O101O01O001O001O01O0000001O000001O0001O00000001O00001O010O1O1O1O001O10O001O1O001O001O0000001O00001N100001O00O100O1M3K5K5L4L4J7J6KfP5J`oJ6K4M2N3M2N21O1O0OoZf03jdYOl0VO5K4M1100001O00001O01O000001O0001O00010O0001O00010O000010O0001O0000010O00000010O000001O00001O01O0000010O01O001O001O01O01O000000010O0000000000000000000001O00001O00000O101O00000000001O000O101N100N2F;G9]Of0AnZ8:hdG=A=G:@?N2O2N1O101O00001O00001O000010O01O00000010O0000010O000001O00001O01O000001O01O0001O00000001O00000O1J6I7L5L3N2N2000001O00000000001N10000000001O000000000000001O0O10000000001O0O1000000O10001O00000O10001O000O100000001O000000000OZG"}, {"size": [848, 480], "counts": "k9e1kh0000000000000O1000O1000O1000000000000000O1000O1000000O1000000000000O10O11O00000O1000O100000000000O1000000000O10O100000000000000O010000000000000O01001OO1000O100000001N1000000O101O3L9Ga0^Obed0e0jY[O8H5L0O2O0000000000000000000000O100000000O1000O10000000O100000O1000O100000000000000O1000O1000000000000000O10O10000000O100YORWOLnh03WWOIih07WWOIih06XWOJhh06XWOJhh05YWOKfh06ZWOIgh07YWOIgh06ZWOJgh04YWOLhh03YWOMgh01[WOOeh0N^WO2dh0I_WO7bh0DbWO;Zi0000O001O1N2N2M3O1M3N2N2N1O2N2N2L4N2O00100000O20O01O0\\OnVOJSi02RWOKPi0NXWO0kh0G]WO6`i0O000O100000O0O2O1O2N001000000001O00O01000O100O1O1N2N2N2M3N1O2O10000001O000000000O101O0000001O000O101O00001O000O2O00001O0O10001O000O2O0000001O0O10001O000O101N101O0O2N0O2ObY]4"}, {"size": [848, 480], "counts": "^_j49Vj0c0\\O4N1N3M3M2N3M3M3M2O2cWOWOnf0]2H3N3L2N3N1N2O0O2O00000O2O00000001O00000001O00000O10000O10000O1O10000O1O1O1000000O1N2000000O10000N2O1001O001O0000O11O0000000000001O00000O2O1O1O2N4L7I6J7I7I5K2M4M3M3L4M2N3L3N2M2O2M2N2N2N2N3M4K4L5K4K9GgVf4"}, {"size": [848, 480], "counts": "_;i0gi0000000O1000O1000000000O1000O10000000O100000O100000O10O1000000000O10O100000000000O0100000000000O100000O0100000O1000O10000000000O100000000000O0100000000000O1000O100001N01000000000000O2O1O1O1N3N6IeR>IbmA1O2B3UVOOii0=N2O10O100000O1000O10000000O10O10000000O01000000O01000O1000000000O0100000000000000O1000O100000O1000000000O10O1000000000O01000O1000000O010000000000O01000000000O1000O10000000O100000O1000000O10O10000O1000O1000O10O10000O10O1000000000O010000000000000000O10000000000O100000O100001N01000000000O1000000000O010000000000O01000000O01000000O10O100000000O10O100000O1000O1000O10000O100000O01O1000O100O1000000000000O10000000000O1000O1000000000O10000000000O1000000O10000000000O101O002N1N3N2M3MefT3"}, {"size": [848, 480], "counts": "ZZj77`i0P1UOe0C=]Ob0@`0XOi0@?M3N2O100O2O00000000000000O100000000O100N2N2O1M4J5J7C=E;@a0@b0\\Om0lN_Pc3"}, {"size": [848, 480], "counts": "Zgm49Tj0a0_O7K2M3N2M4N0O1O1O1O1O2O1N2O1O1O1O1N2O001OO1000000O110O0O1000001N2N101O0O2N101N2O1O1N2O1O3I6L9I6I4L5IXfT6"}, {"size": [848, 480], "counts": "^3d1mh0O0000000000000000000000000O100000001O00001N2O3L7I:TO^VO2Tjg;"}, {"size": [848, 480], "counts": "i]T63c4NTa06`]OU1^b0nN[]OX1db0kNU]OY1jb0mNo\\OU1Qc0mNZ\\Of1fc0^NS\\Oe1mc0aNk[Oa1Ud0aNh[O_1Yd0cNd[O^1\\d0dNa[O\\1ad0hNY[OY1gd0kNT[OS1Pe0QOjZOYOF?de0=_ZOnN=4^e0R1mYOiNjg0i16ClWOUN]h0e10^SA4lUOMei0a0M2O1O1000O1000O011O000000O10O010000000000O100000O10O1000000000O010000000O1000O100000000O10O10000000O10O10000000O100000O1000O10000000O10000O010000000O1000O0100000O10O1000000000O10O1001O0O1000O1000O10000000O1000O10000000000000O01000000000000O100000O100000O10000000000O10O10000000O10O100000O100000O100000O10O1000000000O010000000O10O10O100000O0100000O100000O0100000000O100000O10O10000000000000O1000O01000000O10001O0O10O1000O1000000000000O100000000000000O10O1000000001O001N3N1O2M3N2MhfT3"}, {"size": [848, 480], "counts": "nYj7e0Si0j0@?B>\\Oc0[ORMWYO_3Sf0j0DBojg;"}, {"size": [848, 480], "counts": "f]T65Y3d0jLDee0I\\]OX1cb0jNW]O\\1hb0fNT]O]1kb0fNm\\O_1Rc0fN[\\Oi1ec0]NQ\\Og1oc0`Ni[O`1Xd0bNe[O_1[d0cNa[O_1_d0cN^[O]1cd0gNW[OX1md0mNlZOR1Ve0ROdZOUO3;`e0e0TZOnNl0B`e0X2_1J7A`0L5I7K7H5L6J6I7C]`c5"}], [{"size": [848, 480], "counts": "\\h0T2]h0O2N1O2N1O2N2N1O2N1O2N2N1O2N2N1O3M1O2N2N1O2N2N1O2N2N2N1O2N2N2N2N2N2N1O2N1O2N2Nba[;"}, {"size": [848, 480], "counts": "T6Q1`i0O2N2N2O1N1OO2M3J5J600O2O0001O01O000001O00010O00001O00001O00001O0000001O0000001N1O1E;J6N2N2O2O000000000001O01O01O001O100O1005JYdk14eaSN?jh0FRWO>lh0c00000001O0O1000001O01O000010O01O000001N1001O00001O01O00000001O001O010O1O1O1O011N0001O001O00010O001O0000001O0O2O0000O100000O1O2J4L5M3L4J6L5K6FVk54lTJ2M3M4M2O1N23M4LkZf04ldYOm0UO5K3N20001O00001O00001O0010O00001O0001O01O01O0001O01O00001O01O01O0000010O00001O01O01O00001O0001O01O0001O01O0000001O01O0001O0000000001O01O00000000000001O00001O00000000000O20O00O10001O0000000O2O0N2J6D_Oa0_Oa0]Oc0^Ob0I7N2O1O2O000O1000000000000000O10000O1O1O1O1N3M2M3L5G9A>C?@`0Bb0TOaVb3"}, {"size": [848, 480], "counts": "lV_57hi0c0K5L2O2M2N3N1O2N2N3M3N2M2N2O000O101O00000O10000000O2O0O10001N10001N2O001O1N2O1M3L4M4M2O2M4L8H:Ehfe5"}, {"size": [848, 480], "counts": "W3g1ih000000000000000O1O1O100000000O1000000000001N3N1O4K8H`0UOYVOLeof;"}, {"size": [848, 480], "counts": "PXU64\\3T1\\b0PO[]OW1bb0jN[]OY1db0jNU]O\\1ib0gNR]O\\1nb0hN\\\\Oj1dc0ZNV\\Oh1jc0\\NQ\\Od1Pd0`Nj[Ob1Vd0bNe[O^1\\d0fN_[OZ1cd0hNX[OY1id0lNP[OU1Re0POgZOYOJCki0a0AD=@a0^Oh0UNXWOi0UZa3"}, {"size": [848, 480], "counts": "hca5>1Mbi0c0L5M1O1N3N1O2N2N2N3M4M1N2O0O2O1O0O2O001O00000000001O000000O1O1O2O001N2N2N2O0O2N2N3L3J6N2N3N2M5K9GP_b5"}, {"size": [848, 480], "counts": "R3`1Pi0O10000O2O000M2O2O2O00000O10O101O103L3M2OO0O1O3N1N4L8[O`VOJmi0F[VO3]Uf;"}, {"size": [848, 480], "counts": "llV67W3U1^b0nN\\]OW1bb0kNc\\OKYN_1Se0iN_\\OMVN_1[e0gN[\\Om1dc0XNW\\Oi1ic0\\NQ\\Oe1oc0_Nl[Oa1Ud0bNg[O_1Yd0cNd[O^1\\d0eN_[O\\1cd0fNZ[OY1gd0lNS[OS1Pe0SOgZOTO2;^e0e0XZOnNh0F_e0U2b1I7E=I5J7K5L9F6I:G6ESQa5"}], [{"size": [848, 480], "counts": "gg0i2hg0O002N1O1O1O2N1O2N1O2N1O2N1O2N2N2N1O2N2N1O2N1O2N2N2N1O2N2N2N1O3M1O2N2N1O2N1O2N2N1O2N2N2N2N1O2N3M2N1O1O1O2N2NRTo:"}, {"size": [848, 480], "counts": "i5V1Zi000001O1O001O0001O010O3M5K2O0O01O0O100O10000011N2N2N1O1O00000OO2O01AdVOJWi0MbVO7ni0KQVO3Pj04300O10001O000001O001O001O1O011N1O1O1O1O1O00100O1OO100N2MTRX2CiTgMOXO9Qi0KbWO>\\h0ORWO8kh0h000O000000001O01O0000001O000000000010O001O1O1O1O010O0010O001O00001O001O00001O001N1000O1000000000N2L4L4K5K5J7J5M5JVdS1?Z[lN>D7H6M2N3O2M2O1N1O1O000010N11O0010O00010O01O00010O0000001O010O0000001O0001O0001O00000010O0001O0000010O00001O010O000000001O0001O000001O00000001O000000000000000O20O0001O0000001N1000000000001N100N2O2H7H9I6@dU91^jF=G:CO2O00000000000001O000O2O001O0000001N10001N101O0000001N10001O00000O2O0000001N10001N100O1OoY]4"}, {"size": [848, 480], "counts": "PXP5h0ai0>M4^MiN[[O^1\\d0gN`[O]1\\d0gN_[O]1^d0gN][O]1`d0jNU[O\\1id0lNhZO^1Ve0P2M2N2O1O1O1N2O000O10000O100O10000O1000000000000001O000000000000000000000000000000O1000000O100O100O10O10O101N10O10001O00O100000O10000000000000000O101O1O001O2N1N2O2N2N1O3L4M3M3M3M4K4M5K9G6J6JlZOGSe0k200O2O1N100O2O1O00000000000O10O1000000000000O10000000O10000000000000000O10000O1000O010000O10000O10000000000001O0O2O00000000001O000O101O00001O00001N2O001O002N1O1O1O1N2O1O2N2N2N2M3N1O3M4L6J5K9G=C=Cb0^O8H3L5L5K2N3M3M4L2M3N2N2N4L5HgWX4"}, {"size": [848, 480], "counts": "S;i0gi0000000O100000O1000O10000000O100000O100000O10000000O100000O1000O1000O10O1000O100000O100000O10000000O10000O10O100000000O0100000000O10000000O1000O1000000000000O010000000000O0100000000000000O01001O001O1N2O2N2N5JTX=JfgB=N2O1O1N20000O0100000000O0100000000O0100000000O10O100000O0100000000O02O000000O10O1000O1000O1K6DeWg34`hXL4N3M2N2N2M2O1ON2O100000000O1000000000000O10000000000O10O100000O2OO1000O100001OO1000001O1N101O2N3L3Mdmn2"}, {"size": [848, 480], "counts": "aXo7f0Xi0d0[Od0B>A>@`0XOh0]Oc0N3M200O10000O101O00O100000000O1000000O1O1O1M3N2L5H7ERjVN;Hc0\\O8I4O1O1O1O00001O01O01O001O1O010O00100O001O00100O000000010O000001O0O11O00001O00O2M2001O1O001O010O001O010O000000010O00000000010O0000000000000001O0000000000001O0000000000001N100000001O000O10001N1N2I7H9A`0CT[8NPeG:C=E:EEUmA?N2O100N2O010O1000O1000O1000000O0100000000O10000000O10O10000000O01000O10O1N2M3K5N2M3N2Noh_31QW`L3M4M2N3L3M2O000O1000000000O10O1000O10000000000000000O10000000000O100000000O1000000000000O1000O10O1001O00O101O001O1O002M3N2N3LSSn2"}, {"size": [848, 480], "counts": "SSP8a0[i0i0WOe0\\Oc0DD6J5L2M3O1N2N3M2N101N2N2N2N100O2N2OO010001O0O100000000000000010O001O000O2O1O01OO2O00001N101O0O2O0O2N2N1O2N1M4M5L3J5I9I6EbgP6"}, {"size": [848, 480], "counts": "o2b1oh0O000000000000O11O0000000000000O1001O0001OO1001O0O10001O1N5K6I=[OVVOL[j0JmVa;"}, {"size": [848, 480], "counts": "Y\\Y63[j06K3N2VYOLTc07d\\O2Wc04T\\O_OgMc0Uf00\\[OQ1cd0TOW[Oo0gd0TOU[Om0kd0UOR[Ol0nd0VOoZOl0Qe0VOjZOl0Ve0ZOcZOg0]e0_O[ZOc0ee0BTZOQOcWE9E=ZOnN]WOV1ah0=00O02K4N2O11O0000O20O00001O001O010O1O1O010O000010O0O1010O01O000O2O00001O0000000000000O1N2N2J6J5N3K6J6K5Lbe6MaZI3N2L4N200N26]OZ[f0a0]dYOk0WO7H6L110O101O1O00010O0000010O00000010O000001O01O00000010O001O01O000001O0000001O01O000001O001O01O0001O01O01O00000010O01O00000010O0000000000000001O01O00000O1000001O00000000001O00000000001N10000O1O1K6F9J7A`0DS[81jdG=A?G9E:I7N2O2O0O1O101O00001O0000010O00001O0001O01O00000010O000000010O000001O00010O0000000000000001O00000L4I7L5L3M3N2O100O101O0000000000001O00000O1000001O0000001O000O1000001O000000000000000O101O00000O10001O00000000jG"}, {"size": [848, 480], "counts": "^9e1kh00O10O100000000000000O100000000000000000O1000O10000000000O10000000O01000000000000O1000000000O10O10000000000000000O10O10000000O10000000000000000O1000000000000O01001O0000000O1000000O1000001O0O102M5K:Eakc0YOTU\\Oh0[O?B4L2M2O00000000000000O100000001O000O100000000000000O010000O100O001000000O10O100000O100000O100000000000O010000000000O010000000AQWO\\OPi0>YWO^Ohh0>g0N2M3N1N3L4M3O1N2Oc\\^1`0jbaN6K3O1O1000O100000001N1000001N1000001O00001N1000000O2O00001N10001O00001O000O10001O0O1000001N101O0O10001O0O101O1N101N10neV4"}, {"size": [848, 480], "counts": "e\\f48Vj09E8K5J6bLPOS]OU1fb0SOR]OW1TM_N_e0>X]O`1_b0cN]]Ob1`b0aN[]Ob1cb0bNX]O`1gb0gNP]O]1ob0gNh\\O_1Vc0fNb\\O_1]c0dN]\\Oa1`c0dNX\\Oa1fc0nNg[OX1Xd0a2N2N1O2N2O0O1O1O2N1O1O1O1O11O1O0000000000100O000O3N0010O00000001O0O11O000000O100000O1O100O1000000N2M300O11OO1N101L400O11O00000O2O00000O101O000O2O001N10001N2O1O1N2O2M100O2O3L2O3L5K4M8G6Jh1XN:F8H:F7J4K4L6J6J4L6I7J6H_Wa4"}, {"size": [848, 480], "counts": "R;i0gi000000000000O010000000000O10O1000000000000O01000000000O10O10000000O01000000000O1000O10000000O100000O100000000O1000O1000O100000O10O1000000000000O100000O1000000000O02O00O100000O100000000000O100000001O002M2O2N3L:DUR>1iSA0fi0>N200N2N200O0100000000000O100000O10000O10O10O100000O1000O100000O1000O1000000000000O100000O10O10000000O100000O1000O10000000O100000000O6K8G3MkTd1?ej[N1100O10O100O1000O10O100O10O1000O100000O10O1000000000O01000000000O010000000000O0100000O1000O1000O010000000O1000O10O100000O1000O10000000O1000000000000O10000O10000000000O01001O00000O10O10O1000010O0O01001O001O1N2O1O2N2MVSn2"}, {"size": [848, 480], "counts": "YmP8o0oh0c0\\Od0\\Oc0_Ob0VOh0E=H7O1O1O1O10000000000O1000O100000000O100O1O1N2N2K6I6J7G8Fdc0DU\\Ob0ic0Dd[Ok0[d0ZO[[Ok0fd0VOV[Om0id0UOT[OP1hd0ROT[OQ1kd0TOoZOn0Pe0WOiZOi0Ze0[O`ZOZOG5ke0e0VZOoNb0Hde0U2^1K4J7C?K5L6J8G5L7I6I6Jdl\\5"}], [{"size": [848, 480], "counts": "bg0n2cg0O2N1O1O2N1O2N2N2N1O2N1O2N2N2N1O2N2N2N1O2N2N2N1O2N2N1O2N2N2N1O3M2N1O2N1O2N2N2N2N1O1O2N2N2N1O1O3M1O2N1O2N2N1O2NbYn:"}, {"size": [848, 480], "counts": "h5V1Zi000001O0O1001O0002N1O00001O000001O000001O00O1000001O01O01N2G8I8M2O101N10001O0001O00010O001O1O00100O1O00001O01O1O001O101N2O1O0O10O10O1O4K2N2Jll`14PS_NF8F:_OmNYWO[1_h0>N1000O1M3O10001O000O1000000010O001O00100O1O000010O00001O001O001O00001O00001O1O00O1001O0O1O1N3K9F;E>DoYh1b0_eWN4M3N2O1O1O00010O1O00010O00001O2N1O101N1O4L3M3M4L3M2N100O1O1O010O001O1O0010O01O001OO2O00000000000000001O000000000000001O000000000O2O01O00O101O0O100O100O2L3G:J5D>DY[8FkdGa0@`0G8F;H7M3O1O2O0O101O00001O0000010O00001O0001O01O0000000010O000001O01O01O00000010O00000001O0001O00000O1O1J7I6L4M3N2O1O10001O000000000O2O00000000001O0O10001O000000000O101O0000000000000O10001O0000000O2O000000000O10iG"}, {"size": [848, 480], "counts": "^9e1kh0000000000000O10O100000000000000000O100000000000O10O10000000000O1000000O11N10O1000000O1000000000000O011O0000O10000000O1000O1000O100000000000O10O1000001O00O10O1000000O10000O2O0N2O1O1O1O2N100N3M4M4K5LVfd0]OYZ[OR1SO4L5K1O1OO100001O000000000000O101O000000000O100000O1000O10O1O1O100O1000O10000000O1000000000O1O1O1O1N2N1O2O1N2N101O1N2O1N2O100O1O1O10O0100O00100O1N2O1M4DPTU7"}, {"size": [848, 480], "counts": "X^j4d0ki0?A9G7H:G8H:F4L4J6L2jLYM`^Oi2^a0[M^^Og2aa0\\MZ^Oh2ca0^Mm[O\\OT2Y3na0gMj]OZ2Vb0QNU]OY2kb0TNS\\Oa2lc0R20000O10000000000O10O10O10000000000O1000000001O00000000O1001O000000001OO20O0000001O1OO2O01O1O0000000001O00000000000O1O100O100O1O10O10O1O1O010O1O0010000O0100O2O000O1000000O2O00001N101O1N2O0O2O1O1O1N3N2N6I5L;Ej1VN9G6I:G;E8G>C=B;F9F8G_kT4"}, {"size": [848, 480], "counts": "S;i0gi00O100000O10000000O10O10000000000O01000000000000O10O1000000000O0100000O01000000000O1000O1000000000O1000O2OO100000O10O10000000O10O100000O10000000000O10O1000000000O10O10000000O01O100O11N:G1N7J002M]jh02`UWOXO]]U5"}, {"size": [848, 480], "counts": "Q3a1oh0001O000000000O02O00000000000000000000000000O11O000O10001O1O6I8He0XOPWa;"}, {"size": [848, 480], "counts": "iVZ65Zj03M3M4M6I5L5K4L1O1O2O3L2OO001O1O001O101N4L9G4K7J7GWg]5"}], [{"size": [848, 480], "counts": "ag0o2ag002N1O1O1O2N2N1O2N2N1O2N1O2N2N2N2N1O2N2N1O2N2N2N1O2N2N2N1O2N2N2N2N2N1O2N2N1O2N1O3M1O2N1O2N1O2N2N2N2N1O2N1O2N1O3MR_m:"}, {"size": [848, 480], "counts": "i5U1[i00O2O0000001O00001O1O010O000000000001O0001OO10000O101L3I7N3N2N1O2O00001O000001O01O01O001O001O00100O00001O01O000000010O10O10O2O2N1N100O4L001MRnS2NnQlM9I3M2K5_OZOVWOh0ih0]OoVOe0Si0;100O1N2N2O1O2M2N2O1N2O1N3M2N2O1N3M2N2O1N2O1N3LiSj4O[lUK1O?@2O1O001_NDlXOBUfd0HTZ[O=C4L10O1O10O01O1O010N101O1O001N2O001N101O001N1000001O00000O0100O10000000O0100O100O10000000000O1O100O01000O2O0O10O101O00001O000O2O0O10001O000O2O0O2MfgV7"}, {"size": [848, 480], "counts": "mhV59Qj0e0\\Ob0_OXi0k0oNQ1_O`0G9N3M2O2O0O2O1O001O001O1O1O1O1N2O1O00001O000001O00001O0N3H8]Od0@b0B`0WOWWOQOV[\\3"}, {"size": [848, 480], "counts": "RSl5b0ji07I6L5J5K3N3M4M4L3M2N2N4K4N2M2N2N1O2O0O101O0O100000001N1001OO10000000000000000000O1001O01O000000001O00001O001O001O0O2O1O1O1O1N102M3I7L4I8G:H;DUie4"}, {"size": [848, 480], "counts": "Q3\\1Ti02N2N1O1O000O100001O00000000000000000O100000O11O0000001O001O5J7J:E>\\Ob\\`;"}, {"size": [848, 480], "counts": "P`]<"}], [{"size": [848, 480], "counts": "cg0m2dg0O2N1O1O2N2N2N1O2N1O2N1O2N2N2N2N2N1O2N1O2N2N1O2N2N2N1O2N1O2N2N1O2N2N2N1O2N2N2N2N2N1O2N2N2N2N2N2N1O2N2N1O2Ncno:"}, {"size": [848, 480], "counts": "i5U1[i00O2O001O1O01O01O1O00000010O0O1001O000001O000O100N2L4L5M2O2N1O2O001O00001O01O001O0010O01O1O001O1O001O01O00010O000000010O01O001O001O01O1O1OZdP2_OS\\oM9SOC[WOb0ah0CTWOf0jh0d0L2N4L2N2NO2M2O1001O00O10001O000O101N100000001O01O1O001O0001N100O1O1O2M3N1N2O2L4M2O1O2N1N2O2N1N2N2O1N2O1N2O1N2N2N2O3N0O2MlS`41Ul_K2N3M3M2N2N2N2N1O3N1N2N2N4M6I6J3M2N2N3N2M5dWOUNig0Z2O1O00010O00001O000001O0000000O1I8I6M3L4N2O2O0O1000000O101O0000000000001O000O10001O000000001O00000000000000001O000O100000001O0O1000000O101O00fG"}, {"size": [848, 480], "counts": "_9e1kh00000000000000000O1000000000000000000O10O100000000000O1000000000000O10O100000000000O10O1000000000O10000000O1000O100000000000000O010000000000000O10000000000000000O101OO1000O2OO11O0000000O101O002M3M7Ik`e0ZOieYO2ji0>K0O00O1O10O01O2N00001O001N101O000O101O002N1N200N3N001O0O2OTU[8"}, {"size": [848, 480], "counts": "e[g5a0ci0P1SOc0D>C3M2N2O0O1eLWMn^Oj2o`0YMQ_Og2n`0\\Mm^Og2Ra0]Mj^Od2Ua0`Mg^Oa2Ya0iM[^OY2da0lMV^OV2ja0SNi]OQ2Vb0WN`]Ol1_b0^NU]Of1jb0mN\\\\OZ1cc0j200O1O100O1000001N100O100O2N100O100O2O01OO101O01OO101O000000001O00000000010O0001O000000O2O01O0000000000000000000000O100000000O100O010O100O010000000000O1000000O10000O1000000O1000001O0O10001O0O10001O001N101O001O1N2O1O0O3N1O1O2hLk[OmMd0=dc0Z1n]O]NWb0S1b^O_Nea0X1P4Db0]Oh0TO`TS3"}, {"size": [848, 480], "counts": "T;i0gi00O0100000000000000O01000000000000000O10O1000000000O10O100000000O01000000000O10O1000O10000000O100000000000O0100000000000O010000000O010000000000O100000000000000O10O1000O1000O1000000000000000O10001O001O1O1N3N4K[g?Id^_ONRj0;M4J3O1O1O10O0100000000000O1000O1000O1000O1000O100000000O1000000O1000001O0O2O1O1O1O1O1N2O00001O100O2M4M0OQhi7"}, {"size": [848, 480], "counts": "Z\\S85Vj08K5[M1aZO2Ue0;bZOK[e0`0aYOoNDJNn0lf0`2O2O0000000O100000001O00000000001N11O000000010O0O2F;]Oc0Aa0Bg0VOc\\\\3"}, {"size": [848, 480], "counts": "]e\\6o0\\i0:I3M5K4L5L4L3M2N2N2N2M201N1O2N1O2N100O2O0O100O2O00000O100000000O100000O10O1001O0000001O000O11O01N10001O2N1O1O0O2O1O002N2N001O1O2M3L3N3CdWO_Nbh0U1XWOmNXi0i0f0WOiVU4"}, {"size": [848, 480], "counts": "Q3`1Pi01O1O001O000000000000000000O1000000000000000O11O0000001N102N6I=D?ZORWa;"}, {"size": [848, 480], "counts": "P`]<"}], [{"size": [848, 480], "counts": "kg0e2lg0O2N1O2N2N1O2N2N1O2N2N2N2N1O2N2N1O2N2N2N1O2N2N2N2N2N1O2N1O1O2N1O2N1O2N2N2N1O3M1O2N2N2N1O2N2N1OfmT;"}, {"size": [848, 480], "counts": "i5U1[i00O20O01O1O00001O0010O000001OO2O01O000001O0O1M3L4M3O101N101N2O00001O00001O01O001O01O01O1O001O001O00000010O000001O01O01O1O001O00010O02M2J\\VO]OeTi1b0bdWNAPWOf0mh0\\OPWOh0mh0[OnVOi0Qi0=N1O1O1O1O1O01O01O001O000010O000000001O0000000001O01O0O1000010O0001O001O1O10O0001O01O000010O01O00001O001O000O2O0000000O1000000M3M3N2J6J6K6J5M4L7HjiR17iUmN>G5L3O0103L3N1N2O1O100O1O2N1O1O101N101N1O101N1000000O2N10001O0O2O000000QX=2mgB10O01O1O1O00002N1O1O1O100O101N2N2N4iVOJlg0`1M2N000000000001O001O000000001O000O1000001O000O1O1O2M2L4EJ6K6M2O101O00001O00001O0000010O0000001O01O01O00000010O000001O000010O000001O0001O0001O00000001O000N2K5K5K6K4N2O1O101N1000000000001O000O1000001O00000000001O00000000000O10001O000000000O10001O0000000O101O00000O100000fG"}, {"size": [848, 480], "counts": "`9d1lh000000000000O1000O10000000000000000O100000O10000000O10000000000O100000O10000000O1000O100000O10000000O01000000000000O10000000O100000O10000000000000001N2OO11O0000000O1000O11O0O10001O00O11N2O1O2M6Ickc0^OnT\\Og0\\O7I3L3N001O00000000000001O00000O100000000O10O1000000O01000O10O100000000000O10O10000000000000000O10000000000O0100000000000XOTWOLlh04TWOKmh04TWOLlh04UWOKkh05VWOJjh06VWOJjh05WWOKih04XWOLhh03YWOLhh04XWOLhh03YWOMhh00ZWO0gh0NZWO2gh0K[WO4gh0H\\WO8^i00000OO2O1M3M3N2O001O1O1O1N2N2N1O2N2O1N2N2O11N2OO10]OlVOJSi04UWOHjh07XWOIhh02]WOLhh0L\\WO4ai0N10000O10O1000O10O001O001O01000O10000000O10001OO03LhPj5"}, {"size": [848, 480], "counts": "gcP6n0\\i08M2M2N3L3L5J6G9L3_LlMZ[OOV3X2^a0TNZ^Oo1ea0TNV^On1ia0WNQ^Ol1na0[N^[OUOY2a2Xb0gN\\]O]1cb0mNQ]OU1nb0QOj\\OS1Uc0ROc\\OQ1]c0SO\\\\OP1dc0ZOj[Oo0Ud0f201N101O1O0O101O001O1O001O00001O010O1O000001O01O0O11O01O0000000000000001O000000000000000O1000O010000O100O010O01000O01000O01O001000O1O100O10O10O10O0100O10O1000O10000O2O00O1001N10001O0000001O001O0O2N2K4K6_N][OoLhd0]2o1]Od0DA?EC>_OlQ^3"}, {"size": [848, 480], "counts": "bme6h0ai0c0A5L3M3M3N3M2N2N2N2N2N3M2N100O100O101N2O0O10000O10001O0O1000001O00000000000000O10010O00001O00001O001O001N101L3M3N3M3M4L3M3M3K4L5L5K5J7I8Gicm3"}, {"size": [848, 480], "counts": "Q3c1mh0000000000000000000000001O00O100001O00000000O0101O00001O2M:Fh0TOPlb;"}, {"size": [848, 480], "counts": "PlW64Si0[1I5iL`Nh\\ONSNf1Te0bNa\\ONVNb1Xe0cN_\\OQ2ac0RN\\\\On1cc0VNY\\Ok1gc0bNj[O`1Vd0bNf[O`1[d0aNb[O_1_d0dN][O\\1dd0hNW[OW1ld0mNnZOj0]e0\\OXZOa0oe0a0`1K5J6I7K5K8I6K9H6J6J6I7Haa^5"}], [{"size": [848, 480], "counts": "Xh0X2Zh0N2N2N1O2N1O2N2N2N1O2N2N1O2N2N1O2N2N2N1O2N3M1O2N2N2N2N1O2N2N2N2N2N1O2N1O2N1O2N2NRgZ;"}, {"size": [848, 480], "counts": "i5P1`i01O2N100O001O001O0000010OO1000000O1O1N3N10001N100O101O001O1O00001O0001O01O0001O1O00001O000010O0000000010O1O00001O010000N2O2N2M3N3Ah]^1MebaN3N2O1N2N2]Oe0\\OROYWOV1dh0AXkc03cT\\O>F8G6K000000001O00000000O1000000000O10000000O10000000000O10O10000000O1000000000000O010000000000000O1000000000000O10O1000WOUWOLlh03WWOKih05WWOKih05WWOKih04XWOLhh03YWOMgh03YWOMgh03YWOMgh02ZWONfh02ZWOMgh03YWOMgh01[WOOeh00\\WO0dh0N_WO1bh0L`WO3eh0E^WO<[i0000O100N1O2N2O1N2N2O10OO2N2N2K4O2N2N2N1010010OO10000[OQWOHQi03VWOJjh03ZWOLjh0K]WO4_i01O00O1000000N100100O1O10OO2O100000O1000O100O1O1O010O1O1O1M3M201O0010O2N1O1M4O0O100O1O2N10001N2O0O10001M3NRUV5"}, {"size": [848, 480], "counts": "_lj5m0Pi0d0VOj0E:K6M2WMVMg]Oo2Wb0h2M1O2N101N2O0O2O2M2O1O1O1N2O1O2N1N2O0O2O1O0O2O1001N00N30O4L100O2N0000001O1O100O001O002N1O2N1O001O00001O00O11O0000O1000000O10O100000O1O11OO1O1O1N1101OO1O1N10100O10O01O1O1O0101N01O1O0101O0O101O0O100O2N1O101N1O2N1O1O2N1O2N1O2N1gKa\\O`1bc0TMX[On0_1h1Wf0H9QOn0C=I8H7Bj_Y3"}, {"size": [848, 480], "counts": "U;g0ii000000O10000000O10O100000000000O10O1000000000O010000O100001N10O100000000O10O10O1O1000O01000000000000000O1000000000O1000O1000000000O11N1000000000O0100000000O1000O11O0000O10O1000000000001O1N101O1O3L6K5IRR>:emA5J3N1O1O1000O10O10000000O1000000000000O010000000O10O10000000O10O100000O10O10000000O10000000O1000O10000000O10O10000000000O010000000000O11O00O1000O10O1001O00O1000O10O11O0000O10O10000O0100000O010000000O1000O10000O1O01000O100000O101OO1000O1000O1000000O10O1000000000000O1O1M3M4H^V_1Nki`N0O2O1O1O2N2N2N2N1O0O101OO10000000000000O10O1000000000000O10000001OO10O10000001O001N2O2M2O1N101N3LcbP3"}, {"size": [848, 480], "counts": "ohl7l0oh0f0^Ob0XOh0]Ob0_Oa0C=G9M3O1O2O0000000O1001O00000O10O10O100O101N1N2O1N2K6G8D=_Oa0G:_Ob0]Og0]OYa`3"}, {"size": [848, 480], "counts": "Xka6g0ci08H7L5L3M3M3N2N2N1O2N3M3M2N2O0O2O1N101N101N2O1O1N2O0O2O000000000O100000O101N0100000O101O00000O2O0O101N101N2M2O2N2N2M3L4H\\WO`Ngh0]17O2N3M2N3L6E`0\\Oi`R4"}, {"size": [848, 480], "counts": "Q3c1mh000000000000000000000000000000000000000O101O001N2N5L7FdVf;"}, {"size": [848, 480], "counts": "kUV6:ef0Kb\\OZ1]b0lNd\\OF\\Nd1od0gNa\\OKYNb1Ue0fN_\\OORN_1_e0eNZ\\On1fc0TNW\\Om1ic0\\Nm[Oe1Sd0`Ng[Oa1Yd0bNc[O^1^d0eN^[O[1cd0hNY[OX1id0lNQ[OT1Pe0ROhZOn0[e0XOZZOPOb09We0a1][OeMnd0V2i1G9J8H9J6J6K6I6J6J8HRQa5"}], [{"size": [848, 480], "counts": "Qh0_2Sh0N1O1O2N2N2N2N1O1O2N2N2N2N2N2N1O2N1O2N2N2N1O2N1O2N1O2N2N2N2N1O2N1O2N2N1O2N2N2N2N2N1O2N2N2NbbV;"}, {"size": [848, 480], "counts": "aba04\\j03M4K3N2OO02N1O102M2N2N100O000000000000O10000O1O2O0O1O100O2O0L5N1O2N11OO2Oc]^11[baN8I1N10000O1O1M4I6@a0D;OO2O11O000001N10000000001O01O00O2N11O00O1000010O01O00000001O0001O0000O101O00000001O001O010O1O0000O2L3O1L5M3L3J7K5M2K5N3N1N3N2N1O2N1O2Lhhl21XWSM3N2M201N101O00001O001O001O01O01O001O1O001O10O01O1O100O1O001O010O001O1O00010O001O1O1O10O0O1L6EQf6EbZI3J9]Oa0C;D>D[O_[_8"}, {"size": [848, 480], "counts": "fQQ5=ni09bN\\OdXOk0jf07]XO0[g0h1I7L5H7A`0E9K5F:K6H8I7D=L4K4I6L4N1J7M3N101N10001N10000O2O000000001O0000001O0001O00002N1O2O1N2N3M3M1O1O2N2OO01O001O1O1O0000001O001O00000000000001O000O1000000O100O100000000O100O1O100O100O1O100O1O01000O1O100O100O10O10001O000000000O101O000O101N1PLa\\Oo0`c0kNh\\OQ1Yc0gNU]OR1lb0jNZ]OT1gb0fNa]OV1`b0gNd]OW1^b0^Nm]Oa1Tb0YNR^Oe1Pb0UNU^Ok1la0nMZ^OP2ja0iM[^Og1[b0nMm]Ok0`f0IB`0\\Oaeh;"}, {"size": [848, 480], "counts": "]hR67Wj05L4L2QXOAke0a0QZOAne0e0oYO[Ooe0g0oYOZOPf0j0jYOXOVf0i0fYOZOZf0h0bYOZO^f0h0_YOYOaf0j0[YOWOff0k0VYOVOjf0P1PYOPOQg0Q1lXOoNVg0U1aXOnNag0l0`XOTOeg0JYYO5kf0EaYONifk5"}], [{"size": [848, 480], "counts": "Xh0X2Yh0O2N2N2N1O2N2N1O2N1O2N2N2N1O2N2N2N1O2N2N1O2N2N1O2N2N2N1O2N2N2N2N1O2N1O2N1O1O2N2N2NclY;"}, {"size": [848, 480], "counts": "m5Y1Wi00000000001N03N10N10O01N3N1N2O2N3L4L4J8ClbZ25V]eM8I3NO10O2O0O1L4\\Od0L4O10000000O100000O1000000O10O1O11O001O000001O000001O01O00000000001O00000000001O01O01O01N2O10O1O3M?A:POZVOb0Qj0In_\\38PfbLA_i0P1G5H7H7L5M20000001O1O1O1O1O1O1O2N1O2M3N101M2O3M1O1O1O1O1O001O1N1000000O101O0O1O1M4FfS9@SmF000ZVOb0Yh0@UWOR1hh0=M2O2N100O2N101N10001N10000O2O0O100O2N100O2O0O100O101O0O101O0O101O000000010O000000001O000001O0000000O2J5J6K5K5N3N10000000001N1000000000001O0O10000000001O000000001O000O1000000000000000001N100000000O101O001O0O100000001O0000000O1000000000dG"}, {"size": [848, 480], "counts": "a9e1kh00O1001O0000O101OO100000000O10000O1000000O1001OB]WOmNgh08XWOHi_j0N[ZVO6QVOJ\\i09cVOG[i0>aVOD]i0?_VOC_i0h0O2N1O1N2M3M3N2O001O100O10000000O100000000O2O002N4Ka0_OdPc02Wo\\O;I?A4L00000000000000000000000O11O0000000O010000000O100000O1000O100000000000O01000000O1000O100000O100000000O100PO\\WO4dh0HaWO7_h0FeWO8\\h0FgWO9Yi0O2M3N2Nj]k7"}, {"size": [848, 480], "counts": "oW\\42WSA9I0O100M3O1000O100000000000O010000000000O10O1000000000O10O1000000000O0100000O1000O100000O01000000O01000000000000O010000O1000O2O001O2M9EVeV39bZiL3O1O000O11O00O010000000000O10O011O0000O100000000000O01000000000O10000O01000001O00001O1O0O2O1N3M2O2L2NcaU3"}, {"size": [848, 480], "counts": "]Qk7>ei0?F9J6J6L3N3M3M2O3N001O1O1O1N2O2N1O2N1O101N1O2N3N2M10O1N3M4I9F`0ZOoTg3"}, {"size": [848, 480], "counts": "mUP6>ni09I5I7K5J6K5K4J6L3N2M2O2N101N1N3N100O1O100O1000000O010O10000O01000000O100O1O1O1N2O1M3N200O1O2O0O1O2N100O2O1N101O1O1N2O01O10O1O001N3N1O100O1N4M2N1N3N1O103H7Jll[4"}, {"size": [848, 480], "counts": "T3c1mh000000O11O00O100000000001O1N2N4M7H>\\Ojdm;"}, {"size": [848, 480], "counts": "P`]<"}], [{"size": [848, 480], "counts": "eh0k1fh0O2N2N2N1O2N1O1O2N2N1O2N2N2N1O3M1O2N1O2N1O2N2N2N2N1O1O2N2N2N1O2N2N2NRf_;"}, {"size": [848, 480], "counts": "P6W1Yi000O10000O1O2M200O1O101O0O102N001O01O01O0000001O000001O00000001O0000001O00001O1O1N5KnVd1LWi[N3L3N1N100L5G8O1O100O100O10000O011O0O1O1O001O100O1O101N01O010001O0O2O1O00000O2O00001O101NK6WO]oP3BhQoL3M4M2N1OO001010N01002M1000O1O100001N2O000000001O000000001O0000000oNYOYXOg0ag0_O^XOb0ag0_O_XOa0ag0_O_XOb0_g0_OaXOa0_g0@`XO`0_g0AaXO?_g0AaXO?_g0AaXO?_g0B`XO>`g0B`XO>`g0AaXO>`g0B`XO>`g0B`XO>`g0B`XO>ag0A^XO`0bg0@^XO`0bg0@]XOa0cg0_O]XOa0dg0^O\\XOb0dg0^O\\XOb0dg0_O[XOa0eg0_O[XOa0eg0^O\\XOa0eg0@ZXO`0fg0_O[XOa0eg0_O[XOa0eg0_O[XOa0fg0^OZXOb0fg0^OZXOa0gg0_OXXOb0hg0^OYXOa0hg0^OXXOb0ig0]OWXOb0jg0]OWXO`0mg0_OSXO?og0ASXO;og0E^10dT9M`QF?lh0f0L2O2O0O110O00001O0000010O01O01O0000001O000010O00000010O0010O000000010O0000010O001O0010O00000O100O1N2VOcN^XO`1bg0fNmWOc1Uh066J6J6N2N111N1000000000001O0O10000000000000000O2O000000001O00000O10000000001O0O10000000001O000O2O00000O1000001O0000000O1000001O0000000O10000000bG"}, {"size": [848, 480], "counts": "h9a1oh000O2O001O1O8H3M001O1N100N3VObVO8oPc0JTi]O6I7K3M2N100M3O2M2M3N20000O100O1N2M3M3O1N2O0010O1000000O10O100001N1000O10O10O11O1N2O3M4Lb0\\OTkc0NR[[OFbi0Q1D5L2N2N1O000000000000000000000O2O0000O100000000000O1O10O10000000000O1000O02O000O1O2@jU`8"}, {"size": [848, 480], "counts": "R[m3k0^h0Y1POo0XOg0@a0H7K6L3M3M4L4M2O2L3M3N2O1N2O1O1O1O101N1O100O2O0O1O2N100O2N10000O2N10001O00000011N100O0010O00001O00001N100O2O0O2O00000O2O000O2N1000010O00000O100001O000000000000000eKe\\Oa1\\c0WNX]O\\1hb0^Nc]O\\1^b0`Nj]O\\1Vb0]NU^O_1ka0_NY^O_1ga0_N]^O_1ca0^Na^Oa1_a0]Ne^Oa1\\a0\\Nh^Ob1Xa0\\Nl^Ob1Ta0\\No^Oc1Ra0ZNQ_Od1Pa0[NQ_Oe1o`0YNT_Of1m`0WNU_Oi1k`0UNW_Ok1j`0RNX_On1h`0QNY_Oo1h`0oMY_OP2h`0nM[_OQ2f`0mM[_OS2e`0lM]_OR2e`0lM]_OS2c`0lM__OR2c`0lM__OS2c`0jM`_OS2ad0N3L3N2M8H7J8G:E;Ffm[5"}, {"size": [848, 480], "counts": "X;h0hi000000O1000O10000000001O0O100000000000000O101O0000O01000000000000000O1O001O1O1000O0100000000000O100000O10O10O100000000O010000O10O10000000000O1000O1000000000000O011O001O1N2O2N1O6IY]Vi0m0mNQ1VOk0ZOd0K6L3M3N1N3N3M4L2M200O1O1O0O2O0000000000O1O1O2M2O1M4K5I7C>@a0\\Oi0VOknl3"}, {"size": [848, 480], "counts": "n_[5?ki0=F6K7I5K5K4M2N2N1N4K4N2N2N1O2N10001O0000000O1000O1000000O100O1O0O2N2O1O2M2N2O1N2O1O101M200O2O0O101N10010O001O100O1O001O1O0O201M3N1O1O0O3M2O2M3M3M4J7HTRS5"}, {"size": [848, 480], "counts": "V3d1lh00000O1000000000001O002N;Dmc0^OZ\\O>fc0^Oe\\O;[c0Bm\\O9Sc0EW]O3ib0Ga]O5_b0Jg]O1Yb0Nj]O0Vb0Nm]O1Sb0MP^O1Rb0LQ^O3oa0KT^O4la0JV^O6ja0IW^O7ia0IW^O7ia0IW^O7ia0GZ^O8ga0FZ^O9ga0E[^O;ea0D\\^Oba0A_^O?aa0@`^O`0`a0_Ob^O?_a0@b^O`0_a0^Ob^Oa0_a0^Ob^Ob0^a0]Oc^Oc0^a0[Oc^Od0^a0\\Ob^Od0_a0ZOb^Oe0`a0YOa^Og0`a0WOa^Oh0aa0VOa^Og0ba0WO_^Oh0ee0O1O2O1N4L>_O`oW6"}, {"size": [848, 480], "counts": "Z;i0gi0000000000O010000000000O0100000O01000000000O1000000000000O010000000O1000000000000O10000000000000001N1000O1000O0100O0010000O1000000O1000O10000000O10O2O001N101O1O1O7HXg?JnX@4L8J0O0O10O1000O100000000O010000000000O10O1000O101N1000001N10006Geam23W^RMN3N1N2O1O001N2N1O101N1O1O2N1M3N201N10O0100000O11O00010O00001O1O10O01O00001O01O001O010N10010O001O001O00000O100000000O1N2M3L4K5I7K7GYYU17bfjNeWOC[h0Qe0Kd\\OH[N;Re0Mc\\OH[N;Se0Kb\\OLZN8Ue0Kb\\ONXN6Xe0L_\\ONZN5Xe0L]\\O1[N0Ze0N\\\\O2ZN0[e0MZ\\O4[NN`e0KS\\O8^NKae0La[Oi0nN[Oce0IW[OV1VOoNQg0[1PYOcNnf0`1RYO_Nef0j1]YOSNdf0l0lRk6"}, {"size": [848, 480], "counts": "[;j0fi000000000O010000O1000O1000O100000O10000000000O100000000O10O10000000O1000O100001OO0101O0000001N100000O011O00O0100O10000O1000O10000O10O1000000001N101O2N4K7J3MRR>;bmA1O10000000O0100000O10000O010000O010O1O1O00100O1000O01000000O1000O10O100000O100000000O1000O1O10O10000000O10O100000000O01000000000O1000O100000000000O01000O4M2N3M4KkTd1:kj[N1O101OO1000O1000000000O0100O100000O010000000O10O1000O10O1000000000O10O100000000O01000O01000000O10O1000O100000O10O101O0000O01000000O10000000000O10O1000000000000O01000000000O10O101O1O1O000O2O1N2N2OPdc3"}, {"size": [848, 480], "counts": "TmX7k0ih0o0aN]1YOf0ZOf0M3O1O100O10001O0000001OO01000O1000000000001N1O1N3N1L4L5F:Eia0@X^O`0ha0_OZ^O`0fa0_O[^Oa0da0@]^O?da0_O]^O`0da0_O]^Oa0ca0^O_^Oa0ba0]O_^Ob0ba0]O_^Oc0aa0]O_^Oc0ba0[O`]O_OZNU1Wd0\\O^]OCXNQ1[d0ZO]]OGWNo0\\d0ZO\\]OJVNk0`d0ZOY]OLWNj0ad0YOW]OOWNg0dd0YOT]O2WNe0fd0XOQ]O7XN`0hd0ZOj\\O:^N;kd0YOe\\O?_N8nd0WO`\\Od0bN4Qe0VOZ\\Oj0eNOUe0SOT\\OP1gNLof0N1O10000O10O10000000O01000O100O100O00100N110000O10O1000O100000O1000O10000O1000001N10OO1G`RS24emlM4L10000O100O010O10000O100O01000000000000O010000O100000O100000O10O10000O0100O100000O010O10000000O10O1000O1000000000O10O100000O10O10O100000O10O1000000O100000000O10O100000O1000000O10000000O1000O10000000O100000O10000000001O001N102N1O1N2O2Lnmf3"}, {"size": [848, 480], "counts": "_cU7a0kh0V1cN]NiXOd2Zf0X1^Oa0L4N2O2O0O101O00000000000O10O10000O1000000O2O0O1O2M3M3I9G9Ab0[Oh0kNVXO[N^nZ4"}, {"size": [848, 480], "counts": "Xcc4>ni0D3L3N3M3M3M2N01O02N1O10O01O1O1O10O02N3M2N005K1ON3O0K6L3E;I7H9Bn\\[24QcdMhb0@Z]O`0eb0_O^]O`0bb0^O`]Ob0`b0[Oc]Oe0\\b0ZOg]Oe0Xb0ZOj]Of0Vb0YOl]Of0Tb0XOn]Oh0Rb0VOQ^Oi0na0UOU^Ok0ka0SOW^Om0ia0QOZ^On0fa0QO\\^Oo0ba0QO_^Oo0aa0POa^Oo0_a0POc^Oo0]a0oNf^OP1Za0oNg^OQ1Ya0nNi^OQ1Wa0mNk^OS1Ua0lNm^OS1Sa0mNn^OR1Ra0lNQ_OR1Qa0mNP_OR1Pa0mNQ_OS1Pa0kNR_OT1n`0kNT_OS1n`0jNT_OV1l`0jNU_OU1l`0iNV_OV1j`0jNV_OU1l`0iNV_OV1j`0iNW_OW1j`0hNV_OW1l`0gNX^OLiM\\1oc0gNU^O4iMU1Ud0cNQ^O;iMR1Vg0oNjXOo0Vg0SOjXOl0Vg0UOiXOk0Wg0UOiXOj0Wg0XOiXOf0Wg0\\OhXOd0Ug0AjXO=Tg0FmXO9lf0OSYO1jf02WYOLef0:ZYOF[f0f0eYOYOPf0R1QZOlNPf0T1PZOlNoe0WO^YOb1f0TOif0YOeXOc0e00gig6"}, {"size": [848, 480], "counts": "];h0hi000O0101OO10O1000000O010000000000O010000000O01000000O01000000000000O1000000000000O2O00000O1000000000O100000O1000O1000000O010001O000O2O002M4M5K3LQR>>amA1O100O001O100000000O010O100000O1000000O102M3N00001O0O0100O1000O01O100O1O1O10O10001N2O1N4L_aU22_^jM2N2O0O1O2O000O010O1000O1000000O10O100O100000O10O100000O2O00O010001O001N2O001N2O0O2O2O0N3M3NYg?0cX@5K4N2O100N3O00000O1000O10000000O010000000000000O10O100000O1000000000000001N101O001O1N102N2L3Nmbh3"}, {"size": [848, 480], "counts": "ZnS7f0hh0V1mMo1D=Cbg0B_XO8fg0H\\XO1ig0OZXOKig06VXOHlg09RXOEQh0;oWOAUh0`0kWO]O\\h0GYWOa0oi0J5K01013L`VX6"}], [{"size": [848, 480], "counts": "oi0a0Pj0O2N2N1O2N1O2N002N2NRbS<"}, {"size": [848, 480], "counts": "jQm5:ni0=J3M2O1O1O001O100O1O101N1O00100O001O0010O01O1O001O010O1O1O2N0010O01O2N002O0O1O1O1O2N2N2O1N3M1O2N01O01O001O0001O0O1001O001O00010O00000000000001O0000001O000O100000001O00000O101O000O100O1O2J5G:_Oc0_OiU9HVjFn0[O?]Oc0M3M200O101O00001O0010O00000001O01O0001O0000001O0001O0001O00000010O000001O00001O01O00000000001O000M3I7L4J6N3M200O100000001O000O10001O00000000000O2O0000000000001O0O100000000O10001O00000O10001O0000000O2O0000000O101O000O100000000000000O101O000O101O0000001N1000000000001O00000000001NZG"}, {"size": [848, 480], "counts": "i9f1jh00000O10000000O10O1000000O1000000O100000O10O100000000O10O100000000000000O1000000000O1000000000000O100000O1000000O02O002M4L2O5J=CXkc0_OYU\\O;E4M0cVOFch0:^WOH`h07aWOJ^h05bWOL^h04aWOM^h03aWOO_h01`WO0`h0O`WO2_h0NaWO3_h0MaWO3_h0M`WO4`h0L`WO4`h0L`WO3bh0K^WO6bh0I_WO7ah0I^WO8bh0G_WO9ah0G^WO:bh0E_WO:bh0E^WOch0@^WO`0ch0^O^WOb0bh0]O^WOd0ch0YO^WOh0Ui000O103N3M6]OPVO7Wj0M\\cc2a0P\\\\M7L100000O101O001N101N2O2N3M3M2N1N2O2M3Nm^Q6"}, {"size": [848, 480], "counts": "Qn[34Wj08ZOe0CY[O@ed0>_[OA`d0?b[O@]d0=h[OCVd0Pd0XOl]O;SNSYOAkf0b0UYO]Oif0f0VYOYOhf0k0XYOTOgf0m0ZYOQOef0R1[YOlNbf0X1V15O0N]Ob0QOl016HoP^6"}, {"size": [848, 480], "counts": "];h0hi000000000000O0100000O1000O10O10000000O0100000O0100000000000O10O1001OO10O10000000000O1000000000O0100000000000000O1000000000000O101O001N3N3M4K4MRR>:bmA3M2O1O1O1000O101O0000000O0100O10O10000000O0100000000O10O11O0O2O00001O0O100000O100O100O0101N2O1O1N2O1O1N2O0O2O001N101O0OiRn19nlQN4M1O00O0100O100O10000O01000O1000000000O10O100001N2O0O2O001O100O0O101O00000O0100O100O10OO101N2O0O2O1O100O100000O1000O10000O10O10000O1000000000000O10000O1000000O100000O100000O1000O100O10000000000001O001O1N2O0O100O3N3Jnbh3"}, {"size": [848, 480], "counts": "eSS7m0`h0U1UNk1@>F:O1N200O2O00000000001O0O1000O10000O10000O2O000N3N1N3K5I7E=B`0QOU1TOU1fNnj[4"}, {"size": [848, 480], "counts": "ZRo4?ni08I5K6J4L4M2M4M2N2N2M200N2O1O2O0O01O010O100O100O0O2O1N2O1N2O1O1O00100O100O1O2O000001O01O00000010O01O000O2O1O2N001O1N101N3N1O2O0O2N2M7HhSf5"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "P`]<"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "fYX27Yj02M2O1N2O1N2O1N1PODTWOT1ih0Whl2L]QTM9J6H7I8F9L5M2O10000000010O0000000010O000001O0000010O000000001O010O0000000010O0000010O000001O000010O0001O0000001O0000000001O000000001O0O100000001O0000000O2O0O10000O1O2N1J6G;]Od0^O[U9`0VjF`0\\Oc0E:O2M200O2O001O00001O01O0001O0000000010O000001O01O0001O0000001O01O01O000000010O0000000001O0000000O1L4J6L5I6N2O1O1000001O000000000O2O00000000001O0000000000000O2O0000001O000O10000000000O101O000O1000001O000O1000001O000O100000000O10001O0O101O000000000O2O0000000O10001O00000O1000001O1OWG"}, {"size": [848, 480], "counts": "j9f1jh000000000000O01000000O1000000000O10O1000000O1000000O0100000000O1000O10000001N0100000000O2O000O1000000000O2OO1000000O2O2M4L2O:Ea0]O_Pc0KfU\\OKii0m0A;E7I4M10OO1O1000000O11N10O100O100O10O0100001N2O00O1000O101O00000O10000O10OO2B=01N4F9L7^OTVO1jch22[VXM2C=M301O00O2O0O100000001N101O0O101O000000001N10000O2O000O2O00000O101O0O101N101O0O2O0000aUQ5"}, {"size": [848, 480], "counts": "Ue]3:ni0:H7F:I7J6J6J5J7L4H8J5K6J5K5J7K4M4J6K5J5M4K5M2N2N3M3N1N3N2M2O2N1O2O0O2O0O2O0O2O0O101O0O10000OPNW[O[Nid0b1\\[O]Ncd0^1c[OaN]d0[1i[OcNXd0m0W\\OSOkc0`0a\\O_O_c0>d\\OB\\c0;h\\ODYc09j\\OGUc06P]OHPc07Q]OIob04U]OKjb04Y]OKgb03[]OMeb01^]ONbb00a]OO_b0Oc]O1]b0Ne]O1[b0Mh]O2Xb0Mj]O2Vb0Ml]O2Ub0Lm]O2Tb0Lo]O3Qb0LR^O2na0NS^O1ma0MU^O3ka0LW^O3ia0MX^O1ia0J\\^O6ea0I\\^O6da0I]^O7ba0KW]OB_Nb0Zd0KW]OF^N=]d0KT]OL^N8^d0KT]O0\\N5`d0KS]O2]N2`d0KS]O5]NO`d0KS]O7]NMad0KR]O;\\NIcd0KP]O?\\NDed0Lo\\Ob0]N@ed0Mm\\Oe0^N]Oed0Ml\\Oi0^NZOgd0Lj\\Ol0_NVOid0Mg\\Oo0`NSOid0Mf\\OT1`NnNjd0Md\\OY1bNiNkd0Mb\\O\\1cNdNod0M^\\O`1fN^NPe00Y\\Od1ef02NM3J3F>C?[OPdZ6"}, {"size": [848, 480], "counts": "^;g0ii0000000000000O01000000O1000O10000000O10O10O100000000O10O10000000O010000000000O100000000O0100000000000O1000O100000O2OO10000001N101O1N2O2M5L6Ial>=QSA4M1O10O01000000O010000000O10000000O10O100000O0100000O10O100000000000O10000O101O2N`^d2Lca[M1O10000N2O1O10O1000000000000000O010000000O01000O1000O10O1000000O0100000O100O0100000O0100000000000O010000000000O100000000O1000000O1000000O10000O1000000000O0100000O101O00O10O100001O1O1O1O0O3N1OO02NmWj3"}, {"size": [848, 480], "counts": "[SS7W1Xh0T1\\Nc1_O?H8O1O2O0O100000001O00000O1000O1000000O100O101N1O2M2N3I6J7E?XOg0ZOS1hM[WOP1\\^]4"}, {"size": [848, 480], "counts": "TPP55Vj09G:I4M2N2M201N1N4L3M201N2N2N2N1O2N1O10000O100O10000O0100O100O001N3N1N2N2O1N2O100O1000000000010O00001O00001O001N2O0O2O1O1N2N3M3M2N3M4FaVe5"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "P`]<"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "X_W26Yj03N1N2O2N1O1N2N1M3POP1N2000001OO1000001O00000000001O000O11O01O00000000000000001O00001O0001O00O100000001O0001O0000002OO0001O00O2OO21KTWObNfY`2eb0A\\]O>db0A]]O>eb0A[]O>fb0A\\]O>eb0A[]O>hb0^O[]Oa0gb0\\OZ]Ob0\\f0LiV`6"}, {"size": [848, 480], "counts": "_;h0hi00000000000O0100000000O10O10000000000O010000O10O100000O10000000O1000O1000O2OO100000O10O1000000O1000O10000000000O10000000O1001N2O2N1N4M4K4LTg?1kX@;C3O100O10O1000O10O10000000O100O1000O10O10000O010000000O010000O10O1000O1000O10000O10O1000001O0O1000001O00O01000O1000O0100000000O0100000000000O1000O100000O10000000O10O1000O1O100O001O1O1O1N3M2N2O2L\\_g18Z`XN5O10000O100O1000000O010000O1000O1000O10O100O1000O1000O10O10000000000O1000000000000O10000O100000O010001O000O10O1000000000000000O01001O1O001O1N103M1O0O2NiWj3"}, {"size": [848, 480], "counts": "`YR7a0hh0[1`N]1WOi0A?K5N1O100O1000001O000000000O10O100000000O1O2N1O2N1O1M4I7D=Ac0UOT1oNX`]4"}, {"size": [848, 480], "counts": "R^S55Uj0>B:I5L5L5K3M101N2N1O2N101O0O1O1000O01000O1O1O001O1M3O010N2O1O100O100000001OO100001O001O0O10001N101O1N2O2M4L3M3L4L7AoVi5"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "W]\\54[j02mWOMfe05XZOOee05WZOMfe0;SZOFle0L0fYOgL`e0Y3^ZOlL`e0S3_ZOoLae0P3_ZOQMae0o2^ZOSM`e0n2`ZORM`e0m2aZOSM_e0m2aZOTM^e0l2hZOnLXe0R3kZOlLTe0T3kZOlLUe0X3hZOhLXe0Z3\\ZOVL5a0_e0_3^ZObLbe0U4100O10000O100O2N1O2M2M4I7D>\\Oh0SOZ1hNaZ^4"}, {"size": [848, 480], "counts": "Yo^5>ni06K4N3L4M2M4K4N1O1N3N1O1O10000O100O10O0100O01O1N101O1O1O001O1O010O101O0O101O00010O0000100O1O00001O1O0010OO2O1O2N2M4M2L6HaP\\5"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "gb[52\\j05L2N4M2O1M3M4N0^VO]OVi0Q1N3M6J3L6K1O0OO2O0O2N3^NVWOZ1\\i0C3M5K4L4K6He`[6"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "ZjU25[j03M1N2O1N2O2L3I6UOl0L30000000000001O00000O1000001O000000001N10000000000010O001O0000000001O000001O000000O2O01O001O1O00100O001O0001O1O1O001O001O0000000000000000000O010L4E;H8I7GcTS2IbQlMOii0d0J5LO2IaVOA^i0b071000O1O6EoXOEQg0=kXOFTg0E@?@WPc0=]o\\Ob0@7H8I2M2O000001OO100000000000000000O10000000000O10O1001O0O10O1000000O10O10000O1000000000000O100000O100000O1000000000O0100000000O10000O1000O100000O2O00000O103Mj0VO1O3L3La\\P8"}, {"size": [848, 480], "counts": "mQ]42Zj06L4M2N2M3M3N2N3L3M3N2M2M4K4D=H7G:F:D;G9J7DcL\\YOd3]f0;J7L3N3M2N2O1O2N1O1O1O2N100O1O2N1O10001N10000O2O000000001O000O100O101N1O10000O2O000000001O000000TLU[OaN1W3jd0oMn[Ol1Rd0QNX\\Oh1hc0UN^\\Oh1bc0VNc\\Og1]c0WNi\\Of1Vc0WNo\\Og1Qc0XNR]Of1nb0YNT]Of1lb0YNW]Oe1jb0YNX]Of1hb0YNZ]Of1fb0YN\\]Of1db0YN^]Of1cb0WN`]Oh1ab0VNa]Oi1_b0VNb]Oi1`b0UNb]Oj1^b0TNd]Ol1]b0RNd]Om1]b0SNc]Om1]b0SNd]Ol1]b0SNf]Oj1[b0TN\\^OL]LT1Ze0nNR_O=Xca5"}, {"size": [848, 480], "counts": "c;h0hi00000000O10O100000O1000O10000000O100000O100000O1000O10000000O0100000000000O10O10000000O10O1000O1000O10O1000000000O01000O102N2N2N2M4M7EWg?3gX@;G3L2O1000000O1000O1O100000O10000O10O100000O10O1000O1000O10000000O1000O100000O1000O100000O1000O10O100000O010000000O10O10O1000O10O10000000O1000O1000000000O010001O000O101O1N2O1O1O1N10001O1N2O1N3N1Ne[V2;QdiM2N1O000O10000O100O010O100O01000000O100O1001OO01000O1000O100000O1000O100000000O0100O11O1O000000O101O2M101N3N1O3Leam3"}, {"size": [848, 480], "counts": "`jo67Wj04I7L3J5O100O1N2000001N100100O00001N1O10iMZOdZOf0Ye0_OcZOc0Ze0AcZO?]e0CbZO>Rd0RO^[Oc0?;Td0TOX[Oc0c09Vd0UOU[Od0c08Xd0UOQ[Of0g04Zd0WOkZOh0j00]d0ZO_ZOm0U1F^d0CTZOj0f1mNZNOQf0:jYOn0ch0?5Ji0]NRWO1ig`4"}, {"size": [848, 480], "counts": "caS6=Qj09G3M2K7M1N2O2N1O1O1O1O2N100O1O1O10O100O10O010O0100O01000O1O001O1O100O2O000000001O0100O1O10O001O100O1O1O1O001N201N1O1O2M2O1N3L5K8F^Yc4"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "P`]<"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "e6Anl`15QS_N3N1N101O1N2L4C=[Od0N200O1001O000000001O00000O100000010O000O1O1001O0001O01O0000000001O00000O11O0001O000000000100O001O1O001O10O0010O01O001O001O00001O00000O1000000000000O1N2K5M3K6I5J7L5Hnok21QPTM8K5K4O2M2N2O1O101O00000O10000000O100000O100O100O1O001O1O0000O2H9ElS>OekAAXWOk0eh0WO]WOg0bh0YO_WOg0^h0VOWWO1:j0]h0VOYWO09k0`h0YO\\WOJKn0jh0VOZWONJm0mh0VOUWOR1jh0:O1102M012`NSWOW1Ri0101O000N2010O000001N100O101O0O1O1O1[O`NYXOb1fg0gNPXOZ1og0hNoWOY1Rh0eNlWO^1Th0bNkWO_1Uh0?O0000001O0001N1O1N2K5K5K5M3N3O0O1000001O0O100000000000001O000000000O10001O00000O100000001N1000000000000O10001O000O101O000O10001O00000O1000000000001N10000000000O2O1O00001OO0101O00001O0O10O11N10001O000O1000001ORG"}, {"size": [848, 480], "counts": "o9e1kh00000000000O10O10000000O10O10O1000000000000O100000O100000000000O100000000000000O10000000O010000O10000O101O1O0O2O2N3L>C=@kjc0;S[[O_Oei0Q1E8G5L1N2O00000000000O0100000000000000O10000000000O100000000O1000O10000000O1000O10O10000000000O1000O100000O1000000000O10O10000XOTWOLlh03VWOKkh04VWOLjh04VWOLjh04VWOLjh03WWOLjh04VWOLjh03XWOLhh03YWOMgh02ZWONgh00ZWO0fh0N\\WO2dh0M]WO2dh0J`WO6`h0FdWO:Yi0000O100N2M2O2M3N2O1N2M3N1M4O1N1O2M3O10000001OO01O1O2N2L5I8L>@ef[7"}, {"size": [848, 480], "counts": "Zkl46Xj04K5L3M3M3M3M3N2L4M3kNT1J7gNY1K4M4M2N2O2N1O2N1O2O1N1O101O0O2N2O001N101O0O2O1O001O001O00001O001O000O2O001O00000O2O00000O101O0001O000001O00000000\\LQ[Og1od0oMg[Oe1Zd0WNm[Oe1Sd0XNU\\Oc1kc0ZNZ\\Od1fc0YN_\\Oe1bc0XNa\\Og1_c0WNf\\Of1Zc0XNk\\Oe1Vc0YNm\\Of1Rc0XNQ]Of1Pc0YNQ]Og1ob0VNU]Oi1lb0UNV]Oj1jb0UNX]Oi1ib0WNX]Oh1ib0UNY]Oj1ib0TNY]Ok1hb0RN\\]Ok1oe0[N\\WOj0gi0]ObXU5"}, {"size": [848, 480], "counts": "c;h0gi01000O10O1000000000O1000O100000O100000O10O1000O10000000O100000000000000O01000000O010000000O1000O10O1000000000O10O1000O101O2N2N2M3N3Lil>MZSA6J3M1O2N1O10000O010O1000O1000O100000O1000O1000O1000O10O10000000O10O1000O100000O1000O1000000O01000000O10O100000O10O1000O100000O01000O100000O100000000000000O10O1000000O01000000O10000000O010000000000O10002M8H6K1O1ObPX21\\ogM=C1O1O10001N02O0000O010000000000O10000000O1000O10000000O100000O100O11O001O00O10001N2O1N2O2N1N2N3LVgl3"}, {"size": [848, 480], "counts": "a[Q7]1kh09L3O1O2O00000O2O00001O001O1O001O1O1O001O1O1O100O1O1O100001N4I`0TOVj`4"}, {"size": [848, 480], "counts": "ibX6Rj0001O100O1O1O100O1O1O1O10O01OO1001OO10000O1O1O5JcR`1Jdm_N2N3N0O102M2N1J7UOj0M300O100001O000000000000001N11O00000001N1O1001O00000010O0000000O11O01O000001O00000001O0001O001O100O1O001O01O00001O1O10O000001O000O2O00000000000000000N2N2L4J6K5I7K6I7Jce62\\ZI5L4N2M3O00O6APVO3oTg0OQeYOd0@f0[O8H4N110O00000010O00000000010O0001O01O0001O01O0001O000010O00001O010O00000000001O00O11ZNgWOS1Pi0K2N2M3N3M4K8H>BhW=:dgB=H7O0O100000O0O2N2N2K5O2O0M2O3M2Mmae0IQ^ZObg0A_XO`0ag0\\OaXOe0bg0QOeXOo0\\h03N1N3N00003L2O2O0O101N001N3M2M3N2N2O000M11O1N4L4K5O2N1O10001N1M4K4C=H9FPZ83RfG6L2K6L4L4M2M3O2O01O010O01O000000000001O000000000O101O0000001N100000000O10001O000O100000001N101O001O0O10001O00000O1000001N1000001O0000001NSG"}, {"size": [848, 480], "counts": "n9c1lh0100000000000O10000000O01000000000000O100000000000000O100000000000O0101O00000O10O1000O10O100O10000O0101O001O00001N2dNQWOU1`i0E9EQkc0OQU\\O`0A8H6I3N1O000000000O100000O1000000000O100000O1000000000000O10O100000000000O100O1000O1000O100000000O100000O10O100000000000000ZOQWOJPi05RWOJnh05TWOJlh05UWOKjh06VWOIkh07UWOIkh06VWOJjh06WWOIih06XWOJhh05YWOKgh05YWOKhh02ZWOMgh02ZWONfh00\\WO0dh0N^WO2bh0JbWO6\\i000O01O1N2M3N1N3N2O1N1N3M3M3N2O1M201O1000O100000000_OmVOETi07QWOGPi05UWOIii0O2O000000000O10O1N200O1O1O1000O10O100000O010000O001N2N2L4N1O2O10000001O00000O100000001O00000O2O01O0001N1000001N100O101O0O1O1O2M3M4LTag5"}, {"size": [848, 480], "counts": "jRV56Wj06L2L3O2N2N1N3M3dN]OgXOf0Pg0JgXO8mf0:iXOKSg0;fXOIkf0V2M2N2O1N3N2N1O2N101N101N2O1O1N2O001O0O2O1O1O1O001O1O002N0010O01O010O1O10O01O001N10001O0001O0000000001O01O0000001O00000lL`ZOX1`e0bNmZOW1Se0gNR[OV1nd0eN[[OW1ed0hN^[OV1cd0fNb[OX1^d0gNe[OV1\\d0gNi[OW1Xd0fNl[OX1Td0fNo[OX1Rd0fNP\\OZ1Pd0eNR\\OZ1oc0cNU\\OZ1lc0fNY\\OB_Nf0Ze0FP4N2M4M2N2NTZk4"}, {"size": [848, 480], "counts": "`;i0gi0000000000O010000000000O01000000O01000000000000O01000000000O10O10000000O1000O10000000O10O100000O100000000000000O100000O02O1O1O3L3N3L5KTg?1jX@5J9I2O001N01000000O0100000O100000O1000O10000000O0100000O1000O10000000O01000000O0100000000O01000000O1000O100000O10000000O01000O100000O10O10000O1000O10O100000O1000000O011O0000000O01000000O1000O1000O1000O1000000000O010O100000O10O100000O1000000O01000000000O1000O1000O10000000O1000000000O1000000000000O010000000O10000O100000001N1NZa]1DR_bN5K4N2N4L000O10010O0000O101O1N101O1O2M2O2Lham3"}, {"size": [848, 480], "counts": "]\\Q7482ch0f1D6N1O2OHgWOUN\\h0e1;O100O10000O1001N101O001O3M>B1O00010O00O101O1N102N2N8Gao_4"}, {"size": [848, 480], "counts": "^Pa6?ni07J4M4K5K5L2N2N1O2N10001N100O100O11O00O2O00O1000000O1O1M3O1O1N3N2O0O101N1O100000001O001N101O001N2O1N2O3M2L3M4IgS^4"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "jXX55Yj04M2nXO4^c0N\\\\OP1jb0TOm\\OU1ob0lN\\\\O_O`Ni1Se0iN[\\O@_Ni1Ve0kN^ZO\\Of1W2mc0eNn[O\\1Sd0fNf[O^1[d0bNb[O`1^d0cN][O^1ed0dNW[O]1id0gNQ[OZ1Qe0jNhZOW1Ze0nN]ZOT1ee0MgZObN\\e0Z1oZOUN_e0c1k1E:G:I:J8H5L4K4M1N2N2N2N2M4M2MmPY6"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "a6>Rj00O200O1O1O1O1O1O1O1O010O1O0001O00000O1O2O0O1N3L4JWX_10mg`N2N2O1O0O2N2M3H8XOg0M3N2000000001O00000000000O2O00000O101O00000000010O01O0000000000000001O01O0000000001O000001O001O100O001O0010O001O1O00001O001O001O00001O00O100000000000O1L4N2H8K5J6K6HU`7OP`H4L4M2N3O01O2MR[f0FPeYOe0@h0YO6K3O0000000010O0000001O0001O00001O01O0001O000010O000000010O00000010O0000001O01O0001O0000001O00000010O01O0001O01O0001O01O01UNQXOR1jh0L3N4J;CY^A=Agjc0a0kT\\ObZOPNJm0de0R1][OfNdd0Y1i[OZNXd0e1U\\OmMlc0T2X2O1O100O100O1O2N1K5G9O2N101N3N2N6I8lNcVOg0\\j0VOoS_4"}, {"size": [848, 480], "counts": "cXe69Sj07J7J4L4M3M2N3M3M2N3N1N2N2O0O10001O0O100O10000000O100O1N2O1O1N2N2O101N100O2O0O2O0O101O1N1O2O1N2N2N2O1O2L4L6HTfZ4"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "gXX52]j04M2TYOLWc07]\\OP1fb0TOP]OV1lb0nN[\\O@`Nf1Te0kNZ\\OA_Nf1We0jNaZO\\Oc1Z2mc0eNl[O\\1Td0eNg[O_1Zd0bNb[O`1^d0cN^[O^1bd0eNZ[O\\1gd0gNS[OZ1nd0jNmZOW1Te0POaZOQ1ae0OlZOaNWe0\\1S[OSNYe0e1l1K7EDh0WO5N10O100001O0000010O0000001O00010O00001O01O00000010O00000010O000000010O000001O001O0001O0000000000000O2O000000001O000000000O2O1O0000001O0O1N2N2O2N1N3M2O1M3N3M3L5G?AoQh09hmWO8[Oe0H9L4OO1O010O001O001O001O100O2M3bNPWOY1Pj0eNVVO7Vj0JaQ90_nF4ZVO;Zh0T1J1O1O1O010O001O002N1O001O10O0001O1ON2N2K5M4O0O1000001O0O100000001O00000O10001O0O1O1G9N2N2O2M2M3L4N2L`j5KhUJ4M2J4M3N2N2L4N2O010N2O1O1O1O02O1O0000000O100000001O00000O1000O11N2XOeVO9ji0O001N2O1O2N001O001O1N10002NRk3"}, {"size": [848, 480], "counts": "j9d1lh0000000O1000O100000O1000000O10000O1000O1001O000000001N011O001OO1001OO10O100000000000000O0100O1001OO010001OO010001N2O2iNiVOP1di0H=@ojc07lT\\O`0A6J6J1O1O0O10O100000000000000O10O1000000000O1000O100000O10000000O10000000O1000000000O10O1000000O10000000O10O10000000000O100ZOPWOLPi03UWOHlh08VWOFjh0:VWOFjh09WWOGih09WWOGhh09YWOFhh0:XWOFih08WWOIih06XWOJhh04ZWOLfh03ZWONfh00\\WO0dh0M_WO2ch0JaWO5]i00O100O1N1O2M2O2O1O2M1N3M3M3N1N3N2N2O01000O01000001O0O2]OnVOFTi01TWONii0N1O0O100000O1O1O001O1O1O1O100000010O0O1000O0100O1O1M3N2L4N2O010O100001O0O1000000O2O000000000O2O00001O0O1000001O00000O101O0010O01O0O1O2M2O1Ni\\c5"}, {"size": [848, 480], "counts": "Tdf5\\1gh0?K5N8C>@:L3M2L5K3K6H8H7J7M3L3N3N1O2M2O2N2O001N101O1O0O2O010O000010O002O2M1O2N3M1O000001O000001OO100000001O0000O02O0000000000000000000000000000hLoZOQ1Qe0jNW[OS1jd0gN_[OU1ad0eNh[OX1Yd0dNm[OY1Td0dNP\\OZ1Qd0bNS\\O]1nc0`NU\\O_1mc0\\NX\\Oc1hc0ZN[\\Oe1gc0VN]\\Oi1Vf0N4RO]WOInVa4"}, {"size": [848, 480], "counts": "\\;j0fi00000O100000O10O100000O10O100000000000O010000000O10O1000000O1000000000O01000000000000O1000O100000O10O100000000000O011O001O1O2M2N5L5JQb`0Md]_O7UVOKhi0`0O2N0100000O1000O100000O100000O1000000O0100000O1000O01000000O100000000O010000000000O10O100000O1000O10O100000O100000O1000O1000O1000O10000000O10O100000O100000O10O1000000O0100000O10O100000O100000O01000O10O10000000O1000O1000O1000000000000000O0101O00O1001N0100000O100000O10O1000000000O0100000000O011OO10O10O100000000000O10O1000000000O101O1O1NWV_1Lmi`N2O000001O001O1O1O1N3N3Mham3"}, {"size": [848, 480], "counts": "PdP7n0Yh0^1aN\\1VOh0L4N3O0O1000000000000000O010O1O1O100O10000O1ZNUZOgNle0V1YZOfNhe0W1^ZOfNce0V1fZOcN\\e0Z1nZO\\NUe0a1o1N4K6I;Ff0[Ok0TOSY^4"}, {"size": [848, 480], "counts": "kif6`0mi06K4M2M4M2N2M4L4M3N4L1N101O000O1000001O00000O11N1000000O001O10O01M3O2N2M2N3N100O2O001O0O2O001O0O2N2N3M2N4L4L3JXZX4"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "fmY52]j02N3kXO=UMI\\e0KW]O]1fb0eNb\\OKYNd1Te0cNa\\OMSNd1\\e0cN`ZOBe1^2kc0`Nh[Ob1Xd0aNd[O`1\\d0bNa[O_1`d0bN][O^1dd0fNV[O[1ld0jNmZOW1Se0oNeZOR1]e0TOYZOVO2a0he0T1jZOZN_e0a1T[OaM]e0Y2`1J7Aa0I;F9I3M4J4M4L2M3M3N2NbkY6"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "^6?Qj000001O1O001O100N2O100O1O1O0000N2O1N2N3L3N4L5KRm`16iR_N2N3N000O2N1M4J6ZOe0J6N2O1001O0000001O0000000000001O0O10000010O00000000001O01O000000001O00000000001O0000000001O1O00100O001O1O0001O0010OO1010O0001O001O001N1000O1000000000O1N2N2H8K5K5I8I9FUjR1OfUmN=L3M4L3O02M301N100O100O1O1O1O101N1N2O2M2O1N2NYWY31chfL7K4J5K5@`0000000000000000N2O1O2OO02O0O1O10001N1O100O1O1O1O101N100O100O1O1O2N1OjVOB\\h0>bWOE]h0:dWOF]h08dWOH\\h07dWOJ\\h04fWOLZh03fWON[h01cWO1\\h0OdWO2]h0MbWO4^h0KcWO5]h0IdWO7[i01O0O001O100000O10000O10002N2M3N1O001O00M3L3M4N2N2O1N2O10O0100O100O1O100O001N2N2N2O1N2O1O1N20O01O100O1O10O10N20000000000lG"}, {"size": [848, 480], "counts": "i9d1lh000000000O010000000O10000000000O100000O100001O0O10001O00001O00O0101O0000000000O02O0000O10O10O1001OO01000000O101O2M7J7H>Aojc0NTU\\O>B=D6J3M2M10000000O1000O10000000O10000000O100000O100000O1000O100000O10000000O10000000O1000O1000000O1000O10O10000000000O10O1000ZORWOJnh05UWOIkh07WWOFjh0:UWOGkh08VWOHjh07VWOJjh06WWOIih06YWOHhh07YWOIfh07[WOIeh06[WOKeh03]WOMch00`WO0`h0NbWO2^h0LdWO3^h0HfWO8Xi01O1M3N2O0O2N2N2O1M3N1O2M3M3N102M101001OO01000001O0O2\\OnVOHVi0KTWO4fi0N001N10O10000O1N20O01O1O10000000010O00000O10O01000O01O1O1O1OOYfc6"}, {"size": [848, 480], "counts": "X\\g57ni0?F9DAc0^O5M10O1001O01O0001O00000010O000001O01O0001O00000010O000001O0000010O00O1000001N100000000000000010O0001mNaWO3`h0FoWO1Qh0JXXO2hg0L\\XO2eg0JaXO1bg0MaXO0bg0LQP\\13TQdN?C:D;1N1O001O01O01O0001O00000O2O000M3F;M2O1N3M2N2O1N2O_OfWOnNXh0o0oWOoNPh0P1SXOoNlg0o0XXOPOhg0P1YXOoNfg0Q1]XOmNcg0Q1aXOmN`g0P1dXOnN\\g0P1gXOPOYg0m0iXOSOZg0g0iXOYO\\g0MeWObVOA]i0b063M2M3O00O1O1J510O2OO2O1N2O001O100N2O1O1O1O1O1N2O1N2O1N2O100O10000000000000000000000001O000O10001OO10O2O0O10001O000O3N2Nh0VOl\\<`0fbC4L1O000000000001O00O11N100O100O1000001O0O[G"}, {"size": [848, 480], "counts": "h9d1lh00000O10000000O1000O100000000000000O100000000O100000001O0O20O000001N1000000O10000000000000O010001OO10O10O1000O2O1O2M9H=ASkc0B\\U\\O?A>B:F6K1O1O00O1000O10000000000000O10O2O00O10000000000O010000000O100000O10000000O10000000000O0100000O10000000O011O00O1000O1000YOSWOJnh05UWOIkh06WWOIih07VWOJjh05WWOJjh06VWOJih06YWOIgh06ZWOJfh05[WOJfh06[WOIeh05\\WOLdh03]WOMch00`WO0`h0LdWO4]h0GgWO9Xi0O01O1K5O1N1O2N2N2O1N2N2M2N3N2N2O1O1O0100000000O2O001]OlVOHUi02RWOLji0O1N2O000000O10O01N2O1O1000000000O11O0O100000O0100N2N2O0M4M3O100O0100000000O101O0000000O1000001O001O00001O0O2O0M3L5L4MlZm5"}, {"size": [848, 480], "counts": "h[Q6`0ji08E:F;H7K5K5G:I7K3L4K5K6J5K6_Oa0G9L3N3M3M3N2N2O0O2O1N2O001O1N2O1O010O00001O10O00010O001O0010O00000000000010O00001eLaZOc1_e0WNT[O\\1ld0_N`[OZ1`d0cNg[OY1Yd0eNm[OX1Rd0gNS\\OU1mc0iNX\\OT1ic0iN\\\\OT1dc0kN_\\OS1ac0lNa\\OS1`c0jNc\\OU1]c0kNd\\OT1\\c0kNh\\OQ1Yc0nNj\\OP1Wc0nNk\\OQ1Uc0nNn\\OP1Sc0nNn\\OQ1Sc0oNn\\OP1Rc0oNP]OP1Pc0POP]OP1Qc0oNQ]On0Pc0QOS]Om0nb0ROV]Oj0jb0UO[]Og0fb0XO\\]Oe0eb0[O^]Ob0bb0\\Oc]O`0^b0_Of]O>[b0Af]O>Zb0Cf]O;[b0Ef]O:Zb0Id]O4_b00]]OGlb0:e31N1O101O00001O1O10O1O002OO30IVi0P1YNe1hNW1D;N2O2O0O10001O00O01000O100O1O100O011O0O100O100O2O0N4K4I8H9@b0kNb1kMXWO8Si`4"}, {"size": [848, 480], "counts": "^US7:Qj09I7J4K6L2N3L4M3M2N2M4M2N1O1O100O101O00O01000000000O1O1O1O2N1O1N2N2O1O1N2N2O100O10001N100O101O1N2O1O1N3N1N3N1N2N2N2N3M5JZjg3"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "dXX54[j03M2O2nYOFia0?o\\Om0ib0ZOh\\OP1Uc0SOe\\OQ1[c0TOo[O]O_Nd1ae0ROj[O^1Vd0eNe[O]1[d0dNc[O\\1_d0fN][O[1dd0fNY[O[1gd0kNQ[OV1Qe0nNhZOR1Ze0TO\\ZOo0fe00gZO`N]e0\\1lZOXN\\e0a1n1K5F:F>G9H7I6K5K3M2N3JY[\\6"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "TUT29Vj02N1O2O1N2O0M4QOn0M3O1001O0000000000000000001O0O100000001O0000000001O01O00000000000O101O01O00001O01O00000001O010O1O1O001O0010O001O001O001O0001O01O00001O000O100000000N2N2M3L4J6K5H9J7Gi^T1?i`kN=Ed0]O7L1N101O01O0000000000010O0001O000010O000001O01O0001O000000001O0001O01O01O01O00001O00001O00001O01O010O000010O00000010O0eNlWO:Th0_O\\XO8dg0EaXO:^g0DfXO:Zg0EiXO9Xg0DlXO9Vg0FlXO8Tg0FPYO8Qg0FSYO6gQV1JPgjN6L1N2M2M3N4K5H7J6O101O01O01O0O2O000M3H8O2N100O1O1O2M2O100N3N1O1O1O2O0O1O1O101O0000000000001O01N2N2Gk0XO=D6J5N3L4M3IVY8LRgG2N1O2N5K10000O100O101M2O100O1O2N0011O00O100O100O10000O0100000O1O1000O0100O10O100OO2\\X=@ogB6I6M3L4E;E:01O1O100L4K400100000000000aH"}, {"size": [848, 480], "counts": "h9c1mh00000000000O100000000000000O2OO1O10000O0101O1O0000000O1000000000001N10O11O00O100000O1000001O00O01000O11N3N2M5L7H;Dbed0NaZ[Ob0_O9F5L1O0O2O00000000000O10000000000000O1000O10000000O1000O10000000O10000000O1000O100000000O10O100000O1000000O10O10000000O1ZOQWOKoh04SWOKmh05SWOKmh05TWOJlh05VWOJih06XWOIih07WWOIih06XWOJhh06XWOJhh05YWOJhh05YWOKgh03[WOMdh02^WONah01aWOO_h0KgWO4[i000000O0O2K5N2N2O1N2N1N3N2O1M3M3N2N101O11O000O101O00000_OmVOESi06TWOGoh01XWONei001O1OO11N10O1O1O1O1O1O10000000000000O0101N00100O1O1N2N1L5N200O0100000O0101O00000O101O0000001O000O101O00000O2O00000O2O000000001O0O2O1O0O101O00000O2O00001O0O101O0O1O2N10TYZ5"}, {"size": [848, 480], "counts": "gbh6f0ci09G9D:C>ZOf0]Ob0B?I7H8I6I8L3N3M2N3N1O2N1O101N100011N:F2N10O00000N2O10001N1000000O2O00000O100000000000000000bLlZO`1Te0VNQ\\Oo0oc0kN]\\On0dc0oNa\\Oo0_c0nNd\\OR1\\c0kNh\\OT1Xc0gNo\\OW1Qc0fNR]OY1ob0eNS]O[1mb0cNU]O]1kb0bNU]O^1mb0_NU]Oa1lb0]NU]Oc1lb0\\NS]Oe1nb0YNS]Of1Rc0VNm\\Ok1ke00O101N100002Ld0WOooe3"}, {"size": [848, 480], "counts": "Z;j0fi000O1000000000O10O1000000000O010000000O10O100000000O1000O100000O100000O011O0000O10000000O1000O10000000O10O10001O0O3N1O1N3N5K4K`g?NUX@>N2N2O1O1O100000O1000O100000O10000000O10O100O100000O10O1000000O1000O100000O1000O1000O1000O100000O1000O100000O100000O10000000O10O1000000O010000000O1000O10O10000000O010000000O010000000O100000O0100000O10O100000000O0100000000000O010000000O10O1000000O010000000000O1000000O1000000O10O1000000O010000000000O01000000000O010000000O10O100000O10O1000O10O1000000000O010000000O1000O10000OO3M1O2N2M3O1O1N2O1O1NSeS5"}, {"size": [848, 480], "counts": "`Zm6=ih0_1lNUN^XOh2_f0U1\\Od0L4O2O0O100000001N1000000000O1O10000O11O000001N1N2N3L3L6G8D?UOn0TO^1VNmda4"}, {"size": [848, 480], "counts": "[TX7d0ii06K4L4M2N3M3M2N2N3N1N2N3N1N2N2O1N1000001O00O1000000O100O1O1O1O1N2N1O2M3N1O2O100O1O2N2O1O1O1N101N2O1O0O2N2N2N2N6J4KgZe3"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "gcV51\\j04N1QYO6oL5^e0F[]OY1bb0jNT]O_1jb0dNb\\OFXNi1Ue0lNU\\OC^Ne1\\e0jN`ZOYO_1]2Rd0bNi[O_1Wd0dNe[O\\1\\d0eNb[O[1_d0iNZ[OZ1gd0hNU[OX1md0mNkZOT1Ve0POdZOQ1]e07bZO`Nae0W1Q[OXNWe0d1T[ObM`e0V2b1L5B>K8I9E8H8J3M4L3Ldj^6"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "Tam18Wj03N1N2N2O0O2N2VOi0G9O1O11O000000000000001N10000000001O000O11O01O000001O000000O2O01O00000001O0000000000010O000002N1O0010O01O001O01O00001O001O000000001O001O00000000000O1O1N2M3J6K5J6I8K5Ih^T1>l`kN9Gg0[O5L2N1O20O000000010O00000001O01O0001O0001O0001O0000010O00000010O00001O01O00001O00010O00001O00001O01O01O01O0001O000001O000001OO100N3M2H9A`0\\OfPo1I^oPNj0F5O20O10O10O001O0000O1O1G9N20O1L5I7K7I6M:D5L4N0O1O2N2O001N1OPj03l[N0_i08^VOI[i0`0`VOB^i0j0N10010O01O001O00001O001O0000000000000000O100O100O001O010N200O1O01000000O10000O2O1N1H8D>HTRc05lm\\O3M100O1O1O1O1O1000O0100O100O1001OUG"}, {"size": [848, 480], "counts": "i9b1nh0O01000000O11O0O10O10000001N100000O10000000O100000000000000O1000000000000O2O00O10000O02O2M4M2M8I;DQ`e0;e_ZO;D6K1O001N101OO10000000000000O10O2OO10000000000000O10O10000000O10O10000000000000O10O1000O100000000O100000O100000O10000O100YOQWOMnh04SWOKmh04UWOJlh06UWOIkh07VWOHjh07WWOIih06XWOJhh06XWOJhh05YWOKgh04ZWOKgh04ZWOLfh02\\WONdh00^WO0bh0N`WO1ch0GcWO9Yi01000O01N2L5M1O2O1N2N2N1O3M2M3M2O2N2O010O11O00000O10001]OoVOEQi08SWOFoh02YWOMei001O00001O00O0O2O1O1N2O11O0000000O100000O100O100O010M3L4K6N00100000O100O2O000000000O2O000000001O0O1000001O000O101O000O2O0000000O2O1O00001N1000001N10001N101O000O2O0000Tm`5"}, {"size": [848, 480], "counts": "^]R7>gi0>F8I7K4J5L6G8@a0nNQ1XOh0L5K5L3N3M2N2O2N1O1O2N100O101O0O100010O2N2N00000001N10000O100O101N1000000000000O1000000000000000TLg[Oa1Zd0VNX\\O`1hc0[Nd\\O^1\\c0\\Nm\\Oa1Sc0\\NS]Oa1mb0\\NX]Ob1ib0[N[]Oc1eb0\\N]]Oc1cb0[N`]Oc1ab0[Nb]Od1_b0YNc]Og1]b0XNd]Oh1\\b0VNf]Oi1\\b0UNe]Ok1^b0oMe]OQ2]e0O1000O10O01OL2I:G9G:FWbU3"}, {"size": [848, 480], "counts": "Z;i0gi00000O10O10000O100000O0100000O100000000O1000O100000O100000O1000O1000000000O10000000O1000000000001N2O2N0O3M4M5KSg?9cX@2M2O0O2O1000000O10O100000000O1000O1000O10000O1000O100000O010000000O100000000000O10O100000O1000O1000O10O100000O1000O1000O10000000O10O1000000000O10O100000O10O1000000O10O1000O1000O1000000000O01000000000O010000O10O100000O0100000000000O1000O10000000O10O1000O1000000000000O10000000O010000000O0100000000O1000O100000O1000O100000O1000O100000O10O1000O10O10000000O010000O10O10000000O10O100000000000O10O100N2L5HWdX5"}, {"size": [848, 480], "counts": "Rag69Ri0]1fNT1fNX1B?J5O1O101O000O10000000000000O10000M3I7H8L4L4N3M2M3O2M2O3M3M8Aa0YNkYh4"}, {"size": [848, 480], "counts": "QlP85Rj0?D8L5L4L3M2M3L4M2N3M201N2O000000000O1000000000000000O1O1O100N2O1O1N2M3O1O1O1N2O101N10001N101O010O001O001O1N3N1O2N2M3N2M4L5Hk^h2"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "foo43[j03N1O1kUOIo39fa04\\]Ol0_b0WOX]OQ1gb0XOg\\OR1Xc0POS\\O_ObNc1[e0ROn[O`1Rd0bNk[O^1Vd0eNe[O]1[d0eNb[O[1`d0gN[[O[1fd0hNU[OY1kd0lNnZOU1Te0oNeZOS1[e0VOZZOlN?c0\\e0V1nZO[N\\e0`1nZOoM_e0j1i1J6C=K7I8H5K6K4L3N1N2N2NUob6"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "dhb1:Uj02O1N101N2N2K5C<@`0M3O1000O100000001O0000000000001O0O1001O0001O0000000001O01O000O10001O00000000001O0001O00001O01O01O1O1O1O0010O01O0001O001O0000001O00001O001O0000000000000N2N2M3I6L5K6H9IYYU16bfjN;Eh0XO5N1O2O0010O01O000000001O01O01O01O0001O0001O01OO11O01O0001O0000001O01O01O0000010O00001O00001O00010O00010O00001O01O000000001O0M3K5I7K6H7K4I9HRXW2g0SghM=M2N2O001O01O0O1L4XOUWOJlh0MdWOK^h01fWOM[h0OkWONWh0KRXO1Yi0MXkc0?QT\\O9M5M3M2O1N201N0001O0000001O0O10001O0O100000001N1000000O100O1O1L5F9L3N2O3M3MY_71f`H2M3M3N2O1M3N2O1N1O2O1O1O1O1O1N2O0100000O0O2OSOfVOf0[i0XOjVOd0ci0M2O1O00000000000OUG"}, {"size": [848, 480], "counts": "h9a1oh001O0000O1000O010000O1001O00O010O1000000000000O010O100000O101O0O3N2N4eNlVOQ1bi0oN`VOb0hYf0Oo_ZO>C6J6I3N1O0000000O01001O00O1000000000000000000O01000000000O100000O100000000000O1000O010000000000000O01000000O1000000O100000000YORWOKoh04TWOJlh06TWOJlh06TWOJlh05UWOKjh06VWOJjh05XWOIih07WWOIih06XWOJhh05YWOKgh04ZWOLfh02\\WOMdh02^WONbh0OaWO1`h0KcWO5\\i0000O1N2N1O2O1M3O1N2M3N1O2N2M3N2M3O0O20000O11N10001O0O1@iVOGXi03PWOJPi0OXWO0gi0M1O0O100000O1N2O1N2O1O10O10001O1O000000O100O1O00100O1N2K5K500O1001N100000001O0O1000001O0O1000001O00000O101O0O1000001N101O00001O000O2O000O2O00000O2O000O2O00001N101O001N10a[h5"}, {"size": [848, 480], "counts": "gbl6:mi0:I8H7F9H9G9G8J5FI8N1O100O10001O0000000000O100O100O100O1N2O1H8F;]Ob0J7K4M3M4M7G>XOR1YNnaP5"}, {"size": [848, 480], "counts": "PiZ8l0^i07K5M2N2O1O2M2O001O100O1O100O10001N100000000O010O01O100O100N2N2O1O1O002O0O100O2N1O2O001O0101N01O1O1O1O1O1O2N1O2N1O1O2N2M4JV\\_2"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "ffg43\\j02N2kYOJmK6ge02\\]OT1`b0nNX]OZ1eb0UOi\\Oo0Wc0UOa\\Oo0_c0UOT\\OU1kc0mNk[O[1Ud0fNg[O]1Zd0dNc[O\\1^d0gN][O[1dd0iNU[OX1ld0mNmZOT1Ue0POdZOQ1^e04dZOcN]e0X1nZO]NXe0^1o1K6H8G?F7K8I4J7J5J4L4M3M2McRl6"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "U[V17Wj04N1O1N101N2N1N3C<@`0K6M110001O000000001O000000000000001O000000000O2O0001O000001O0000000000001O000000001O01O00000001O01O1O1O1O1O010O1O01O00001O00001O001O00001O000000000O10000O1N2M4J5J6I8I6I8Hee67XZI4L3N3L3O2N1003MW[f0BmdYOb0Ch0ZO5L4M2O000000000010O0001O0000010O001O01O00001O01O0000001O01O0001O0001O01O0001O01O001O0000001O0010O000010O00001O0001O0001O00010O0000001O0001O0000000000001O00001O0N2L4K6H7K5K6J7GPmU3HYSjL6A?M3001O00000000000O101O0O100000O11O1O1O1O0O1O2N2N0O2O2O00O01N4L2O2M3MPh?KVX@1O1O1O1O1O1O1O1O01O01O1O100000O1000O10000000OQG"}, {"size": [848, 480], "counts": "d9c1mh01O00000000O1000000000000O10O100001N2O4K=Da0ROTVO2\\_e05eZ[Of0ZO8I6J3M1O000O10O100000000000000O010001OO1000000000O010000000000000O10O1000000000000O10O100000000000000000O010000000O1000000O100XOSWOMmh02TWOMmh03TWOLkh05VWOJjh06VWOJjh05WWOJjh06WWOIih07WWOIih06XWOJhh06XWOJhh06XWOIih05YWOKgh04ZWOLfh02\\WONdh0N`WO2_i00O100000OM4N2M3O1N2O0O2N2N2M3N2M3N2N101O10O10000O2O00000_OkVOGUi05SWOFoh02ZWOLfi0O1O0000O010O1O1N2N2O1O1O11O1O00001O0O10O100O100O1O1O1O1K5K500O10O10000000000O101O00000O101O0000001N1000001O00000O101O00001N10001O001O0O101O000O2O000O101O000O101O0O101O0O2O000O1000aon5"}, {"size": [848, 480], "counts": "Uoj6:Pj08I6J5K5J6I7I7I8H7J7J5L6nN_MkYOh2le0R1N3L4N001O1O010O1000000000001N11O00O1000001O000O100O101N100000001O00000O101O0000000O101O01O000001OkLbZOX1^e0_NV[OV1jd0fN\\[OX1dd0eN`[OZ1`d0cNf[OZ1[d0cNi[O[1Wd0bNm[O]1Sd0aNP\\O^1Pd0`NT\\O^1lc0^NY\\Oa1gc0^NZ\\Ob1gc0[N\\\\Oc1fc0[N\\\\Od1dc0[N]\\Od1ec0[N\\\\Od1ec0ZN]\\Oe1cc0ZN_\\Od1dc0YN_\\Od1Yf0N3L2O1lNoVOf0Vi0QOQWOk0_i0K6IPeY3"}, {"size": [848, 480], "counts": "W;h0hi0000000000O01001OO100000O10000000O100000002M3N1O1O2M6K1N5J[g?5WX@;M3N3N10000000O010000000O10O100000O100000000O0100000O1000O010000000000O0100000000000O10000000O1000O10000000O1000000O0100000000O0100000000O010000000000O010000000O1000O10000O0100000000000O010000000O10O10O100000O0100000O010000000O10000000000O10O100000000000O10O11O0000000O10O11O0000O010000000000O0100000000O0100000000O01000000000O1000O10O1000O1000O10000000O1000O1000O1000O1000O1000O100000O010000000000O1000O1000O100O2O00O1000000000O2OO02L4L`]^5"}, {"size": [848, 480], "counts": "Q_T6S1Xh0X1eNY1[Od0E;M4N10000O101O00000000000000O0100000000001M2O1O1N3N1M4H8B?@e0POc1jMfZ[5"}, {"size": [848, 480], "counts": "ikZ88Qj0:I5L3N3N1N2O2M2N2O1O1O1O2N1O1O1O2N100O1000000O100O0010O1O1O100O1O1O1O2N1O2O001N101N1001O0100O001O001O000O2O2N1O2N1M3M4I6KmY_2"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "fh]43\\j02N2QYOQ1Zb0SO^]OT1`b0nNV]OZ1jb0oNi\\OV1Vc0kNW\\OBZNi1_e0nNl[O`1Td0cNg[O_1Yd0dNc[O\\1^d0gN][O[1dd0iNV[OW1ld0lNnZOU1Se0QOeZOQ1\\e0TO\\ZOm0ee0OmZO`NWe0[1Z[OhMWe0R2g1I8F;I9J:F5J7H6L4M2M2O2L4M_PV7"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "cbk08Wj01O2O0O3N1N1O2M2Ede0ZOdYOmNo0f1]e0ZOlZOd0Ue0XOP[Oe0Qe0XOR[Oh0nd0UOV[Oj0jd0TOY[Oj0hd0TO[[Ok0ed0SO][Om0dd0PO_[On0bd0PO`[OP1ad0nN`[OQ1ad0oN`[On0cd0POa[Ok0bd0SOc[Og0`d0WOf[O1od0JbUa3"}, {"size": [848, 480], "counts": "T;i0gi0000O01000001O1O2M2O1O1N3N5JVg?8aX@2O1M3N200O1000O1000000O10O100000O10000000000O10O10O10O100000O10000000O10O1000000000000O1000O1000O100000O10O10000000O100000O1000O100000O100000000000O10O10000000000O010000O10000000O0100000O10O1000000O01000000000O0100000O10O10000000000O010000000000000O100000O1001O00O10O2OO100000O10000000000O10O10000000O010000000O1000O10O1000000000O10O10O10000000O10000000O1000O1000O100000O10O1000O1000O100000O100000O1000O10000000000O10000O10000000000O0100000O10000000000O1000000000000O100001O01N101O001N2N4M2LY_T5"}, {"size": [848, 480], "counts": "baj5=Ti0U1cNY1QOn0ZOe0I7N3N1000001O0O1000000000O10000000000O10000O1O2N1N3L3K7B=@b0^Of0oNlXe5"}, {"size": [848, 480], "counts": "Z`X8d0hi06M1N3N1O2N1O1O1O100O2O0O1O2O0O10000O011N10O011O001N1O10001N1O100O2N2O001O1O001O001O001O101M2O2M6I7FUhj2"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "TeT44U4;ba0G_]OZ1^b0gNY]Ob1fb0_NV]Od1ib0aNb\\OKSNf1[e0iNY\\Oe1gc0fNj[O^1Vd0dNf[O^1Zd0dNb[O^1_d0dN][O]1cd0hNW[OX1kd0lNnZOU1Se0QOeZOP1]e0o13PNjZO`N[e0\\1oZOnMae0k1g1K5E;I9I:H6J4L5K4M2M3M2N2N2NRT_7"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "`Yc08Xj02M2O000O2N2O2L2M3[Oe0F:N3N11N10000000001O0000001N1001O00O10001O0000000010O00000010O000O100000010O0000000001O01O000001O00100O1O001O0010O00001O0010O01O001O0000001O0000001OO1000O101N1N2K5J6K5I7K6K6Gfe60^ZI6K2M4L3O2N2O05J`Ug0JajXOmiFg0ZOe0I7L3O110O001O001O0000001O01O01O0000001O01O0001O000000010O001O000010O0000001O01O000001O000000000O1I7J7J5N2O1O1O2O00000O101O000000001O000000001O000O100000001O0O10001O000O1O3_O]o9_O`QF4M2L4I7J6M3M300O11N10000000000O1000000000002N2M4M3M6I5Kjm95mQF5010OO010000000000000000000O10O10001O000O100000001N10001O0O2OO100001N1000000O10001O0O10001O001O0O1O2N\\`5"}, {"size": [848, 480], "counts": "QPe0:Sj0e0]OLmmA?A1O0O2O10O0100000O10O0100000000O1000000000O0100000000O01000000000O1000O10000000O01000000000O100000O100000O10000000O010000000000000000O100000000000000O010000O10O0100000000O010O1000O10O10000000O1000000000O100000O1000000000000O10000000O100000O10O1000O1000000000000O010000O11O00O0101O00O10O1000000000O1000O100000O100000O1000O1000O1000O10O10000000O10O1000000000O010000000O0100000000000O01000000000000O010000000O1000O010000000000O10000000000O100000000O100000000O0100000000000000000000001O1N2O1O0O2O3L[S[5"}, {"size": [848, 480], "counts": "bmc5:2Inh0`1ROl0mNS1[Od0B?M2N2000001N1000001O00O1000000O1000000O101N1O1O2M2M4I7D<@a0^Oe0VOllk5"}, {"size": [848, 480], "counts": "hYb7e0gi08K3M3M3M2N1O2O0O101N100O10000O10001N10O11OO01000001O0001O000O2O1O00001O01O01N1N3N2M3N2L4L5L4K6Jjcb3"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "dak34Yj05M3N3mXOj0eb0YOQ]OS1kb0POm\\OV1Rc0nNW\\O@_Ne1Ze0nNS\\OB]Nb1_e0QOo[O_1Qd0dNj[O^1Vd0eNf[O\\1[d0eNa[O]1_d0fN][O[1dd0hNW[OX1kd0lNnZOV1Se0nNgZOR1[e02eZOfN^e0V1mZO]N[e0]1oZORN]e0i1j1I6E;K6K8H7I6K5K5K2N3M2M6Hebf7"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "]o?4[j03N1N3N1N3M2N2M2I8]Ob0H8O100000O1000001O00000000001O0O10000000001O000O110O000001O0001O00000O110O00000001O01O00000001O010O1O1O1O1O010O001O01O010O1O00001O00001O0000000000000000001N1O1M3K5K5K4K7I8IT`7LQ`H7K2M3O2N1001O:EWUg07^jXO=Dg0ZO4N2N101O01O0001O1O00010O000001O01O01O0001O0000010O00001O00010O00000010O01O000000001O0010O0O11O01O01O01O01O00001O01O000010O0000001O000001O0000000000001O00001O000000001O000000001O000O1O101N1N2C>G9]OWP:D\\VE5^i0k0YOf0F9M2O2O0O101O001O0001O01O00001O010O0000001O0001O0001O0010O00000001O01O000001O00010O000010O000O1O1F:L4L5L3O100O1O101O0O1000001O00000O10001O000000000O20O0000000000O2O01O00O2O00000O1J6EK41M2O100001O00O10000O2O0000001N10000O2O00000O10000000001O0O101N100000000O2O000O101O00000N`U7"}, {"size": [848, 480], "counts": "jea033=fi0b0E9G3M1O1N10O11O0000000000O100000O10000000O100000000O1000000000O10000000O1000000000O01000000000O1000O1000000000000O010000000O10000[OoVOKQi03QWOMnh03TWOLlh05TWOImh06UWOIkh07UWOIkh06VWOJjh05XWOJhh06XWOJhh05YWOJhh06XWOJhh05YWOKgh04ZWOLfh03[WOMeh02\\WOMdh02^WONbh0OaWO1`h0JdWO6[i00O1O1O1N2M3N2N2N2N2M3N2N2M2O2N2O1O1O10O10001O00000_OmVOETi07PWOHPi04TWOLmh0NYWO1ei0N1O000000O100N101ON12O1001O1O00000000000000O010O2N1N1O2M3M3M3O1O1001O000O101O00000O2O0000001O000O101O00001O000O101O00001O000O101O00001O00001O0O101O0000000O2O00001O0O101O001N101N101O00TQb6"}, {"size": [848, 480], "counts": "gkT6=Qj06I5K7J3M3M3L4L3M4L4K5L4L4L4L4K4M4K5L4L3N3M3L4M2N3M3N2N1N2N3N1O2M201N1O2O0O101N10001O00001O000000010OO2O1O2N3L3M2N2M2O1N2N3N1O1O1N3_N[YOSOgf0h0bYOQOaf0m0bYOoNaf0o0aYOoNaf0o0aYOPO`f0o0aYOnNcf0o0_YOoNcf0n0aYOoNaf0n0b1N3N1N200O2N1N3N3L4L3N3M2N2N1N4KeZm3"}, {"size": [848, 480], "counts": "`R`0a0ni02N1N2N110O01000O10O10000000O10O10000000000O0100000O1000O1000O100000000O10O1000000000O01000000000O10O1000000000000O10O1000O10O100000000O10O100000000O0100000000000O10O1000000000000O1000000000000O100000O10000000O10000000000O100000O100O010000000O1000O10O100000O100000000000O010000000000O01000000000000O0100000000O10O1000O1000O100000O10O10000000O100000000000O0100000000000000O10O1000O10O10000000O1000O1000O1000O10O1000O0100000000000000O100000000000000O100000O100000O1000000000000O10001O0O110O1N3N1O1O2M2N1O\\h\\5"}, {"size": [848, 480], "counts": "nb`5P1fh0m0SOk0UOj0[Of0B=N2O100O1000001O001O0000O100000000O1000000O2N2N1N2N3K5D=Aa0WOn0kNoVo5"}, {"size": [848, 480], "counts": "fd`73Wj0?E5J7K4K6fVOjNQi0\\1N1O102N1N2O1O0O10001N1000000O100000001O000000O2N1N21O00O101O0O2O0O2N1O2M3M3M3M4L4I7K6Ja^c3"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "_Wh38Vj04N3lYOGja0;R]On0hb0TOQ]OS1mb0POm\\OT1Qc0QOi\\OR1Vc0ROS\\Oa1mc0bNn[O`1Rd0bNj[O`1Wd0aNf[O`1Zd0cNb[O]1_d0fN\\[O[1fd0hNT[OZ1md0kNlZOU1Ve0POcZOo0`e03fZOaN_e0Y1lZOUNae0e1j1H8E;H8I8J5L4K5L6J4L3M2O2LXgj7"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "m_=1\\j08K1N101O0O2N1O3K4G8YOg0N2O10000001O000000001O000000001N1000000000001O000000010O00000000001O00000000001O01O000000001O01O01O1O1O00100O1O10O00001O010O1O00001O0000001N1000000000000O100N2L5J5K5J6J7I6LfSV1?kkiN;Ff0[O3N1001O000001O00010O00001O01O0001O01O01O000010O000000010O01O0000001O0001O01O00001O01O01O00000000010O000010O00000010O00001O01O01O00000000000001O000000001O0000001O0000000000001O0O10001O1N1L4O2K4C`0TOkU98WjFa0C<@?K5M4N101N101O01O0001O00001O1O01O000001O0001O0001O10O000001O0001O01O0000010O00001O00010O0000O100N3E:K5N2N2N2O1O2O000O10001O000000001O0O100000001O00000000001O0000000000001O000000000O2O0000000000001N10001N100O1B?K4LhY80[fG100O1N200N2O1O1O1N2O1O1O010000M3B^S>KnlA9J4M3O010000O2O000000001N10001O0O1000000O2O00000000001N101N10000O101O001O001N1000000000oZ6"}, {"size": [848, 480], "counts": "gP`0l0ci09H8H3M0000001O0000O02O00O100000000000000O100000O1000000000O1000000000O10000000O100000000O1000O1000O10000000O100000O10000000O10O10000YOTWOJlh06TWOJlh05UWOKkh05UWOKkh04VWOLjh04WWOJjh06VWOJjh05WWOKih05WWOKih04YWOKfh05[WOKfh02\\WONdh01]WOOch0O_WO1ah0LbWO3_h0JdWO6\\h0IeWO7[h0FhWO:Vi0100N1N3M3N2N2N2N2N2M3N2M3M2O2O001000O101O0000010\\OPWOFPi06UWOIlh04WWOKkh0M[WO3bi0O00000N20O100O1O1L4000O2O001O001O0000O1000O010O01O1M3N3K4N1O2O1O10O1000000O2O001O001O0000001N1000001O00001N1000001O00001O0O101O0000001O0O10001N101O000O101O000000000O2O1N10010N1O2OW[e6"}, {"size": [848, 480], "counts": "Rjb6j0`i08A?H7M3M3M4L4M1N3M3N2M3N1O1M3O2M2N3M2N3L3M4M3N1N3M3M2N3N1N3M3M2O1O2N100O1O2O0O10000O2O00000000000000O101O001O1O1O1N2O1O1O1N101N1O1O1N2O002O0N2O1O1N2M3K5N2N2iNgXOVOZg0a0[YOQOgf0j0`YORObf0j0eYOPO^f0o0cYOoN^f0Q1eYOiN`f0T1_1M3M2O2K6N2M2O2M2O2M2M4N4KehX3"}, {"size": [848, 480], "counts": "^]>`0oi02N00100M3O10000O01000000O10000000O010000000000O0100000000O010000000000O10O100000000000O10O10000O10O1000O10O10000000000O100000O100000O10000000O10000000O100000000000O10O100000000000O010000000000O10000000O10O10O100000O10000000O10O100000O100000O1000000000O10O1000000000O1000O1000O0100000000O1000O1000000O010000000000O100000O100000O100000000000O0100000000O1000O1000O10000000O1000O01000000000000O0100000O10O1000000000O010000000000O100000O10O1000000O11OO10000O1000000000000O10O1000000001O001N101O1O2M4M1M`R`5"}, {"size": [848, 480], "counts": "oS^54ai0V1hNo0ROl0SOn0@?K5O1O1O2O000000000000000000000000O1000001N1O1O2N1M4L4K5^Oc0Ab0ROY1fNgkP6"}, {"size": [848, 480], "counts": "W]o7b0li04K5L4M2M4M3M4L3M100O1O1O10001O00000000000000001OO2O00000O1O1O2M2O1M4M2O10001O001O1O1O1O100M4L4K6JleT3"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "]bf39Vj03M3PYOh0db0[OQ]OQ1jb0SOm\\OT1Rc0QOU\\OYOgNi1Te0QOQ\\Ob1mc0aNR\\O^1nc0dNn[O^1Rd0dNk[O]1Vd0dNf[O^1Zd0eNa[O\\1`d0gN[[O[1fd0hNU[OX1md0nNjZOS1Xe0P22QNjZO^N^e0\\1mZORN_e0g1l1H8E9J7H:I5K7J4L8G5L5IXQn7"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "\\e<5Yj04M2O1O0O2O0N3J6UOk0J5O1O100001O00000O101O00000000001O0O10000000001O0001O01O01O00000001O0O100000001O01O000000000010O0001O1O00100O1O001O10O0010O01O001O001O0000001O0000000O1000000O1N2L4M4H7K5K5I9KeSV1Pj04L200O001N2000O10O100000O1000O100000O100000O10O10000000O0100000000000O010000000O1000O10000000O10O1000O10O1000O1000O10000000000O1000O100000000000O100000000000O10O100000000000000O1000O1000O100000O10O10O1000000000O10O100000O1000O100000O100000O10000000O10000000O10O100000O0100000O010000000000O10O100000000O10O10000000000O10000000O10O100000000O10000000O10O1000000000000O01000000O01000O1000O010000000000O10000O0100000000O10000O011O000O01000000000O1000000000000O1000000000000O0100000000001O001N2O1O1N2O3L3Mol`5"}, {"size": [848, 480], "counts": "dX]5Z1Th0S1POP1QOn0E;O2N1O100000000O10001O00O1000000000000O2N100O1N3N1N2M4I7@a0_Od0ROW1lNg`R6"}, {"size": [848, 480], "counts": "WdR8d0ii06L3L3N3M2N2M3N2N2O2M4M2M3N1N10000O100000000O11OO10000010O0000010O01O0001N10001N2N2M3N2M3N2L3N4I7L5G`dP3"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "jge34[j03hYO7ea0MZ]OU1ab0mNc\\OGZNc1Qe0kN^\\OJWNa1Ze0QOR\\Oc1mc0_NP\\Ob1Pd0aNl[O`1Td0bNi[O_1Xd0bNe[O^1\\d0eN_[O]1ad0gNZ[OY1hd0kNR[OV1od0mNlZOS1Ue0ROdZOo0^e01lZOaNWe0[1R[OVNYe0e1l1I8F=F8J8H;G5J7J5L4K3LZfo7"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "jj;8Wj03N1N2N101M2L5VOj0I6O1000000000000001O000000000O2O0000000O2O00000000010O0001O01O0000000000000O2O01O0000001OO2O01O001O001O10O01O1O1O0010O10O01O001O00001O001O0000001O00000000000O1N2L4K5I8K4J6J7Lee6GdZI7H5L4M2N3N100006J8FdZf0=mdYO`0@c0_O3M201N1001O010O0001O00000100O01O00001O0001O01O0001O01O0001O01O00001O01O000001O001O00001O01O01O000010O0O1010O00001O01O000001O01O01O0000000000000001O0000001O0000001O000000001O000O1000001N1O1N3G9D<^OoU9EYjFL_VOc0oh0g0D=E:O1O2O0O101O1O000001N1O1M3N2N2O1N2N3M2O1N2O1O1O1O101N100O2O0O1O1O100O2N100O100O101O0O10001N2O2M3N2N2N2M3N2N1N3L4Lgdn0OY[QO4J7I6M2O2O010O001O1O001O001O1O001O1O001O0001O1O1O000O2O00000O3N0O2N2LjWb0_Oih]O1DEROkVOT1Pi0:K4L4M2N3L3M4L3TOWNnXOl1mf0o0K5K4N2O1O2N1O1O1O2O0O1000000O2O000O10000O101O000000000001O0000100N101O10O000001OO1000000000000O10000000O0100000000000O010000001_MmYOc0Sf0[OSZO`0ne0\\OZZO`0fe0^O`ZO>`e0@X[OJid03][OHdd06a[OG_d07f[OF[d07m[OAUd0=Q\\O]ORd0`0P3N3M2N3N1N3M5Kak`2"}, {"size": [848, 480], "counts": "mm;b0mi02N1O1O001O10O100000O10O10000000000O010000000O10O1000O10000000O10O10000000000O010000000000O0100000O10O1000O1000O1000O10O100000000O1000O10000000000000O0100000000000O1000000000O1000O100000000O100000O10O1000O10000000O10O100000O1000O10000000O1000O10000000O100000O1000O100000O10O100000O01000000000O01000000000O0100000000O100000O10000000O100000000O100000O100000O100000O100000O10O1000O10O10000O100000O10O1000000000O010000000O1000O0100000000O100000000O1000000000000O1000O1000000000O10O11O001O001O1O1N2O1N3MRbb5"}, {"size": [848, 480], "counts": "cc[5Y1ng0\\1fNX1YOf0M4M2O100O1000010N100000000000O1000000O10000N3N1O2N1N3K4L5^Ob0]Oi0oNd1SNjVO:\\nT6"}, {"size": [848, 480], "counts": "hWY8>oi07I5M4K3M4M2N2N2N3N1N4L4M1O1N10001N100000O100000O1000000000000001O00000000001O001N1O2M3GTWOkNnh0R1UWOkNnh0S1;K4L8^Ofkj2"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "Zmd36[4O^a04_]OR1[b0SO]]OT1`b0nNd\\OB^Nf1nd0jNaZOK`11cN`1[e0SOP\\O`1Pd0bNl[O`1Td0bNi[O_1Xd0cNd[O^1\\d0eN_[O\\1cd0gNX[OY1id0kNR[OV1od0mNlZOS1Ve0ROaZOP1`e01kZObNWe0Y1R[O^NSe0\\1U2I:D:H8I9J7H5L6J4K5L2N4Kj`P8"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "]f71\\j09I10001O1N2N1O2J6SOl0M4N1000O101O000000000000001O0000001N100000001O00000000010O000000001O000000000000001O01O000000001O010O1O001O1O100O0010O0010O01O001O00001O0000001O0000000O1000000M3L4L4J6K6H7K6Lee6IbZI6J4M2N3L20100104KZUg01`jXO;G=C`0B2N10001O01O0001O0000010O000010O0000010O01O000001O01O0000010O000000010O001O00001O01O01O00000010O0001O01O00000001O01O0001O01O01O0000000001O01O0000O1000001O0000001O000000001O0000000O2O0O1O2N1M4D=YOZP:LloEd0ZOf0H8K4O101O00001O001O0000001O00000010O01O0000001O010O0000000001N100O2O0O100O100O2O000O100O101N10000O1O1N3L3N2M3O100oN_WO2ch0HfWO4Zh0IlWO3Uh0IRXO3Wi0O\\nQ11_QnN4E;D<00O10000000O10000000001O001O0O2O001N100000001N2O1GdVg0EmiXO2M3M3N2000O1000001O00000O10001O00000O101O000O100000001N101N101N10Rd>"}, {"size": [848, 480], "counts": "WW:e0ki0me0]OZZOD:I7K8G7K4K5K4K7IXdY8"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "j7:Uj02O001N101N2E;UOk0N1O1000000001O000000000O2O000000001O0000000O2O0001O000001O0001OO2O0000000000001O0000000001O00000010O01O001O2N100O1O0001O010O001O001O001O0000001O000000000000000O1M4J5M3J6K5J7G\\nV17`QiN:Fj0YO5L2N11O00000010O0000010O000010O0001O0000010O00000010O000010O0000010O00001O000001O01O1O00001O0000010O01O01O00010O000000010O0000000000001O000001O00000000000O20O000001O000O1000001O00000O101N1N3L3G:D?YOlU90niFk0\\Ob0J7L3N2011N3M101N1O1O1O01O01O01N10001O000O1O2M2O100O2O0N2O2N1O2O0000001O000001O01O00001O0001O0N2VOVXOiNog0R1j0L5E;I_f[4"}, {"size": [848, 480], "counts": "X9>Rj0:F8H8H7I1O0O101O00O10O1000000000000000O10O100000000000O100000000O0100000000000O10000000O10000000O100000O10O100000000O010000000O1000000[OQWOHPi07QWOIoh06RWOJnh05TWOJkh06VWOJjh06VWOJjh06VWOJjh05XWOIih07WWOIih07WWOIih06XWOJhh05YWOKgh04ZWOLfh03[WOMfh0O]WO1dh0J`WO5bh0GaWO9ah0CaWO=Yi00O100O1N2M2O2N2N2N2N1O2M4M1N3N2N2N1010000001O000O2O0\\OQWOHnh04XWOJih03YWOMhh0O[WO1ci0O0000000O10O100O1O1N2O0101N1000000000O100O10O10O10OO3L3N2M3N2O00100O0101O0O1000001O0O2O0000001O000O101O00001O000O101O0000001O0O101O00001O0O1000001O000O2O000O2O00001N101N2O0000XXT7"}, {"size": [848, 480], "counts": "San7;Rj06H7G8H8TOk0eN`N_YOh1\\f0Y1J5N3N1N3N2N1O1O2O0O2O0O101N10000O10001N1000000001O0001O0001O00100O00001O000000000000000000O2O000000000O100000O100000O100000000000000001O0O10001O00000UM^ZOg0ce0SOeZOk0\\e0POlZOj0Ve0QOR[O>]e0[OlZO2de0KaZOMee00`ZOCle08Y2M4KYlR2"}, {"size": [848, 480], "counts": "o:c0li01O0O2O1O1O10O10000O010000000O1000O10O1000000000O10O10000000O0100000000O01000000000O1000O100000O100000O100O10O1000000O1000O100000O10O10000000O010000000O10000000O0100000000000000O100000O10000000O1000O10000000O1000O10O100000000O010000000O10O100000000000O100000O100000O10000000O1000O1000O1000O100000O01000O1000O100000O1000O1000000000O1000O100000000O100000O010000000O10O1000000000O010O100000O10O100000O10O1000000000O0100000O10000000000O100000000O10O010000000000000000000000O01000000000000001N2O2N002M3M4K`Zm5"}, {"size": [848, 480], "counts": "fjP581S1cg0e1hNV1^Oa0M2O100O2O01OO100000001O00O1000000O10001O0O100O2N1O2M3L3K7]OhYO]Lif0k2T1iNd1]Nem^6"}, {"size": [848, 480], "counts": "^\\f8i0di07I5L3M3M3N1O2O1N2N1O2N101N100O2O0O101N1000000O1000O10001O00O10O2O0O2N101N2O10OO2N2M3N3J5K7E:Jm[_2"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "m_X36Xj06K6oYO_Oia0j0m\\O=lb0GP\\OVOoN_1nd0\\Oo[O\\OiN_1We0VOn[O`1Rd0bNk[O_1Ud0bNi[O_1Wd0dNf[O\\1[d0fN`[O\\1`d0hNZ[OZ1gd0hNV[OW1kd0nNnZOS1Te0POfZOR1Ze0Q22PNhZOdN[e0V1oZObNUe0W1[[ORNSe0h1Q2D;I7K6J:F6K5K4L3M2N2O2Lk^Z8"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "i7=Sj00O2M3]Oc0^Ob0M3O00O1000001N1000000000001O0000001N1001O000001O0O1001O000010O000O101O000000000000001O0001O0000000010O01O1O1O100O2N01O01O01O001O001O00001O00001O00000000000000000O1M3K5J6J6K6H8IiSV19PliN9G>Ca0A2O0000001O010O0000001O000100O000001O001O01O0001O01O0001O01O000001O01O01O0000001O01O01O00001O0001O01O0001O01O00010O0000001O01O0001O00000001O000000000000001O0000001O00000O10001O00000O101O0O1N3I7^Ob0\\Ono9EfVEd0mh0i0A`0J5N3O000O2O0010O000000000O1N2M4L3N2O1O1O1O1N2O1O1O1O2N1O1O2N1O1O1O1O1N3N1O1N2O1N2O2N1O100O1O2N1O1O100O1O2O000O1000001N100O1O2O000O2O00000O100O10001N1OgYj3"}, {"size": [848, 480], "counts": "W9^1Ri01O1O1O001O00O100000O1000O100000000000O10000000O100000000000O10O1000000O11O00O1000O10000000O1000O10O100000000O010000000O1000000O100ZORWOJnh05SWOKmh05TWOJlh06TWOJkh07UWOIkh06VWOIkh06VWOJjh06WWOIih07WWOIih06XWOJhh05YWOKgh04ZWOLfh03[WOLfh02\\WONdh0N`WO2`h0JdWO6[i0000O100O1N2M3M2O2N2O1N2M3N1O2M3N2N2N2O10O011O001O000O2^OnVODRi08SWOGnh04VWOLkh0N[WO2bi0O00000000000O0001O1O001O1000000000000000O0100O100O00100N2L4K5O100O10O101O0O100000001N10001O00001O0O101O00001O0O10001O0000001O0O101O0000001N10000O2O00001O000O101O0O101O1N101OXbW7"}, {"size": [848, 480], "counts": "YYk7:mi0b0QNWO`YOP1Rf0HVYOe0bf0i1L4M2O1N3L3O2N2N2N1O2O0O100O2O0O10001O0000000O101O01O001O1O010O1O001O0010O00000000000000000000000000000O10000O10O10000000000O1000001N10000O100O2^MnYOd0Rf0YOSZOd0oe0TO[ZOKcf01fYO@df0=j1L4L4K5L5JcR[2"}, {"size": [848, 480], "counts": "o:a0ki04M210O10000000O100000O1000O100000000O10O1000000000O1000O100000O1000O1000O1000000000O0100000O1000000O010000000O0100000000O10O100000O10O10000000O100000O01000000000000000000O10000000O100000O1000000O01000000O1000O1000000000O0100000000O10000000O10O10000000O100000O10000000O10O100000O10O100000O10O100000O0100000000O10O10000000000O01000000000000O10O100000O100000O10O100000O10O10O100000O1000O1000O010000000000O01000000O100000000O1000000O1000O10O100000000000000000000O1000O100000000O1001O1O001N2O1O1N3M2N4LoTn5"}, {"size": [848, 480], "counts": "Z\\n48Yh0[2\\NY1WOi0L3O2O000O10001O000000000000000000O100000001N1O1O2M2O2M3L3J:SOQ1QOf1mMnVO5RVb6"}, {"size": [848, 480], "counts": "he`8b0hi07L4L5L3M3O1N3M3M2O0O2O1N101O1N2O1O1O0O10010N1000000000O100000001O0O2O1N1O2L4M3M3M3M4L5H7G=@Tme2"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "]PV33\\j07J2M3mXO3_M@^e0d0UZO^O_2[1Sc0@d\\Oh0Zc0YOT\\OROfNh1Ve0XOk[O^1Td0cNj[O^1Vd0eNe[O]1[d0eNa[O]1_d0gN[[OZ1gd0jNS[OW1md0lNoZOT1Se0oNhZOR1Xe0SO_ZOP1ce0OdZOiN^e0Q1oZOeNUe0V1T[O`NRe0V1[2F9I8J6K8I6J6J6J3M2N3M4KXn\\8"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "h7>Qj02H9SOl0L4O0O10O1000001N1000000000001O0000001N1O11O0001O00000O11O1O01O000000001O000O1001O000001O000001O0000010O1O1O002N10O01O10O0010O0001O001O00001N10001O000000000000O11M2N2K5J6J6K6I7JjSV11UliNL5N1O101O0000001O010O0000001O00010O00001O00001O01O01O00000010O000001O01O0001O00010O00O10000O101N1I7J6M3L4N3N10000O101O0O1N2\\Oe0J5N2N3N1N2O1O100O1O2M20000OXkh01gTWO8Hf0[O1O00O1000001O001N101O000O101O0000000O101O00000000001N1000001N100001O01N001O1O1N2N2N3M2M3N[fi1"}, {"size": [848, 480], "counts": "W9b1nh00000000000O0100000000000O1000O100000O10000000000000O010000000000000000O10O1000000000O10O10000000O1000O100000O1000000O100000000YORWOKnh06SWOImh06TWOJlh06UWOIkh07UWOIkh06VWOJjh06VWOJjh05XWOIih07WWOIih06XWOJhh05YWOKgh04ZWOLfh03[WOMeh02\\WONdh0O_WO0bh0LbWO4_h0GeWO9[h0DhWOPj03C?UOi0N100000O1000001N1000000000001O0000001N100000000010O00O1001O01O00000000001N10000001O0001O000001O000000100O1O002N1O10O010O0010O01O0O110O000O2O000000000000000000000M3M3K5I7K6H8I7Kfe6K`ZI6J4L4M2M3O1001O109EbZf0;QeYO7I=Ca0B1O1O00001O0001O01O0000010O000010O0001O000010O000000010O000010O00000010O000001O000010O0001O001O0001O01O0000010O00000010O0001O00000001O00000000000000001O00001O0000000000001O00000O101O000O1O2N1M4^Oe0UOXP:7coEg0XOg0J5O2O0O10001O00001O010O000000001O01O01O001O000000O2N1N2L4L4N3N1N2O1N2O2N100O100N2N3J5K5M3N2O1O2N1N2O1O100O1O101N1O1O100O2O0O10001O0000001N11O00000000000001O01O00001O1O1O002O0O2N2O2M3M6J7I1O1OO2O000000000000000O10001O0000000000O1000O10001O000O100000N21O1N100O2O001O0O2O1N101O2N3L3N2N1N3N2M4KnnQ2"}, {"size": [848, 480], "counts": "W9b1nh00000000000O0100000000000O10O10000000O100000O100000O10000000000000O10O1000000000O10O1000000000000O10O100000O1000000O1000O1000O1ZORWOJnh06SWOImh06TWOJlh06UWOIkh07UWOIkh06VWOJjh06VWOJjh05WWOJjh06WWOIih06XWOJhh05YWOKgh04ZWOLfh02\\WONdh01]WONdh0O_WO1ah0KcWO5^h0GeWO9Yi0000O100O1M3L4N1O2N2N2M3N2M2O2N2N2M300O010001N1000001]OPWODPi0:SWOEnh06VWOJkh00[WONdi000100N1000000O1O000O101O100001N20O00000000O010O01O1O1O1O1M3L4M2010000000O101O000O10001O00001N1000001O00001N10001O0000001O0O10001O000O2O00001O000O101O0O110O0O10001N10001O0O3N0Oi\\X7"}, {"size": [848, 480], "counts": "fP^7h0bi0Pj02H9WOj0I6O0O10O2O0O1000000000001O000O100000001O000000001O00000001O01O01O00O100O2O00000001O0001O0001O00000000100O1O001O1O2OO01O01O1O010N1010O01O0O10001O0000000O10000001OO1N2K5J6I7J7H9JU`7KP`H6K5L2M3N20010O08GnZf0FTeYOd0A8Ie0\\O7J2O1O00001O0001O01O0000000010O001O01O000010O00010O000000010O00000010O0000001O00010O0000001O001O01O01O00000010O0001O01O0001O000001O01O0000000001O00000000001O0O10001O0000000000001O0O10000O2O0O1H9Ccj:QOjUEW1XO`0J401O01O1O1O1N2O1O2O0O100O1001O011N4L:F001O010O001O00000010O000001O1O0001O0001O0001O00000000001N1J6I7K5L4O1O2O00000O101N1000001O0N2I7L4N2N3L3M3M3M4M3JfU4O]jK4K5M2M3M3N2N2O1L4N2N101O100001O00000000000O10001O000O011O000O10000000001O0O01001O00000O10000O1000001O0O2O3M1O1O1N3N2N0O1001N001N2O1O1O010000000O11O0O10O11N2O000O10001O000000000O2O0K5MknY1"}, {"size": [848, 480], "counts": "V9b1nh000000000000O10O10000000O1000O100000000O10O1000000000O100001O00O010000000000000O0100000O10000000O0100000000O10000000O11N0100000O1[ORWOHnh07SWOImh06UWOIkh07VWOHjh07WWOIih07WWOIih06XWOJgh07YWOHhh07YWOIgh06[WOIeh06\\WOJeh04\\WOLdh03]WOMch01_WOOah0McWO3]i0000O1O1O1M2O2N2N2N1O3M2N2M2O2M3N1N3O1O1O10O10001O001O0\\OQWOGPi05UWOHlh07VWOHkh03YWOMih0I`WO6]i0001O0000000O001O001N200O10O101O000000000O10O10O01O1O1O1N1N3L4N20000000O10000000001N1000001O00001N10001O0000001O000O2O000000001O0O101O00001O000O101N100000001O001N10001O0O2O1Oi\\X7"}, {"size": [848, 480], "counts": "gUo63Qj0?J5I7M2O1O00100000O2O1N:G3L2O1N2O001N100O100O0010O010O0000100O000010O01O001O00001O000O100N3N1O1O2M2M3kN]O`WOOd0g0ig0EkWOe0Th0\\OeWOk0[h0e001O0000001O00001O0O11O000000001O0kN\\XO^Odg0`0`XO^O`g0`0cXO_O^g0?cXOA]g0>cXOC]g0=cXOC^g0;cXOE]g0;bXOF^g09bXOH_g07aXOI_g06bXOJ_g05`XOKag05^XOLbg04^XOLcg03\\XOMfg02ZXONfg02YXOOgg01YXONig01WXOOjg00UXO1kg0OUXO0mg0OSXO0og0NRXO1og0OQXO0Qh0OoWO0Sh0NnWO1Sh0OmWO0Vh0NjWO0Xh00iWONYh00hWON]h0N[Ri2"}, {"size": [848, 480], "counts": "g:h0hi000000O100000O10O010000000000O10O1000O100000O1000000000O100000000O100000O1000O100000O100O010000000O0100000O1000O100O100000O1000O10000000O10O100000000000000O100000000000O10O10000000000O01000000O100000O1000O10O1000000O1000O100000O10000000O1000O10000000O1000O100000O01000O1000O10O1000O100000O1000O1000000000000O1000O100000000000O1000O10O100000000O10O10000000O100000O10O10O100000O10O100000000O10O10O1000000O010000O1000000O1000000O1000O1000O1000000000000000000O10O1000001OO1000O1001O1O1O001N3N1N5KadP6"}, {"size": [848, 480], "counts": "Wam4n0`h0Z1[M^2M3O1N1000001O0O100001OO100000000000O10001O000O2N1O2M2N3L4J6D?SO]1]NmRc6"}, {"size": [848, 480], "counts": "PdQ76Vj08I6K4L3N2M4M2N3M2N2N2N2O2M2N00100O10000O2O00000O2OO11O1O1O000001N101O001O0O2N102M2M2M5L3N3L5K>]OfYS4"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "lUU3;Sj09H5L3eXO3jM[Obe0d0^\\Ol0[c0WOa\\Ol0^c0UO]\\OP1bc0ROW\\OS1hc0POm[OY1Sd0iNg[O[1Yd0hNb[OZ1_d0iN][OW1cd0lNY[OT1id0QOoZOP1Re0TOhZOn0Ye0R23nMnZOcNTe0X1T[ObNPe0W1a[OPNmd0g1T2G;H8I9GRj01N2M2J8ROl0N3OO1O10000O1000001O00000000000O2O0000000000001O000000010O0000001O000O1000000001O01O000001O0001O01O001O1O1O100O001O0010O001O1O0010O01O00001N10001O000000O101O00O1N2L4I7J6K6I7IY`7GR`H7J4M2M3N201O0001Na0^O`Zf0=QeYO;E`0@a0B3N0000001O01O000001O0001O01O0001O01O00010O000010O000001O0001O00010O0000000001O010O00001O000010O0001O000010O0001O01O0001O000001O01O0000000001N100001O00000001N100010O0000O10001O0O10001O0O100N3J7@`0XOYP:MZVEMZi0Q1SOl0N1O2N1000001O00001O001O00001O01O000000010O000001O001O01OO11O00100O1O1O100O1O01O01O001O001O0000000K6J5H9K5M3N2O1O3L4M3M3M3M3M3M8H4Lib6;k\\I7J6J2cVOVOPi0W1NO1000010N10000000000000000O101O00001O000000000O10001O0O100000000O10000000001N2O1O00001O0O100O10001O00000O2O000000001O000O10001O000O100000O1000O1000O1000O2O000O10001N10001O000O101O00000N2O2K\\TY1"}, {"size": [848, 480], "counts": "U9a1oh00000001N1000000000O10O100000000000O1000O10000000O100000000000000O01000O11O00O10000O01000000000O1000000000O1000O1000000000000O10O1000YOUWOIkh06WWOHjh07WWOIih07WWOIih07WWOIih06YWOIgh06ZWOJfh06ZWOJfh05[WOKeh04\\WOLdh03]WOMch01_WOOah00`WO0`h0KeWO4]h0HfWO8Yi00O100O1O0N3M3M3O1N2N1O2M3N2N1N4M2O001N20O10001O00001O0^OnVOFSi04TWOJlh04WWOJlh0J_WO5^i001O000000O010O1O1N2O1O10O011O0000001OO0100000O001O100O1N1M4L4O100O1000O10000000001O0O10001O00001O000O2O0000001O00001N1000001O00000O2O00001O0O101O0000001O0O10001N101O001O0O2M\\bW7"}, {"size": [848, 480], "counts": "hhd77Uj05L4N1N3N1O2M2O2M3N2N3M2N4M1N3M3[XOeNQf0^1jYOfNSf0]1hYOgNWf0[1cYOiN]f0Y1XYOQOgf0Q1nXOXOSg0h0jXOZOVg0P20000000O101O000O1O2O0[OiXOPNYg0m1mXOmMUg0o1h0K6M3L3N3M2N201N2N1O2O0O2O1N1N3N1O2M3N1O2N2N2N1O2N2N2N2N3M3L3LX]P3"}, {"size": [848, 480], "counts": "e:j0fi00O11N1000000O10O100000O100000000O100000O1000O10000000O10O10000000O1000O100000O1000O100000O10O10000000O01000000O1000O1000O1000000O10O10000000000O1001N01000000000000000O010000000O1000O1000000000O010000000O1000000O0100000O10000000O100000O01000000000O10O1000000O010000O10O10000000O10O10000000O10O100000000000O100000000000000O1000O010000000000O10O100000O1000O1000O10O100000O10O100000000O10O10O10000O10O100000O010000O10000O1000000000O0100000000000000O1001O0000O1000O10001OO100000O11O001O1O0O2O1N3M2O2Mcon5"}, {"size": [848, 480], "counts": "m[n4812ag0HhXO2M_2je0n1H7M2O100O2O000000000000001O0000O1000000000001O0N3N1N3M2N3K5H9SOR1nNjXb6"}, {"size": [848, 480], "counts": "eof69Wj03N2M1N3N1O0O2N2G\\OaVOh0[i08O10001O1O2N001O1N4M0N31N0001I8M2O2N00000O1001O0YN_WO_1bh0`N]WOa1ih001N1O10O0M32N2N1N3N2L4L4N2N4K5Am^[4"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "mUU34Yj09I6J4M4lXOMaMBae0d0a\\Oj0Yc0YOb\\Ol0\\c0UO]\\OQ1cc0QOP\\OZ1Pd0gNk[O]1Ud0eNg[O]1Yd0fNc[O[1]d0hN_[OY1ad0lNX[OU1jd0mNR[OT1od0POjZOQ1We0S22SNaZOfNae0Q1R[ObNQe0Z1W[O[NQe0Z1Y2E=H8I8I:DBc0A2M101O01O001O0001O0001O0001O01O01O00000010O0001O01O000001O01O01O000000010O000000010O00001O001O01O01O01O01O00001O000010O000001O0001O0000000000001O0000000000001O001O0000000O2O000000001O0O101M3K4F;\\Oi0[OPU91YQF>Xi0c0K2N1O2O0N2O2L3L4L5M2N2N2M4L3N2O2O0O1010O00000001O01O0001O000010O001O0010O01O010O0000010O1O1O1O1O001L4H7K6J7K4N2N2O1O2N1O2N2N1O000000O001A?O1000000000000000O2O00O11N1000001O000O100000001O000O1000001O00000O100000000O2O00000O1000000000001O1N1000001N2O00000O101O000O101O0000001O0O10001O000000000O10000000O1000O10000O10000O2O00000O101O001O000000001N100O1N2N[jU1"}, {"size": [848, 480], "counts": "T9o0ai03L4M8H3M001O1N2O00O1000000000000O10000000O0100000000O100000000000000O010000000O100000000000O010000000000O100000O1000O100000000000O10O1WOYWOIgh07YWOIgh07YWOIgh07YWOIgh06ZWOJfh05[WOKeh05[WOJfh06ZWOJfh06ZWOJfh06ZWOJfh05[WOKeh04\\WOLdh02^WOMch00`WO0ah0JdWO6[i000O010000N2M3K5O1N2O0O2N2N2N2M3N1N3O1N2O00110O01N10001O001XOTWOJlh03XWOLkh0J]WO5`i0O000O100000O1O001N2O1O100000O101O0000000O0100O10O01O1N2M3N2M201O1O100000O1000001O000000001O0O10001O001N10001O000O10001O00001N10001O0000001N100000001O0O101O000O2O000O3M2N\\bW7"}, {"size": [848, 480], "counts": "dee77Xj02N2N2O2N1O1O1N4M2N4L4K101O1O3cWOmNWg0V1cXOnN\\g0X1\\XOjNdg0R2O00000000[OnWOlNRh0m0YXOoNgg0m0`XOoNbg0P1aXOmN_g0R1eXOkN[g0S1S1M2O2N1O2O1O0O2N2N1O2M3M2N3M3M2M4MRZ8OleG7M1O1N2O1O0O1O2O00O2O2M3M4LTPm2"}, {"size": [848, 480], "counts": "g:g0ii0000O1N20O101O000O1000O100000O10O1000O10000000O10O10000000000O01000000O1000O10O100000O100000000O10O1000O0100000O1000000000000O1000O100000000000O1000O10000000O10O10000000O01000000000O100000O1000000O0100000000O10000O01000000000O100000O100000O010000000O10O1000O10O1000O10000000O10O10000000O100000O100000000000000O10O100000O1000000000O01000000000O01000O1000O10000000O10O10000000O01000000000O1O0100000O10O100000O10O100O100000000000000O10000000O100000O1000000000000O100001O00O100000000000001N101O2M2O1N3MTUn5"}, {"size": [848, 480], "counts": "bPP5R1Yh0oNkWOW2df0b1TOk0L3O101N100000001O0000001N1000O10000O11O01O001M2O1N3N2L4J6G:YOl0YOS1VNSi_6"}, {"size": [848, 480], "counts": "dWf66Uj09G7K4K5K6J4N3N2L3O14M01N1O001O1O1O1O0O200O1N100000001O100O01O0O1001O01N102L3N101O02O00N3DVWOmNmh0n0`0J6K4OO@_VO1`i0LQW\\4"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "ljV33Zj0:H6I5M4iYO^OWb0e0g\\Oa0Sc0AQ\\OYOhN]1Ue0[Oo[O^1Pd0dNl[O^1Td0cNj[O^1Vd0cNh[O^1Wd0fNe[O[1[d0hN`[OZ1ad0jNY[OW1gd0lNU[OT1ld0QOmZOP1Ue0TOdZOm0]e0S22jMR[OcNRe0X1V[O^NRe0W1Z2D?G9J9D;F;[OoX`8"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "g7;Tj02O000O101O1N1M4A>]Oc0M4O00O100O2O00001O0000000000001O0000000000001O0000001O01O00000001N10000O11O0001O000001O01O000001O001O1O100O1O1O001O01O001O0010O01O1O00001O00001O000O011O00O10O2N1N2M3I7L4H9I7JV`7KP`H5M3L4M2N3N20O1N8ImZf0ETeYOg0_OVc0Dk[OXOnN_1Re0ZOn[OYOnN_1Re0[Om[O^OfN\\1\\e0WOl[O^1Td0dNi[O]1Wd0eNe[O]1\\d0eN`[O[1ad0iNY[OY1gd0kNT[OU1nd0nNlZOS1Ue0VO^ZOn0be0o13jMQ[OdNSe0W1V[O_NQe0W1[2B=J8J:F9F9G9GTi]8"}], [{"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "h75Zj03M4M00000O101N2N2L4B=\\Oe0L2101N10001O000000001O0000000000001O0000000O110O000000010O0000000O1000001O00001O0001O000001O01O001O001O100O1O1O1O01O0000100O001O001O00001O00000000000O1000000O2L3N2K5I7I7I8JW`7JQ`H5K4L3N3L300002N4LP[f0BVeYOa0B;Ec0A:G001O1O001O01O0001O0001O01O0001O0001O01O01O000010O000001O01O01O000010O0000000010O0000010O0O1010O010O0010=B1O01O0N3O0O1O1N2O2M2N2O1O1O1001O00000000001O001O1O00001O1O001O1O1O1O1O001N2O1N2O1N2N4B=QOiVO1Sc;j0iUE>[Od0K6O0O1O2O0000001O001O0001O01O000010O000001O000000010O0000001O01O01O00000010O00000001O0001O000O1M3I7K5L5L3O1O101O00000O110O00000000001O00000000001N1000000O101O0000000O10001O0000001O0O100000001O0O100000000O101O0000000O1000001O000O1000001O1N2O000O101O00001N100000001O0O100000001N1000001O0000000O10000O0100000O10000000000O2O000000000O2N10001O001O000O1O1M\\`R1"}, {"size": [848, 480], "counts": "kh21Wj0c0D>C6J7I3M1O0O1000000000000000000000O010000000O1000001OO11N10O10000000O100000O10O10000000000O1000O100000O1000000000O10O100000000000000WOSWOOlh00XWONhh02YWOMgh03YWOLhh04ZWOJfh06ZWOJfh06ZWOJfh05[WOJfh06ZWOJfh05[WOKdh06\\WOJdh06\\WOJdh04^WOLbh02`WOMah01aWOO_h0NdWO2\\h0IiWO7Xi0O1000O1N2M3N2M3N1O2M3N2M3N2O1M2O2M4N0011O00000O20O00\\OQWOGPi06SWOImh04WWOJlh0M\\WO2fh0H_WO7^i0O00000O1000O1O001O1O1O010O1001N1000000000O10O0100N2N2O1N2M3M2O200000000000O10001O0000000O2O0000001O000O101O1O00001O0O101O0000001O000O101O00000O2O00000O2O001O0O2O0O2O2MlRU7"}, {"size": [848, 480], "counts": "fc[72[j06K4L4K5L3M3M4L3N2N2N1N3N3L3N102N1O100101M`0B0O001O0000000000O2N10O01O1O001N2O0O2O000O2O0O1O100O2O0O1O1O1O1O2N1O1O1O1N2N2GRNnWOP2Qh080000001O002M2ROlWO^OTh0DfWO6d05hg0_OnXO?bh00001O000O011OO0100O10O0001O00100O10O01O10O01O0010O10N2O2LUW^2"}, {"size": [848, 480], "counts": "j:e0ji01O1O010000OO2O010000000000O1000O10O100000000O01000000000O10O100000000O01000O1000O1000000O1000000O10O100O1000O10000000000O010000000000000O1000000000O100000O10O100000O1000O100000O1000000O01000000O100000O100000000O01000000000O100000O1000O100000O10O100000O1O10O1000O10O10000000000O1000000000O1000O100000000000000O10O10000000O10000000O01000000000O0100000O0100000000000O010000000O010000000O10O10O100000O010000O010000O01000000000O1000000000000O10000000000000000O1000000000000O100000000000O01000001O001O1N2O1O2M3M3MbPj5"}, {"size": [848, 480], "counts": "P[S5a0Xh0ERXOMJd1if0n1oNo0N3OmM\\ZOYOde0>YZOhM=d1[e0a0P[OXOTe0g0nZOSOWe0l0mZOlNXe0T1kZOgNWe0Y1P[O[NUe0d1l100O1O100O1GjWOXNVh0d1=N2O10000000001O1N11O01O101N2Nh0lNZ^\\6"}, {"size": [848, 480], "counts": "kdi76Vj08J5J6L3M4K5K4M6K0O2N10O01O100O2OO01000003M5KO100O1O100O20OO1O2M2O2M2N3N1O2L4M3N2N2M4K<]OQc^3"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "kTZ34Yj09I6J5K3oXOFhc0Vf0@mYO?Sf0@nYO?Sf0_OoYOa0Rf0^OoYO`0Sf0^OoYOa0Vf0XOlYOe0Sh0I7Jkf`2"}, {"size": [848, 480], "counts": "j:e0ki00O100O1O010O100O001000O10000000O01000000O1000O1000O10000000O10O10000000O10O10O100000O100000000O1000O01000O100000O10000000000O1000000000O1000O1000000000O10O1000000000O10O1000O1000O100000000O10O10000O1000O10000000O1000O100000000O10O10000000O10000000O010O100O1000O1000000O10O10000000O1000000000000O10O100000000000O10O100000O1000000000000O100000O10O01000000000O0100000000O0100000O1000O1000O1000O10O100000O01O1000O10000O011O00O10O1000000000000O10000000000000000000O02O01OO100000O01010O00O0100000O2O010N2O001N3N1N3M2Nc[h5"}, {"size": [848, 480], "counts": "fgU5b0Yi0g0B>kYO]NXc0e1a\\OcN\\c0`1`\\OcN_c0`1[ZOYNc1;Qd0j1l[OXNTd0j1g[OZNXd0g1c[O]N\\d0e1][OaNcd0`1Z[OdNdd0]1V[OhNjd0Z1nZOlNRe0W1kZOjNTe0Y1hZOhNXe0Z1eZOgN[e0W30O1000000000001N1N3N1O1N3L4G:]Of0POV1QO\\d[6"}, {"size": [848, 480], "counts": "Zda83Uj0;I6K4M3N2M3N3M3M2O1N2O2M101O001N10000001O000000000000000O100O1O2N1O2N1O2N2O2L4J7G9CkXh2"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "Wd\\3K6I;E:EB8G2O1N2O0N2O1N2O2N100000001O01O0001O01O01O01O00010O0000010O010O3M3M4M;D3M1O0000O2N1O1I7M4H7M4N10001N11O01O0010O0001O000001O01O000000001O000000O101O01O01O0O100000001O000000001O000O10001O000O1M4H9B>VOoo9d0ioE=[Oe0K4O1O2N1000001O000010O000001O00010O00001O0001O0001O0000010O001O000001O01O0000001O01O0001O000000O2K4G9J6M3O2N100O10001O00000000001O00000000001O000O10001O0000000O1000001O000O101O00000000001N1000000O10001O000O10000000001O0O10000000000O101O2N0O1000001O0O10001O0000001N10000000001N10001O000O10000000O1000O100000O02O000O1000001O0O10001O001O000O2OO11N100O100M4MZVo0"}, {"size": [848, 480], "counts": "o]47ni0f0D;F2N7H2O1O0000001O0000O010000000000000O1000O10000000O2OO100000O1000000O1000000000O10O10000000000O10O100000000000O10O1000000000O1000000VOTWO0lh0OYWOMgh02[WOLeh05[WOKeh05[WOKeh05[WOKeh04\\WOLdh04\\WOKeh05[WOKeh04\\WOLdh04\\WOLdh03]WOMch01_WOOah0NbWO2^h0IgWO6[h0GgWO9Xi0000O1O100L3M4O1N2N2N1N3N2N2M3N2N2N101000O1000010O0O101O1XORWOLoh0HkVOK?;ci0O1O000O10000O10O1N2N2O010O1001O000O100000O10000O010O1N2O1M3L4N10100O100000O101O000000000O20OO101O00000O2O00001O000O2O00001O0O101O000000001O0O10001O0O10001O001N101O0O102Mm]S7"}, {"size": [848, 480], "counts": "V^T8184n0aH[;5SD[7?dH[;5SDX7a0eHX;8TDT7b0hHW;7TDR7d0iHT;;TDn6f0hHU;>QDk6g0jHW;=QDi6f0lHX;?nCf6f0oHZ;?mCd6f0PI[;`0lCa6e0RI^;b0hC^6g0RIa;e0`C]6l0PIc;`9ZDbFe;`9XDcFf;_9WDcFi;^9UDbFl;_9QDcFn;_9oCcFPT5a8nJSGHa0X5]8PKSGDc0\\5[8oJSGCd0\\5Z8QKTGAb0]5\\8QKSGAb0]5[8RKTGA`0\\5]8SKUGaNXOlNW1[7a8WKQGYN_OVOo0^7\\8RKYGQND^Og0_7\\8RK]GbMKN;b0aNe5l9XLYIbMZN^1ea0[Nm]O7`0X1ga0bNh]O7a0R1la0gNb]O7d0k0oa0PO[]O6f0e0Tb0UOU]O6i0?Wb0[Oo\\O6m06[b0Dg\\O7o0Kcb0N]\\O7cf0I[YO7gf0IWYO8jf0HTYO8mf0IQYO7Pg0JnXO7Rg0ImXO7Wg0FhXO;[g0AeXO?_g0\\ObXOd0`g0XObXOi0bh0000O101O000000001O0O10001O000010O0001O00001O0001O00001O010O00001O1O001O1N2O1O001N2O0O2O1N2N3N2M2N5J[R]4"}, {"size": [848, 480], "counts": "\\le62]j03M2N1O100O100O100O1O1N2N2O1M3N2N2N2N1N2K4M004M3J6L3M2M3M3O1]NaNXZO]1he0nNnYOQ1Uf0TOcYOo0^f0UOYYOn0hf0XOnXOl0Sg0V12ON2J402O0gZOcL`c0^3a\\OfL[c0\\3e\\OfLYc0Y3i\\OgLWc0X3h\\OkLWc0T3f\\OPMZc0P3b\\OTM^c0l2a\\OVM]c0Y3S\\OiLmc0l3W[O[Lid0f40O2N001O1M4N1O3M2N3M2M6bN\\1H8I7L5J9I4E;K5^OaWOlNch0P1b0K5L4L5K6I>_OdYf3"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "Zeo2b0ji07J5K5M4J4M4M3M3N1N3L4L5K4N2M4L5K4L7I6K3L3N2M2O1N2N1O00001O2O0O2O0O2N100O1O100O10001O0O1O10000O1000000O100000000O100000000000000001O00000O2N2O1N2N2N100N3ZNTYO^N0c03ROnf0g1f1H8J7J8K4M4L7@idV7"}], [{"size": [848, 480], "counts": "jSQ46Sj09K6J5M1O20O001O0010O000001O0000000000000O10000001O000000000O01000000000O10O10O2N010O1O1O1O1O1O1N2N101O100O001O1000000000O10001O000O1000000O1O2O000O100O1O100O010O1O2M2O1L6L3MQaS6"}, {"size": [848, 480], "counts": "\\i`2`0ki08F9F:I6I7I7J6J6I8I7I8C>G9F;A=F:C=D=^Ob0F8I7I6L4L4M2N3L3N2M3M4\\MoHdAU7Q>YIhAl6n1UH]8U1bEl6i1YH[8Q1hEk6h1[HZ8m0lEl6d1[H\\8l0nEl6b1[H^8l0mEm6`1[H_8k0oEn6Z1]He8h0nEn6U1`Hl8d0mEQ7o0`HS9a0jEX7f0]H_9=hEo7LjG[:9fEZ8^OdGj:5eE_:Z:cEdE^:[:dEcE]:]:fE^E\\:a:iEZEX:f:i200O100000O1000000000O010lFj@n6V?oHPAn6P?PIUAn6k>oHYAo6h>nH[AP7i>kHZAT7m>aHXA^7m>YHXAf7l>RHXAn7f`0O0O101O000000001O0001O000001O01O01O0010O000100O2NUAVHo:l7mDZHP;f7oD\\HP;d7oD_Ho:b7PE_Ho:a7PEaHo:_7QEbHn:_7QEbHn:_7QEbHm:`7REaHm:_7SEbHk:`7TEcHi:^7VEbHj:^7VEaHk:`7SEaHn:^7REbH`MXOdb0]OSOXNR6i1^J?b0SOVOdNo5c1_Jc0a0kNWOoNo5[1]Ji0a0eNWOVOP6V1]Jk0a0`NWO^OP6R1VH\\Nd0a2T2YNXOGn5l0SHhNb0Z2\\2nMWO4U6^Og0^O]HZ6nMWIl97XHb6mMVIf>j6[AUIe>k6\\ASIe>m6\\ARId>n6^AoHc>Q7`AlH`>T7cAhH^>X7eAdH\\>\\7gAaHY>_7iA\\HY>e7iAPH`>P8o1YJj]OV3Vb0iLm]OU3Sb0gLS^OW3la0hLW^OW3ha0hLZ^OX3fa0dL^^O\\3ba0aLa^O_3_a0_Ld^O`3]a0dKU^OXOa0T5_a0[K^_Od4l`0oJW_OQ5Tc00001O0000000000000000001O0000000000O1001O0000000000000000O11O0000000000000000O10000lNcJU]O]5gb0gJY]OY5fb0iJY]OW5X2eJP=7g@T5W2kJk0Kj78SES5V2oJ?c0d7^OfEP5U2TK6a1g6hNnFc4U2WKMT2\\6WN`G_4V2XKMZ2R6SNjG[4V2\\KJ[2o5RNPHW4W2]KI`2h5nMXHU4W2^KHi2\\5hMdHQ4X2_KHQ3o4cMQIl3W2bKHU3f4aMZIi3V2eKHU3`4bMaId3W2fKHW3X4cMiI`3V2iKHX3P4dMQJ[3U2lKIY3h3eMZJV3T2nKJY3a3hM`JQ3U2oKJ]3W3hMiJl2U2RLJ_3m2hMTKg2T2TLJe3b2eM_Kb2T2WLJj3T2dMmK[2R2\\LKn3g1aM\\LU2n1aLOo3W1eMkLk1k1eL3R4i0fMXMc1i1iL6S4=gMcM^1f1mL:T4NjMQNU1\\1YMd0R4^OhMaNm0X1_Mi0R4QOjMkNf0W1bMn0V4bNg33]H\\1U4nMh3:^Hi1Td0101N101N2N1O10mM`XOW1^g0hNfXOV1Zg0jNgXOU1Yg0jNhXOV1Wg0jNkXOU1Ug0kNlXOT1Tg0lNlXOT1Sg0lNoXOS1Qg0mNoXOS1Qg0mNoXOS1Qg0mNnXOT1Qg0mNoXOS1Qg0nNnXOR1Qg0nNPYOQ1Pg0POPYOP1of0PORYOP1lf0QOVYOn0if0ROXYOn0gf0SOXYOm0if0ROXYOn0gf0SOXYOm0hf0TOXYOl0hf0TOWYOl0if0TOXYOk0hf0VOWYOj0jf0UOWYOi0kf0WOTYOh0mf0YORYOg0of0XORYOg0of0YOPYOg0Qg0XOoXOi0Pg0XOoXOh0Rg0XOmXOi0Sg0VOnXOi0Sg0VOnXOi0Rg0WOnXOh0Tg0XOlXOe0Wg0[OhXOe0Xg0[OiXOd0Xg0\\OgXOd0Zg0\\OfXOd0[g0[OdXOf0]g0YObXOg0_g0XO_XOk0ag0UO]XOl0eg0SO[XOl0fg0UOZXOh0ig0WOXXOg0ig0XOWXOh0jg0XOUXOg0mg0YOSXOf0ng0ZOQXOf0Qh0YOoWOf0Rh0ZOnWOe0Th0ZOkWOf0Vh0YOkWOf0Wh0TOmWOm0Sh0SOjWOo0Wh0QOiWOo0Xh0POgWOP1Zh0POdWOR1\\h0nNbWOS1`h0lN^WOV1ch0iN[WOX1gh072M6I4L2N3O0010O10O01O00N2M301O0001OO01000001O001O1O001N2O0O2N2N1000001O0O1001O01O0O1O11O000100O01O100O10O01O100O100O1O100O1O100O100O10000O10001O00000O101N101O0O2O001O0O2O001O001N101O0O1O2M3M6ITPn1"}, {"size": [848, 480], "counts": "S^c65[j01N100O10001N1O100O100O1N2N2M2N3M3K5M1O1N2]MUOb[Ol0_d0YOX[Oj0jd0VOR[Ol0Re0ROgZOS1]e0kN^ZOX1ce0hN[ZOZ1fe0dN[ZO[1de0gN\\ZOV1ee0lN\\ZOP1ge0POYZOn0je0QOVZOm0le0TOSZOk0oe0UOQZOh0Sf0WOlYOg0Wf0YOiYOd0Zf0[OfYOb0^f0^ObYO`0`f0@_YO>ce0@iYO1d0_[O[Oh0=41cc08n\\OH^O3cc06l\\OM\\ONhc05l\\O?fNA]d01k\\Om1Uc0SNj\\On1Vc0RNj\\On1Vc0TNg\\Om1Yc0TNe\\Ol1\\c0UNa\\Om1^c0WN\\\\Ok1ec0VNW\\Ol1kc0SNT\\Ok1oc0UNP\\Oj1Sd0UNl[Ok1Vd0SNj[Ok1[d0SNd[Ok1`d0SNa[Ok0QORObe00][Oc0Pf0[OQZOHkN6[g00jYOJPO0Yg03gYONUOIWg06eYO1Rg0JQYO5eh00000000001N2N2Nk\\j3"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "SSd3>ii0f0C2O2_Oe0F6J5J;G5K4L4K6K5J5M3M2M4M2M2N4M4L2N2N2N2N1N3N1O2N101O0O100O101O00000000000000001OO101O01OO2O0O100O2O001N1O2O1O1M3O5K2M2O0O2N3K6H7G9I7L3N2O1O001O1O2N5K2N1O1O2N2GlWOPNXh0l18M3M3N2N2N3M2N102M3M3M3N2M3M2M5L4L5K3LP^R6"}], [{"size": [848, 480], "counts": "fk_46Wj06I6L3L4M2N3M3M2N3N1000000010O001O000000001O00000000000000000000000000000000O1000000O100000000000010O00O1010O01O1O001O001O00001O00001O1O0000001O00000O101O0O100O101N101N101N2O0O2O1M4L_^a5"}, {"size": [848, 480], "counts": "m[f2a0di0E=VOP1[OS1ROe0\\O:H6J4nDTG\\4o8_KXG[4l8bKWGZ4l8dKWGY4k8fKWGW4l8gKVGV4l8iKUGU4m8iKVGU4k8jKVGT4l8jKVGT4m8hKVGW4k8TKjGi4Z8SKiGk4Y8SKiGj4[8SKhGi4[8UKfGi4^8mJkGQ5X8cJSH[5Q8^JTH`5P8XJVHf5n7SJWHi5o7QJTHk5S8PJPHk5X8oIkGn5Z8mIiGS6X8jIjGV6Y8dIjG\\6X8_IkGa6W8ZIkGg6W8UIkGk6X8oHkGQ7W8lHjGT7Z8fHhGZ7_8^HbGb7c8WH_Gi7i8lGZGT8a=000001O00001O00001O0000lNcGU@]8h?gGW@Y8h?iGX@V8g?kGY@U8e?nGZ@f0Bh5S`0dIZ@a0Hi5l?hI\\@TJ[Ak5S?dIPA\\6ba0000001OO1000000001O00000000O10000000000000000000000000000001O00000000O1fNYIk^Og6Ta0[Ik^Oe6X4WIgJb1o:cNQFd6U4aK[5lMaFb6Y3XIZLh2^9`MnF`6Y3\\IWLo2X9VMWG_6Z3]IVLR3U9RM[G_6Y3_IULV3Q9nL`G]6Y3`IVL^3g8fLjG\\6Y3aIVLa3`8dLQHZ6X3bIWLd3Z8bLWHX61YIP2:]Mh3U8`L\\HU60]IP26_Ml3n7_LcHR6O`Io13aMP4[7kLUIb50aIn12cMS4S7lL\\I]50cIl11fMW4j6lLdIY5OeIl10fMY4e6lLjIV5OgIi1OiM\\4_6jLPJT5OhIg10jM_4X6iLWJP50iIe11kMc4o5gL`Jm41jIb10nMg4g5eLhJj40mI`1OPNk4^5dLQKe41oI]1NSNo4U5cLZKa40QJ]1LTNU5k4aLdK]4OTJ[1JWNX5c4bLkKX4NWJ[1HYN]5Y4`LULT4L[J[1D[Nc5o3^L_LP4J^J\\1A\\Ni5e3\\LiLl3HbJ]1\\O]NP6Z3[LSMh3GdJ_1XO]NV6o2]L]Ma3FhJ`1SO_N[6^2dLmMV3ClJc1oN^N`6o1jL\\Nl2@QKe1iN`Ne6_1PMlNa2ZOZKi1_NcNl6n0SM[Od4S1\\GeNR7A9G=C:F7F9E:C>I6M3L4L4M4L3M3M4M2O2M2O2N2M4M3L4L5J4nDZFW5i9dJ[FY5h9dJ\\FY5g9dJ[FZ5g9cJ[F\\5h9_J[F`5h9jIlFT6X9fIlFZ6V9`InF_6T9hHfESM[1T:R9]HkGa7Y8WHmGi7U8QHoGm7W8jGnGT8V8fGnGY8V8aGmG^8X8[GkGd8Y8WGhGi8]8QGeGn8b8iFaGV9g8bFYG^9R9SFSGk9i<11N100O1UO^_OgGb`0o7Z@_Gg?[8a@cG_?Z8]1N2M3Gh]OXH[b0g77O1N2O1N3N1O1N2OSO`Hl^O`7o`0kHl^OT7Qa0QIm^On6Ra0UIm^Ok6Ra0WIm^Of6Ta0\\Il^Od6Qa0`Io^O_6n`0eIQ_O[6m`0gIS_OY6Pa0eIo^O[6Sa0dIl^O\\6Va0cIh^O^6[a0`Ic^O`0M[4ea0SKZ^Oa05Z4fa0QKS^Oc0;[4fa0nJo]Oe0>\\4ja0gJk]Oh0?`4eb0QK_]Oo4jb0fJX]OZ5Pd0O0000001O000000000000O1001O00lCZK^2f4^MfKY2[4dMnKV2R4gMVLT2j3jMdLj1\\3UNjLf1V3ZNnLb1R3_NPM^1P3eNQMW1o2lNSMo0m2ROVMj0j2WOZMd0f2\\O^M`0b2AaM;_2FeM5[2MgMOY22iMKW24mMIS26QNGo19TNDl1i0R5X2dKoN@nNg3d3hLWL_4U2cKSOAkNg3_3kL]L[4T2dKUOAiNg3Y3nLeLW4Q2fKXO_OgNi3T3oLlLU4n1fK]O[OfNl3l2RMSMS4i1iKDTOcNo3f2VMZMQ4`1mKNlNbNQ4]2\\McMm3W1RL6dNcNS4T2`MkMj3f0aLh0QNcNW4i1eMUNe3>eLQ1jMcN[4\\1iMbN`39fLU1gMcN_47dJROj3e0j20iL^1bMdNa9N]LBfLl1]McN_9Oa0]1QFdN]9Nc0]1QFeNZ9Of0[1RFfNV90h0Y1SFhNS9Ol0W1QFlNQ9LP1W1PFoNn8IT1W1nEPOm8IX1U1kEROm8G[1U1hEVOk8E_1T1fE]Oe8^Oh1R1dEIlN`NX9e0[2P1aE2S8mNc2j0[E8R8nNo2?oDb0S8mNP3`0oDa0R8mNQ3b0mD`0T8kNP3e0nD?T8fNR3k0kD=od0CS[O;md0EU[O:kd0EW[O9id0HX[O6gd0KZ[O3gd0NY[O1hd0N[[OOfd00a[OH`d08b[OE_d0;c[OC^d0=c[O@^d0`0d[O\\O_d0c0c[OZO^d0f0f[OSO]d0n0b201O1O2ROaVOh0di0O1O1O2OO01O010O001O0010O0100O101OO010O01000O01000O010O010O100O10O01O10O0101N100O2O001O0O3N0O2O1N11000O001O1N4L5K2OO01O01O010O002N2N2O3L5K6F^\\^2"}, {"size": [848, 480], "counts": "aPa61_j0000\\j01cUO3L10O1N3Nn`;:c^D9G8K4N2N2O1O1iWOXOef0g0]YOVOdf0k0a1O1O1O1GoMAbZO<\\e0KbZO2_e00`ZO0^e04PYO@o0:Rf08kXOAR19Qf0g0oYOJ`e05bZO0Xe0OiZO4Te0KnZO6Qe0KlZO7Se0JkZO9Se0HlZO9Te0FlZO=Qe0DnZO`0nd0@S[Oa0ld0_OS[Od0jd0\\OV[Of0hd0ZOY[Og0ed0ZO[[Of0fd0XOZ[Oh0Qe0mNoZOEmN^Oh01je0g0bZOFgf0;WYOBnf0>QYO]OVg0a0iXOYO_g0i0S120O002L7J3L5J4MhnP4"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "gTW4d0di0j6BZI:f6^N_HdIn0j7c6YNlHjId0i7`6[NPIkId0d7^6_NQIkIf0a7Y6dNRIkIg0^7W6fNTIlIh0Z7U6iNTImIj0V7R6mNUImIk0U7n5nNXImIl0S7k5POZImIl0P7k5SOYInIn0l6i5TO\\IPJm0i6g5UO_ISJj0f6h5TNaJWKHc6f5bMWKkKUO`6d5`M^KQLnN\\6d5_McKVLiNY6e5ZMiK^LcNT6f5SL\\HfM_34_NQ6f5PLkHUM]3l0RNk5g5RLZMVNnLd5i5TL]MWNkLc5h5TL`MXNkLa5e5RLfM\\NiL_5`5SLjMZNlL_5[5VLkMSNSMe5U5TLiMTNXMe3TMPL7g0l7U1eM]NWM_3RNlLW7R1bMbNWM\\3TNnLT7R1cMcNWMX3UNRMT7P1bMeNWMT3VNWMS7m0aMiNWMm2ZN\\MP7l0`MkNWMh2\\NbMm6j0aMlNWMb2_NhMi6i0cMmNVM[2cNoMe6h0bMnNYMS2eNWNb6e0bMROYMi1hN_N`6`0cMYO[M[1hNlN]6;cM^OVN4RN3V69dMAd16h08fMBa15l06dMF_14o02eMJ[14S1NdMNX14Y1FcM6T13j8MUG2l8OTG0m80SGNo82QGMo84QGIR97RGAQ9`0`80O100O1O0001O01O3N1N100O100O10000O01O1N3N1M5K7Gbal3"}, {"size": [848, 480], "counts": "V]V75^40Ya05a^ON]a0;W^OJga0c[OGYd0a5kAcJX_O:J9H2N2M4L5J5[XOWM]g0Q3K5M2M3N1O3N1N3N2M20001O0O1O1O100N2N5L1000O1O10O01O1O00100N2O1N1O2N2O00100O100O3GUYOeLPg0V38M3M4L4M6I6J9Gb0^OQHeNeF_1T9lNgFU1T9ROiFo0R9XOkFi0Q9]OkFd0P9DmF=o8KkF7o8U1hEnNm9d1iE_Ni9T2oEnMg9`2RFdMj9b2PFbMn9c2kEaMn9g2kE_Mo9g2kE_Mo9h2lE[Me9V3TFPMd9Y3UFmL`9_3YFgLb9_3ZFdLa9b3\\F`L`9g3[F[Lb9j3ZFXLb9P4XFRLc9X4VFjKg9_4QFcKm9h4hEZKU:V5[EmJc:m5^DZJ`;]:L3M3N2O1NQOlDfBS;Y=QEeBn:Z=UEeBi:Z=ZEfBe:V=aEiB]:P=lEQCQ:h000001O0000001O00001O001O00001O000000001OfNmHV_OT7g`0RIV_On6h`0UIW_Ok6h`0VIX_Oj6h`0WIX_Oh6g`0ZIX_Of6h`0[IW_Oe6i`0\\IW_Oc6h`0_IW_Oa6h`0bIV_O^6i`0dIV_O\\6i`0fIV_OZ6h`0iIW_OW6g`0lIX_OT6f`0PJX_OP6e`0UJY_Ok5\\7QJTHQO^7[1QIb5n6TLeNbNZJZ5h6mLYNRNkJQ5a6^MZNgMTKj4Z6nMXN[M^Kg4o5[N_NPMbKe4h5gN^NgLjKb4h5nNTNdLSL^4Q2RIW1R6:cL^LY4m1XIY1Q62cLhLT4l1[IX1Q6MdLoLP4k1_IV1P6FhLXMj3l1`IU1o5_OnL_Mc3l1cIT1n5XOSMhM\\3k1eIV1l5mN^MlMT3o1fIX1g5cNR52\\E]1`5VN]58_E\\1[5kM_5e0eEU1Ub0fNU^OV1ja0eN`^OV1`a0fNh^OV1Xa0gNm^OW1Sa0eNT_OX1l`0`N^_O^1k`0QN`_Oj1hd0K4M2N3M3M2N3M1O4L3M2N00001O0000000001O0010O0000001O001O001O1O00000000000000000O101O000000000000000000001O01O00001O00000001O001O0000001O00001O00000000000000000O101O0001O000000000010O000000000000001O00000000000000O10001O0000000000000O101OO10O10001O000000000000000000001O000000010O2N10O1O001O1O001O00100O001O1O1O1O1N3N3L4M5JbXo0"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "[fZ5i0`i0a0A:I5I7K5eWOmMQh0]2L3L4L4M3L5K4M3M3L3M3M4M2M3L4N2N2N2N2O1OO2O0001O000000000100O001O1O1O1O2N1O1O2N1O1O1O2N2N1O1O1O1O1O3M2M3N2M2O1N2M4L5I8J9G5L5K7I4K6K6J5K4M3L4L5K6K4KP`P5"}], [{"size": [848, 480], "counts": "]^Y5:Tj04L3M3M3N1L5M3N100O2O001O01O000010O000001O00000000000001O00000000000000001O000010O1O1O100O1O1O1O100O1O100O1O001O10O01O00001O001O0O2O001N2O1N101N4L4KemU5"}, {"size": [848, 480], "counts": "Q[^31^j01O1IOoUO1fi04WVON2Obi0>^VOB]i0e0`VO[O[i0n0O3K6J;FV2hM9H6g@iKS8[4jGjKo7\\4nGfKn7^4PHeKk7_4SHdKi7_4VHbKd7e4YH^Ka7h4dGgJQKb0U=m4fGQKdJ8a=k4hGPLS8U4kGmKo7Z4nGhKi7b4TH`Kf7h4UH[Kf7o4SHSKf7X5RHlJi7_5iGhJT8e5]GaJ`8m5nFZJn8R6aFWJ]9P6PF^Jm9n5dEWJ[:Q6\\ERJa:W6VElIh:[6PEgIo:d6bDbI[;k:O1N2N2N2N2N2O1O1N2N2O1N3N1N2NPOfEoAV:P>oEoAP:o=TFPBj9P>XFPBe9X=mEbBa06b9T=[GkBe8Q=_GoBa8nkF\\AT9c>nF\\AR9c>PG\\AP9d>QG[Ao8e>SGYAm8f>UGYAk8g>VGXAj8g>XGYAg8k5iFo1c0THd8l4THd2\\O_H_8b4lHa2hNlH\\8T4gIb2PNYIY8i3\\Jb2_MdIU8i3bJW2`MPJn7i3iJg1cM_Jf7h3nJ]1aMkJc7f3UKQ1^MYK^7e3\\Ke0ZMfK[7d3bK;XMPLX7c3gK1VM\\LV7`3hKKWMeLS7^3lK_OZMRMj6`3SLPOYM_Mf6`3VLdN\\MlMo5FoFh3l5WN_MZNf5ETGg3o5iMaMjN\\5BZGj3n5[MfMWOl5\\3iLgLgMLg4D]Gi3Z;bLZME^Gg3Y;bLWN^3i1aLYN]3i1`LYM1ZG_3Qe0cLmZO^3Re0dLQ[OX3nd0fLW[OX3hd0fL^[OW3ad0hLc[OV3\\d0iLj[OR3Vd0mLP\\Oo2oc0oLV\\Oo2le0J6J5^NRXO6Rh0BTXO=ng0\\OXXOb0mg0SO[XOl0fh0O0O100O101O0O10000O100O10O10O101N100O0100000O1000O11N1O10000O10O01000O010O0100O010O01O10O10O100000O1O1O100O1O01000000O2O1O1O1N10O10O01O010O01000000O100O1O10O001O10000O1O010010OO1O010O1O2O1N1O101N8HhjW2"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "fS]5f0ai0b0BdF^A\\9`>gF_AX9a>kF^AT9b>mF]AS9b>oF^Ao8c>SG[Am8o5\\Gn0IRIk8j5fGP1@UIi8l5jGl0^OWIh8n5mGg0\\O[Ie8P6YH9TOfIc8S6`HMoNoI]8Y6jH_OkNXJZ8[6QISOiNaJU8_6UIhNjNhJP8b6YI^NlNoJk7e6[ITNoNVKe7j6\\IjMRO\\Kb7k6^IcMTOaK^7m6_I\\MXOeKY7R7cIoLZOmKR7V7jIbLZOVLl6Y7lIZL^OZLf6_7lIRLB^Lb6a7nIjKFbL\\6f7oIbKKfLV6j7PJYKU9j4lFlJZ9j2VDSL_2l0^9j2]DZLV2d0b9^2YEcLV1f0g9c2\\EeLn0=m9i2]EhLl0NQ:U3ZEmLo0VOS:h3UERMQ?k2SAXMh>b2bAQNg=f1fBYNW=\\1XCbNgQ5ZAZKf>j4QAZKo>T8N101N2O1O1O1O0O2O1O001O2O0O10WO[AgEd>V:bAhE]>V:fAjEY>P:PBmEP>e9aBXF`=d9eBZF[=d9hB\\FW=b9mB]FR=b9RC\\FmeNTK_:\\4QG;dNXKZ:\\4WG7cN[KU:^4[G2eN]KQ:^4^G2dN_Kn9\\4bG2a:NaENb:OcEL`:0eEbL[LZ2S>Q1gE_L]LZ2o=U1hE]L]LY2n=W1jE\\L\\LX2m=Z1lEXL[LZ2l=\\1mETL]LZ2j=_1lF]NW9a1lFZNW9e1lFVNY9g1kFSNY9k1kFoMY9P2kFiMY9U2mFbMX9]2oFWMW9f2[7K5K5K5M300O1H8O1N2O1N2N2O100N3L3M5K5L4L4K3O1O1O2M4L3M3M4HfhV4"}, {"size": [848, 480], "counts": "gnX45Uj07H3M50L5NcNFgXO;Wg0MbXO3]g03_XOM`g0V7eAQH6m0T>Q7hARH2o0U>n6kASHNQ1U>m6oARHJR1V>j6SBSHFU1V>g6VBTHCU1W>e6ZBUH]OX1X>b6^BUHXO[1Y>^6cBUHSO_1Y>[6gBRHnNh1Z>U6mBnGjNn1Y>R6RCWJlb8O1000O0100000O1000000000O0100QOmA`ES>a:nA^ER>_:SB_Em=^:YB^Eg=`:^B]Ec=`:dBZE^=c:iBRE]=l:T1N2M@[ERA1Le:l>mK[AhMf>Y2hAWM[>k2lAkLU>W3PB_LS>o1QAULQ1_1T>[2QATLm0P1]>l2k@RLl0>g>`3a@PLl05h>j3a@PLm0Hf>X4b@nKm0]Og>d4`@PLla0n3Y^OPLea0n3`^OQL_a0l3f^OSLXa0k3m^OTLRa0j3R_OVLk`0h3Z_OXLd`0e3a_O[L]`0b3h_O_LT`0`3o_OaLn?_1j]OVO]2[Og?_1o]OQO^2_Ob?_1S^OlNa2GX?]1Z^OfNc2MQ?\\1_^OaNf22j>]1b^O[Ni28d>\\1g^OUNj2>_>\\1l^OlMl2h0W>\\1QCdNn<[1TCdNl<\\1TCeNkQf0Q1`2K8H9I1O1N2N2N3L4M7I^h[7"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "cR`5e0hi06E:WOSOgWOQ1Rh0k0MO10M4N2N2O2N2O0O2N2N2N2O1O1N3O0N2O1O101M2O10000O1O1O01O010O001O1M3M3N3M3L3M4L5L4K6J5L6I5L4K4K7H7J6J8C[S_5"}], [{"size": [848, 480], "counts": "U_`3>mi0:J3N1N3N010O001O001O000000001O000O10000O100O100O1O1O1O1O1O1O1O001O1O10O01O100001N2O1O1O1O001N101O0O2O0O101O0O100O1O2O0O2O1N2N2N3L3N3ISgT7"}, {"size": [848, 480], "counts": "bg\\2b1dh0a0SOn0^O?F9E:I8H>B;D7K3L5L3M4L3M3M2N3M3L4L2N200010L3O1O1O1O1N3N2J5N2101M8F9J6I:H8Gb0_O9G8I7H6JY3YBgJnLk0e`0S4QCmKm<^3iCcLUQj02M4M101M3N1O100N2O100N200N20OO110OOO20O0110N2O1K5M3J6M3O1M3N2M3O1N2O000N3O0O020O1O100000O1O100O1N2O1L4O2M3L3M5L3SOoVO7gi0Nigj:"}, {"size": [848, 480], "counts": "al;2Zj09K3L2[OAVWOa0ih0_OWWOb0hh0^OWWOf0eh0[OWWOk0fh0VOYWOm0ah0WO]WOl0bh0TO^WOn0Ri01N1O1ZOiNRXOW1mg0lNnWOW1Ph0POiWOQ1Wh0oNhWOR1Xh0nNhWOS1Wh0lNjWOU1Vh0hNlWOZ1eh000O01O1O1O1O1O001O2N1N2O1N20O2OBUN\\XOd1Yh0O10G^NaWOd1]h0:N1O100ORNcWOi1^h0UNcWOl1ah0O1000N2HSNjWOo1Uh0SNiWOn1]h000O01H8NoMlWOi1]h0001O0N3N12O00M3J5N31O003M0O01001O0O1O0100O01000O1001N1O1N1000002N1O001O001O1O1O1O1O000O10jYO`NkMDYe0k1P\\OLjc04d[Ob0Xd0^Oc[Oj0Yd0XOd[OR1Td0nNk[OV1Rd0jNm[OX1Rd0hNm[OZ1Qd0hNn[OY1Qd0gNo[OY1Pd0hNP\\OX1nc0jNQ\\OW1nc0kNQ\\OU1nc0lNR\\OS1nc0nNR\\OCD_OZd0o0R\\OTOY;O1@RD`BY2Ok6Y=VGeBn1:g6b<^JcC^5\\C6[NoXOCWg08f1ZOkVOEYi07mVOEYRo8"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "WZk45Yj03N3L2L5M2N3N1O1O2N1O2L3N3M20000N2N2O1O0N02M3O10000O2O0000100O100O2O1N2O2O8G9F\\Ra6"}], [{"size": [848, 480], "counts": "jih75bi0`0aVOB]i0`0aVOB\\i0j000O1O100000O1O1M3000001O1ON200O1O10000000O1O100O1O2L4N1K7L3NRbh3"}, {"size": [848, 480], "counts": "jcl09Pj0oi07K4K3N3N3M2N1O2N2N1O001O2N1O2O0O10000O2N3M3M1O2N2N2N1O1O100O001O010O1O1O100O1O010O011N1O1O1O0000O2N101N3N1N3N4K4M4Jc0^O?B`ic7"}], [{"size": [848, 480], "counts": "^[k7e0\\i0e0H4M3M3N00001O0001O001O1N101O0O2N2N3L3L5K5K5I;AY^m3"}, {"size": [848, 480], "counts": "dck26Wj0:UVONhh0P1L3N2O001N101O0O100O0100O1O1O1O101M2O1O010M1O2O0O21N101O2M3N4L9G6I5L3M2O2L3M3M3O1O1WObM]YOa2]f0fM`YO[2\\f0kM`YOW2]f0lMaYOV2]f0P1M3N2N2O1N2O1N101N2N2O001N3N4L1N2O1O1O1N101O001O0000001O0000000001O0000001O001O001O1O1O1O00001O00O10000O1000000O1000000O10O10000000O1000000O10000O011N100O100O1000O1WOlZOVLSe0i3oZOWLQe0h3P[OXLPe0g3Q[OYLnd0g3S[OYLmd0e3U[O[Ljd0d3W[O]Lid0`1W[O_O3POfd0]1`[O\\OLWOdd0\\1e[OVOI^Obd0]1m[OiNEJdc0Nl[O^1U1[N@:]c0On[O[1^2fNda0Oo[OZ1^2fNca0@h[O5IfNRa0h0V_O`0IiNTa0c0T_Ob0JkNVa0?o^Oe0NjNaa03b^OQ1OkNba02_^OQ12lN_a02`^OQ12mN^a02`^OP14lN^a03^^OP15lN^a04]^Oo07lN]a02^^OP18mN[a01]^OR1;jN\\a0O[^OU1>hNec0X1]\\OgNcc0X1j2000001O00010O000010O00000001O0O2N1000001O00001O00010O010O01O01O0010O01O01O01O001O00001O0O2O01OOO2K5N1O2L3O2M3O1O11O01O0O1001N101N2O1N3N1N3N2M3L4M3M3N2L5K7IZ\\Q3"}, {"size": [848, 480], "counts": "a]\\22]j03N0O101N100001O00O1N2O2M2M3L4K5N1L4E;G7J6N3M2ZN\\N`ZOh1]e0aN[ZOa1ce0fNUZO]1je0nNdYOX1^f0W15N1001N02N3O0O2N011N2O2M201002M;G2kYOfLZOLZe0m4OO1F;O03M3NO010O2M3N2O1N3N4\\MQZO\\\\O=cNSOQe0?^\\O=bNTOod0?_\\O=cNTOmd0>b\\Og\\O9dNZOdd0=h\\O9eNZObd0>h\\O9eNYObd0?i\\O8eNZOad0>j\\O9eNXOad0?k\\O8eNYO_d0?l\\O8eNYO_d0>m\\O9fNWO]d0`0l\\O9iNWOZd0?n\\O:iNVOYd0`0n\\O:kNUOVd0`0Q]O:kNTOTd0b0Q]O:lNSOSd0c0Q]O:nNROPd0c0S]O;oNoNoc0f0S]O:POnNmc0g0T]O;QOjNlc0l0S]O:Sd0En[O;Rd0En[O;Rd0Eo[O:Qd0Fo[O:oc0HR\\O8ic0KX\\O5bc01^\\OO\\c06f\\OIob0cNW[Og1j1Fnb0hNS[Ob1P2Flb0c0U]O]Ojb0c0V]O]Ojb0c0W]O\\Ojb0c0V]O^Oib0b0W]O^Ojb0`0X]O@hb0`0W]O@kb0>V]OBkb0=T]OCmb0dZOC\\e0=dZOC\\e0>cZOB]e0>cZOB^e0>aZOB`e0>_ZOC`e0=`ZOCae0=_ZOCae0<_ZODbe0;^ZOFbe07`ZOIbe0JjZO6Ve0BQ[O?Pe0[OT[Oe0od0TOV[Ol0od0dN[[O]1lf0O010O1O00010O001O010O00001N101O0000M2K6N100ON2O1101N2O1000000001O1N2O1N3M2N3M3N1N3M3M3M4M3K7Gdo\\3"}, {"size": [848, 480], "counts": "^_j22]j01O2N1O10001O00000O101N2N0O200N2N2M2I6M3N003I8I6J6G9I6[N]N\\ZOf1be0eNPZO_1Qf0gNfYO]1Yf0^1O1NON1MN4N4O4K4M3O1O2O0O2O01dZOjL^c0X3^\\OkL`c0_3U\\OeLic0`3P\\OcLoc0k3a[OXL^d0l3S[O_Lnd0b40O0O101N2N2O3L3M2N4M3L3M3M5]MRZO;Sf0_OSZOSO9Khe0l0YZOnNb0EYe0X1P\\OfNRd0W1o[OfNVd0W1k[OjNXd0P1i[OQO[d0j0f[OVO`d0c0b[OZOed0?n2EmUd7"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "aQn2:Rj06K6K3L3M4N2M3L3N3N2N2M2O2N100L5N2O1M3O1N2N1N201N10001N10001O01O000000001O1O1O001O1O001O100N2O1O1O1O2M4L6K2M2N2N3POiVOb0ei0M4L4M3J4M4MT^j7"}], [{"size": [848, 480], "counts": "[^\\78Tj06M3N2M3M2L4G8FnNRWOW1gh0hNZWO^1fh0cNWWO^1jh040O100O2N1O1N2O2N1N3N1O2M3M3M5K4K6K5IZWX4"}, {"size": [848, 480], "counts": "_Zk1j0Si0k0\\O?H8I6L3M4L4L2O2N2M3N1O2N2N2N1O2N2N1O2O0O2N2O1N1O2N1O2O0O2N1N3B=K6L3M3N3M2O1N2O101N1O100O1O10000O100O10000O2O00000O100000000O1000O1000000000000000001N10000`LR[O^1nd0aNT[O^1ld0aNV[O^1jd0aNX[O]1id0bNW[O^1id0cNW[O]1id0bNW[O^1hd0cNY[O\\1ed0fN[[O[1bd0gN][OZ1\\d0lNe[OT1Yd0nNg[OS1Xd0mNi[OR1Wd0nNi[OS1Vd0mNi[OT1Wd0kNj[OV1Ud0bMh[O04^2Td0aMm[OL0d2Qd0aMW\\O[O0T3ic0`MX]O^2ib0aMX]O_2ib0_MY]Oa2fb0[M^]Oe2cb0XM_]Oi2ab0TMa]Ol2`b0oLd]OQ3^b0hLh]OW3Zb0eLh]O\\3ed001O00000001N101O001O000001O00000O101O001O00010O0010O00010O00N2100O0100O001O001O1O0100O10N2N1N3L4O1O1N101O001O1N11O01N2O1O0N2O1O2N2O001O1O100O1O1O100O100O100O001O100O100O010O1N20O01O10O000O0O100O1N201N2O1O1O2OO2O1N1O2N2N1N3M4M2N2O1O1O1O1O1O2N1O2M2O2M3N2M3N1N3N2N3L7H[a[4"}, {"size": [848, 480], "counts": "ncn23\\j03M2O0O101O0O100000O10O100O100O2O0O1O1N2K5H7J7J5M4M2L4K5I7G2cN^NTZOf1je0cNnYO`1Qf0fNgYO[1Zf0Z13O10N2L11O4M2N3N101N2O2NcZOmL`c0T3Z\\OVMac0k2^\\OVMbc0j2^\\OVMbc0l2\\\\OTMcc0T3U\\OmLkc0\\3l[OeLSd0h3][O[Lcd0i41O001O1O1N2N2N3M2N3M4L6K4J5^MSZO9Rf0AWZOcNbg0Y1l0N3N2L6K4L7I5K;Bma]7"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "S^Q37Wj04M2M3N1O2M2O1N2O1O2N1O1O1O1O1O1O1O1O1O1O1O1O100O2N1O1O1O2O0O101O00000O10001O0O1O2O00002O0O000O1000O2O010N2O0O3L4M2N3N2N2M2N1O2GbVO^O^i0`0eVO^O]i0`0eVO^O\\i0a0;N3K`Sb7"}], [{"size": [848, 480], "counts": "cmc72[j04M4M2M4M2M4L3N1O1O1O100M3O001O1O001O1O01O0000010O00001O1N2O2N2M3O1N4K7Icnj3"}, {"size": [848, 480], "counts": "X\\^2e0di0;DSd0Co[O;Pd0FQ\\O9nc0hMi[OT19T1mc0fMn[OT17U1ic0gMR\\OT16S1hc0hMU\\OS14U1fc0hMW\\OR15U1cc0hM[\\OQ12W1cc0gM]\\OQ11X1ac0gM`\\Oo00Y1_c0hMc\\On0NZ1^c0hMg\\Ol0L\\1Wc0mMo\\Od0K_1ob0TNX]O;Ja1jb0WN_]O5Ge1gb0XNe]O0Di1db0XNk]OLBl1ab0ZNP^OF@Q2_b0YNU^O\\OCZ2Xb0ZNi_Og1U`0ZNk_Og1T`0YNl_Og1T`0YNm_Og1S`0XNm_Oh1T`0VNm_Ok1S`0QNP@P2R`0]M_@c2fc000100O0010O10O010O00010O010O0010O010O10O01O0001O01O01O01O010O1O001O1O00100O1O001O100O1O1O001O100O1O001O100O1O1O1O001O1O1O1O1O001O1O010O1O1O1O1O010O1O001O1N200O001O001O1O1O001O0010O0100O01O0N3N2K5K5M2O2O1O001O0100O010O100O100O1O2N1O1O3M3M3M4L3N0O1O1]O]WOXOch0h0^WOWOch0h0_WOVObh0i0aWOSO`h0m0b0O1O2N1O2M3N3M2M6JUik3"}, {"size": [848, 480], "counts": "b]T33]j0001O00000O2O000000O02O0O101N100O1O1N1N3H8C=F9K4L5K5J5M4M2gNkMWZOX2^e0[NWZOd1ke0dNkYO[1Zf0W14N3O10ON2ON0122N110O2N10O3N3aZOjL`c0\\3T\\OmLic0W3P\\OmLoc0\\3f[OgLYd0h400001O1O1N2M3N2O2N1N3K7YNh1G6VO[XOaNlg0X1ZXOaNmg0\\1f0N1O1N6H7K5K7H7J:EW]Y7"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "Sjb3:Sj05L4L4L2O1N3M3M3N2N2M2O2N2N1O2M200N3O0O100O010O0100O010O1O0010000O010O2O010O1O10000N2N2N2O1O1N2O1M3M2O2O0O101N1000001O0O101O001M2O2O1M2N3L6Ijlo6"}], [{"size": [848, 480], "counts": "fUl71^j03N2L5M;E0O100O1O100O10O01O1O10O01O00100O010O010O00010O01O2O0O001O1O2M2O3L5KXQa3"}, {"size": [848, 480], "counts": "bfo2=fi0a0F9F9EB6J4L4L3M3L6K5K3M2N100O1O001O0SORJX]Oo5db0XJX]Oh5fb0\\JX]Oo3_`0d5W^OSJX18a`0d1S^Ol12YLZ17b`0`1X^OP2IYL]17b`0_1\\^Of1FaL02]16b`0a1^^Oc1CdL02]16c`0_1b^O`1_OiLO2^15b`0`1f^OY1@mLK5^14b`0`1g^OW1EUMS12b`0b1h^OT1EVMT12_`0c1j^OR1FWMT11^`0d1j^OR1EYM_c0d1l\\OR1oc0kNT\\OR1Pd0jNS\\OS1Pd0kNR\\OS1Qd0iNR\\OT1Qd0hNS\\OV1Pd0fNS\\OW1Rd0cNQ\\O\\1Vd0WNR\\Of1^f0N2N1N3N2O0O2M2N3N1N3M2N3M2O1N3N1O2L3O2L4N2L5K5K`[o4"}, {"size": [848, 480], "counts": "Yjm25[j01N100000001O000O10O100000O1I8N1O1O1L4M3N2K4M1N112K6H8M3L3F;LNhNVNRZOh1me0gNhYOX1Yf0PO^YOP1cf0^10O2N0OM3101O2N2O1N2O01O2UZOXMlc0j2l[O^MSd0c2j[OaMUd0a2f[ObMYd0j2P[OcMod0o3O11N10001O0O2N1O1O1O1^NnZOeMTe0Z1hZOSNQg0j1QYOTNRg0h1QYOUNSg0e1RYOXNQg0e1P1M3N3ZN[WO[1Xi0E4L4K5L8EfP`7"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "ka]5;Rj08I5K6\\VOVOYi0W1I4L2M3N3N1L3O2O0O2N1O1N3N1O1O101N101N2O2M00010O100O01000O01O10O01O1N2N3N2N2M3L4J6EZli5"}], [{"size": [848, 480], "counts": "_jW58Vj04L2N3M3N1O2M2N2O100000000001O001O1O00001O00001O000000O010O10O01O100O1000O1000000O1000000O10000O10000O2O002M4L8EW_f5"}, {"size": [848, 480], "counts": "_eT34Yj07I5K4L3N3L5J5K5L4L4L4L4K6J6K5J6J6K4M4L3M3J6I7L4L3M4L3M3M3M4L3N2M4M2N2N2N3M2N2N2O1O1eNoJW]OQ5ab0cKR]O^4lb0iKo\\OW4ob0mKn\\OT4Qc0nKm\\OS4Rc0PLl\\Oo3Tc0SLj\\On3Uc0TLj\\Ol3Vc0TLi\\Om3Vc0ULi\\Ok3Vc0WLi\\Oi3Vc0YLi\\Of3Wc0]Lf\\Od3Yc0_Le\\Oa3Zc0k100000O10O100000O0100c]OXIRa0h6l^OZITa0e6j^O_IUa0a6h^ObIXa0^6e^OeI[a0[6`^OjI`a0c700000O10000O100O1O1O1O2M2O1O2N1O2N1O2N10001O10O`J_]OQ3bb0lLb]OS3^b0kLe]OS3\\b0kLg]OS3[b0jLh]OU3Yb0iLj]OT3Yb0hLk]OU3\\b0cLg]O[3ab0\\Lb]Oc3ab0XLb]Of3ab0WLa]Og3bb0UL`]Oi3gb0PL\\]On3gb0oK\\]On3db0QL_]Ol3bb0SLa]OIeNa3ic0gLX^OS3ha0mL^^Om2ca0RMb^Oi2]a0YMc^Of2\\a0[Mf^Oc2Ya0_Mg^O_2Ya0bMg^O^2Ya0bMh^O]2Wa0dMj^O[2Wa0eMi^OY2Xa0gMi^OX2Wa0hMj^OW2Ua0kMk^OS2Va0mMk^OR2Ua0nMm^OP2Ta0oMm^OP2Sa0PNo^Om1Ra0RNQ_Ok1Qa0TNP_Ol1o`0SNT_Ok1m`0SNU_On1i`0QNZ_OQ2b`0nMa_OW2Y`0gMj_Oa2k?^MX@h2b?UMb@U3S?hLPAY3n>fLUAY3k>eLWA[3i>cLYA]3h>aLYAg1TLHif04\\YOJdf04_YOKbf02bYOL^f02eYOM\\f01fYONZf01hYONYf0OkYO0Uf0LoYO3Rf0JRZO4oe0HVZO6ke0F\\ZO6fe0G]ZO7de0FaZO6be0EcZO8Qh0GSSU5"}, {"size": [848, 480], "counts": "ajm27Yj000000O100O101N1O1O100O1O100L4J6N2M3M2N3L2K3K7M2M3O3L5M2`N_NPZOb1ke0mNeYOY1Zf0Y16J5O2L3O01N3L3O0O1011O10100O12Ne0QYORMRe0X4N0O1001O0O10000O1N2N2N2I8eNnZORMWe0g2]1YOSYOcMVg0W2g0K3YNfWOS1oh0L3M4L3M5K6I7J:BVea7"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "Zjc4;Tj03L4L4L4M2N3L4M3M2M3N2M3N2N2M4M1O3L3O0O2N2N3N2L3N2VXOeM\\g0\\2<2M100O10001O0O100O100O1000O101O001O1O2L3L5M3N2M3M3M3M3Nc0]O5J6J6ZOZVO4`cY6"}], [{"size": [848, 480], "counts": "fQR54[j03K30102L2O1O1O000000001O0O10000O10O0100O100O1O001O010O0O2O1N2M2O1O20OO2O0100O100O2O1N10N2O01O010O00001O001O1O1M3M4M3K]ii5"}, {"size": [848, 480], "counts": "dZo15Yj09Fb0]O?B7H7K4L4M2N2M3L3M4L3N2N2M3L4J6L5L3L4N2M3N2N2N2M4K4N2M4L3N3L3L5K5I7K4L5L3N3L4M2N3M2O2M2O2N2N101cNkIX]OOn0X6ba0`JS^Oa5ja0dJT^O]5ja0eJT^O]5ia0gJT^OZ5ja0kJR^OW5ka0mJR^OU5la0PKo]OR5oa0h1N3N2M3M3N2N2N2L4O0O2O1O0O2O1O001O001O10O0001O0100O10O10003L6KXMV_OmKe`0n3b_OULY`0c3Q@_Lk?[3]@fL`?X3c@iL[?V3g@mLU?Q3n@SMn>j2TA[Mh>a2\\AcM`>Z2cAiMZ>Q2lARNQ>e1XB\\Ng=_1^BcN`=[1aBgN^=X1cBiN\\=T1gBmNW=YNg@?T2X1U=VNm@>o1^1Q=QNUA=l1g1jh1l1eg1Q2a<^MjA`0f1R2bDRE=j0FWL4Q>GQE>R2Jm8HSE>o1Km8EVEa0m1Im8EWEc0k1Hn8CZEe0h1Gn8C[Ef0h1Fn8B\\Eh0f1DQ9AZEk0i1_OW=b0kBZOV=f0kBXOV=h0kBWOU=i0kBTOW=m0`BRO]J0Tc0n0[BXOk=h0TBZOk=g0RB\\On=d0RB\\On=d0QB]Oo=b0RBZOR>f0oAVOS>j0oAQOU>o0f5O00100O101N10O0100O1O00100O01O0010O1O0010O01O000001O00000O10000O1O101O010O0000000010O0001000O010O2N1O1O3M2L6HX_\\4"}, {"size": [848, 480], "counts": "Zmd38Qj0>E;iVORO[h0c1N1O2O1K4N3N2M3N2M3N2O2N1O10001O1O1N101O1O0010O000000001N3M3L7I3N2N101Na0@3M3K5L5J7J4K9Fjda7"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "dRj37mi0a0H5L6I5L3M3L4N1N3N001N2N2M3N2O0O2O1O1O001O2N0O101OO11O001OO2O0001O1OO200O1O1O2O000010O1O01000O010O01O1O1O2N0O101N101N3N4L2M2O2M2O2M2N3M2O1N2O2N1O1O2N1O2N1O1M3L4N2M4M2M[Q]6"}], [{"size": [848, 480], "counts": "Wd`4:Uj03M3N1O001O1O000O1000000O10000O0100O01O1N101O001N1O1O2N2N10010O010O1O01O1O01000O10O01O10O010O01O100O010O001O1O1N2O2M3L7GX\\Z6"}, {"size": [848, 480], "counts": "eY:e0ai0d0A>D9I6J3M2N2M3N2M2O2M2N2O2M2O1O1O2N1M3O2M2O1O1N3N1RNhLc\\OZ3Yc0lLc\\OU3\\c0mLb\\OU3]c0kLb\\OV3]c0kLa\\OX3^c0hLa\\OZ3]c0gLb\\OZ3^c0fLa\\O\\3]c0eLa\\O]3_c0cL`\\O_3^c0bL`\\Oa3^c0_Lc\\Oa3]c0_Lb\\Oc3\\c0^Lb\\Od3]c0]Lb\\Od3^c0\\L`\\Og3^c0YLb\\Oh3^c0XL`\\Ok3^c0ULb\\Ol3]c0ULb\\Ol3]c0TLb\\Oo3\\c0QLd\\OP4[c0PLe\\OR4Yc0oKf\\OR4Xc0oKh\\OS4Wc0mKg\\OU4Wc0lKh\\OW4Vc0iKj\\OX4Uc0iKi\\OY4Uc0hKj\\O[4Tc0aKP]O`4nb0aKR]Oa4jb0aKW]O_4gb0cKW]O`4hb0_KX]Ob4gb0_KX]Oc4gb0]KW]Oe4hb0[KX]Of4hb0ZKW]Oh4hb0WKX]Oj4hb0RKZ]OQ5eb0mJ\\]OT5db0kJ\\]OV5cb0kJZ]OY5eb0gJZ]OZ5fb0eJZ]O]5eb0bJZ]O`5fb0_JY]Oc5fb0]JY]Of5fb0XJ[]Oi5eb0VJ\\]Ok5cb0TJ]]Om5cb0QJ_]OP6`b0nIa]OS6_b0kIb]OW6^b0gIb]OZ6_b0cIb]O^6_b0`Ia]Ob6_b0]I`]Od6`b0\\I_]Oe6P1nIn?S6P@YJ_NWOm`0a6a@eJ]?[5a@iJ\\?Y5a@jJ]?W5a@lJa>dNi@a6a0oJ`>iNk@Y6a0RKa>jNl@T66_Kk>cNk@P61eKR?aNh@n5OeKW?_80OO2OO010dJVATOi>k0ZASOf>l0\\AROf>m0\\AQOd>n0_AoNc>Q1]AkNg>T1[AkNd>U1]AjNd>S1`AkNa>S1bAkN_>T1cAjN^>T1eAiN]>U1eAhN]>V1gAgN[>V1iAgNY>V1kAfNX>X1jAfNX>Y1jAeNW>Z1jAdNW>\\1kAaNW>^1jA`NX>`1iA]NY>b1iAZNZ>e1hAXNZ>g1hAVNZ>i1gATN\\>k1fAQN]>o1cAmMa>Q2bAkMb>S2_AiMe>V2]AeMg>Z2[AaMj>]2XAaMi>^2YAfMa>[2_AkM\\>T2eAoMW>Q2iARNU>m1lAUNQ>j1PBXNo=g1RBZNl=f1TB\\Nk=d1UB\\Nj=d1VB^Ni=a1XB`Ng=_1YBcNf=]1ZBcNf=\\1ZBfNf=Y1ZBhNe=W1[BkNd=U1\\BlNc=S1^BnN`=R1`BQO_=n0aBUO\\=j0dBXO[=g0fB[OX=d0iB]OV=b0jB_OV=a0jB@U=>lBCU=;lBHS=5mB2R=GPC:X=[OiBg0f=_L__Oc1m2n1_>jMcAV2^>gMcAY2_>cMcA]2b>\\MaAc2h>SMYAm2g>RM[Am2f>QM\\An2e>PM]Ao2c>PM_Ao2b>PM_Ao2a>QM`An2`>RMbAl2^>TMdAi2]>VMgAg2Y>YMkAc2V>\\MPB^2o=cMWBW2i=iM^Bo1c=QNcBi1^=VNgBd1Z=\\NaCi0_g6O1000000000O1000O10000000O1000000000000000000O10000001O00000O0100000000001O1O00000000O0100000000000O1000000O100O10000O010000O1O10O0100000O1000O10O01O2OO010000O100O2O000O2O0O2O0O3L3LjlP4"}, {"size": [848, 480], "counts": "[\\l3?ji0:H7L3M2O2M2N3K5K5I7L5L3N2N2O002N1O1N2O1O1O1O2O2M6J:F:Ge0ZO3N4M2OlMoYOdNN0Vf0W1PZO`Nb0H_e0e1SZOXNi0K\\e0i1U2L5J5K2N4M2M6J5J7I9FZP[7"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "klm28Qj0:F9L2M4M3L3O2L3N3M2O1O1O1N2O1O1N2O1O1O0010O00O110O000001O10L31O000100O01O01O1O101N1O1O101O0O11O00OQOmWODRh0;PXODPh0:VXOCjg0;XXODig0:XXOFig09WXOGig08XXOHig06YXOJhg04XXOLig02XXONhg01YXOOjg0NWXO1kg0LVXO3ng0HTXO7Qh0DPXO;Th0AnWO=Si0N4M3J6L\\de7"}], [{"size": [848, 480], "counts": "ZeS24Zj04L3O1N2N2N1O2O0O2N2N1O2O0O2N2N3M2M4N0O2N3M2N3N010O1O01O1O1O1TOPWO6Pi0IQWO7Pi0GSWO7mh0ITWO6mh0GVWO8kh0GWWO7ih0HYWO6ih0HYWO6jh0EYWO;`i0L3NXQW9"}, {"size": [848, 480], "counts": "l:a0j16WOa18WOT`0RO\\@7XO_18YOS`0ROZ@:YO[1;XOS`0ROW@>[OW1;ZOR`0ROU@b0\\OQ1<]OS`0oNR@l0YOh0b0]OS`0oNP@S1VOa0g0^OS`0nNl_OZ1UO;l0^OR`0mNk_Oa1oN7T1[OS`0mNh_Oo36SMT`0mNe_OQ46RMW`0kNb_OT48PMW`0lN__OV49oLX`0lN]_OU4jGn@U8Q?PHl@o7S?VHi@k7U?[Hg@d7X?aHd@_7[?gH`@Y7_?m1O0000010O01O00\\A`EZ=_:fBbEZ=]:eBfEY=Y:iBhEV=W:jBjEV=T:jBoEU=o9lBSFR=l9oBVFP=h9RCXFnU3YClLeNOT>Q3ZCPMaNOW>m2\\CSM[N2Z>g2_CVMVN3]>i0l@XOb2LRN5b>d0m@XOa2OnM7e>4WABV21hM;l>K]AGQ23cM=Q?CaAJl16_M?W?XOgA0e18[Mb0_?lNfA8a1:XMd0Qb0POi@;TMg0Ub0kNh@?oLh0\\b0fNf@c0jLj0bb0_Ng@Q3Z?mLg@R3[?jLh@V3`?XLj@g3Qc0N1O1O2N100O1O2N1O1O1N2O2N1O1O1N2O1O2M2O1N2N3N1N3M2O2M2O2M2O2M2N3M3N1N2N2O2N1O2N1N3N1O1O2N1O2N2N2M3N2M4L3N4K6Hf\\W7"}, {"size": [848, 480], "counts": "[cU4b0ji03M4M3L4K4K4J6O1L4M4aN\\NPZOf1ke0kNgYOW1Xf0QO_YOQ1`f0^12N1N3M3J5O2OL3O2O01N2011O1O2N6J>PZO]LXd0Q5M1O00O10000O1O2M3N2N3M4YNhZOnM]e0m1U[O_MRe0j1kYO\\Nig0`1ZXO\\Nng0\\1k0H4K3N3M3M4L7G9G_ci6"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "Pad12\\j03N2N1M4L4N2L4L4M2N2M4N2N2L4N2M3N2N2N3M2M3N2N1O2N2O0O1O2N2O0O2O0O2O000O2O001N100O100000O10O1000O10000O1O100O2M2O0O3M2N2M4M3L5L4I8Cj0[O^`Q9"}], [{"size": [848, 480], "counts": "R_]18Uj05J5K5K4N3N1O1010O0000001O00000000000O100O10000O1000000O10O10O10O010O1O010O001O001N101N2O0O1010O10O0010O1O10O1O01O01O10O1O1O1O1O1O100O1O2L4G802L3NRiR9"}, {"size": [848, 480], "counts": "^U34Yj05K4M3K4I7C=M3O1O1O001N1]JEQA=f>0TA1g>9RAJh>b0n@Ak>k0n@XOl>P1PAROj>U1TAkNh>\\1TAfNd>c1XA`Na>i1YA[Na>l1[AWN`>o1]ARN`>T2[AoM_>Y2]AhM_>`2\\AbM`>f2ZA[Ma>S3TAoLj>^3j@dLR?i3b@YL]?R4W@PLg?]7O1O1O2N100O010O1010O01OZOW@fFi?X9]@eFb?Z9a@dF_?Z9f@cF[?[9g@fFW?Z9k@eFU?Y9Q1O2N100O2NeAoFZ;Q9eDVGU;i8kDnG_:R8`ERHl8lNhEP9\\1WH\\8BmEW8AlG?`0o9DlEQ8BQH>>Q:EjEg9NiFV:CiEg9GnF^:^OiEh9CmFOlM^:b1mEQH8I4J6L4M3M2M4M4L2N3M2N3M2M4M3M3N2M3N1N2M01101N1O1O2O0001O001N20O01O1N3N1N2O1O1O1O1N2N3N1N2O1O2M3N2N3L3N2M3N3M2M5K4L4L6J6K4J7J4K6KSk`8"}], [{"size": [848, 480], "counts": "g]m2>li09K2N4N0010O001O00000000O2O00O1000000000O10000O10O0100O1O010O010O100O001O1O001O1O00100O10O1000000O2O0O100O101N100O1O2O0O2O0O2N2N2M4M3L8HSnf7"}, {"size": [848, 480], "counts": "Y^\\1>Ve0EZ_Oo0cK[Odc0b0V@U1V?[Of_O]2\\?lMQ@g2i?_Mj_Om2P`0ZMe_OP3V`0XM`_On2[`0]MX_Oj2c`0d3K5I6L5L4K5M2M4K5J5K6K4L4M4J6L3N3M2O1N2N2O2N101N1O10QN[BSGf=i8iBkFW=S9PCiFP=U9UCgFl]9XN1V1dFa0[9XN6Q1bFf0X9XN>h0^FP1W9SNa0d0]FX1W9lMn2R2i:O1O100O1O1N3N1N3N2M3M2N3M2ON11O01O010O1N111N1O1N201N1O2N3N2M3M\\N[XO`0dg0]OcXO?\\g0_OhXOa0Wg0^OkXOa0Ug0^OlXOc0Rg0^OoXOa0Qg0^OQYOa0nf0@RYOa0lf0@TYO`0lf0_OUYOb0jf0^OVYOb0if0^OXYOb0hf0]OYYOc0gf0\\O[YOd0df0\\O\\YOd0df0\\O\\YOd0df0[O]YOe0cf0[O]YOe0cf0[O]YOe0cf0ZO^YOf0cf0YO]YOg0cf0YO\\YOg0ff0XOZYOh0ff0WO[YOi0ef0WO[YOh0gf0WOYYOi0gf0WOXYOi0if0WOWYOi0if0WOWYOh0jf0XOUYOh0lf0XOSYOh0Pg0UOPYOl0Yh00000000001OO1000000000010O0001OO010O1[OUOdWOm0[h0WOaWOk0]h0WO]WOm0dh0TO[WOl0`h0c0M4N2O1O10PNiWOh1Vh0XNnWOf1Qh0[NPXOc1Rh0;4L3N3N1N1O1N1000M3001O1O100O001N2O3MJeNYWOZ1dh0:001O001O1N10O2N11O:E6K4K7I5K3M5K3M202KlkZ4"}, {"size": [848, 480], "counts": "QP\\6>ei0>G:L2O1M3J5K5M4K4J6bNZNiYOn1Vf0_NXYOh1hf0P1O^O[YO\\Mdf0d2`YOXMbf0f2`YOTMef0l2\\YOSMdf0h2d0L3O01O1O2N1O2O3M4M2O2M2O0000O001L4O1000001O0O5L2N201F]XOaMfg0X2`0J4BbWObNch0[1;M3M3L3O101NW;e0O2O1N1O2N1OlAeDV=Z;jBlDR=Q;oBREP=l:RCTEmo9]2eFh1Z9UNPGd1o8ZNYGb1f8ZNbGc1]8[NgGc1Y8\\NjGc1T8]NoGa1Q8`NoG_1R8`NoG_1Q8aNPH^1P8cNPH\\1P8cMWFYKk1S7m7\\MdF^K_1U7m7XMjFcKZ1S7l7UMPGgKW1Q7i7QMWGoKQ1i5oM_Ji9g3ZGQLP1e5PNaJf9g3]GRLo0d5QN`Jc9i3_GSLn0a5SNaJ`9k3`GRLo0_5SNcJ^9l3`GRLQ1]5SNcJ\\9j2XF]MY1JP1Z5TNeJ[9c2`FcMR1JQ1X5TNgJY9c2bFcMP1LR1U5TNhJX9c2cFcMQ1LR1S5TNjJW9c2bFdMR1LR1P5UNlJU9c2dFcMR1NQ1l4WNoJR9d2cFdMT1LR1i4WNSKQ9d2aFcMW1MP1d4[NXKm8d2aFcMX1MP1^4^N_Ki8a2cFcMX1NP1Z4`NbKg8a2bFeMX1NP1V4aNfKf8_2bFgMX1MQ1R4bNkKd8^2aFhMY1MR1l3dNoKb8^2`FiMZ1MR1h3fNSL_8[2bFmMX1MR1c3iNVL\\8[2cFoMW1LS1_3kNYLZ8[2bFQNV1MT1Z3mN[LX8\\2bFRNU1MV1U3a9iNUDVNU1LU1R3c9kNUDVNT1LV1m2f9nNRDYNS1LW1g2l9hNQDdNn0NU1a2R:_NVDROd0OT1Z2Z:]NRDZOa0OU1T2]:aMZB5Q2730V1m1c:bMYB4m1=20V1h1e:fMWB4m1>10X1b1g:nMPB3o1>20Y1[1k:SNZDb0B1Z1S1j=lNm@1Y1m0o=QOi@3Y1e0S>XOe@3Z1=V>@a@3Z16Y>G^@4[1M\\>OZ@3_1C]>:U@2Td0Mn[O3Pd0NR\\O0nc00S\\O0lc0OW\\OOic01X\\ONhc02Y\\ONec03\\\\OLdc04\\\\OMcc02_\\OMac03_\\ON`c02a\\OM_c03a\\ON]c03d\\OM[c03e\\ONZc02g\\ONXc02i\\ONVc01l\\OORc02P]OMob03S]OLlb03W]OLhb04X]OMgb03Z]ONdb02\\]O0bb00`]OO_b00c]O1[b0Og]O0Xb00i]O0Ub01m]ONRb02P^OMoa03R^OMma03U^OKla04V^OJja06X^OGha0:W4000O10000O10000000000O1000000O01000001O000000000000001O00001O000000000010O100O10O1O1O1O010O1O100O1O1O001N2O1O001N2OPUk3"}, {"size": [848, 480], "counts": "j[R75[j0000O10001O00O10O100000000M3L4M2N2N3M3M2N3L3K5NOO3O1N4N01O2M2O3J5N2NmMFUYOG2`0jf00lXOE97lf0P1VYOlNjf0W1UYOfNlf0\\1TYO`Nmf0d1RYOZNnf0i1RYOSNPg0o1f03K4J7L4M3dYOnMWd0T2d[OTNWd0n1Q[OZMNk0Qe0k1Q[OiNnd0Y1P[OhNod0Y1Q[OgNod0Z1P[OfNPe0[1oZOeNPe0]1nZOcNTe0]1kZObNVe0_1hZOaNYe0Z3100O1O2M2\\N_ZOoMke0[1WZOlMVg0R2oXOiMUg0U2kXOkMXg0Q2hXOoM_g0k1aXOSNdg0i1e0L5K7I3M3M3M6K5J7ITjY3"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "Vg\\3f0ci0;G8J5K5I7K5L4L4L3M3M3N2M4MbNeXOJYg04mXOJPg07RYOHnf07TYOIjf07WYOIhf07ZYOIdf08\\YOHcf09^YOG`f0:`YOG_f08bYOH]f09cYOG\\f0:dYOF[f0;eYOEZf0fYOCYf0=gYOCXf0>hYOBXf0>gYOCXf0>hYOAYf0>hYOBWf0?iYOAWf0?iYOAWf0>jYOBUf0?jYOAWf0?iYOAWf0?iYOAWf0>jYOBVf0>jYOAWf0?iYOAXf0>hYOBYf0`YO@bf0`0^YO^Oef0a0[YO]Ohf0b0XYO\\Okf0c0UYOZOnf0e0SYOXOPg0i0PYOSOTg0l0mXOnNXg0R1T1O1O1O1N2O2O1N1N2O2N1N2O5DnUU7"}], [{"size": [848, 480], "counts": "PTg32Yj08I6L3M2N3M3N1N3N1N2O1000000001O0000001O001O0000001O0000000000O10000O10O0100O010O100O1000O01000000O10O010O10001N101O0O01001N101N101N2N2N2N3L4Kehj6"}, {"size": [848, 480], "counts": "^ll1a0ji06K5L4L4K5I7XOg0N3N1O2N101N1O2N1K6M2M4L3L5L4W^OlLRj4lAUKS>Q5hAPKV>S5iAmJV>V5gAkJW>X5hAhJW>Y5hAhJW>Z5fAgJY>[5fAfJY>\\5eAeJZ>\\5eAeJZ>\\5eAeJZ>]5dAdJ[>]5dAdJ[>]5dAdJ[>^5bAdJ]>]5aAdJ_>]5_AeJ`>\\5_AdJb>]5ZAfJe>[5ZAfJf>Z5XAgJh>Z5VAhJi>Z5UAgJk>Y5TAfJm>[5RAeJo>\\5n@fJR?[5l@eJT?\\5j@_J]?b5a@[Jc?f5[@ZJe?h5Y@VJj?k5S@SJQ`0n5m_OQJV`0o5h_OPJZ`0P6d_OQJ4fN]?[7Y@RJK4N6SNiWOX1kh0L2N3M3M4L4L5K:DUT]3"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "m^k22[j04M2N3N101N2O0O2O2L3N3M2O1N2N4M1M4L5L4L3M4L3M3M2M2O2N2O0N3O1N3N1N2O0O2O0O1O1000000O1O1000000O1000O1000O10L400O10000O100O1O10000O1O1N2O1N3L3O1O1N2N2O2M2N3M2N2O1M3N3M3L4L6B>C=LnUY7"}], [{"size": [848, 480], "counts": "Ub[31Zj0:H4L4L4M3M2O2O0001O00001O001O00000000001O000000000000000O10000000O10O010000O010O1O001O1O1O0O2O001N2N1O2O1O0010O100O10000O2O1N1O3M3N1M3N2N5JUUW7"}, {"size": [848, 480], "counts": "ZmR21Wj0hEk8Q2kFS8`0iEc8R2QGS8`0iE^8b1fGb80jEY8b1jGb80jEU8c1nGa81jEP8d1QHa81jEm7e1RHa85gEg7h1VH`86dEd7m1WH^8Q:aGQF^8P:_GRF`8R:[GQFe8R:UGQFj8S:PGPFP9S:jFPFV9S:dFPF]9R:\\FRFd9Q:TFTFk9P:kEWFU:Q=10000000000000001O000O100000000O1O1O1000000O1UC`Ef9a:WFcEf9^:YFeEe9[:[FeEd9\\:\\FeEb9\\:^FeEb2B`1k:mKeE0@C8[4c:RLfEJFC:\\4[:VLfEFI_Of0^4l9[LhECJcNFAc1c5U9fLjE]OLhNP2g3eM\\Lf:g1lEZOJjNV2`3aMfLd:d1oE^N^O[O9<[2V3`MQM`:d1SFRN^OI4:_2o2^MZM^:a1XGPN\\N6d2d2_MgM\\:\\1TGTN]N5h2Y2bMRNW:Y1TGVN[N6k2k1lM\\Nm9[1RGXNZN5o2Z1YNkN^9\\1PG[NZN4S3Q1\\NQOY9]1oF]NYN4V3j0_NTOV9_1mF_NXN4Y3a0dNWOS9c1iFaNWN4_35k:S1`CdNVN4]c0T1_^OgNTN5`c0P1]^OlNSN4fc0g0Z^OUOPN3oc0>S^O_OnM3Wd03n]OJjM4`d0Hh]O4hM4lg0LTXO3mg0MSXO3lg0NTXO2lg0NSXO2ng0OQXO1og0OQXO1og0OQXO1og0OQXO1og0OQXO1Ph0NoWO3Qh0LPXO4Rh0JmWO7Sh0ImWO6Uh0HlWO8Uh0GjWO:Wh0FhWO9Zh0FeWO;^h0^OeWOc0Ti00O10O010000000000O1000000000O10O101O000000000001N10000000001N101N3M5Gm\\g5"}, {"size": [848, 480], "counts": "UYd66Zj01N1O10001N00100000000000000O1N3K4N2K5M3N1O2M1M102N2N2O1L4L4L4N010hNeN^YO[1bf0nNRYOU1mf0WOgXOj0Zg0S12O1O100O2N2O00N4M2M3lYO_MWd0f2^[OgM]d0d2P[OhMmd0n3O10O00001O1N2M3O010O1@cZOkK`e0k3lZOoKWe0^3X1I7M3M2O2L4^OcXOeMhg0X2;L5L7TNdWOW1nh0L3M4L5K7I8EURg3"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "mV`3i0`i09H8J5K5L3N3M1N2N4M1O2N2M3O1M2O3N1O2M2O1O1O2L3O1O100O100O1O1O1O100O010O1O0100O2O1N2O2M2N2L4M3M3K6J5I8B>_Oa0J;BUi_7"}], [{"size": [848, 480], "counts": "`[m23[j08I2M3M3M4M1N3N2N1N3O001O00010O00010O001O0001O00000001O000001O0000000000O2O0O100O10000000000010O00002N001O1O002N1O2N1O2N10O01N3N1O1O002M2N102L3Ngec7"}, {"size": [848, 480], "counts": "alc16Wj05J5M3L3H9F9O1O2N1O1O1O1M3K5H8G9hJnMgA]2g=_NhAh1P>cNdAf1U>cNeAa1W>gNaA^1Y>jNaAX1]>nN]AU1`>SOYAo0c>[OUAh0g>APAb0m>IX@j0f?Bc_Ok0Z`0g4L5L3N2M3M2M4M3N1NWOV@QGf?R9_@jFW?_9l@`F^>U:dAiEP>a:TB]Ei=e:n02N2N2N3N2N1000O2O0OTDnD_8P;aGTE]8k:cGYEY8e:iG^EV8]:mGhEo7V:QHnEn7o9RHUFl7j9YG_E^M:Oa0X;f9PGaGo8]8jElHV:R7`EZI^:f6`E^I^:b6`EcId9oKSF3GY:b0hIT:oKYEX:b0mIV:hKXEY:b0SJY:m5fEVJY:j5eEZJT9_K\\F0a0MBY:;^JR9RLaF]O0W:4`JX9ZLeF[>X9hAhFX>S9kAmFcNO_?Q9PBPGbNO^?o8QBXGP>g8QBXGP>h8QBWGo=g8UBUGm=j8m1O1N2O011N1O102M1O1O1O1O10001N10O1000O10001O0000hNdG\\@\\8_?VHT@j7g?^HV@b7f?cHY@]7b?iH]@W7_?oH^@R7[?WIb@j6n>hIo@Y6d>WJTAn5d>S3I7nKaDlHg;o6cDdHd;X7dDaH`;Y7lD[HY;V7\\EaHg:j6VFjHn9m6cFhH`9c5]HnIj7P6\\6O1YI\\\\O`6lc0O1O1O0O2gNV\\OjKjc0P4]\\OoKdc0P4\\\\OoKec0Q4[\\OoKfc0P4Z\\OPLfc0Y4Q\\OfKPd0P4Z\\OPLgc0m3[\\OSLec0Y3n[OXL?>cc0Y3P\\OXLjc0^2_\\OXME;nc0j1k\\OnMPO@Hh0cd0Y1o\\O`NmN6Yd0T1j\\OgNmN5_d0\\OT[Oj0n1E_N5Se0Ka\\OO\\N6og0IRXO6lg0LTXO3lg0NSXO3lg0NTXO2lg0NUXO1kg0OUXO0lg00SXO1ng0NRXO3mg0LSXO5mg0KSXO5ng0ISXO7lg0IUXO6lg0HVXO8ig0HXXO8hg0HXXO8ig0HVXO8jg0GWXO9ig0GWXO9ig0FYXO9gg0FZXO:fg0D\\XO;eg0E[XO;dg0HZXO8fg0HZXO8fg0G[XO8fg0GZXO:fg0FZXO:fg0C]XO>bg0A_XO?bg0_O^XOb0bg0^O^XOb0bg0^O]XOb0cg0@\\XO`0dg0AZXO`0fg0_O[XOa0eg0_OYXOc0hg0\\OXXOd0hg0[OZXOd0fg0\\O[XOc0hg0YOXXOh0hh0O10O1O1O1O1O1O100000O100000000O02O0XO^OaWOd0^h0TOlWOi0oh0O000000000O10O2O00O2O00O1001M2O02O0102L5J8Ienh4"}, {"size": [848, 480], "counts": "ckW69Vj01O100000000O10000O1000000O2M4K4N101N100N101OO3E:N11000L4N10bN2\\XON`g07`XOG_g0;cXOCZg0`0iXO\\One0?`YO8gg0NSXO5ig02oWO3og0X1O001O1N3N1N101K5G9fYOiMXd0Z2e[OkMWd0W2f[OlMYd0V2e[OkMZd0Y2b[OhM^d0[2^[OfMad0^2[[ObMfd0a2T[OaMmd0P41N2M3L4K5N2O2N1VOk0I7K5M3M3WOiXOVN\\g0c1kXOWN^g0a1gXOXNbg0a1l0J4L3N1N4L5K6J:Ec_S4"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "Xf\\3k0^i0c0@:G5I8I6L4K4K6L3M2O1O1N2N2O1N2O1N2O1N2O1O1O1O0001E:O2O10O010000OM4O0101O001O0O20O01N2O001O1O1O1O1N2O2N2M2N3L7dNoWOBM^Och0b0oj`7"}], [{"size": [848, 480], "counts": "Vck28Vj04M2N2N2M3N1O2N1N2O1N3M2N2O2O00010O01O0010O000010O0001O01O01O010O1O01O01O0011O1N2N2O0O1O2O1N2O1N2N2N102M2N1N2O001O001O1N1OWan7"}, {"size": [848, 480], "counts": "VXn05Yj05L2N3M2N2N2N1O2O1N2N1O2O1N2N2O1M2O2M3L5L3M3jI[N\\Cj1[W4gC[LbMZOd>_4gCXLkMTO[>g4iCULPNQOT>n4iCSLTNnNP>T5hCoK\\NkNh=Z5iClKcNgN`=b5lCgKfNfNZ=h5mCbKjNfNV=m5mC^KmNfNR=P6oCZKQOdNna5nA`JP>d5mA\\JR>g5lAYJR>l5jAUJT>P6hAQJW>R6fAPJW>U6dAmI[>X6aAhI]>^6^AcI`>b6[A`Id>e6XA[Ig>k6SAVIk>X9hCkDR9X;nFkDn8W;QGlDm8T;SGnDk8R;UGoDj8Q;UGREi8n:WGSEh8m:XGUEg8j:XGXEh8f:XG]Eg8b:WGaEh8_:VGdEi8\\:TGiEk8V:nFRFQ9m9bFbF^9]9_FgF`9Y9[FnFc9R9SFYGl9g8oE_GQ:`8mEdGR:[8lEhGS:X8kEkGU:U8iEnGV:Q8hERHX:m7fEVHY:j7fEXHZ:f7eE^HZ:a7dEbH\\:]7cEeH]:Y7cEjH\\:U7bEnH^:Q7`ESI_:l6`EVI`:i6]E\\Ic:a6\\EcIc:]6[EeIe:[6VEjIj:o:O001QOQA[Fg=OdBa9L[Fa=8bBX9a>jF^AS9d>PG[Ao8d>TGZAl8e>VGZAj8f>XGYAg8f>]GWAc8j>^GTAb8l>_GSAa8m>`GRA`8n>aGQA_8n>dGPA\\8P?eGo@[8Q?fGn@Z8Q?hGn@X8Q?jGn@V8Q?lGn@T8P?QHl@P8S?g1N2M3N2N2M3N2oHiDfNZ;d0SFcNo9V1cF]N_9Z1lFbNV9\\1mFaNU9]1oF_NS9_1RG\\NP9b1WGVNl8e1]GUNe8JXDYLFE9OZ3S4b8MYD[LAD]4n3l71YD[L_OE_4j3l76VDYL\\4Z3a7=SDXLa4T3_7e0oCXLe4l2_7l0mCXLf4e2a7S1iCZLi4[2a7[1fC[Lm4Q2a7e1bCYLP5l1a7k1_CYLT5e1`7R2\\CZLV5]1b7i0iBeN?UOY5S1e7U1bBbN`0XO\\5h0f7`1^B^Na0[O]5>i7i1ZB]N`0\\Oa53l7T2TB\\N`0\\Ok5@j7h2nAYN=_OYd0X2Z[OZN=^OXd0X2\\[OZN<]OXd0Y2][OYN;^OXd0X2_[OZN9]OXd0X2a[O[N7\\OXd0X2c[O[N6\\OWd0W2f[O]N2]OWd0U2i[O]N1]OVd0U2k[O]N0]OUd0S2o[O_NL_OTd0P2R\\ObNJ^OSd0o1U\\ObNI_OQd0l1Z\\OeNE^OQd0j1^\\OgNA@Pd0f1c\\OiN^O@oc0`1j\\OQOWO_Onc0^1n\\OROUO_Omc0]1Q]OTORO^Omc0Z1V]OWOmN@lc0V1[]OYOjNAjc0Q1b]O^OcNBjc0i0k]OD\\NBic0`0V^OMQNDhc07_^O5jMDfc06b^O5hMFec03f^O7eMEec01i^O;bMDdc0MP_O>[MFag0:_XOFag09_XOHag08^XOIag08_XOGbg09^XOGag0:^XOFcg0:]XOFbg0:_XOFag0:_XOG`g09_XOH`g08aXOI^g07aXOJ_g06aXOJ_g06`XOK_g06aXOJ_g06aXOJ_g06`XOJ`g08_XOGag0;^XOEag0=^XOBcg0?[XOAeg0a0YXO@gg0a0XXO^Ohg0d0VXO\\Okg0f0SXOZOmg0g0QXOYOQh0g0mWOYOTh0i0gWOZOYh0_1O1O101O001N0100O10O1O110O0O10O100O1OgWOkMZh0R2fWOnM\\h0Q22N3M3M3K5L5J5C=H;CaUm4"}, {"size": [848, 480], "counts": "T]P67Wj03O0O10000O2O010O0O2N1O100N2O1L4M2N1O2M4M1M4I5J5000201O1N1O0N23N2L4N3J5L5L4M3L5KbWOKhf01WYO4if0IXYO8if0EXYOG5I6K6J5L3M4K5M2M3N2M3N2N2M3N1O2N2N101N2NgMnXOV1Qg0hNXYOS1ff0mN^YOP1bf0oN`YOP1_f0QObYOn0]f0SOcYOm0]f0ROeYOm0[f0SOeYOm0Zf0SOgYOm0Xf0TOiYOk0Wf0VOhYOj0Xf0VOiYOi0Vf0XOjYOh0Vf0XOjYOh0Uf0ZOlYOd0Tf0\\OmYOc0Sf0]OnYOa0Sf0_OnYO?Sf0BlYO>Tf0BlYO=Uf0ClYO;Uf0EkYO;Uf0FkYO8Vf0IiYO6Yf0IhYO5Yf0KgYO4Zf0MfYO0]f0OcYO0^f00cYOM`f03_YOLbf05]YOIff07ZYOGgf09YYOFif09XYODkf0SYO@Pg0?PYO_ORg0a0oXO[OUg0d0nXOVOZOOXg0k0QZOROSf0m0i1O100O102M3M2M5K5JPc]7"}], [{"size": [848, 480], "counts": "VQX32Zj07K3M3M3L3N3M2N3M3N1O100001O00010O0000001O0001O000000001O01O01O0000001O000100O1O10O01O1O010O1O001O1O100O001O1O2N1O1O1O1O001N2O1N3N2LTo]7"}, {"size": [848, 480], "counts": "Sc^19Sj07I;E;ET6jBhJTOPOQ>Z6iBfJYOoNl=^6hBbJ@nNf=c6hB_JFkNa=i6fB\\JMiN[=n6fBYJ0hNZ=P7dBXJ4hNV=T7bBTJ:gNS=W7aBSJ=eNQ=[7_BPJb0dNn<_7]BmIg0cNkj1SAVNl>k1TAUNk>k1VAVNi>i1YAVNf>k1ZAUNe>k1\\AUNd>j1^AUNb>j1^AVNa>k1aATN]>m1dASN[>m1gASNX>l1iAUNV>j1lAWNR>g1QBYNn=e1VBZNi=d1YB]Nf=`1]B_Nd=_1^BaNb=]1_BcNb=[1_BfNa=X1`BiNb=S1aBlN_=R1cBnN]=Q1dBoN\\=P1eBoN\\=P1eBPO\\=m0eBTO\\=j0eBVO]=`0kBBV=9kBJU=2mB1oC=N2N2N01M2K6O2000012Mb0^Oo0RO1O1N3N1O001O000001N1O1N3gNeZOWM_e0h2V1N2O2TOVYOmMnf0k1R1J5VN`WO]1nh0K3M5L3L6J9F7I`[g4"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "gZT3a0ki07I6J6K5L4L2O2M3M3M2N3N2M2N3M2O1O2M2O1O1O1O1O1O1O2N10O01O1O1O1O100O1O00100O010O0100O01O1O01O1O1O1O1O001O2M2O2N1O1O2N3M2M3N2N2N2M4M1O2M3L4N3J4N3K4M4J6K5I7M4KQiW7"}], [{"size": [848, 480], "counts": "ZiY35Rj0k7UAQIX>V7ZAXI_>c9Io0QO5aBcCbe6Z4XGkKV5Ia3Y4]GPLT5C^3l3QHaLa4B\\3n3UH`L^4B\\3n3XH_L\\4C\\3n3ZH]LY4F\\3n3\\H[LX4F]3o3]HYLV4H\\3P4cHRLT4J[3T4lHeKm3O]3\\4U;101O0O11O000000000000O100O1O_NgZOmMYe0n1nZOPNRe0o1P[OPNPe0P2P[OPNPe0o1R[OPNnd0P2R[OYMSOc0ke0S2R[OZMTOb0je0S2S[O[MSOb0je0R2T[O[MSOc0ie0R2T[O[MTOb0he0R2U[O[MTOc0ge0R2V[OZMSOd0ge0Q2][OoMdd0P2\\[OPNed0n1\\[OSNcd0m1][OTNbd0k1`[OTN`d0k1a[OVN_d0h1b[OXN^d0g1c[OZN\\d0d1f[O\\NZd0c1g[O]NYd0a1i[O_NXd0_1i[ObNVd0\\1m[OcNTd0[1n[OdNRd0Z1P\\OgNPd0W1Q\\OiNPd0U1Q\\OkNoc0T1R\\OlNoc0R1R\\OnNnc0Q1S\\OoNnc0o0S\\OQOnc0k0U\\OVOkc0g0W\\OYOjc0c0Y\\O^Ogc0?[\\OAfc0ZOPZOj0^2Nic0H^\\O9dc0]Od\\Oc0df010O1O010O100O2O0O2N1O1O0O20O00000000000000001O2N2O1N1O001O002N2N1000O100O100003M1OO1O10O20O001N010O1O2N2N1N3MY^a4"}, {"size": [848, 480], "counts": "Q\\P6=ki09L4I6K5I7L4M3L4K5N2M3L4K3NMoWOlMog0S2O7H73NJfM\\XO[2cg081ON4N5Je0kXO\\LYf0S4I4N2M4M001O00000000000000O2oNkZOeLXe0W3U1POPYOVNVg0c1P1L4K9H5L1N3N5J3L6K7I9Gn^P5"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "ia]3?ki0:H5L4L4M4L3M2N3M3N1N3M3N1N3N1N3N1O1N2O2N1O1O1O1O1O1O1O1000O0100O2N010O10O10O010000O00100O001O0N3M3N2N3N1O2N1O101N3N001O001OO14L1O002N001N101O2N2N1N3L6\\OWWP7"}], [{"size": [848, 480], "counts": "Wno28Vj04L3M3M3L3N3M2N2O2O000001O100O001O010O1O1O000000001O000000000001O000000000000000O100000000O10000001O000000001N101O001O0O2O0O2N2O1N2M3N3L[]d7"}, {"size": [848, 480], "counts": "ll_2;f15Wf0NcYO8Zf0L`YO9^f0J[YO;cf0IWYOQ4jD^JnLb1W>R4fDaJQM^1W>T4QD\\JcM72[1Y>U4mCUKiMg0Y>V4kCVKiMf0[>W4iCUKhMg0^>W4fCXMZf701N3M2N1O100O1O10000O010O10000O2QNcCiE]h101UNZDkDg;P;hDcD[;Z;nD^DT;^;RE_Do:];XE^Dj:^;`EWDe:f;T2K5cN^1[Nm_O\\Hb`0]7\\1M4L4L4J6PK\\]Om1ib0QNd]OU1lb0iN^]Ob0nb0]OV]O:Qc0ER]O6Pc0JS]O2ob0MU]ONlb01[]OIfb07a]OPNnN;bc0d1f^O\\N[a0c1f^O\\N[a0c1e^O\\N\\a0d1d^O\\N]a0c1c^O]N]a0c1c^O]N^a0a1c^O_N]a0a1c^O^N_a0a1b^O^N^a0a1b^O_N`a0^1b^OaN`a0Z1d^OeN^a0Y1c^OgN_a0V1c^OiN^a0U1c^OkN_a0n0e^OSO`a0=k^OCZa03k^OL`a0Cg^O=fe000000000O10O10000000O10000000O10000000O1000O010000000O01000O1000000O10O10O10O010O010O010O0100O100O001O2OO010000O100000O2O0000001O00O1001N10O101O0001N10001O1O001O00010N3M3L6JTh_4"}, {"size": [848, 480], "counts": "e]S56Xj04N100O2M3L3O1N010O0O1OO20N2N3M3M3H7L4L4K3N5J7I5L2N1iNXNhYOg1[f0dNYYO[1jf0T11N2J6N200OO1M4lYOUMdd0k2^[OWM_d0i2b[OYM[d0h2f[OXMYd0h2g[OZMVd0g2k[OZMSd0i2i[OYMVd0a401N01O1000000O1O2N1O2N1M3VOWZOjLme0i2T1L4F:]Oc0M4M4L6J5J5ZN[WOY1Si0K6I6K7H9Faa^5"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "Q\\h3f0ei0=D7J7I5L4L5K4L4M2N2M4N3L4L2N4L2N3M2O1N1O1O010O10N1N3J6N20O01000000O2O1O00001O1O1N3N4L2N3M3L4M2N2M5I6J8F;Eo\\X7"}], [{"size": [848, 480], "counts": "_QX32Xj09K3M4L3N1N3L3N3M2N2O2O0001O10O00000010O000001O01O00001O00010O001O01O02O1N2N1O100O1O1O1O2N1O1O1O1O1N2O1O1O1N2O2N1N4Jhbd7"}, {"size": [848, 480], "counts": "V]a21Qj0?E;Db0@?_O`0@`0C=D<[Oc0[Oc0B?J6J6G9QAVJQ9n5jFYJo8n5kFVJQ9o5kFTJQ9Q6YFcJd9c5VFaJg9e5SF^Jj9h5PFZJo9k5iEYJV:Q6mDdJQ;S6`CfJ_W9YAdFi>V9cAaF`>Y9_1M3M2N2N2N2O1O1N20SOmF]@R9c?QG[@o8e?RGZ@m8g?TGX@l8g?UGY@k8f?XGX@g8c?bGZ@\\8`?nG]@S8_?TH]@m7`?ZHZ@h7c?\\H\\@d7b?^H^@b7^?cH`@^7\\?m1K5J6J6J6J6WJRDhLVn[OBVd04P\\OLXd0Gm[O9Ug000O1000O1000000000000000001O0O1000000000O1000O10O10000O10000O010O100O001000O01O010O10O01O00100O100000O10001N0100000O10O100000O1000O0100O1O1O01001O0000O02O000000000000000001O001O1O1N2O1O1O001N1000000O2N101O4Kk]j3"}, {"size": [848, 480], "counts": "PlZ56ni09@c0J210N4L5K5L3M4L3eN]NfYOd1[f0kNSYOX1nf0S11N3O10O01J5L5N3M3O001O0101]YOmMgd0]2kZOjMRe0]2dZOfM\\e0g3000000001J5N200O1000000gNRZOoMoe0h1kZOdMXe0a1eYOjNY1AWe0a1gYOhNmg0U1VXOfNlg0X1g0O2O1N3M4L4L3M6J5K7Gb`c5"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "fld3?mi08E;GXg0BhXO=Yg0BiXOI4H7K5J5GLnWOXNSh0j18002M1gNUNnYOn1oe0\\NhYO^1^f0W13M4K4N3OK3O3O1N30O1NSZOXMWd0g2j[O\\MTd0e2j[O]MTd0e2k[O[MUd0h2h[OXMWd0P3c[OmL^d0a3U[OWLSe0P5B3N000000O2M2L5M3M3cNiZO^MZe0_2jZO\\MZe0a2T[OPMPe0n2S[OmLRe0n2]1G:Aa0^O=J5N4L3M5K6J6I9DSeg5"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "kcj3`0ii0=D;F9H9I4K5L5J5M2L5L4M2N2N2M3N2N2L3O2N]NSYOElf09[YOCef0<^YOC`f0=cYOA\\f0?fYO@Yf0`0jYO^OUf0c0mYO[OSf0e0nYOZOQf0g0oYOYOQf0f0PZOZOPf0f0PZOYOQf0g0PZOXOQf0g0oYOYOQf0g0oYOYOQf0f0PZOYOQf0g0oYOYOPf0h0PZOXOPf0h0oYOYOQf0g0oYOXOSf0g0mYOYOSf0g0mYOYOTf0e0mYOYOWf0e0iYOZOYf0e0fYO[O]f0b0dYO\\Oaf0a0_YO\\Oef0c0[YO[Oif0c0VYO]Omf0`0TYO^OQg0?nXOBTg0Be0\\O:F6J4L3M4M3\\AfIm8]6QGfIl8]6PGgIl8_6XF`IjK:k=[6TFZJk9k5oEXJo9j5oEWJo9l5nEVJQ:l5mEUJR:l5lEVJS:Q6eEQJZ:S6aEoI_:S6QE[Jn:j5dDaJZ;b5\\DfJc;_5SDgJl;]5lChJS<]5cCiJ\\<]5ZChJdbHXOb7g0aHSOc7m0_HjNh7V1YHeNk7[1XH\\Nn7d1VHRNP8IiBZO_5;R8ITCIW5UOWJmNS>R2dBJfd05][OIcd06`[OH`d06d[OH\\d06l[ODTd08R\\OGmc0Ma\\O1dc0mN[]OQ1Sf0O2N1O1O2O4K2N1O1O1O001O001O010O1O00001O00001O001O001O000000001O0010O1O0100O0100O0100O00010O0010O010O010O011N1000O000010O01O001O10O01O0000010O00000100O1O1O010O1O1O0010O010O01O1O1O0010O00010O00010O001O0010O0001O100O1O1O1O1O1O1O0000002M5I\\^`3"}, {"size": [848, 480], "counts": "UaW52Tj0`0F7G:G9G5J6M0O1fNdNcYO]1[f0lN\\YOU1df0[10N3M3N2M3J7N2O1O1N101000`YOhMhd0Z2S[OjMld0`2iZOaMWe0l3001N1N2N2O10000O11O01M2fNZ1K5ZOVXObNng0]1d0M3M3N2N3M2O2N2M4L6J6J8FSZi5"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "mTm3810ei0g0G9G7I6K5L3L4K6L3N2M4L2M4M3M2O2N1N3N1O2O0O001O100O1O100N2O0010O100O011N2OO02N1O3K4L4A`XOeMig0W2;M3M2O2M2O1O2N1O2N2N1O2N2N2O2N0O1O2N1O3M3N2M2O0O2N3N2M5K2N2O1N2N1O2N2MfR^6"}], [{"size": [848, 480], "counts": "\\Zb4Q5aAUK_>n4ZAVKf>n4SAUKl>X800O1O1O100O1N1O2N1N3O1H8M3O1O1MYOmAWEQ>e:WBYEg=b:aB]E[=^:oBbEmW1dC=dM[Nj>Bj_OZ1Y4kNkKGZ2`0f><`FAe9;^FBe9<[FBg9=ZFAh9?XF_Oj9`0S81000O10000O1O010O101N1O010O010O01O01O01O1O10O002O0O2N10O01OO1010O1O001O010O0010O101N2O1O0O10O010O0001O0010O100000O10000000001N2O1O1O1N1O2OO010O1N2M5K5Jdg_4"}, {"size": [848, 480], "counts": "Vc`58Wj09F7Bo1d]ONa3WNh>Q4UARLh>Q4VAPLi>Q4UAQLi>R4RARLl>P4f@^LX?e3d@^LZ?e3b@^L\\?d3c@]L\\?f3`@\\L^?l3[@TLd?T4U@mKj?W4Q@jKo?X4o_OhKQ`0Z4n_OeKR`0]4k_OeKT`0]4j_OeKT`0]4i_OdKW`0]4g_OeKX`0]4e_OeKZ`0\\4d_OeK]`0\\4__OgK``0Z4]_OiKc`0W4[_OkKe`0U4Y_OmKf`0T4X_OnKh`0S4T_OoKm`0Q4P_OQLPa0P4n^ORLRa0o3k^ORLVa0n3h^OTLWa0m3f^OUL[a0l3b^OUL^a0P4Z^OSLga0Z601_NeGl@\\8R?iGj@X8S?nGi@T8T?PHi@P8W?RHg@o7X?THf@X7@WHi?c0f@U7AXHi?f0d@o6F[He?h0d@l6G[He?m0a@h6LXHc?S1_@d60XHa?X1[@`65WH`?b9b@^F]?b9e@\\F\\?b9f@^FY?b9i@]FV?c9l@[FU?c9o@ZFR?e9l0O10WBcFa:[9]EkF`:U9ZESGe:k8kDgGT;X8kDkGU;S8jDQHT;n7mDSHR;m7mDUHS;i7mDYHS;e7nD\\HR;b7nD`HR;`7kDcHT;_7hDdHX;\\7eDgH[;[7`DhH`;Z7ZDjHf;X7RDmHo;T7lCPITHTD[1_MnNh0`3[O]L]>@bDZ1PMXOj0Z3[OcLoa0a0l]OBo0R3[OhLSb0;e]OJQ1k2\\OoLVb03^]O3S1d2]OUM^b0FU]Oa0T1\\2^O[Mmb08g]OW2@bMhb07j]OQ2BhMdb07l]Oi1GPN]b06o]Ob1KTNXb09P^O\\1NXNTb0li07H7J7J7I6I4M3M2lNiNPYOZ1of0T1M2001M2N201M3M3N2000L4K5O3bYOgM`d0_2S[OnMid0m300O100000O1O1O1O2N2M3M3L6bN_1H:QO^XObNfg0[1^XO_Nfg0_1\\XO\\Njg0a1g0J3N4L3N3L4M3M5I6J8G_Tj5"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "mbV4=Pj07J4N2I6L5L4M3K4M4L2N2N3M3N2M3L3N2O0O2O1O1O1O1N20000O1O1O100O1O100O01000O1001O0O2O0O2O1N3N1N2O1O3M6IVH^Ag7d>\\HZAa7i>`HUA]7n>fHPAW7R?lHk@P7Y?SIb@l6b?m13K6J5J7K5J6M3NcCPG]7Q9dGQHY8b8`EoFhNn0g;X8nD\\IR;h6cD_I];j:000000000000000O1000001O000000001O00000O1O2O1O0O2O001O0O2N1O3M3bGeCc2][2fAhMW>^2dAdMZ>d2^A^M`>m2WASMf>U3SAlLi>_3o@dLc>R4o@SLi>n7K5N2M3N2N2O1OZO^AaE_>]:gAaEX>^:kAaES>^:QBaEm=_:UBaEj=]:ZBbEe=]:]BcEb=[:aBeE^=X:gBhEW=T:oBkEQ=Q:SCoEmRFgAl9`>iEfAU:\\?O000O2O000000000O10O1000000O10000O10000000000O10000O10000UOaEeA_:Y>eEeA\\:V5\\FdK>g3mN]KY:T5gFZKl0b3VNnKY:o4mJXNkJiLX:k4_KdL`JcNLMV:j4kKjKgJZOYO2U:i4^NmJ`G:R:h4[OVKh0g4ZOXKg0g4[OVKg0h4\\OUKf0j4]OQKf0n4_:UMfZO>[e0^OkZO?Ue0_OP[O>Qe0^OT[O`0nd0\\OX[Oa0jd0VO^[Og0gd0POb[Ol0ad0mNf[OP1ad0dNf[OZ1jf0N4L4L5K3M5J2O1O1O1N101N100O1O100O2O00000O100O1000O02N1N20000O10000000000000000000000000000O1000000000000000000000000000000000O10000000O1000O10000O100O01000O1000000O100000O10O100O100O1O101N2O0O10000O1000O100000001O000000001O001O001O001O1O1N2N6FVcl2"}, {"size": [848, 480], "counts": "Raj5o0`11]e0:UZO2`e0>RZOGie0b2O0000L4O2O0O2M3O10000SOm0@a0M1O2^OiWOiNYh0W1gWOhN[h0W1eWOfN^h0Z1bWOdNah0Z1W8K5I7L4K5M3MTOaBmD]=S;hBkDV=T;nBjDP=V;TChDk_7TOPEd0_3:a7QOmDh0a39a7nNkDo0a34d7nNfDb1aM^Nn4U1k8lNaDf2U2aNY9jN]DS3m1WNe9gNYDW3n1UNj9dNTD[3n1UNm9aNRD\\3n1VNP:_NnC_3n1VNT:ZNiCe3Q2SNV:YNdCi3R2RNZ:UN`Co3P2oM`:VNYCR4P2lMf:TNTCX4P2fMl:SNZBUO>[5U2`MS;QNWBXO;_5T2[MZ;[4]DiKc;jMVBe5n1dLl;gMVBi5f1dLU<`MWBP6\\1eL\\UG\\On8e0UGUOm8R1oFhNT9\\1lF\\NW9f1kFSNY9n1iFkM[9U2gFfM\\9[2eF`M^9a2cFZM_9k2_FPMd9T3ZFgLi9\\3VF^Ln9d3SFTLR:m3PFlKT:T4nEfKV:[4mE\\KW:\\2QAkNk4_N[:c2m@mNgd0Q1\\[OnNdd0m0c[OQO]d0h0k[OXOSd0a0V\\O^Okc0a0V\\O^Ojc0b0W\\O]Oic0b0Y\\O]Ogc0c0Z\\O\\Ogc0b0\\\\O\\Oec0b0]\\O]Odc0a0^\\O^Occ0`0_\\O^Obc0a0`\\O]Obc0`0a\\O_O`c0?b\\O^Obc0>b\\O_O`c0=e\\O^O`c0:i\\O@[c04T]O@Uc0mXO_OUg0b0kXO[OVg0g0kXOTOXg0m0V10O2O0O2O0O11N1002OOOO2N2L4M3K6B?IZib5"}], [{"size": [848, 480], "counts": "TRR56Xj05K3N2M3N2M2O1O2M2N2N3N1O2O01O01O010O00010O010O00010O001O01000O001001N3N1N2N1O101O1N2N3N2M1O2O1N2N1O1O001N100O2O2KW\\k5"}, {"size": [848, 480], "counts": "_`k03]j01O0O2O1N1O0010O10O2O00001O00001O001O0000001O000000010O00000001O000001O00O10001N101O01O000000000000O2N10000N2O15L0O00000001O1O01O1N2O001N10000000O11O001O001O1N110O010O00000001OO1O2O00O10O2O0VYOCac0=[\\OHec08X\\OKgc05W\\ONhc03T\\O0lc00R\\O2oc0MP\\O5Qd0Im[O:Sd0Ek[O=Vd0Bh[O`0Yd0_Oe[Od0[d0ZOe[Og0\\d0XOd[Oi0\\d0UOd[Ol0\\d0UOa[OQ1Zd0POd[Ob1]4WNh88iBi2Q3YMT:MiBo2j2\\M[:EjBR3e2^M`:AiBS3b2`Me:]OgBV3`2`Mj:XOfB[3Z2aMR;QOdB_3X2cMT;lNdBc3T2dMW;lN`Be3V2`MY;mN_Be3U2`M\\;kN]Bh3U2^M_;iN[Bk3S2^Mc;fNYBn3Q2^Mf;dNVBR4Q2\\Mi;cNQBV4R2ZMj;dNPBX4o1XMPm3jATLV>o3fARLZ>P4cAQL^>Q4]ARLb>Q4YAXKMhMj>Q:^AjEb>S:cAkE^>R:eAmE]>o9eAQF\\>l9gASFW>l9mASFR>k9RBTFm=i9XBVFg=g9^BYFa=d9cB[F[=d9hB\\FW=b9lB^FS=a9PC^FoMPAb0[ME^>ITDg0ZMCa>FSDk0ZM_Oc>FRDm0YM^Oe>FoCo0ZM\\Og>DnCR1iLLY?ROlCT1gLN]?nNdC\\1lLIa?iNaC`1mLIb?gN_Cb1mLIca0oNT_O[1YOEaa0UOQ_OY1]OCf?eN^@e0;U1@Ce?fN\\@f0;T1CBe?dN\\@g02\\1MZOe?cNZ@i0Ka17TOd?bNX@l0@i1d0iNe?bNV@m0ZOm1l0eNd?aNU@n0SOR2U1`Nd?^NT@T1iNT2_1[Nd?]NR@c4:PMe?]NP@b4Z:VBfEk=X:VBhEk=U:WBkEi=S:ZBkEh=Q:\\BmEf=P:]BnEd=o9`BPFa=l9bBSF_=c3WB^1=mJ\\=_3oBn0M^KV=`3ZCf0^>ROQBe0R>SOZBe0i=VO`Bc0d=XOdBa0_=[OhB?[=_OjB;Y=ClB7Q=LUCMV<_Mi_OV3V4TOTU1mCcNSlVOASi0a0mVO@oh0d0oVO@kh0T1O0L3110BYWOTOeh0m0[WOTOdh0l0]WOROdh0n0\\WOQOeh0o0ZWOSOfh0[1010N2ON1O1001N2F;M3N2O1N2NO101O02N1O2O00001N100O2VO_VOc0ai0[ObVOc0_i0]OaVOd0^i0\\OaVOe0_i07YXO@\\e0a0_ZOI[e08aZOO[e01bZO4]e0M^ZO9_e03oYO4Pf07ZYO5ef0l10O0O2O000O3L4J6F:L4K3L4K5M3N2O100O1O100O1N2M3N2O1O1O1N22O0O0000O1001O00010O00000O2O0000000000001O1N1000000O2O0000000O1O1O1M3M3M3N2M3N2M4F9K5N2N2O1O1N2N2N2O1O1O10000O10000O10O11O0O1O1N2N2L4M3N2M2N3N2N2O1N2N2O1O1N2O0O2O1N2O1N2N101N2N2N1O200O10O010O01O0100O010O100O10000O11O1O3L4M4L4K3N2N1N2O2N1O1O1O1O1O001O000O101O0O100O10000001O00000O101O00000002a\\OPJZb0U7N000001O0O1O2N2N1O2N1O1N2`Mf\\OhM]c0V2g\\OdM\\c0\\2e\\OaM]c0_2d\\O^M_c0a2b\\O]M`c0c2`\\O[Mac0e2_\\OZMcc0f2]\\OWMfc0h2Z\\OVMhc0k2U\\OdL_d0\\3_[O_Lid0`3U[O_Lnd0^45L3M4M2N3L5L5J9H6JgMZOb`0jMfAT2Y>PNiAk1U>YNPB`1o=dNSBW1k=nNSBP1l=TOSBk0l=XORBh0l=[OQBg0m=]OoAe0o=^OmAe0R>^OhAe0X>]OdAf0[>\\O^Aj0a>YOYAj0f>YOSAl0m>XOj@n0U?WOd@k0[?U5]@`EW?`:i@dES?[:n@gEP?Y:QAgEn>Y:RAhEl>Y:UAgEj>Y:QAmEn>S:o@QFP?P9VAlFN6j>m8QBUGn=l8PBVGo=k8PBVGo=k8PBVGo=k8PBVGo=k8PBUGP>m8mAUGR>m8lASGT>o8jARGU>o8jARGU>P9iAPGX>P9gAQGX>P9hAoFX>R9gAnFY>S9gAmFX>T9gAlFY>U9fAkFZ>W9eAiFZ>X9eAhFZ>Z9eAgFZ>[9eAdF[>]9dAbF]>_9cA`F]>b9aA]Fa>c9_A[Fb>f9^AXFc>i9\\AWFe>i2ZAX30nIf>g2aAY3GoIi>f2dAZ3CoIj>c2iA\\3]OPJj>`2oA_3WOPJk>^2RBb3oNRJo>[2UBX4k=hKXBU4h=kKZBS4g=lK[BR4e=oK\\Bo3e=PL^Bm3b=RLaBl3_=TLcBj3^=ULdBi3\\=VLfBi3[=ULhBi3X=WLiBi3V=XLkBf3X=VLjBi3[=RLgBl3_=fIe@k1o1_4\\=eIg@i1o1a4[=fIh@e1o1e4g=XK]Bf4d=XK^Bg4c=VK`Bj4`=TKbBk4_=RKeBl4e=iJ]BV5h=eJYB[5i=bJYB\\5h=bJZB]5i=`JXB`5i=]JZBa5g=]J[Bb5h=ZJ[Be5k=RJXBm5Wa0N2N2O2M3PNV[OUNmd0b1c[OUN`d0]1R\\O[NSd0X1Y\\OdNlc0R1[\\OlNhc0P1Z\\OoNkc0k0X\\OSOlc0i0U\\OVOQd0c0R\\O[OUd0=m[OCYd01m[ON\\d0WO_YO8Y2`0Yg0N1O1O2N1O2N1N3N3K8HkgP4"}, {"size": [848, 480], "counts": "afh45Zj02O00000000001O0O1001O0000O1M3M4M3L3N3M10O11M2J51M5M3N5K3@cok6"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "nj]61[j05L4L4N1M4N1O1N3M2O2M102L3O1O1N2N2O1N2N3M2O0O2O0O2O01OO101O0001O0O2O001O001O001N2O1N1O3M2N2M3O2M3N2N2N3M7_OQVO4^ic4"}], [{"size": [848, 480], "counts": "bY`9:Uj02O00000O101N1N2N2O1O1N2O1N20O01O1M30000O10O100000000O10O101O0000O1000000000000O100O100O1O1O101N2N:B]ob1"}, {"size": [848, 480], "counts": "kn_2235li0`0G6L3M3M3N2M2O2M2O1O1O1M3M2O2N2N1O2O0O2N100O101N100O100O100O10O11N100O01000O10O100O100O10000O1O10O01O1O1O1O1N110O11O2N1O1N2N2O1N1O1O2O0O100O1O2O000O2O0O101N10001O0O100O2N100O2O0O101N100O2O0O2N1O2N1O2N1O101O0O2N100O100O100O100O100O001O1O010O000100O001O0O2N100100O010O1O100O100000000O100O001O100O1O010O1O1O00001O0O1O1I7^Ob0G9K6N2N2K5L4M3M3N2J6J6J6M3N2M3N2M3O1N2O1O1O1O10000O100000O100O011N100iNa\\O\\K`c0`4e\\O^K\\c0`4f\\O_K[c0_4g\\O`K[c0^4e\\ObK\\c0\\4e\\OdK]c0Z4c\\OfK_c0X4b\\OgK_c0W4b\\OiK_c0V4a\\OjK`c0U4`\\OlK`c0S4a\\OkKac0U4^\\OkKdc0S4[\\OnKfc0P4[\\OPLfc0o3Z\\OQLgc0n3X\\OSLic0l3W\\OTLjc0j3W\\OVLjc0i3V\\OWLkc0i3T\\OVLnc0h3R\\OYLoc0f3Q\\OYLQd0f3o[OZLRd0d3o[O\\LRd0b3n[O_LSd0`3m[O_LUd0`3j[OaLWd0^3h[OcLYd0\\3f[OdL[d0\\3e[OdL\\d0[3d[OdL^d0Z3b[OgL_d0X3a[OgLad0W3_[OjLbd0U3^[OkLcd0S3^[OmLcd0R3][OnLed0m2^[OSMcd0a2h[O_MYd0[2k[OfMVd0f1lZOaMX1i0mc0]1d\\OcN]c0P1P]OoNRc0o0n\\OQOSc0n0n\\OQOTc0n0k\\OROVc0m0k\\OROWc0m0h\\OTOYc0l0f\\OSO[c0m0d\\OTO]c0l0b\\OSO_c0n0_\\OSOac0P1\\\\OoNfc0R1W\\OoNic0R1V\\OmNlc0T1R\\OlNnc0V1o[OjNSd0X1j[OhNWd0Z1e[OgN[d0\\1b[OcN`d0_1][OaNdd0`1Y[O`Nid0`1V[O`Nkd0`1S[O`Nnd0a1Q[O^NQe0b1mZO_NTe0a1kZO^NVe0c1iZO]NXe0c1fZO]N\\e0d1aZO]Nbe0a1]ZO^Nfe0b1XZO^Nie0e1cYOaM;i0Tf0Q2eYOnM^f0R2`YOnMaf0R2_YOlMdf0R2^YOjMef0U2\\YOiMff0V2ZYOiMhf0V2YYOhMjf0V2ZYOdMkf0Y2h0N2N2N2M3N2N3L3N2L5I8UOm0@[`]2"}, {"size": [848, 480], "counts": "Pai43Zj030001O01O00O1O2N1O1O1O1O1O1M4M3K3O2N2N1O1L4J4M201O2M3L4N2N2O1mN]NYYOc1ef0hNoXOZ1Sg0POcXOo0_g0o020O1N1K310002O1M31N2N4MX1hNa0_O2N10000001M3M2O2K4I8UOjYOWMZf0c2m0M4ROdXO`Nag0]1dXO^Nag0^1cXO^Nkg0T1\\XOdNig0X1h001N2O3L3M5K5J9G:ERTe5"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "Zfd4=Qj05L5K5K4M2M2O0O101O0O101N101O001O1O001O0O1000001O0000000000000000000000O10010OUWOcNch0]18000000010O00000001N11O01O001O001O1O0O2O2N2N1O0O10000O101O000O1O100O2N2M3N3M6IZaf5"}], [{"size": [848, 480], "counts": "XgU9>ki09K5K3000O00100O1001OO1O11O0000000000O100000000000O1002N10OO1001O01N1010O10N2O010N2N110O1O1O1N10000N200O2N2MZWj1"}, {"size": [848, 480], "counts": "]iX3`0li07K4L4L3N2M3M3N2N2N2N2N2N2N2N101N2N1O2O0O2mWOeNnf0\\1nXOnNlf0S1oXOWOkf0Z2L4M4L2N2N3M2N2N2Na0_O9G5L1N2N3M2O1N2O1N2O0O2O1N2O1N10nMo[OeMPd0X2U\\OfMjc0X2`\\O`Mac0^2e\\O^M[c0_2k\\O]MUc0a2P]O]MPc0`2S]O_Mnb0_2S]ObMmb0^2R]ObMob0]2Q]OcMPc0]2o\\OdMPc0]2P]ObMQc0]2o\\OcMQc0^2n\\ObMSc0]2l\\OdMUc0\\2j\\OcMXc0^2g\\O`M[c0`2d\\O_M_c0`2`\\O^Mdc0a2\\\\O^Mfc0a2Y\\O^Mjc0a2V\\O^Mlc0a2S\\O_MPd0_2P\\O_MSd0a2l[O^MVd0a2j[O]MWd0d2j[OYMXd0g2h[OWMYd0j2g[OTMZd0m2i[OmLYd0T3_13N2M3O1N2O1O001O1O001O001O10O01O10O01000O010O100O1O1O1O1O1O001N2O1N3N1N2N2O2M2N2N3M2M3N2N1O2O01O010O001O1O00100O1O100O011N101N2hXOYMdf0k2QYO\\Mnf0T3O010O000000000O100O10O010O010O01O100O10mN`YOVN_f0i1fYOTNZf0j1hYOVNWf0k1jYOTNVf0k1lYOTNTf0l1lYOTNTf0k1nYOTNRf0l1nYOTNQf0m1PZORNPf0n1QZOQNPf0m1RZORNne0n1SZORNle0n1UZOQNke0n1WZOQNie0o1XZOPNhe0o1ZZOPNge0o1ZZOPNfe0P2[ZOoMee0P2`ZOhMde0X2Z1O100O1O1O010O000O2O0O1O1O2O0O2O0O101O000O101O000O2N1000001O000O1O10000000010O00001O00UXOjN^f0U1`YOPOF0ae0o0gZOYOXO;ie0>hZOi0Te0]2MG9K5O10000000001O000O100000001N10001O1O00001O001O1J7E\\YOcLhf0j2WYOcMPg0W2VYOhMkf0T2XYOlMHCmf0]2_YOTNaf0j1aYOVN_f0f1fYOWN]f0c1iYOTN`f0e1fYOYN^f05RYO=h0[O`cV2"}, {"size": [848, 480], "counts": "\\[j43\\j01O11O0010M3N1O2N100O1O1O1N3M2O1O1O1O0O2I6E9M3O2O1L3M4N101N2kNeNUYOZ1kf0VOcXOl0_g0Q11O2O1OO0L301010001O2N2O4Mk0lXOfL[e0[4M000001N100N3M3N3M2M3L5aN]ZOkMfe0R2nZOVMZe0g2Y1XO]XO`Neg0]1`XO`Nag0_1k0L8I2M3N3L4L5J6K:Djne5"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "kTQ56Uj0KnUO3Rj0:K7I4K5K4M4M101L4M3N2N1O101OO10O2O001O1N2O1O2N3M2N2N2N1O2M2N10000001O00001O1O1O1O1O1O101N2N2O0O3L4M4J]WO`N]h0]1=M4L4L4L5K5J5M6K1O4J5Lc_f5"}], [{"size": [848, 480], "counts": "VQf81^j03N105J1O1O2OO0100O1O0O2O1N3M2N2M101O2N2N1O1N2O0O101O1O1O001O1O0000O100O010O1O2N1O2N2O2M2N2N2N2O1N3N2N3L3N3LRnY2"}, {"size": [848, 480], "counts": "aaa47Qj0`0E6K5K4L4M2M2N3M2O1N3N1M3L3M4N2N1N3N1O101N10QOWXOXOhg0h0\\XOUOcg0k0aXORO_g0m0dXOROZg0P1dXOQO[g0Q1dXOoN[g0U1cXOjN\\g0Z1aXOfN_g0_1\\XOaNcg0V20001N3O1N4M3M3M2N2N2lNnLeZOT3Ue0VMfZOl2Ve0XMhZOj2Te0[MiZOg2Se0]MjZOf2Se0^MjZOc2Se0bMhZOb2Ue0^1N2N1O2N2N101N1O2O0O2O0O2O0O2O001N2O00001N10001O00000001O00001O001N110O010N2O1N3N2M4M2M5`KjZO^3Ze0YLlZOe3Ze0PLmZOn3ke000O100O2O0001O2M3L4L4L4L4L4L3N3M3N2M2N101N2OjNV[OgLhd0Y3\\[OeLcd0Y3`[OfL`d0Z3b[OeL]d0Z3f[OdLZd0[3i[OdLVd0Z3m[OeLSd0Y3P\\OgLoc0X3R\\OhLnc0W3T\\OiLkc0U3W\\OlLhc0Q3[\\OoLfc0n2]\\OQMcc0k2a\\OUM`c0Q1W[OQO9[O]1c0Sc0m0]^OSOda0k0]^OUOca0k0]^OUOda0k0\\^OTOda0l0\\^OTOea0l0Z^OTOfa0n0Y^OQOha0o0W^OROha0o0X^OoNja0Q1V^OnNka0S1S^OmNna0S1Q^OnNoa0S1P^OlNQb0V1m]OiNTb0X1j]OhNWb0Y1h]OfNYb0[1f]OdN[b0]1d]ObN]b0_1b]O`N_b0`1a]O_N`b0a1`]O^Nab0c1^]O\\Ncb0e1]]OYNdb0g1^]OUNdb0l1P3000001N101O0O2O00001O0010O1O10O01000O100O2N2M2N7I5K3L3M0100O001O01O000O000100000N2O1O2M3N2N2N2O1M3N5KeR^2"}, {"size": [848, 480], "counts": "k`i43[j03O000000000O1O2N1O1O1O1O1O2M2M3N2N1O2M2N3H5I7M3N3N3M2O1N3M1mN[N\\YOg1af0cNXYO\\1hf0T12L5M20O1J6H610XZOQMTd0n2k[OVMTd0h2m[OYMRd0g2n[OZMRd0g2l[OZMUd0f2h[O\\MXd0i2`[OZM`d0[4O0101O00000O1O1O2M3M4J5K5kNV1SOeXO`N^g0\\1hXO^N\\g0_1m0M:G4K3M3M3M4L3M6I8H_if5"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "lQl6;Qj04L4M3N2M3N2N2M4M2M3N2N3L5J4O2M2EXNmWOj1Rh0VNmWOk1Th0TNjWOo1Yh05K2O02N1O101N3M2N2N2N2K5J7H7G`0WO`VOMh^d4"}], [{"size": [848, 480], "counts": "WVX94Zj03N2N3M2ZOGQWO;oh0KjVO7Ui0b00001O001O00000001O1O2M3N2M3M2M4M3M5HTi_2"}, {"size": [848, 480], "counts": "iaR44Xj09I5K7J4L3M3M2O1N2O1O1O001O00001bWOZOPg0g0eXOFXg0k1O0O01O001O010N101O0O2O0O1O100O00O1O001O100O00O2O0101N4M2M4M;E5K4M2M2O0O2O0O2O00000O1O2O000000001N10000O100000000POWLY[Oi3`d0`L][Oa3^d0eLa[O[3\\d0iLb[OX3]d0jLa[OW3]d0lL`[OV3_d0mL^[OT3`d0_1O1O1O1O100O100O100O101O0O10000O10000000O1000000000001O001O00001O1O1_Kg[Oi2Zd0UMg[Ok2Zd0TMf[Ok2\\d0SMf[Ol2[d0SMe[Om2]d0QMc[On2ad0nL`[OR3cd0gLa[OX3jd0oKe[OQ4]e04K3N5J:F9F5K5L2O1N2O1O001N2O001OoNW[O[Lid0^2V[O[Mf01Sd0X2T]OgMkb0V2Y]OiMgb0V2Z]OkMfb0S2\\]OmMcb0S2]]OnMbb0R2_]OnMab0Q2_]OoMbb0P2_]OPN`b0P2`]OPNab0o1`]OQN`b0m1a]OSN`b0m^OATa0?k^OAUa0?l^O@Ta0a0k^O_OVa0`0k^O_OUa0b0j^O^OWa0a0j^O^OWa0a0i^O@Va0a0j^O^OWa0a0i^O_OXa0`0h^O@Xa0a0h^O]OZa0b0f^O^O[a0b0d^O^O]a0b0c^O\\O^a0d0b^O\\O_a0d0a^OZO`a0g0a^OWO`a0i0`^OVO`a0k0a^OROaa0n0Q400000O0100O1O010O1O100O1O001O0000100O0010O00010O010O1O1O10O01O1O001O001O01O001O1O1O1N6K2L4M4K7FSi_2"}, {"size": [848, 480], "counts": "gVf44[j02N1O100O100000001O0N3N1O101O0O1O1M3J6M3M2N2N1N3M2L2L5N003O1N0O2iNhNXYOZ1ff0POoXOR1Qg0V10N2O1OL5M3N1002O2NUZOUMTd0k2h[O^MTd0b2j[O`MUd0a2i[ObMVd0a2e[OaMZd0[40000000000000O1O1M5I7I7WOi0dNWYO^NZg0]1lXOYN^g0c1k0K5K8I4M2N2L5L4M4K7H;C]^h5"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "_nU7;Pj07L3L3N2M2N102M4K4N2K6L3N3N2L4J6N2N12OO10O10O01N102N2N2M3N3M5K5J6K:E[bZ4"}], [{"size": [848, 480], "counts": "fUS91]j05K5QOL[WO6ch01UWO2ih02RWO1mh0j0O001O000001O000000000O1M3M3L4J7H8Ce_f2"}, {"size": [848, 480], "counts": "ghZ4:l2JRd0b0g[ODSd0`0k[OBRd0a0l[OARd0a0m[O@Pd0c0n[O^OQd0d0n[O]Ooc0g0n[O[OPd0g0n[OZORd0h0i[O\\OUd0g0`[OC^d0?S[OOmd04hZO5We0McZO8\\e0^200O101O00000O10000000O0nNaZOUM^e0g2jZOUMVe0h2P[OVMod0i2U[OTMkd0i2[[OSMgd0k2_12N7I6K8G2O2fN^La[Od3Qd0[LQ[O8k0_3lc0QMS\\OQ3gc0TMW\\On2gc0TMW\\On2gc0SMY\\Om2fc0UMY\\Ok2ec0WMZ\\Oj2ec0WM[\\Oi2ec0YMW\\Oi2hc0ZMS\\Oj2kc0YMo[Ok2Pd0k1O100O10000O1000000O10000000000001O000000001O0O2O1O001O1O1O001O2N2RKf[Ob3[d0\\Lg[Oc3Zd0\\Lg[Oc3[d0[Le[Oe3^d0WLc[Oi3jd0iKV[OX4ae001O0000001O1N2O2N2N1N101O000O100O10001N10001O000O2O001N1O2O0O2N1O1N2O1N2N2O1N2O1O1M4M110O1101N2N2O1O1OYNQYONmf0OZYOOdf0NbYO1[f0NiYO2Uf0LPZO4me0IXZO>_e0^OiZOi0SOkNdd0:^\\Om1ac0TN`\\Ok1`c0TNc\\Oi1^c0VNe\\Oh1[c0XNh\\Od1Xc0\\Nl\\Oa1Tc0_No\\O]1Rc0cNR]OY1nb0gNW]OS1jb0mN[]On0db0TO_]Og0bb0YOb]Oa0`b0_Oc]O=]b0Dg]O7Zb0Im]ONUb01d^ORO`a0o0Q400O100O2O0O1O100O1O001O1O010O00100O01O1O3M2O3nVOkNah0h1J2N1O1O1O000O01JcWOXN^h0[1b000000000O2N2L3I:\\OgTh2"}, {"size": [848, 480], "counts": "TQg42]j02N101N1O1000001O0M4L3N2O1N2O1N2M2M3L2O3L5N1L4L4H7K4OM4NoN_NZYOa1bf0jNUYOY1hf0VOeXOQ1Zg0Q1010O1N002O20O0O101O2QZOTMYd0l2e[O[MVd0f2g[O^MXd0e2c[O^M[d0U3jZOTMVe0R41M3L41O01O0O2O1N2O0N3iNeZOSMbe0i1mYOfNXg0W1lXO_N]g0_1eXO]Nag0^1eXOYNbg0d1g0M6J3M3N2M4L5J8I8G:DmXi5"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "QUY7154bi0i0J`0@5L005K3M2O1N000dWOSNUh0i1;O2N3N4L4L1O4L3N1N2N2N3N1N2N2M2O4K3L5K6IQjY4"}], [{"size": [848, 480], "counts": "mjd74Yj07F7M3M4N1O001O1O001O001O1O1O1O100O0001O2N2N3M2N3M1O2N1O2M3L5KiTn3"}, {"size": [848, 480], "counts": "h_l23Yj07J4M3N1O1O2N1O1O001O0001O001O10O01O1O100O10O0100O10O0100O10O001O0O10001N10000O2O0O1O10000O2O001N100O1N2F:M3M4L3M3mWO]NVg0g1iXO]NRg0f1lXO]NPg0e1PYO\\Njf0i1VYOXNdf0n1[YOTN_f0P2aYOQN[f0R2fYOnMXf0S2iYOmMUf0T2lYOlMSf0T2mYOnMQf0R2PZOnMPf0P2QZOQNne0k1WZOUNhe0o1TZORNke0P2SZOQNme0Q2QZOnMoe0V2mYOkMRf0X2kYOiMTf0[2hYOfMXf0\\2fYOdMYf0Z3O2QNXLS]Oi3gb0jLk\\OV3Tc0oLh\\OR3Vc0QMh\\OP3Wc0RMh\\Om2Xc0UMf\\Ol2Xc0WMf\\Oj2Yc0WMf\\Oj2Zc0VMf\\Oi2Zc0XMe\\Oi2Zc0YMe\\Og2[c0YMd\\Oh2[c0ZMd\\Oe2]c0\\Mb\\Od2]c0_M`\\Ob2`c0_M^\\Ob2bc0`MY\\Oc2fc0T20N2N2N200O1N2O1O1O100000001O00001O010O1O001O1O1O1O1O2N2N2M6K7TKmZOm3Ve0nKnZOQ4Te0jKnZOV4fe001O000O1000001O00001O1O0O100000000000001O00000O2O00001O1O001O0O2O00000O2O00001N100O2O1N101N1O2N1O1O1O1N2O0O2N2O1O13nXOjLdf0b3O1O1O1O1O1O100O100O100O0100O1O1O2N2mN`YORNdf0g1eYOSNcf0b1cYO[Nhf0W1]YOgNmf0m0WYOQOof0;`YODaf0:cYOB^f0>eYO]O^f0b0dYOZO_f0e0f110O10O0100O100O10000O10000O10000O10O10O10000O2O00000001O001O0O1O1O1O100O01O01O01O000000001O001O000O101M2MP_a2"}, {"size": [848, 480], "counts": "Tgc41^j01O1O1O2N100000000O1000O01L4K6M2N101O1N2L3H8K5L4L3N3K3O1N0jN]NdYOd1\\f0iNVYOW1jf0W1010O101N01M3N11O2O1O1O02N0VZOXMnc0l2m[OXMRd0P3_[OXM_d0]400000010O01N1O3M2N2N2N2N2hNdZOhLUf0m1\\YOdNmg0T1ZXO`Nng0\\1e0N2N3M3M4L4L4L6K3L8Fdhk5"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "Vam63]j06J3M3N5J9H4K4L3M3N1N1O3M2N2O2M2O000O100O100O1N22L3L3L3N3M3N3M2O2O002M1O1N3N1N2M3M300O1O1N4M2LdUX4"}], [{"size": [848, 480], "counts": "XUU79Uj05L2N1O2O0O100O1O1O100O1O1O01000O10O0100O010O0100O010O2O0O1O2O0O2O1N2N2N2M4MaQX4"}, {"size": [848, 480], "counts": "n`]25Yj07I4M2O1N2O0000001O00010O00010O001O01O10O01O0100O010O100O10000O101O01O10O000001O0000000000000O1000O10O0100O010O100O001O0O1O1O1O1N2O1N101N2N1N3N2N2N2N2bWOdNeg0_1ZXOdN^g0a1bXOdNWg0_1hXOdNSg0_1mXObNof0a1QYO`Nkf0d1SYO^Njf0d1SYO`Nkf0d2N1O1O2O1N2N101N100O101O001O001O00001O0000000POWLY[Oi3Rd0RMh[On2Ud0WMi[Oj2Ud0XMj[Oh2Td0ZMl[Of2Sd0\\Ml[Od2Sd0]Mm[Oc2Rd0^Mn[Ob2Pd0aMn[O`2Rd0`Mm[Oa2Rd0bMj[O`2Ud0cMh[O^2Xd0dMd[O^2[d0l100O100O1000001O000O1001O000000001O0000001O001O001O1O1O1O2N1N3N1_KV[OZ3nd0_LX[O^3ld0]LV[Ob3Qe0VLQ[Oi3Se0RLP[Ol3je001O000O1000O100000O1000001O0000000O1000000O10000010O1O003M2OO01O01O0000000O2O00001O0000001N10000O101N1O1O100O2ZO\\YO^Mdf0`2`YO^M`f0_2dYO`M\\f0_2eYO`M\\f0\\2iYOcMWf0Z2lYOfMUf0V2oYOhMRf0T2SZOkMme0o1ZZOoMge0i1cZOUN\\e0Y1Y[OcNhd0T1^2_O`02N1N3K5J6\\OmN]WOa1`h09N101O10O0O2N1N3M3K4\\Od0K6N1N4M2N4K7Gbeb3"}, {"size": [848, 480], "counts": "oQb42[j04N10001O00000O1000O02O0O1O1O1M4L3N2L4N2N1N3K3L4M3M3M3M3M2N3N0iNaN]YOb1df0gNRYOY1of0QOfXOo0^g0o02O00O1M2N30O2ON1011002M5lYOQMjNN^e0Z3Q[OaMmd0R4N100O11O1O0O2M2O2N2M3K5D=RNhYOmNlf0Q1WYO^N[g0^1hXOXNjg0^1g0L4L3N1N2O3L4L4L7I5K5Ijhk5"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "XSk6:Vj05K3M5L8G=CJnVOPOPi0[1M7I2N2O1N2N100O1O0000001O01N1N2O2N1N3M2N2KWWObNjh0]16M2O1O1O2N1O1KgVORO[i0l05M3O2J5O1O1N3K7G`Y\\4"}], [{"size": [848, 480], "counts": "UVU77Wj03N2N1O1N2O1O1O1M3M3N110N101N1O1O2O00001O01O00001O1O1O2N1O1O2M201N2M3N2M3M5KTQX4"}, {"size": [848, 480], "counts": "`Uj3<`1;Zf0J^YO>^f0FZYOb0cf0AXYOc0ff0@UYOd0jf0_OnXOf0Rg0\\100010O001O1O2O0O10OgNPYOROQg0d0XYO]Ogf0>_YOAbf0;aYOF_f06dYOK\\f00hYO0Zf0JjYO7a0BZc01Y\\O>9G`c0A\\\\Oi02I[e08cZOI]e08aZOJ^e08_ZOIae08^ZOIae09]ZOGce0:\\ZOGce0n03Rc0_Ok[O<`1Lhb0Z1i]OXNYb0c1l]O[NWb0_1m]O`NUb0Z1Q^OeNQb0U1T^OiNoa0S1S^OlNPb0Q1R^OmNQb0o0R^OPOPb0m0R^OQOQb0l0P^OSORb0k0P^OTORb0h0Q^OVORb0g0P^OWOSb0f0o]OXOTb0e0o]OXOTb0d0o3M3L5L6H\\kT4"}, {"size": [848, 480], "counts": "ifc44[j02O1O00001O0O101N10000O0N3L5L4M2M3N2M3N1O1M2M2O1N3N3L3M4K2kNdNXYO]1ef0UOmXOi0Tg0Y10002O0O1O02N2N2N2OO002O000PZO\\MVd0g2b[OcMYd0a2X[OmMfd0g2aZO`M^e0i300000O1O1N2M4J5N4K401N3nNU1_O>UOXXOdNng0X1i0L3M3M3L3M4M6K3L5K9F6JZnj5"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "cnk61^j02N3N6I5L4L`0^VOlNgh0n1A3L2O2M6K1N2ON2O0010O00M4FlWORNYh0m1501M21O01N2O1N3M2H9J5M4L4K6I9CZmb4"}], [{"size": [848, 480], "counts": "nTU7?ni05L3O1O0O2O0O100O100O10OO2N1N2O2O00000001O1O1O1O1O1O1O1N2O2N1O2N2N1N3M5JTgY4"}, {"size": [848, 480], "counts": "YRZ2;Sj03N3M3N2N2M2O2M2O1O100O100O10000O101O1N101O2O1N2O1N100002N3M1O1N102N10O0O0101O000O1O1O000O100O1O1O100O1O1O002N2O1N001O010O0001O00001O1O1O102M2N2N4L3M1O100O001O0hYOmNSc0R1l\\OQOSc0o0l\\OTORc0l0n\\OUOQc0k0n\\OXOPc0i0n\\OYOQc0g0m\\O\\ORc0d0m\\O^ORc0b0m\\O_OSc0a0m\\O@Rc0`0n\\O@Sc0?m\\OBRc0>iZOVOV1=Pd0>fZO[OW17Rd0`0bZOAX10Ud0`0_ZOFY1KWd0i1e[OWN[d0n1_[OTN`d0n301O1O1O1O001O1O1O0000001N10000000O010O1N2O2N100O1O1OmNWKj[O54f4ic0RLT\\On3ic0VLV\\Oj3hc0YLW\\Oh3fc0[LY\\Oe3gc0[LX\\Og3fc0[LY\\Oe3fc0_LU\\Oc3jc0c1N100O2N10000O100O10001O0000001N1000001O000001O00001O001O1O001O1O1O1N2O2N1bJW\\OS4kc0jKX\\OT4kc0iKU\\OW4mc0eKU\\OZ4Rd0^KP\\Ob4\\d0oJg[OP5md000O10O001O10O010000000O10O012N6J3MO010O1N20O2O1ON1O2hL\\[Oc0ed0WOf[Od0Zd0YOn[Ob0Qd0\\OW\\O?ic0_O`\\O:`c0DQ]OMnb02n]OTORb0j0Q^OTOPb0k0Q^OUOna0k0S^OSOoa0l0R^OROPb0l0R^OTOma0l0T^OSOma0l0T^OTOla0j0W^OUOha0k0Y^OUOga0j0Z^OUOga0i0[^OWOda0i0^^OUOba0j0a^OTO`a0g0f^OVO[a0d0[4N2O2N11O01O0000O1000001O00000O101O0O2O000O2N100O1O1O2O0O2N0M3H8J51O1O101N101N010O2O2M2O2N1N3M3N1O2M3N2N3N1N4L6Gbbk2"}, {"size": [848, 480], "counts": "efc45Zj01O2N101O0O10000O10000O2N100O100O1N1O2M3M2N3M1N3M2M3M4L4J4H71N02lNZN_YOi1^f0fNUYO\\1hf0nNgXO[1Yg0m001ON3K5M2O0002M2N201kYO_M[d0b2^[OiM^d0X2_[OlM`d0U2\\[OnMcd0P400001O0O10001O0O1O2N5I9\\MRZO@mf09WYOoN`g0P1aXOiNfg0U1]XOfNgg0X1l0L4M2M2N3M5L2M6J7I9EmSj5"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "mPP71]j04M4M3M5K3L4M2M2O6J=eVOeNgh0e1M3M4K3N1O1O3L2O1OL3M4K5N2K4O2N2N101N2O001N2O1O1O1O1N201M4L6Dm0cNc`0o0j^O2g0jNc`0S1n^OHnc08V\\OAnc0>W\\OZOlc0f0P30O0001O001O001O1O01O0010O1O001O001N1O2N2N1O2M2O2O1O1O001O01O001O010O001O0010O100O01000O0100O001O010O01O01O0010O010O000010O010O0010O010O1O00010O0010O010O01O010O0010O01O010O1O010O010O10O010O01O10O01000O0010O10O10000O010O10O10O10O010O0100O010O1O10O0010O01O01O01O0001O000001O0000000000001O00000001O01O000000001O001O001O1O1O1O001O1O1N101O1N1LV="}, {"size": [848, 480], "counts": "g[e41]j03M2O1O100000010OO5K_j06ZUO3O0O2O0O1O1O1L4N2N2N2M3N2G9F:A?K5M3K5L3LFVOUNiYOh1Zf0bNZYO_1hf0R13I7N2O100OK4L2111O111O01O4M=C1O000000000001O1N5L5J4M2FgXOXM]g0`2jXO^MWg0]2a0M4\\Oe0K5M2N1N4L4L5K6J7FU_h5"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "WQY73\\j04L4M2N1O2N4L3N3L8H9H0O2N4M1N10N101N2O1O0O2O0O2O1O010O00001O1O001O001O1O1O0010O00010O01O1N101N2N1N3M3L4C>LQgg3"}], [{"size": [848, 480], "counts": "hSU77Yj02O2M3N1N1O2N001O0000000000O010O002M7B[jg4"}, {"size": [848, 480], "counts": "gQk3a0ii0;H7J4K4M3M2N2N1N2N2M3L5K4M2M0N0O4M0N4J9nMVN[[Oo1[d0_Na[O`1[d0iN`[OU1^d0SO\\[Om0ed0XOW[Oh0id0\\OS[Od0md0]21O^[OkKnb0S4R]O[Lbb0c3_]OfLZb0Y3f]OQMQb0m2o]O]Mia0b2W^OeMca0Y2]^ORNYa0o1f^O\\NQa0b1o^OlNFhLV`0Z4U@5^?Ic@jNRAY1l>eNUA^1i>`NXAc1g>[NZAg1d>XN\\Ak1b>UN]An1b>VNWAm1h>XNRAj1keZO]O`e0b0aZOXOfe0f0ZZOUOle0j0UZOPOQf0o0RZOfNVf0Y1b110O1O1O10OO10010O0001O0O1O100000001O1N101O2M2N3N2O4K:G6JN2O2M2N2N3M4L3L4M2M4M3L3N2M3NiVOjNVi0W13L3M2O0O2O000101ON2N1N3N1O2N1N3M3N1O4HZ[b2"}, {"size": [848, 480], "counts": "ZWb53Yj05N1N2L4N2N2M3K5M3N2N2O001O1O2N1000001O00000001O100O1O1O100O1O2O2O4K6K1O1N2N3N3M3OT_h5"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "jh^73]j04L3N2M4L4L6J7[VOROZi0X1K8H6K3L0003M1O1N2O1O0D=M4M2M3M3N3L4M3M1O3M2N4KeUT4"}], [{"size": [848, 480], "counts": "Yfm65Yj04M2I7M2O2N2O001N102N1O1O1O1O001O0O10000000000O1000O2O1N6IRof4"}, {"size": [848, 480], "counts": "QRf3=ni08K4L5L2N1O2N100O1O000OL5OO2O0iMLTZO5P6UOj7Z1QBCS6YO_7_1ZBZOU6\\OY7`1^BVOX6^OW7^1_BUOZ6^OT7`1`BSO\\6_OP7a1aBQO`6_Om6b1aBoNQ3_ORO3Y;a1bBmNk2e0]NoNRP3R9LfF5\\9Y87N1M3M4J6CaHeA_7[>^HfAd7Z>XHiAj7V>SHkAo7U>nGlAU8Z>_GiAf8b>aFhAd9_?5L4K4L3M3M3M4L6J8H4K3N2N1O2N2N1O1O1O1O010O011NQL_APLa>m3eAPL[>n3iAPLV>o3nAoKR>n3RBQLn=m3VBQLj=m3ZBQLf=l3_BRLb=k3dBRL[=k3kBRLV=k3nBSLS=WO\\AS2g1cNm]OSf0i1dYO[Nfg0_1j0K3M3M4M4J5L7H8H7Iaoe5"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "nWX71^j0101O2N3M3M3M2N6J6KW1hN5NO0O0O101N2O1O1N2N2O1N2O2M2O1N2N101N2O1N2N2O0O1O2N1O2N1O2N2L4M2N3L5JVSo3"}], [{"size": [848, 480], "counts": "Ynl67Yj0002N6J001O2N2N1O2N01000O1O1003M1O0O20N10000O2O0001OO100O1O2O0O100O100O001O001O01O00O2O00O10000O101N7Gm^U4"}, {"size": [848, 480], "counts": "TP_2;Pj09J4L4M2O001N2O1N2O1O1O1O1O1N2O1O1O3M2O1N2N1O2O1O2N2N1O1O1O10O114M:E1M3M1O2N1O1O2OO0O101N2O0N3N1N2O1N2O1N1O2N2O0O2N1O1O1O1N2O1PAgNg4Z1XKkNb4X1\\KlN`4V1_KlN^4U1bKmN[4U1dKmNZ4S1fKPOW4P1iKROT4P1jKSOS4n0lKUOP4m0oKVOn3k0QLXOl3i0SL[Oi3f0WL\\Of3d0ZL_Ob3c0^L_O^3c0bL_OZ3c0fL_OV3c0iL@T3b0iLBT3`0WLQMUHe2c;;gKf0W4[OaKn0]4RO]KV1a4kNZKZ1e4gNVK^1i4dNPKc1n4eNfJ`1Y5nNVJW1h5TOjIP1U6ZO^Ij0a6@PIf0o6DcHa0\\7JSH>k7M_G?`8FUGa0j8BmFe0R9^OeFh0[9ZO^Fl0a9WOWFo0i9ROoET1R:oNeEV1\\:WOjDUINj7Z;f6jDaA];Y>?N3M3M2N3N1N3N1O1OdMiBbGV=Y8aCVG^g:Y1ZER;h:iDZEW;i:dDYE[;k:]DZEc;j:UDZEj;j:nC[ERTN^D\\OcNf1S=lNWEYNXN_2dT2_OTN;m1CXN8i1HZN4h1J[N3f1M\\N0f1O[NOf11\\NMe13[NLe15\\NIe17[NGf1:ZNDh1;ZNCf1>ZN@h1`0XN_Oh1a0YN]Oi1DcMmEe0]:h1CkMlE=`:i1_OTNjE6e:g1\\ODc0[6ZAdIf=TO^AT7Q1hI\\=_O\\Ah6Z1hIU=0TAY6j1eIo0lJdDTK\\;h4jDVKV;g4nDXKR;f4QEYKo:e4TEZKm:c4WE[Ki:c4ZE\\Kf:b4]E]Kd:`4`E^K`:`4dE^K\\:_4iE`KV:^4nE`KR:^4RF`Kn9^4VF`Kj9]4\\FaKd9\\4aFaK_9[4hFcKX9W4QGfKo8S4\\GiKc8P4jGjKW8o3XHiKg7Q4iHeKV7T4YIeKf6W4dIdK\\6W4nIdKR6T1lDPOg5\\O]5Y1]FPN^4d0U5U1QGgMo3R1P5U1_GWMi3b1h4W1oN[NQ1d1WOTNj0m1ZOnMf0R2]OkMd0U2]OhMd0X2AbM`0]2E^M>a2JPM=P3c;N5L101N2M2O1N101O1O1O1O1O1O010O10010O001N002N0O101N4M1N2N2N2O1N2N2N3M5J6K4K4L4L3M5I9Ei_j1"}, {"size": [848, 480], "counts": "^Wb5f0fi0?C3L3O1M3L4M2M4L4M2O100010O1O1N200O10001N100O2O1N2O1O1N102N2M6K8G4M1O2N2M3N3L6JmYi5"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "YVV97U2Jme0;cYO8Vf0OYYO>ef0h1N01O0O2N2O010O100001O01O0O100O2O1O1N101O1O1O1O1N2O1M4M2M3N2N2M2N5J4M3M2M4M3L3N4K4M4KeTQ2"}], [{"size": [848, 480], "counts": "lZ`8e7oAWHo=f7ZBVHc=j7bBTHY8VOoJh8lLoGR8K^JX8fMkGh7h0^HYNhNh9V1UG`7]1TGR9_1_E[7]=iHaBU7`=mH_BP7c=RI[Bm6f=UIXBj6i=YITBf6m=gI`A_6`>g22N1M2E=N1O1100O10010O0000000000001O0O2O1O002M3N3M3M3M2N3M2N2O0O3M3M2N3N1N2N4M4K4L3N3MaEiBf7U=RHSCP8ko;K8H4L2O0O1OaKfBiKY=U4kBjKT=S4PCmKP=Q4RCQLke5C^J9a5HcJ4]5MeJO\\52eJLZ56hJFY5P8BWH5k7J^HMc73`HHb77`HFf74^HHh73[HIj73ZHHl72^HDg78[HDl76WHGl76YHUNPIi0h>Q1RIlNn6T1UIhNa5\\OXCl1\\7aN]5NmBa1m7XNW5=fB\\1[f0jN^YOX1af0\\10O00100O1N2O0O3N1N2M3K5K6K4L4G9A`0E;H8K5L4M2N3L4L5H[UP2"}, {"size": [848, 480], "counts": "SVf45Zj02N2O0O2O1N10001O000O1O1N2N2N2M3N2M2N2NOO3K5N3L5J5H6N10MnNbN[YO`1cf0hNUYOZ1kf0POcXOY1\\g0n0O1NOO20O2O2M3O0001O011mYOWM]d0k2Z[OeM^d0\\2][OjMad0h2iZO]MWe0n301O0000O1N3N2N2O1N1O4H9\\Nd1VOXXOaNng0Y1YXO_Nlg0_1e0M4M2M4L3M2N4K5L6J6I;BPTj5"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "Ufk84ii0]1PNVO[XOZ1_g0l001O1O2O0O1O100000001O001O10O2N1N3M4L6I7I9F9H5K5K6J3M4L4L5J4L4L>Annc2"}], [{"size": [848, 480], "counts": "XbU87Tj08J4L4L3C>^Oa0N2O100001N10001O0O100O100O100O1O1O1O100O100O100O1N2N3N5J9G9EVZY3"}, {"size": [848, 480], "counts": "`Un3S1Yi09H4M3M3N1O2N001O1O1O1O001O1N2O001O001O010O1O001O1N110O10O01I7O1@bMjXOb2Tg0cMeXO`2Zg0bMeXO_2Zg0bMfXO^2Yg0cMhXO[2Xg0eMkXOY2Sg0iMoXOU2Qg0kMmXOW2Rg0kMlXOV2m1lMdb0O^[OV2k1RNbb0Ib[OV2i1VNbb0Ed[OV2e1[Ncb0]2o[OQOnc0j3O2N1gBUJk5n5UI^K\\6_5]HoJ^7^5PHjJn7f5\\GdJ`8k5kF^JR9i5cF^JZ9g5\\FfJRN`Lk:m8kFiKm8oJbEk8T1_La9e3QFhLm9o9M2O2N1N2N2N2O1O0000001O1N101O0000000001OO10O010O010O001]N]FVBe9b=kFTBW9h=j1O1O1O1N3L3N]NdBWFX=j9nBQFa:H_FV:]OiET:>nEk9:[Ej9X1WEb9ec6^AgIa>T901N2O1kEkEm3U:gK]FS4d9gKhFR4Y9dKXGS4j8eKkGm3V8mKYHi3h7SL`Ig2a6WMiIa2X6]MmI^2U6`MPJ\\2P6dMSJX2n5iMTJS2n5lMYJm1g5TN]Jf1e5YN`Ja1b5^NbJ]1`5cNcJX1_5gNgJR1[5nNgJn0[5ROhJh0[5WOiJb0[5]OiJXOgHhNdjIYBlNMW7d`0]He_Ob7ea000O001N100O100O10000O1O1O10000O10000001O005K00K[]O`Hdb0f7oN^HS_Oc7k`0dHP_O\\7m`0hHR_OY7k`0kHS_OV7j`0mHU_OT7i`0oHU_OR7j`0oHU_OR7P3RH[:n0cBR7i2ZHa:g0cBR7g2[Hd:f0aBR7^2eHh1^ETB5XO\\:S>\\FXB\\OCV:T>iFmAc9U>[1000O2O0O1N11`FSD_4k;bKZDZ4d;hK_DW4[;nKgDP4U;SLmDl3P;VLSEi3j:XLXEf3h:XL]Ef3c:^JZGb5f8VJcGh5_8PJhGP6Z8iIkGV6W8eImG[6U8_IoGa6S8YIRHf6R8RIRHn6b8ZHbGf7d=00000000000000000001O000001O0000001O0000001nN]GU@d8g?dGT@]8i?fGV@Z8i?iGU@W8j?jGU@W8j?iGW@W8h?jGX@W8f?kGY@V8d?mG[@T8b?PH[@R8b?QH\\@Q8a?RH]@Q8_?UH[@o7Z7lFb0g:ZOeE;]:DmE1V:NmELW:jKnDW1V1a2R:RLlD\\1c1n1e9bLmD^1e1e1c9eLPEe1b1]1c9hLREi1b1T1a9mLTEm1a1l0a9RMSEP2d1a0_9XMVES2j12X9YM`Ea2b1B\\9aM^Ej2b1oN_9kMWEU3d1ZNdYi02O0000O1000O11O00O100000000O01000000000000000O10000001O0O11O000O10O10O1000000000001N01000000000001N101O00000000000010O0O2O0O1000001O0001O000000000001O00000000001O000010O01O000010O1O101M2N3M3KePm1"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "i`o51Vj0;kUOIbi0l0E:I:D8J6K5L3L6K4L3M4M2M3M3N1N2N3N1O1O1N2O1O0000O2I6O2O00100O100O101O0O10001O001O2N1O1N4M2N1O2N2N2N1O2N3M3M2N2M4M3L4M5J5L2N3L4M2N2M3N1O4L2M3N3L4M2M1O2LT\\]4"}], [{"size": [848, 480], "counts": "]ld44Wj09I4L4L4K4O2O00001O01O0000001N10001O00000O10000000O010O100O001O1O10O10O100O001O001O10O010O01O0100O2O000O100O2O0O101N2O2N2N2M101N2N2N3MTZP6"}, {"size": [848, 480], "counts": "ThY38`d03i@5n>3m@0o>5i@1T?3`@9W=ROW@h0]2;X=ROW@f0]2P2jAQNU>S2hAnMV>Z2cAgM\\>b2[A_Mc>l2SAUMl>S3l@nLS?]3b@cL^?h3W@YLh?m3R@TLm?R4m_OnKS`0X7O100O0010O010000OYOl_OSGU`0k8n_OTGR`0j8P@VGo?i8S@WGm?f8W@YGi?c8[@]Ge?`8^@`Gb?]8a@cG^?\\8d@cG]?[8f@dGZ?Z8h@fGW?X8m@gGR?X8QAfGP?Y8QAgGn>X8UAgGj>Y8WAfGh>Z8ZAfGe>Z8]AeG`02g;X8kCfG:8h;Q8PDfG5?i;j7TDdGNj0l;a7dElH\\:R7]EWIb:h6REfIc9WNkDS8[1oIc9ZNkDh7a1PJa9^NfDe7a1WJf9V7WFoHg9P7XFTIh9i6XFZIh9d6WF^Ii9a6VFbIi9^6VFdIi9^6SFeIl9\\6QFfIo9h6aE[I^:i6\\EYId:j6PE`Io:Q;O1O010O1O1O11O1N10O10O0100000000O000010O10O100O10O1lNhDPCW;P=kDoBT;P=oDnBR;P=PEPCP;nl^OFo`0?m^ODo`0`0l^OEPa0?j^OFSa0>h^OFVa0=e^OGYa09UAU79bHP11m:a0eCi6b0cHe0>n:;iCc6e0dH?d0P;:hC]6k0dH4o0W;4hCZ6l0cH0T1[;2hCX6k0aH0Y1Z;1iCY6k0YH3_1X;2gC]6S2cIU:5cC_6o1_I]:e8YE_Ge:f8TE^Gj:f8QE]Gn:g8kD]GT;f8hD\\GW;g8dD\\G[;g8`D\\G`;k8iCeGVo0UAQOn>i0UAXOl>d0VA\\OR?;o@ET?6n@JW?Ln@4gd01O0001O0001O00001O0000001O001O0010O01O1N101O001O1O10O0001O000100O010O000010O01O10O01N101O0O101N2N1O1O2N2N2N2N2Mbkg4"}, {"size": [848, 480], "counts": "ZdU44[j02N102N00O1000O1O001O1N3M2H8MO2O0100O2N1N3H8H8H7aNROZYOR1df0WORYOm0lf0\\1N2M3M4M10M4K4N3M2O1O2O010010O107I;F:E1O01000000O1O2N101N1O1M302N3L3I6aNiXO@[g0;iXO@\\g06QYOVOag0d0[1K6I4N4L4K`WOLmk]6"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "]SY49ii0e0C6K6K4M3N2N2M3M3M3O1N2O1N2O2M2N2O1O1O100O1N2O100O2N1O1000001N010O01O1O2N10000O1000000O0L5I9K6D>GaQk6"}], [{"size": [848, 480], "counts": "^g`44Vj0_8YAaGe>]8`AcG^>Z8fAeGY>Z8jAfGU>X8oAfGQ>X8RBgGn=X8UBgGj=W8YBgGh=X8[BfGe=X8_BeGc=Y8_BdG`=^8Z2M3N2M3M3M2010QBZHT9g7cFdHY9b7YFhHf9b7eEiH[:g8oC`Gf:dNoDS:0^Gg:XOiDc9HeG[;c;eAEcd01O010O001O010O00100O1O002O0O1O010O1O1O00100O1O010O1O010O1O10O010O100O1O1O001O0O2O001O001N2O1N101N2N3M3M4J[ih4"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "XeU4g0ei06J5J4M4L4M3N2M3M3O0O2N2N2M3O1N2O1O1N2O1O100O2N1O1O2N2N101N101O0O101N2OO10O10O1L5O1O1L4L3N3K5K6J8H7H9mNgVONTdm6"}], [{"size": [848, 480], "counts": "\\o^49Sj06K4L4M2O2N101O1O01O001O000001O000001O00000000000000O101O00000O2O01O00001O1O1O001O1O1O0010O0001O1O0O2O001O1O001O001O002M1O2O2L_`Y6"}, {"size": [848, 480], "counts": "mkS3:Sj04N1O100O1TJ@gAa0W>BeAb0b=Fk\\O2U5e0`=]2jAhMT>Z2jAiMR>[2kAgMP>^2jAhMm=b2]ATN^>P2YAYNd>k1SA]Nj>i1k@`NR?`6M3O2M2O2M2O1NYO^AdEa>Y:fAdEY>Z:jAfEU>Z:mAeER>Z:RBeEk=Z:\\BbEa=V:mBgER=U:TCjEjgFiAY9m7gFjL4XKV9Z7UFWHn0i4NdKo8a3UFVMk0AR1h3TOPLj8Y3aFQMi0Mm0^3WOXLc8Z3cFoLj01m0S3ZObL\\8Y3fFPMi00Q1g2]OoLT8X3fFRMi0OV1Z2@\\Mk7X3hFSMf0O^1j1BlMb7X3iFRMf00_1`1HUN[7X3hFSMf00b1W1K^NU7V3lFTMb00e1Q1LeNQ7U3mFUMa01h1j0KkNP7Q3PGXM>1j1d0LROm6m2SG[M;2n17O]Og6m2SG[M;4T2D2O_6j2RG\\M;8[6_O[2e2WGbM4;]6XO[2h2WGdM2;Pa0P2R_O_M1b0m`0n1S_O[M5f0j`0m1WASNj>n1UARNl>l1UASNl>j1VAWNj>f1YAZNf>f1ZA\\Ne>b1]A^Nc>a1^A_Nb>[1dAfN\\>W1eAkN[>R1gAnNY>P1hASOV>j0lAWOT>e0PB[OQ>?SBBn=9VBFm=L^B6R>oNXBQ1cc010O01O1O010O10001O0O01O01O0100N2O001O1O1N2O2N1N4M1M3N3M3N2M4HVfn4"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "[aU4244gi0c0H4K5L4L4N2L4N2N2N2O2L3N2N3N1O2M2O1O1N3O0N3N1O2N101N3M2O0O2N2O1N2N2N2O1N1000N1013M10N1O1N3N1O2N2N2M3M3M4L4F;C>Ln0ROYng6"}], [{"size": [848, 480], "counts": "nY]48Vj04K3N4L2N3N1O101N1O1001O01O01O001O01O01O000001O000000001O00001N1010O001O1O100O1O100O1O1O001O1O001O001O001O1N2O1O1N3N1O2KYe]6"}, {"size": [848, 480], "counts": "Qn[38Qj0:]Ob0F;Q]OgNXk2SAjMk>n6N2O1N2O1O1O1O1O2O0O1O2N1OYO]AcEc>Y:cAfE[>Y:hAfEW>Z:kAeEU>Y:nAeE:EhWFaAi9^>YFaAg9^>\\F`Ad9_>_F_Aa9_>bF`A]9`>dF`A\\9\\>iFcAW9Y>nFfAR9V>RGjAm8R>WGPBh8k=]GUBb8f=eGYB[8c=iG\\BX8^=oGaBQ8a7kGlK9bLm7a7nGdK=iLe7V6`FXJb1`2`0oL^7c5YGmJl0Y2c0UMX7`5^GRKk0o1f0]MS7T5jG`K`0g1i0`MP7^3oEkMT2@6`1S;T1YF]MgNW1S;[1XF^MiNn0T;c1TF_MoNb0R;n1PFbMQO5T;Y2lEbM\\O_OR;n2cEcMV>[2lAfMS>Y2nAhMQ>X2PBiMn=V2SBlMj=S2XBnMg=Q2ZBPNf=n1[BSNd=l1\\BUNd=j1]BVNd=h1]BXNd=e1^B[Nc=c1^B\\Ne=`1\\BaNd=^1]BbNc=\\1^BeNb=Y1`BfNb=T1bBmN^=l0iBSOY=g0lBYOU=;UCEm<2[CNgn3eAYLZ>e4c@aK[?k7O1N101O00O101N11O10O10eA^Ehm1bATN\\>k1fAUNY>j1hAXNW>f1kAZNT>f1mAZNR>e1oA]NP>a1RB_Nn=^1UBcNi=Z1[BgNc=V1aBkN]=R1fBoNZ=n0iBSOV=j0mBWOS=d0QC\\OP=>UCCkn1SAUNi>n1UASNi>P2SASNW>Cm]Ob2Y3ZNc>Ef]O_2Y3QNn>P3f@RMW?Z3^@gL`?a3Y@aLf?b3V@`Lh?d3T@^Lk?d3Q@_Ln?c3o_O_LP`0c3l_O`LS`0a3i_OcLV`0_3g_OcLX`0^3d_OeL\\`0\\3`_OhL^`0[3]_OiL``0Z3[_OkLc`0X3X_OlL?jMe>]5f@mLe0gMb>d5^@jLo0cMb>e8\\A_G`>d8]A_Ga>c8WAfGf>[8QAoGn>R8m@SHQ?o7l@THS?m7j@VHU?k7g@YHX?`9N2O1O1N2O`Mo@cIo>W6[AgIc>X6`AhI]>Y6cAiI[>X6`AnI_>S6\\ASJb>n8N2N2J6RO`DgBe;W=k0N2N2L4M3O1IeBYC[=gh0c@4^OYNX2ba0h1d]OiMk0?aa0g1i]OeMh0c0_a0h1R@XNo?f1R@[Nn?c1T@\\Nm?a1U@_Nm?]1U@cNP`0V1S@iNn?S1U@mNl?P1V@QOk?l0W@SOk?j0V@VOl?f0V@[Om?@j[O`0b40We0O01O01O00010O000001O010O00001O010O1O001O1O00100O001O001O001O010O1O001O010O0010O001O000O2O0O2O0O2O1N2M3N2N3M4JbdZ4"}, {"size": [848, 480], "counts": "`cc44Xj07J7H7Kj0UO5K4@UNRXOX2gg0=K6I4L3N1O1O10O02O4L2N010O1O01O001O1O1N2O1N2O1M3K5M5K9E8HChU\\6"}], [{"size": [848, 480], "counts": "c^X49Tj04L5K3N3M2O2O000010O00000010O01O00001O000000001O00O101O0O1O100O10000O100000O0100000000001O00001N1000001N2N2O1N2N2M4KUVd6"}, {"size": [848, 480], "counts": "odh3m0`i05K3L4L4K5J6K5J6G9H8K5K5J6RMWMl]OR3ia0aMi]Oe2Sb0eMa]Oa2Zb0jMZ]O\\2ab0PNT]OT2hb0[Nc\\On1Yc0g2i]ORIi`0Q7S_OUIg`0o6U_OVIe`0o6W_OVId`0m6[_OUIb`0m6V_O\\If`0h6T_O^Ih`0f6T_O^Ig`0g6W_O\\Ib`0\\8L4MiMj_OZJQ`0f5V@XJe?j5_@UJ\\?m5e@UJV?n5k@SJo>o5SASJg>P6WAUJe>l5XAZJe>g5UAaJh>_5XAeJe>\\5VAjJh>`8N2O1N2O2M2O1O1O1O100O100001OO100O2M2N2J6M3UOIhBlDV=Q;SCkDkBlC=ZOZ2oMgMh>EdC]1fN[1POcMe>F^Cg1cNU1\\O^Ma>GXCQ2`NP1IYM^>GmB_2bNe06UMY>HeBo6SOZIW>H[BV7@SIS>HWBZ7HnHo=JSB\\7OkHm=JnA_73kHm=HlA]78nHj=HhA\\7=PIh=HeAZ7c0QIg=HaAV7h0VIf=P8YBTHe=k7[BXHd=f7]B\\Hb=jNhAo7g0YI`=hNiAl7i0_I\\=W7eBkH[=S7fBoHY=n6iBSIW=j6jBXIU=f6mB\\IR=b6oB_IQ=_6oBbIR=\\6nBeIS=Y6nBoHk=P7TBjHS>U7nAjHS>U7mAlHS>S7mAnHS>Q7mAPIS>o6mASIR>m6mATIT>j6lAWIT>h6lAZIS>e6lA_IR>_6oAcIQ>Z6oAiIP>V6PBkIP>V6nAlIR>T6TA[HKf1o>U901O0100O100O1O1N101O1O1N2O101N0O101N1O2O0O1O1O01O1N11O1O1O1O_Oa0H9M200000O1O2O001N2N2N2N3nKk@gLV?Q2XAaJ5Q3f>o1bAoJ3g2]>Q2hAVK9\\2Q>[2gA[Kc0n1g=e2eAaKo0]1^=o2dAfKW1n0X=Z3cAhKh17j^OUObd03W\\Og0XOYOgf0f0^YOWOaf0h0bYOWO]f0h0fYOUO[f0j0gYOTOZf0j0g1O1O1O1O10O0\\XOZO`e0f0U2O10O0100O0100O1O100O010O10O10O01O1000O01000O1O1O1O1N1100000000O10O100000000O2O00O100000O01O1O1001O00000000O100O1O1000000O101N101N1O3M2N2O3Jln`2"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "]\\k5e0fi0;G7G7J6L4K4J7K5L3M2N3N1N2N2OgNbXOB]g0=fXOAZg0?hXO_OXg0a0iXO^OWg0c0jXOZOWg0f0kXOXOVg0g0kXOXOUg0h0mXOVOSg0j0nXOUORg0l0oXOROQg0o0UYOkNkf0U1WYOgNjf0Y1XYOdNjf0[1W1O0O100O10001N101N2O1O1N2O2M3M5J6IgQ\\5"}], [{"size": [848, 480], "counts": "n[i35Wj07K4M5K4L5fVOCYh0^1K3N2N1O0O2O000O10O1O1N2M3K5J6L4N2O1N2N2M3N2N3L4M3M4L4L8HcTg7"}, {"size": [848, 480], "counts": "lVm25>e0L3J6O2O0O101O0000000100O1O10O0100O001O001O0001O10O1O0O2iInAOR>LbBE_=9lB]OU=a0VCUOke0VBlNj=Q1_BiNa=V1dBeN^=X1kBaNU=]1SC\\Nnki0b0B6J7H6K7K2N2L5L3N3M2M4M2N1O2N3M1O2O0O2OO2N1N2O2M2O1N2N3K5L3L5L3M4L4N2O1N2O0O10000000O100O10O100000O1O01O101N1O1N2O1M3O1O2N2N2N3L3J6DgnP4"}], [{"size": [848, 480], "counts": "Uaa49Uj0200M3L4L40L43K2M3O100O1L30100L40N200000M2O2M3I6M4M3N0O3O1O1O100O10000O1001O0000001O1O1O0O2N2M3BUWOUOmh0c0TWOTO17mh0a0\\WO]Ofh0a0f0N2L3N4M3Mhi\\6"}, {"size": [848, 480], "counts": "TVa36Uj05O10O2K4M13M3M4M1M3N2O1O1N2O1O00000000100O1N2O1000O010000000000001O00000000O101O0O1001O00O1000000000000001O01O01O01O001O0010MSKSO[@l0a?AW@>j?GQ@7P`04f_OK[`06d_OI\\`09c_OE_`0<`_OCa`0=o\\OWOc0<^b0>h\\OA2BlNa0Yd0?c\\OECn0kc0JQ\\O^OHR1Vd0i3O1N2O1O2N1O2N2N2N2O0O3M2O1f\\OfI\\b0[6`]OiI^b0Z6_]OgIab0Z6\\]OiIcb0X6Z]OjIfb0W6W]OkIhb0P7O00000O1000000000100O0000nNX]O\\Jib0^5^]OaJab0Y5f]OfJZb0V5j]OjJVb0U5k]OmJSb0R5n]OnJRb0T5l]OmJSb0U5k]OkJUb0V5j]OjJVb0Y5g]OgJVa0]OP_On5IeJTa0Fm^Og5NcJSa0Mg^Od54_JSa0i6l^OVIRa0n6k^OTISa0n6k^OSITa0V8MQOm^OfHPa0\\7P_OeHn`0_8O1O2O0O2O0O2O0010OO2O000000000000001O0000O10001oJT@\\Ol?>l@POT?l0WAmNj>o0_AkNa>R1eAkN[>S1jAjNW>S1oAiNQ>U1UBgNk=V1\\BeNf=X1_BeNb=X1bBfN^=W1hBfNY=X1jBfNV=^OW_O1f3>T=]O[_O3d3=Q=^O^_O4d3;o<^O`_O7c37o<^Oa_O;c34n6\\ADg><^A[Oe>e0_AQOh>n0^5O1N2O0O101N1O2O1N2O1O1N101O000000100O010O001O001O0010O01O00O2M2L4K6J5J6lNT1M3M4L3L4N2O1O2O0000000000O1O2N1N2QNPYO;Sg0BYYOWOVO4Uh0a0a1K6IYhj2"}, {"size": [848, 480], "counts": "dQj31^j03N01N10N4M2N10000O100O1O2M2O1O1O0O2N1I7F:M101L5K6I6K6`N[NnYOk1le0eN\\YOh1cf0n04L5M02O1ON011N4M3O1N3N10O01007hYOPMcd0b3`ZOoL[e0T4OO1000010M5L2N2O1N2O1O1N4cNaZObMde0o1i1J5J4A>I7N3M3L5L6I8H9FSSg6"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "W[n65Uj0?D7G8I7K4L5L3K5M1N2N3N1O2M3N1O2O0OO2N1O2N2N2N2N2M3N2O1N2N200O2O1O010O2O2M2N3N0O1O1O2N1O1N2O1N1O2N101N1O2O1M3N1O1N3L6GW_m3"}], [{"size": [848, 480], "counts": "l\\l44Zj03N2N2M2O1O2M3N1O1O1N3N1M3O1O1N2N2N2M2L5I7K5N101O00010O01O100O001N3M2M3N2N2O1O2N1O1O102D;K5O0O2N2N3N5G_RV6"}, {"size": [848, 480], "counts": "bZ\\37Uj06L3M2O2M2N2O1O1O1O10000O010O2N010O1O1O1O1O0000100O001O010O1O10O010O01000O001O100O10O10O10000O010O1O1000O10O10O10O1000mLROd\\Om0Yc0[Oc\\Oe0[c0^Od\\Ob0eNUOPc0dNZOPc09[^O>dNZOPc09\\^O=cN\\Oob08^^OS]OP28`Meb0a0Q]OQ2:^Mcb0c0Q]OP2=^M`b0c0P]OQ2`0]M^b0e0n\\OQ2?^Mbb0d0k\\OQ2c0YMbb0b4_]O]K`b0d4a]OZK_b0g4b]ORKWO_OWc0`5a]ORKbb0o4^]OQKbb0P5\\]OQKdb0P5[]OnJ\\OBRc0`5b]OnJ]OCPc0_5a]OQK_O[OSc0e5\\]OSKib0m4U]OUKjb0k4U]OWKkb0i4m\\O_KRc0a4l\\OdKRc0\\4l\\OgKRc0Y4P]OfKPc0Y4R]OgKmb0Y4T]OfKkb0[4U]OeKkb0[4U]OeKkb0[4U]OeKjb0\\4V]OdKjb0\\4V]OeKib0[4W]OeKib0[4X]OdKhb0]4W]OcKib0^4V]ObKjb0_4V]O`Kjb0`4U]OaKkb0`4T]O`Kkb0b4T]O^Klb0e4P]O\\Kob0S6mNfHP_OZ7j`0PIQ_OQ7l`0UIQ_Ok6m`0ZIP_Of6n`0^IP_Ob6o`0aIo^O_6Pa0dIn^O\\6Pa0hIm^OY6Ra0jIk^OW6Ta0kIj^OV6Va0a10100O100O100O10O1000O10000000O1000000O10000XLa_O^M``0`2e_O]M\\`0]Oe^Om0Q1EZ`0ZOl^Om0m0FX`0[OP_Ol0i0HW`0\\OS_Oi0h0IU`0]OV_Oh0g0IT`0]OW_Oi0g0HR`0^OX_Ok0h0CR`0AW_Ok0i0BP`0BY_Ol0h0@P`0BZ_Om0i0^Om?D]_Om0g0\\On?E\\_OP1g0YOm?F^_OQ1h0UOk?H__OS1j0oNi?K`_OW1i0iNi?Ma_OZ1h0eNi?Mc_O]1h0aNg?Nf_O`1e0^Nh?Li_Oe1c0YNf?Lo_Oh1>WNh?JP@n1:SNeb0g1Y3I8H7H5L2M3N2M1O1N10O010001N10001N010O2O000O1O1O10O01O01O1O100O100O1N2N101O1O02N2M3O001O001O10O0100O00100O1O1O1O010O2O001O1N3M3M3L^nc2"}, {"size": [848, 480], "counts": "d\\h31]j03M201O000000000000000O100N2K4K6N2N2O1N2N1M3K31001L5I6J7I6`N^NmYOg1le0mNYYO`1hf0m05N3O1O010NN4OO1O102N3N101O01O6mYOPM\\d0\\3mZOSMod0W4001O0O101N2M3N2N2O001N2hNRZOlMPf0i1gZOeM_e0_1kYO`Nlg0Z1VXOcNRh0U1g0M3M2N4L4L4L5K7H7JUSg6"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "jhV74mi0f0E;F6J5K4L5J4N3M3N2N100O1N1ON31O0001N1O2N2O1O1O2O001N2O1N3N2M4M3M6I5L;D9G5K4L\\U4MS^l3"}], [{"size": [848, 480], "counts": "]ld47Vj04M2O2L3N3N1N2O1N3N1O2M2O1N2O0O2N2F:J6L3O2O1O000010O001O1O1O0O2N2O1N2N2O1O101O0L4O1O1N3M202_OgVOGZi07gVOIYi07hVOG^i02eVOL^i0OS^^6"}, {"size": [848, 480], "counts": "Uko23Xj09H6M2M2N3L3O2M2O1O1N2O1O001O1O1O1O001O1O00O100010O010O001O010O0001O0010OO2N2O1N101O1O01O10O01O10O0010O0010O1000O0100O0100O10O100000O100_XORO`e0m0^ZOWO`e0i0_ZOZO`e0f0^ZO]O`e0c0_ZO_O[`0FnBj0fLCZ`0EnBi0gLCZ`0FnBg0gLDY`0GoBe0hLEY`0FoBe0fLHY`0DQCc0eLKY`0CQCc0dLL[`0APCc0cLO\\`0_OQCb0`L2_`0\\OPCb0^L6a`0YOQC`0ZLUOR@P1X1Fh>XOR@n0^1Db>\\OQ@n0e1_O\\>@Q@o0m1VOW>BT@S1_2_Nf=5Q@W1gd0_N`[O]1kf0O2N2O1N2O1O2M2O2N1O1O1O2N1O2N1O101N1O1O1O1O100O1000O010O1O001O1M2N3L4J6L3K6E:[Oe0J7K4M3N1O2N2O0000O1N3K5K5H8E;B>G9G9J7K4M4M3M3L5J7Eh^b2"}, {"size": [848, 480], "counts": "dQj31[j04001O1ON2O2O0000000O001M3M3N2M201N2M2K6J5M201L4K5K6I6J5]NjNeYO^1[f0V14J70O20O0N01O0N23N2N3M2O1001O2N8hYOUM]d0S3V[OSMid0[4O0000O2N3M2N2O1N2O2N2M2cNVZOPNme0o0QZO`Nbg0_1`XO^Ndg0`1\\XO^Njg0]1WXO`NQh0Z1QXO`NYh0Z1a0M3N3L5J6K6J7HhXf6"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "km^7Yh0_OVXO4mg0HYXO1lg0Jdji5"}, {"size": [848, 480], "counts": "b]i33Wj0U4P@mKZ11_>]4n_OcKc14X>l5gAXJT>i5lA[Jn=h5RB[Ji=f5WB]Jf=d5YB_Jd=a5\\BaJb=`5\\BcJb=]5^BeJ`=[5`BgJ^=Z5aBhJ]=X5cBiJ\\=W5cBkJ\\=V5cBkJ\\=U5eBkJ[=U5dBbInNF]>h6eBbISOAY>m6dB`I[O[OS>T7cB`I@SOP>^7_B`Ig>`6ZA_Ig>a6XA_Ih>a6XA`Ih>_6XAaIi>_6VAbIi>^6WAbIj>^6UAcIk>\\6UAeIk>Z6TAhIl>W6TAiIm>U6TAlIl>S6TAnIl>P6VAPJi>o5XARJg>m5[ASJd>j5`AVJ_>k5`AVJ`>j5_AWJ`>k5]AWJc>k5ZAVJY=nNVBm6?UJW=\\OPBb6f0SJX=AmA_6h0QJY=EkA\\6j0PJY=KfAY6n0lI[=j7bBXH]=k7`BVH_=m7^BSHa=P8]BPHc=S8ZBnGf=S8WBnGi=T8UBlGk=Y8oAhGQ>\\:0O001O001O1N2O1O001O1O100O1N2O1SJQBWOQ>e0XBUOi=j0]BoNe=P1bBhN`=W1eBeN\\=Y1iBbNX=]1lB_NU=_1PC]NQ=`1UC[Nmm0]AjNi>S1]5L11O0101N2O1O1O1O1O00000O10010O0O00000010O0001O001O000oNgVOk0Yi0TOhVOl0Xi0SOiVOl0Yi0ROiVOm0]i0O1O1O100O100O10O01O100O1O001O01O001O00010O001O00010O0001O00010O01O01O1O0010O01OO1O11O01O01O00001O01O001O001O01O00010O0001O010O01N1100O01O0100O100O0010O010O00100O100O1O0001OO2O000O2O1N2N2O1O0000001N2N2N2NiV7"}, {"size": [848, 480], "counts": "Tlj31\\j04N1O2O000O100000000O1N1L5L4N2N2N1O2I6I7O1M3J5K7H7K5]NcNoYOb1ge0e12I8K4NM4010N3N2L4N2N3M2N3O0101O3M7I4L6K?@2N6PZObKce0f40O2N2N1O2iNQZOiMPf0R2UZOmMle0Q1QZOgN85je0Q1PZOaNfg0Z1]XOcNkg0W1VXOeNRh0V1f0N1N2N2M6K4L7I6I8HVSg6"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "oiY7c0hi09J4J6K5L6J5K4L4M3M1O003L5L2M3N2O1N1O1O2O0O100O2N000000O3N1N2O2M3M2M3O101O1N2O2N001O0010000N2O100N2O1N3N3M2M3N2N2N1O1O1O1N2N3L4M2N3L3O1N3L5L3L4L5Lc\\V3"}], [{"size": [848, 480], "counts": "Xkg67Wj03M3M3M3N2M2N3M2N2O2N1O11O001O01O01O001O001O01O01O0000100O1O0VO_VOe0gi0O01O00001O00010O0001O1O1O1O1O1O3M1O1O1O1O001N2O0O101NmhT4"}, {"size": [848, 480], "counts": "jSV55Yj03M3N2N2N1N3L4L3M4M3L4L3N3M3M2QKfNe@^1T?jNh@X1S?nNj@U1m>TOQAm0h>[OUAh0e>]OYAe0a>C\\A>_>H^A;Z>3^ANZ>a0]AA^>k0ZAWO_>T1ZAmN`>`1XAbNa>i1YAYNa>P2[ARNa>T2ZAnMc>X2XAoLUNgNb`0_4TAiL_NeN\\`0e4RAgLdNbNY`0j4PAdLkN`NR`0P5QA^LRO]Nn?W5n@]Lo?f3n_OZLR`0i3l_OWLR`0m3k_OTLT`0P4g_ORLX`0Q4e_OoK[`0T4a_OnK]`0V4^_OmKb`0U4[_OkKe`0X4X_OiKh`0Y4U_OhKj`0\\4S_OdKm`0^4Q_OaKPa0a4o^O^KQa0d4m^O\\KSa0g4j^OXKWa0k4e^OUK]a0m61N2O2O0O1000YA[Ge;d8WDeGd;[8[DhGc;W8]DlGb;S8\\DQHb;n7^DUHa;j7^DXHa;h7_DZH`;d7`D^H_;b7`D`H`;_7^DdHa;[7_DhH`;W7UDUIj;j6UDYIk;e6UD]Ik;b6TD`Il;^6TDdIk;\\6SDgIm;X6RDkIl;U6RDnIm;R6RDPJl;R6RDPJn;o5QDSJo;l5oCWJPni06K4L3N3N1O20O001O001O001O00000O10000000001O0O100000O1O100O10000O10000O10O10001O000O2O001O000O2O1O00001N101O0O1O1O1O10000O2N2Ngef3"}, {"size": [848, 480], "counts": "joh5f3gA[LX>i3cAXL]>n3\\ASLe>l7O01O001000O10O11O[Om@mER?Q:QAoEo>o9SAQFm>m9UASFk>k9WAVFh>f9\\AZFd>c9_A^F=DjU^OTOl0?Qa05ZAKQ?]O\\Ac0Yd0O010O010O01O010000O10000O1000O010O100O100O010O1O1O1O010O1O100O100O01O01O000001O00001N2O002N1O1O1N1O2N3M3JoRl1"}, {"size": [848, 480], "counts": "Pko31^j0100O1O1O1N2O0O3M3L3N2M3I7F9N2L3K7J5I7K5^N^NRZOf1ke0eNfYO_1]f0iNWYOT1Pg0S12000O1ON30ON2O102N2N2O200O05bYOXMkd0`4G1O0O20O00001N1O2N2N2O1O1O1bN_ZObMme0T2[1WObXO]Nag0BcXOc11bNcg0IbXO_1dh0L2N3M5K4K8H6J9EXSg6"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "TWa7g0hi05In0PO7L3M002N2O0O101N2O1O100N201N1O100O1O101N1000000O101OO1O10O10O1O10000O2O0O2N101O1N101N1O1O2N1N4J5M4M3L4L4K5K7J:Dc][3"}], [{"size": [848, 480], "counts": "gbS77Uj07J3M4L4N1001O001O0001O0000O1000000000O100O10O01O1O1O001O1O100O100O010O100O1000O100O10001N101O0O100O1O2O000O1O100O1O2N1O1O1N2N3O00001N2N\\i`3"}, {"size": [848, 480], "counts": "i[Q6?ji0:E:F9I7K5H9Hg0ZO?[]OWMl_3eAfLU>a3eAcLW>b3eAaLV>e3cAaLW>f3cA_Lh=W4QBoKl=T4oAQLo=R4jATLT>n3aA]L]>f3\\A`Lc>b3XAaLh>b3o@eLP?_3]@QMc?n6O010O100000O100O1O100O10001O0O1OjNlESB[9XOmF`>3RBl8CPG:B28R<`0mCa8JSG00L4X<fNQLg[O[4Rd0T1K6E:D=\\Oc0[Oe0E;J7K5J5I7`@kFc=X9cAfGX>\\8`AmG^>Y7ZAkGMW1g>f6jAoIT>S6fARJY>g5\\AhG1k2b>j8ZNaD[D`;`;hD[DY;a;mD\\DT;a;REZDP;d;TEYDm:f;VEWDk:g;YEVDh:i;\\ESDe:l;^EQDc:n;`EoCa:PDXAQ4ITOg0YMj=k8WBVGd=m8\\BTGa=n8_BTG^=l8cBVGZ=j8fBYGW=T8[CPHbf3jB]K[=\\4_CmJfgi0i0^O7I;D9I5L5J5K4N3M1N2O2M2O100O1O10000O10O100O101M2O1O2N1O1M3L5G8N2L4O2O001O1O01000N2O1O3L3N1N2O2N1N101N2N1N2O1N3N1O2N2O1N2O0O2M2N3M3L4L4K5Khkh0OcSa0"}], [{"size": [848, 480], "counts": "nXb71[j05L5M2L5L4M2O1N2O1O1N2N3M101O0O2O1O1O0O2O0O2O1O1O10O01000000O11O2N1O1N3M2O4K4L7I7I5K3M3Ldme3"}, {"size": [848, 480], "counts": "gbl6:Pj07I7I7J6E=D?Ab5XAdJd>^5ZAfJc>\\5[AfJc>[5\\AgJb>Y5_AhJ`>W5`AkJ^>V5`AmJ^>T5aAoJ\\>R5bAQK]>n4cATK[>m4cAVK\\>j4aA[K\\>f4aA^K^>b4^AcK`>^4]AfKa>[4^AgKa>Z4\\AjKa>X4]AjKb>W4[AlKc>V4[AkKe>V4YAkKg>U4XAmKf>U4XAlKh>T4WAmKi>T4UAmKj>T4UAmKk>T4SAmKl>T4RAoKm>R4QAoKn>S4o@oKQ?Q4n@PLQ?R4l@QLR?P4l@RLS?P4j@SLR?Q4k@RLm>U4QAmK[>h4bA[KU>m4iAVKQ>P5kATKP>Q5mARKo=R5nAQKn=S5mARKP>i8N3K4L4OkNdBVE[=j:jBREV=m:SCkDmQ1VBiNk=P1_BlNb=l0hBQOZ=j0kBTOV=k0lBSOU=k0oBROS=l0oBROR=l0RCQOo`_OAb`0>__O_Od`0`0]_O^Oe`0a0\\_O\\Of`0c0\\_OZOg`0e0Z_OXOj`0e0X_OYOj`0e0X_OXOk`0f0X_OVOk`0g0Y_OUOi`0j0Z_OQOj`0m0Y_OoNi`0o0^4N3K5L3O001O001O2N100O01005J01O1O01O000001O01O01O000001O00001O000001O01O000000001N1001O00O100O100000000000001O000000001O001O001O0000000000000000]H"}, {"size": [848, 480], "counts": "`_Y35Zj0101O00000000000000000000000O1DiXO@Yg0>iXO@Wg0`0kXO^OVg0a0mXO\\OTg0c0oXOYOTg0e0PYOVORg0j0PYOROTg0k0oXOQOTg0m0oXOmNVg0P1V1O1O1O1N2O2N1N201N2N3K5M4JQmT1"}, {"size": [848, 480], "counts": "TRm21[j05O00000O101O00001N100O100O10O01O1N2K5M2K6M2I6G9K4N3L4N3_N\\NUZOf1ee0fNSZOZ1ke0QOhYOS1Xf0^13N2O2N1M40O1001N1O3M2O10010O04lYOZMXd0b4M1O000010O0O101N2N2N3M3L4cMSZOOSf0NnYOJ\\f03fYOjNag0P1bXOfNmg0Q1n0K4L4L3M4L5K6I6JXXc7"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "gb\\8d0ei0hf0BYYOcMgYOgNmg0T1UXOhNQh0T1RXOgNSh0V1RXOcNSh0Z1d0N1M4M3L8G7K4M2N3KhoR8"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "Udo7b0ii07I7K5J6L3M3M2K6M3N1N2O2M21O2N010O0100O01O000O2O1O0O2O001M4M2O2M3N2N3M3L6L3K3M2N2N1N3M2DdcX3"}], [{"size": [848, 480], "counts": "hW`;2]j03M3L4M5K5K5K100O1O1N1N3O00001O00O11O00O110O1O1O1O010O2N1O3L3N2N3L5K5Jg^O"}, {"size": [848, 480], "counts": "fQj57Vj05M2N1O2N1O1O1O1O1O100O100bWO_Olf0b0PYOGkf09PYO0kf02RYO2lf0NQYO7mf0IQYO:mf0GPYO=of0CnXO`0Qg0BkXOb0Tg0^OjXOe0Tg0\\OiXOh0Ug0YOfXOm0Yg0V1N101N1O2N2N1O2N2N2N2N2N2M3N1O2O0O2O0O2O0O2N101O001O001O00001O1O001O0001O00000000SOSLV[On3fd0ZLV[Of3gd0cLP[O`3nd0R1O1N2O1O010O0010O0100O10O100O010000000O1O100O1O100O100aLP[O]1Qe0^NW[O_1id0`NZ[O]1hd0aNZ[O^1fd0bN[[O\\1fd0cN\\[O\\1dd0dN][OZ1ed0dN\\[O[1ed0eN[[O[1ed0dN\\[O[1fd0dNY[O]1gd0bNZ[O]1hd0`NY[Oa1hd0\\NZ[Oc1gd0[N[[Oe1fd0WN\\[Oi1gd0SN[[Ol1gd0PN[[OP2hd0jM\\[OV2gd0cM][O]2gd0YM_[Og2Uf00O101O000O10001N1O2O0O2O0O1000PNjXOf0Ug0ZOmXOe0Sg0ZOnXOf0Qg0[OnXOf0Rg0ZOmXOg0Sg0WOlXOl0Sg0TOPYOk0of0TORYOl0mf0TOUYOk0kf0SOWYOm0hf0SOYYOm0ff0TOZYOl0ff0SO[YOm0df0SO\\YO9ITOjf0c0^YO8IVOhf0b0_YO7KVOdf0d0bYO5KWOne0FWZOn015JWOie0]1]ZO[OKYOee0]1aZOYOLYObe0_1bZOXOLYObe0^1dZOWOK[O`e0^1fZOWOKZO_e0^1gZOWOK[O^e0^1hZOVOI]O`e0[1hZOXOH]Obe0X1gZOZOI]Obe0V1fZO]OH^Oce0R1fZO_OH_Oce0P1gZO@G_Oce0o0gZOBF_Oce0n0hZOCE_Ode0m0gZOCG_Ode0l0eZOEG@fe0g0dZOIF@ie0d0aZOLF@Rf0:YZO6F_OUf07UZO:F_OWf04TZOFCWf0LSZOb0FBXf0JSZOd0EC\\f0BQZOj0DDbg0<^XOE`g0;aXOE_g0;aXOE_g0;aXOE^g0;cXOE]g0;cXOE]g0;cXOF[g0:fXOFZg0:fXOFZg0:eXOG[g09eXOHYg09gXOGYg08hXOHWg09iXOGWg08jXOHVg08jXOHUg08lXOHSg09mXOGSg08nXOHQg09oXOHPg08PYOHof09QYOGof08RYOHmf09TYOFlf09UYOGjf0:VYOFjf09XYOFgf0;YYOEgf0:ZYOFef0;\\YODdf0;]YOEcf0;]YOEcf0:_YOE`f0^OZf0d1[YOhNeg0T1`XOaNmg0X1h0N3K3N3M3M5K6J;DknW8"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "kPi7VWO_Ojh0b0b0000O101O0gWO0Qf02cYO?Wf0A]YOQ1\\f0QO_YO_1Uf0bNhYOf1Rf0ZNlYOi1Rf0YNkYOk1Sf0UNkYOn1Tf0SNjYOm1Vf0UNfYOm1Zf0S12J5001O100O2O0O1O100O2O1N101N101O0O1O100O1000001N1001O0001O00000O101OO10000000001O0000lNoKi[OQ4Sd0VLi[Ok3Td0[Lh[Of3Vd0`Le[Oa3Zd0cLa[O_3]d0[1O1O001O1O100O1O10O010O100O10000O010O2O0O100O2O0O1O1O1O1O2O0O1O2N1O1ZLS[Oh1od0VNR[Oi1Pe0TNS[Ok1md0TNT[Ok1nd0RNU[Ol1nd0oMV[Oo1ld0lM\\[Oo1fd0mM^[OQ2dd0kM`[OT2bd0hM`[OW2bd0cMd[O\\2`d0YMg[Of2Sf0N2O1N3M2N2O2M2N4L5J7J3L6K4L3M2N2N1O1O1O010O010O01O10000O101O0O3N1O1N2O2N1O100O101O000O10O02O0O10000000010O1O2N2O0O0001N1O2N1O2N1O2N3M2N1N2O000O100O00100O10O0100O0010O00100O10O10OVOoVO6Ri0JoVO5Qi0KoVO4Ri0KPWO4Pi0LPWO3Pi0NPWO2Pi0MQWO2Pi0NPWO1Qi0OoVO0Ri0OoVO1Qi0OoVO0Ri0OoVO1Qi0OoVO0Ri0OoVO0Ri0OPWOOQi01oVOMSi03e000O10000000O11O000O101N2N3M2NTA"}, {"size": [848, 480], "counts": "WfV26Yj02N100O1001N0100O1O2M3H7M3O1N2N2O1O1O00O1N02L4K4M4F9H7cNVNUZOl1ge0cNmYO_1Rf0hNeYOZ1\\f0kN\\YOX1cf0X12NO1OO301N3O001N3O0O1OYZOSMnc0n2n[OYMoc0g2o[O\\Moc0e2o[O^MPd0d2m[O]MSd0T3Z[OoLed0^40000001O0O2N2N3M4K6J7F7XNQZOgNTf0U1`ZOVNee0Z1]YOaNVh0\\1`0N4M5L3L4L5K4L6J7I6H^iX8"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "kab8e0gi06K5J6K4M3N1N2L5L4M2N2N2O1O1N1O2O2M2O1O10001O0001O001O1O100NUXOkM]g0U2`0O2M3_OaWOkNch0Q1eWOgN_h0T1c0L7J3L3N3M2M3N2M7EZkd2"}], [{"size": [848, 480], "counts": "nek86Yj03L4M2O1N1O2O1N2O2M1O2N3M2O2M2N2O100000O010O100O1O2SOnVO8li0H2Okhi2"}, {"size": [848, 480], "counts": "kcf55Yj03M2N2N101N10O1000O10000010O00O2M2M4K4L5K4M3N2N3M2M3O0ON3L4O2N1O3M101O000O2O1O1O1O1O1O1O00100O100O0100N2O101O1O1N2O2PWO0]g0e1K4L4L4M2N2N2N1O2N3M2WZOlLRd0W3i[OQMRd0Q3j[OTM]OWOK4Ud0b3_\\OTMMUOfc0i3Y\\OSM^d0o2`[OQMad0P3\\[ORMdd0o2Z[ORMfd0o2V[OTMid0n2U[OSMkd0Z4O0O4M0O10O010O001N1O2M3LeNVKX]Od4kb0cKQ]OY4Qc0lKl\\OQ4Uc0SLi\\Oj3Yc0XLe\\Og3[c0]Lc\\Oa3^c0aLa\\O^3^c0eL`\\O[3`c0hL]\\OX3cc0jLZ\\OX3fc0jLV\\OX3ic0h100O101O0O100O1000001O0000000O11O0O1000h\\O_Iab0a6^]OdI^b0\\6`]OhI^b0X6a]OjI^b0V6a]OlI_b0S6`]OoI_b0Q6`]OQJ_b0n5a]OTJ_b0k5a]OVJ^b0j5a]OXJ^b0h5a]OYJ`b0f5_]O\\J`b0P1Z]Oc26`L_b0i0_]Of21dL_b0c0c]Oh2MgL`b0?e]Oi2JjLab0:g]Ok2HmLab04j]OP3@QMfb0Jo]Oe4Pb0WKS^Oi4oa0QKU^OP5ma0cJ^^O]5Zc000010O00O2ROo[O[KRd0b4R\\O[KPd0b4P101O1N2WM]ZOc0de0\\O^ZOa0de0]O]ZOb0fe0\\OZZOc0he0\\OXZOd0je0ZOVZOe0me0YORZOg0Pf0XOPZOh0Sf0UOmYOj0Qg0XNoXOi1Vg0RNjXOn1Yg0oMgXOR2\\g0iMeXOW2jg01O1O1O2N1N2O1O001O1N2OSO_XOmN^g0S1dXOoNYg0P1hXOQOWg0n0kXOSOSg0l0nXOUOPg0j0RYOWOmf0h0UYOXOjf0g0WYOZOhf0e0ZYOZOff0e0\\YO[Ocf0d0_YO[O`f0e0bYO[O]f0d0dYO\\O\\f0c0gYO[OYf0d0iYO[OWf0d0kYO[OUf0d0nYOZORf0e0PZOZOPf0e0SZOXOoe0f0VZOTOle0j0n1O1N2O2M2O2N1O2N2M3N2N2Me[W1"}, {"size": [848, 480], "counts": "gaR22[j06L100O10000O10001O000O100O2O0O1N3N1M3M3N1M4L4M1M2N3M3J6J7L4L4_N_NoYOa1Qf0kNbYOS1df0Z12100O00N00O2002M4N1O2N1010O011QZOZMRd0l2c[O[MZd0n2Z[OWMed0T3lZOPMUe0T410001O0O3N2I7K5L5M2N4J5eMeYOmNkg0P1XXOkNmg0Q1XXOiNmg0T1j0N2M3M4L3M5K5K5JSY[8"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "nfo85Vj0;F6K3M3N2N2N2N2O1N2N2O2M2O2M3N1O1O2N101M3N1O11O00001O1N3N2N1O2N2N3M4POPWO8hi0L4L1O3M4KVj[2"}], [{"size": [848, 480], "counts": "PaQ97Sj08I7L3N2O1O1O2N0100O100O01O001O001O01O010O1O1O3M3M2M2O1N2N2N4K4LWd`2"}, {"size": [848, 480], "counts": "Xfl6;Qj04M3N2N2N1mNS1M3OO0001K6L5K4M3M3N2M2N^OgXOSNXg0j1h0O010NnWO`NT3L\\`0b2\\_OfM``0_2X_OgMe`0\\2b^O^NZa0e1^^ObNaa0`1Z^OdNea0^1W^OeNha0^1R^OfNma0`1j]OcNVb0a1c]OcN]b0`1\\]OcNdb0a1V]ObNjb0`1Q]ObNob0a1k\\OcNUc0[4000001OO2N1M4CQ7l@gIQ?X6h@SJU?m5e@ZJZ?f5c@^J\\?b5b@aJ]?^5b@eJ]?[5a@gJ`?X5^@kJb?T5]@nJc?Q5Z@SKe?La_OP3g0WMi?Fc_OR3b0ZMl?Ad_OU3=^Mn?ZOh_OX36bMS`0SOi_O[31fMW`0jNk_O`3JjM^`0^Nm_Oh3CmMb`0jMZ@Y4ROnMi`0]M\\@e4jNoM^b0R5O01O0O1nNc]OQJ^b0k5k]OoIUb0n5o]OPJSb0m5P^ORJPb0l5T^OPJoa0n5T^OnIoa0P6T^OlIoa0Q6Y1O2M2N3M4L4]La[Oo0bd0nNc[Om0ad0POc[Ok0`d0TOd[Of0`d0WOe[Ob0_d0]Oe[O>^d0_Og[O;]d0Cf[O8]d0Gf[O4^d0Jf[O0_d0Le[ONbd0N_[O0hd0I[[O5jd0EY[O9md0@U[Oa0md0ZOV[Of0Zg01O2O00O2N2N2N0O2N1O2N1N3N1M4L4IhWa1"}, {"size": [848, 480], "counts": "V\\S27Yj00O10000O1O100O101O0O1O1O1N2N2M3M3M2O2O1M3K4I6M1M4L5J5cN[NRZOg1he0gNmYO\\1oe0nNeYOW1Wf0^14K5O11N10N1O2O1O101N3O0O2O0012N8fYOSMad0U3P[OTMnd0X4O000001N101M3M3M4M4K5K4hMjYO0[f0KjYORO[g0g0jXOoNbg0k0bXOlNgg0Q1\\XOdNng0Y1f0O3L4L3M5J6K6IQn\\8"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "hS\\9VOl^OQO[1n1f?ROi^O[OS1m1S`0hNb^OIR1c1Z`0eN]^O3S1[1_`0eNQ^Ob0W1j0g`0W1l^OoNTa0Z1]^OlNba0P51L4N3O001O0O1N2I8H7N3N2O1N2N1N3M2N3M2L5K4L4L4K5L5L4M2N3MkNYJf]Od5Vb0RK\\]Ol4cb0ZKZ]Oe4eb0^KY]Oc4eb0`KZ]O_4fb0dKW]O]4hb0eKW]O\\4gb0gKW]OZ4gb0kKQ]Of4ab0i1K5K3M3N2M3N3X@_G[=i8dAWHT>_8SAgGk>^8l@gGS?l9O0000000000000000O100O2O000O101N101N1hFe@[7\\?aHi@\\7Y?aHi@_7W?_Hm@`6ClHb?`0PAn54_Io>>RAk56fIi>;UAj56jIg>7YAi55nIf>1ZAl56QJh>C\\AS5mN\\KT1L\\`0[3Q@aLH3X`0T3[@bLA8U`0k2hBSMY=e2PCYMR=[2[CbMf]O>J5L5L4K5L7I6I8Fmb^8"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "ana98Qj0]MZAi2f>XMUAl2j>VMQAm2o>UMl@o2S?RMf@T3Z?mLQ@_NcNf4`a0lL]_Oj3j`0WLS_Oi3n`0YLo^Oh3Ta0XLg^Oj3[a0VL`^On3aa0TL[^Ol3ga0YLl]Oo3Tb0U21N3N2N1M4L4K5I9H;G5K4M3N2N2N1O2N2N2N2MnNjIP^OT6fa0bJP^O[5Pb0jJm]OU5Rb0PKl]Om4Ub0XKg]Of4Zb0^Kc]O`4_b0cK^]O[4db0jKV]OV4lb0f1010O01O2Z^OiIP?X6c@\\JU?f5a@gJETNOL^>[7cAZLY>P8O1O0000001N1000000000000000000000O100000001O2M3gEbA\\8_>aGeA]8\\>aGgA\\8[>\\GmAc8T>WGRBh8o=RGXBl8j=mF[BR9k=^F`BU6oN`K0gNY`0b5T@ZKJROS`0^5_@UKE[Ol?Z5WA]JZO7a?U5oBdJT=U5Y4jNU1QOo0E;I6N3O0O2M2J7K401O0O101O0001O01O001O010O2N2N10O01O0O101O5J9H2M3N1O1N2O1O1O2N100O2O0O100000O001N1fND_XO=^g0H^XO:_g0OWXO5hg03kWO2Uh0U1N2F92O0O1O1O1N2L5J6I6I8A`0G8K8IZ^d0"}, {"size": [848, 480], "counts": "jbm12\\j03N2O0O2O1N1N2O100O100O1N2O1N1N3M3N1O2N2L3J6M0O103H8L4L2]NdNRZO`1me0gNhYO\\1Yf0jN^YOW1df0nNVYOT1jf0V11001M4N00N2O2N3O1O2N1010aZOkLcc0U3W\\OSMgc0m2o[O^MPd0d2l[O^MTd0m2][OXMbd0R3iZOYMXe0o30000001N2N2N2O1N2N4L6J6RNo1XOQXOaNTh0X1VXO^NPh0^1c0N4L3M4L4K6K7H7Inla8"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "moj96Rj0e0A3J6J8I6I7J6K4M2O0ON4M3N2O1001OO2O001O100O1O100O100O1O2N1O1N2N2O2N2M4M1N4L3N1N2O1O1O2O0O1O101N1O1O0O3CkcV1"}], [{"size": [848, 480], "counts": "\\_V9>mi05L5N2O01O00010O000O101O000O1000000O101O2N1O2M2O1O1O1O1O0O1O2N``\\2"}, {"size": [848, 480], "counts": "]Po62\\j03M3L4M2O2N1N2O1N1O2L4L301O0O101P^O^OP:d0nD?o:CkDd0R;_OhDf0V;]OeDg0Z;ZObDj0];WO_Dm0_;UO]DP1a;RO[DQ1d;POXDS1i;mNTDV1k;kNRDW1o;iNmCZ1S[3]`0[NmAU3R>lLhAY3Y>fLdA^3[>cLaA`3`>`LQA[3[NTKd`0a1c@e3T`0[Lg_Og3[`0[L[_Ok3h`0]L\\^OT4ga0W24M2N3M3L4M2M4K5L3N3M2N3N1O2M2O2M2O2M2O2N1O1ObNVJP^OVOJe6Vb0]1OO2O100O2M3N2N2O20O010O10000O1a^OeHBEZ?g7j@UJj>m5n@]Jj0kMabLiAa3Y>_LcAc3_>^Lc@kN^No4Pa0WL]@_4e?bKS@c4o?_Ki_Od4Z`0f22L5K5L4L4L4K4K6K5L3K5L4M4L3N3M3M3M3N2M2N3N2N1O`NYJ[^Oe5ca0aJ[^O\\5ea0iJX^OV5ha0mJX^On4ja0UKU^Og4na0[KR^Oa4Pb0bKl]O]4Vb0l11O2O010010O1O100O101Z^OeHU`0\\7]_OZIY`0\\9SO4L3N2M2Ne0SAeD[=ZVOR@QGo?m8V@PGj?o8Y@oFh?n8[@PGf?o8[@PGf?f6f_OZKf0nMe?_6T@ZKm`0^4`_OXKd`0f2P_OoLk0L\\`0S3X_O\\Lbc0c3f1cNlYO^NUf0o2O002N4L2NJ7N2L4M4L3M4L3L4M4L4J8J6I6H8H8H7K5N1O1O2N1O2N1O1O2M2O4K2O2N1N3M2O1N101O0O1000O01000O01O1O00000000F;1N1O010O1N2O002N1O1N11000N2O00100O1000O100000000001O0000bH"}, {"size": [848, 480], "counts": "[Tf11]j04M1O2N100O1O1O101O0O10000O001M3N2O001N2N2M3M2N3N1M3J6I8F9UN^N`ZOk1\\e0cNRZOb1oe0kN\\YOY1if0S14N10O01NO3NO2N3N4M2N2O2O000OYZOUMlc0k2n[O^MPd0c2l[OaMSd0`2g[OeMYd0b2\\[ObMdd0l2fZO\\MZe0m3001N10001N2O1N2O3L4K5L6^MlYOPO>Ole0l0jYOnNf0Jie0R1Z2M4M4L3M4K5L5L5J6H_fg8"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "clo9?li0;D9J5H7L5J7H6L4L4L30O1N21O10N2N110O11O00O101N2O1N2M5K4K4L4K4N3L3N2N3M3N1N3N1O1O2M2O3L3M3N3LbeV1"}], [{"size": [848, 480], "counts": "o`V9>oi06K4N00100O01O01O0000000000O1000O00100O0010OO1100O1O1O2N1O1N3N2M2O4M1OSUY2"}, {"size": [848, 480], "counts": "cXn6:Pj08I5M3K5M3O1N101O001O01O01OO100O101OO10Oi\\OD]<RH_Am7b>oGaAQ8a>lG`AS8c>iG_AW8d>bG`A]8Z`00000O1O1O2N1O1N2mIV_O_2l`0QM]@a1TNaLba0j1f@fNRNV1LWN^a0k1PAUNXN\\1_OaN[a0m1aBVOZLjNVa0Q2eBkNZ>U1lA`NY>`1[53O1N1000O1N01001N3N3L3M2N3M2N3M3M5K5J4M2N2N4K5L1O1N101O0O2O000O10000000O010000O10OO2O00010O01O1O10O01O1O01000O01000O01O001000O10O1000000O1O101N4Fbm<"}, {"size": [848, 480], "counts": "kYe12\\j03M3O00000O101N1O100O100O100N2K4L5N2M3O001N2M1H7N2O2PNhNeZO]1Ue0QO]ZOV1_e0SOXZOP1de0YOTZOj0le0BbYOd0^f0d12J5N31OO1O2O1N2L5L3O2N2O010O02O4cYOcM^d0l2jZO_MUe0o3O0001N101N3L5K6J5L4M3M4aMdYOa0`f0ZOiYOUO33Xf0c0mYOlNeg0S1m0N2O3L3M3M4L5J8H6JnUj8"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "Vfg9?ji0;H6J7J5J6L2M4K3N2O2O2O1O1O4M03L001O1N1M4M202M3N3M4L3L3N3N1N4K5L2M4M2M4M2M3N2L\\ed1"}], [{"size": [848, 480], "counts": "\\RT9c0ii06N00100O01O001O000000001O00000O010O01N1100O010O1O100O2M2O3M3M3KUS^2"}, {"size": [848, 480], "counts": "RYS7>Pj06I4M3L4E:L5M3M1O2O1O010O001W\\OjNW>V1eAPOY>o0dAWOZ>i0aA^O\\>c0_AC_>?_AC^>`0^ADa>=\\AFb><[AGd>9YAKf>6WAMi>3RA2m>NP^OjN_1]1b`0Ib]O[Od1o0j`0\\1Q_OgNo`0]1j^OeNWa0^1a^OeN`a0c1h]ORLC`2gb0m42O1N2O1N2L4L3N3N2M2N3NcNgIf^OV6[a0QJa^Ol5`a0YJ\\^Oe5ea0^JZ^O_5ha0cJV^OZ5ma0hJR^OU5Pb0mJn]OP5Tb0SKj]Oi4Zb0YKd]Oe4_b0\\K`]Oa4bb0cKZ]O\\4hb0c12O2N1N2O2M3N1010O010000000O10001O1O3M6K5J4L3N3f^O[Ib>h6m@gIQ?]6c@kI]?e80O1SGX@P7h?iHb@T7`?gHc@Z7]?cHe@]7]?_He@a7_?XHe@g7b?jGf@V8k`0O0O2O001N2O1N101N1O2N1TJi]O^3Xb0`L_^Oj2ca0UMa^Of2`a0YMg^Oa2Za0_Mm^OX2Ua0gMo^OT2Ra0mMT_Ok1n`0UNn_Om0T`0SOQ@0cMUN_b0k1T@VNmMJXc0Q2X41O1O01O1O4L:E9G5L3K3N3M2N3M4L3M0O2O00000O10000O1000000O10000O100O001O010O10O010O010O010O1O0010O010O010000O001000000O010000O1000000000001N2O0O3Keja0"}, {"size": [848, 480], "counts": "kYe12[j04N2O0O100O1O1O1O100O1O100O2L2L5L3N3M3N1N3L3J5L3L5QNhNaZO_1]e0iNXZO]1ge0iNRZOX1le0QOhYOS1Uf0e1M2N12L4M4M3N101N3M2M3N3O1O1O1011N8Hc1]N2N01O00000O3M4L9F8I2N2O1aMlYO?Yf0[OkYOc0Xf0YOmYOPOh0K_e0S1`2M3N2N2M3M5K5J5K8G^Pk8"}, {"size": [848, 480], "counts": "P`]<"}, {"size": [848, 480], "counts": "Uj]9`0ii09J7K2N4J5L4M2M4L3N2N2L3N300O2O010O0010O010O1N2O2M3N5J9\\NQWOW1^i0E4M3L4L3N3L4L4KnPQ2"}], [{"size": [848, 480], "counts": "eSX93Yj06L4K3N2M4N1O20O01O010O00010O1O100001N5L1N100O1O2OO02N1O1O0O2O1N2NRWY2"}, {"size": [848, 480], "counts": "oik6;Sj03M2O2N1O2M2N2L3N3N2N2N2O1N2M3K5M3M3M3M3K5N5K6K3M4L4MUNZXOn0cg0POaXOQ1]g0lNeXOW1Yg0eNkXO]1Rg0aNQYOa1kf0^NWYOe1\\f0eNdYO^1Xf0dNhYO^1Tf0cNmYO`1oe0aNQZOa1ke0cNRZO`1ke0cNRZOa1je0gNjYOg1le0c1K3M3N1N3N2M2N2O1N2N101N101l[OhJnb0X5n\\OnJPc0S5j\\ORKUc0Q5b\\OVK^c0m4[\\OXKdc0j5000000000000001O0O101N1O2M3M3VKQ\\On2Sd0oLQ\\Om2Sd0oLQ\\Ol2Sd0QMQ\\Oh2Vd0TMl[Oh2[d0TMg[Oh2_d0RMd[Ok2Rf0M3N3M2N3N2O0O1O2O0O10001N10fYOVMnd0i2P[O\\Mod0b2oZObMPe0^2lZOgMSe0Y2jZOjMVe0U2fZOQNZe0n1aZOWN_e0i1ZZO^Nfe0b1WZObNie0R31O1O010O00010O0010O0100ZOQZOjLoe0Q3WZOnLhe0P3[ZOPMee0n2]ZOQMde0m2^ZORMbe0m2`ZORMae0k2bZOTM_e0j2cZOUM^e0i2dZOVM]e0g2eZOYM\\e0d2hZOYM[e0c2jZOXMYe0e2[1M3M2N3M2O2M2N3M2M4K4L5K4L5I6BlVO\\OYi0c0iVOWO[i0i07O001N1000000001N100O0O2N2O01OO1000000O100O001N200000O01O1O000N2O10010O001O001O01N2M2N3100O00100O1O0010J5N2O2M2010O02O001N9G_T7"}, {"size": [848, 480], "counts": "iYe14Zj03N2O0O2N1O1O00100O1O100O1O1N2J6K4O2M3N1M4J5K4H7SNeNeZO^1[e0jN[ZOY1ee0nNQZOV1ne0ROhYOo0Wf0d1M20O102O1O1N3N110M4M2N3M2O3O0O11O3N;fYOgLed0f4M0O00O2O001O1M3L4iKWZOc3ne0XLUZOd3Rf0XLoYOd3Wf0XLkYOb20WNbf0i0XYOjNW1Jbe0[1YYOgN]h0T1iWOfN[h0X1a0L3N3N3K5L6J6I7ERkk8"}, {"size": [848, 480], "counts": "lT[98Vj04L3N2O000O000K0O5M4N2O101lWOYO]f0j0bYOXO[f0i0dYOYOZf0h0fYOXOYf0i0gYOWOXf0i0hYOYOVf0g0hYO^OVf0b0gYOBWf0`0gYOBWf0`0gYOAbe0HaYOl0g0]Ofe0JaYOT1;VOSf0H`YOZ10TO_f0D`YO_2_f0k0N1OO11O3M2N2N3M2N2N2O1OQLUZOY3je0aL\\ZO`3de0ZLaZOf3Uf0001N1O2O1O0O10_NeYOmNYf0e0^ZOSObe0i0eZOSO\\e0k0hZOSOWe0l0mZOPOUe0o0oZOlNSe0LiYO8Y1GQe0M[ZOFn0OPe0:U3000010O10hVOEZh0:dWOK[h05`WOO_h0G7M3K400O2O01O00000O101N101O001N101O001O010O10O01O1O1O1O1O1O001O1O1O1O1O1O1O001O1O001O001N101O0O2O0O2O001O1N101H8M4KRdd1"}], [{"size": [848, 480], "counts": "fb`:7Wj020000000N^ng1"}, {"size": [848, 480], "counts": "hW`67Wj06J6K3M3L4H7VNSOeYOW1Zf0nNZYO[1df0lNmXO_1Qg0Q1N2O0N3N3M2O1O10hM[YOd0df0YOcYOe0]f0fNRYOMn0W1ig04N3L2O2M3N1O2N1O2N1O2O1N1O2O0O2N2O1N101O0O101O001O000O2O001O00001O010O00010O0010O001O100O2N1O3N5J:F2N01O0000001O0O100O10000O2N1O1O100O1O100O1N200O1O100O1O10000O100000O10000O100O101N1O2O0O2N2N2N1O1N101N1O1001O010000O10O10000O010O1000O100O1O2N1N2N2N3M2O1O2M2O2O0O2O2M2O2M0010O0O100N2O1O1N0N2O20O2OD=M2O00O3N1N3M2M3O20O2N01H8M3N2O1O3M2N3M4K6L6FcZn0"}, {"size": [848, 480], "counts": "VTf15Zj02N2O0O101O0O1O2O0O100O1O1N2L4K5N2M2O2O1L4H7G7K5L4ZNaN[ZOc1ce0hNRZOZ1ke0SOfYOQ1Yf0c1M0012N1O3N0O2O3M2N3L3N3N2N2O1012M6nYOoLZd0f4M1O000001N102M9E^YOAbf0]e0ORZO5me07_YO1gf0j15K2M2O2M2O6J4L4K5L3N1N2O1N101N6K4LO00O01O100O1O0O2O001N1O2M3L3N2N3N1O1O100O1N2O2N100N101O100O1N2O1O1O1O1N2O1N2N2N2O1N2N2N2N101N1N2O010O2N1O2N101N100O1O101N100O1O1O2N100O1O2O0O10O0100O1O1000O100O11O0000000010OO1000O0J7F:NDSLZZOl3ee0[LWZOc3je0`02O1N2QLQZO[3Qf0WLPZO9O]3Tf0<6G:I7L4M3oLnXO_2Ug0]MoXOa2bg0M3L3M2N2N3M2O1OFkM]XOR2eg0PNZXOn1gg0UNWXOi1fg0^NZXO\\1cg0lN\\XOQ1fg0POZXOn0hg0ROXXOk0kg0UOUXOi0lg0YOSXOd0Ph0\\OPXOb0Rh0]OPXO?Sh0AnWO<`h0VOdWOf0ah0VObWOd0ch0ZO`WO`0dh0_OW1OnYf1"}, {"size": [848, 480], "counts": "VTf14[j02N2O0O101O0O100O10000O101N1L5K4N2M3N2O1M2M3G8N0L6SNaNdZOf1Ye0fNZZO]1ce0ROoYOQ1ne0XOiYOk0Rf0j1L31K6N2O1N3O2M2O2M2N3M201N200O11YZOoLmc0X3cZOfLc0c0hd0]4N00000001O0N4J6K6K7I5M4L8H2ZNWZO_Nme0l0V2M201N3M3M4L4L5K6H8IPVj8"}, {"size": [848, 480], "counts": "kQb74Wj06\\NIjXO;mf03hXO4jf0g0aXO_O]g0k1O1N3N101N10O11O1O1N1@XMXYOh2df0d0O2N4M2N3L3N2N2M3N2O1N4M3NnKXZO\\3ee0aL^ZOa3ce0WLbZOj3Rf00000O2N2gNgYOWN[f0e1VZOkMme0R2WZOjMme0P2ZZOjMme02VYO_1ih0G:B\\Qg3"}, {"size": [848, 480], "counts": "`e]85Yj07G6L2M4M6I4L3OO10O2O001O10O0001O10O00001OO20N11O001NO102N2O000O11OO1O101O2N100O2O0O1O4K3M8BZnh2"}], [{"size": [848, 480], "counts": "WTf9;gi0`0I6L201N3N1O10001O10O000N2M4L3M4K4L5L4K5JcUU2"}, {"size": [848, 480], "counts": "_Wf6>ji0B7gM^XOU1dg0cNcXO\\1bg0YNcXOg1Sh01O0001O01O0000000O2O0O1M3N3M2N2M4L3N2N2N3L3M2O2N2N2N2M3N2M3L4L4N2N2ZOf0M3N2N1O2N1O2N2N2M3N2N2N1O2N1O1O2N1O1O100000001O00O1000gNaJb]O^5^b0fJ_]OZ5bb0gJ[]OZ5fb0gJX]OY5ib0gJV]OY5kb0hJR]OY5nb0jJm\\OW5Uc0mJb\\OW5`c0l00O101O0kKS\\Of1oc0WNS\\Oi1nc0[23^Km[Oc2Td0VMT\\Og2nc0RMT\\OP3oc0hLW\\OW3lc0eLU\\O\\3mc0`LR\\Og2LjLTd0Qj00N0@FkVO=lh0f0L4O2L4K5kNhN^XOm1]g0e010DRMWYOn2ff0[MTYOd2nf0]MQYO`2Qg0aMoXO[2Ug0>2O1O1O100O1O1000001O1\\M`XOW2cg0bMaXO^2jg00N7KO2N2N7I2N:E4L4L6K3L4L?A4L4M1O1O2OO1OO10000O11N100O11O00000O20000O1N101M4M3KS^n3"}, {"size": [848, 480], "counts": "cSW85Yj06J5J4L4L6L2N2O1N1O100O100O001O000O1O1O1O2OOO200000000O100001O1O1N2N2N2J9K2N3N3M2M3N2M5L3K\\ZP3"}], [{"size": [848, 480], "counts": "Z]n92\\j07I6L3K3M2O2M3N3M3M3N0000N103L4L3M3M5K4L\\fm1"}, {"size": [848, 480], "counts": "aX`61Wj0;J5M2N2N2001O8H10O010WXO4kd0NlZO;Re0LaZO;^e0KXZO:ge0KPZO9oe0NgYO7Xf0O\\YO7cf0OSYO6mf0h1O03N2M2N3M2N2N1N3N2N1N2O3gMZXO`1ig0XNbXOb1Wh0O10O00001O1O1O001O001N101O00001O0N2N2N2M3O2N1N2O1N3N1O1N2N2N2N2M3N2N2M3O1N2N2N2N1N3N2N2O1N2N2N101N2N1N3O00O11O0010O010O1O10O10O100O101N1O1O100O1O2N1O1O1O1O1O1N3N1N101O000000010O0000010N01OO1H9N2M2M5M2O1O2M3M3XO^XOZNig0e1c0N1N2O2L3N4M4L3L5J5L4M2M3N2M4L6JYQl1"}, {"size": [848, 480], "counts": "cch12]j04L101O000000000O1000101N2M100O1O1O1L4J6L3K6M2L5K4M3H7E8]N]N]ZOb1fe0hNnYOZ1Sf0nNdYOT1Uf0XO]YOQ1af0`1N0001L4L4O3M2N2N3O1N2M3MYZOWMmc0i2R\\OYMmc0f2S\\O[Mmc0f2P\\O]Moc0g2l[O[MSd0l2e[OUM[d0U3X[OnLid0\\4100N2O1N3M4M4J6I6I7bMfYO;af0BcYOYO7A\\f0T1`YOPOhg0m0^XOhNig0W1j0M3M3M4L4L4K5L6J7H_Qf8"}, {"size": [848, 480], "counts": "XnQ6;Rj09H8I4K3fVONSh0\\1@eMbXOa2Ug0iMdXOZ2Zg0eMhXOY2Yg0fMhXOZ2Wg0iMfXOY2Yg0a0N0OH9E;A`0A?H;cNVWO:Yk5FfnJ:UN0iXO2Pg05oXOLnf08TXO_O=9_g0:oXOFPg0;oXOERg0:nXOGRg09nXOGRg08nXOIRg06oXOJRg04nXOLSg02oXOMUg0LSYOGkn[5"}, {"size": [848, 480], "counts": "on`82Xj0b0B6K4L3M4M0O2ON2N1100000000O1O2N100O0O2O1O001O000O100O1001O1O1O010O1N2O001N3N1O1O1O101N1O101N3M3Lb0\\OnYb2"}], [{"size": [848, 480], "counts": "oXo94Wj041O0001O10O1O0001N101O1N20O1O1N2O1N2Obem1"}, {"size": [848, 480], "counts": "PeQ72Zj07L3N2M4M5J4M1N2O0O2O1N2N2N3M3L4K4K5L5I6L4L3I8\\Od0K5K5L4M3N2M3MdMaYOl0^f0POdYOT1[f0_NPZOc1oe0YNTZOi1le0jM_ZOX2be0^MeZOd2bf03M2N3M2N2O0O2O1N2O1O1N2O1O0O2O00001O0001O01O0001O0010O01O1O1O001O001OO1N200O1O1O10O10O1000000O1001O0O10001O001N101N2N2N4M2M4L3M6K9F3NO001N100O10001O00N2O101O010O00001N2O010O1O1N2N2O2N1N200O100O2O0O101N2N2O1N4L5K6I3N1O0O0010O1O0K5N1N2O2O1N11O2O1O1N2N3M2O1O1O001O00011O001O1O1O2N5G^Zi0"}, {"size": [848, 480], "counts": "bmk14[j03M101O0O1O10001N1000000O1O1N3L3N2M4M2M3L4M2B>G7J2aNaNVZO`1je0hNmYO[1Rf0SO_YOo0`f0_1N200O0101N2M3O2N1O2O2M2NXZOmLYd0Q3h[ORMVd0m2k[OSMTd0m2l[OTMUd0l2h[OXMVd0m2c[OVM]d0m2][OWMad0^4O2NN1O2O001N3M5L5I7J2aMhYOb0\\f0[OiYO>Zf0AhYO\\O2C\\f0n0eYOmNkg0P1l0N3M4M1M5L4L4L5K7GTWe8"}, {"size": [848, 480], "counts": "]iU52Sj0O2O00001O00000001O0O1000000O100O10000O100O2O0O2O0O101N1O101N100O2N100O100O1O100O1O2N1O1M4N2N1LTPQ2"}], [{"size": [848, 480], "counts": "U^[92Zj07K3M4M1N3N2N2N1O100O1O100O1O1N2O1000]OiVOMWi02kVOMUi03kVOMUi01mVOOSi00nVO0Ri0OoVO0Ri00nVOOTi00lVOOki0000ZQZ2"}, {"size": [848, 480], "counts": "hkc77Uj06L3M3L4N2M3M3M4M6J5J6K5J7J7I9G5K5K4L3M3M3M3N2N8G7J2N2M100O101O0O1O101O0K6CN2O2M3N2O2M3M1N2O^Tg6"}, {"size": [848, 480], "counts": "SQ]91Qj0d0F7I6L3K5L3M4M2O1O1O2K5M2O2O02O10kWOXNag0h1WXO^Nmg0Q21O1N2N2N101M3O0O2N1O2M2O2M2O1N2N3M4M5WOoVOHUi01oVOOUi0IoVO6fi001O0O1O0O2O3KRfh1"}], [{"size": [848, 480], "counts": "dS]98Xj02M3M101O1N2O0O101O0O100N2O1O100O10O1000000L4O1Bdf[2"}, {"size": [848, 480], "counts": "W[k71Yj07L4N2M2O1O2N1O2M2N3N3^WO^OQg0n0TXOHeg0i1H6J4L4L3M1O2N100O2N1O1O100O100O2O0O1O100O1O10001O0O100O10000XO_L`ZOb3]e0cLaZO]3]e0gLaZOY3]e0m0O2O1O100O1O10000O2O0O2O00000O2O00O100O1O10000001O10ZLhZOR2Xe0lMmZOR2Se0jMQ[OV2od0hMS[OV2nd0iMS[OT2Qe0jMP[Om1DQM_e0P1nZOo1BRMae0l0oZOY2Se0_MT[OW2]ORMde0;W[O`2cf0O0O102N2M3N4K4L3N1N2O1O2M4M4K4K3N2N100O0100000O101O00000000001N2_OnVOBRi0=PWOBQi0;QWOEPi08SWOGmh08TWOHmh05TWOLnh0OUWO1mh0IWWO7ai0O1000O101O0O100000001O00000001O0000000O100O2N2LQ\\h0"}, {"size": [848, 480], "counts": "Rhl16Yj0100O2O0O10000O100000001O0O1O1N3L3M4L3N1N3J5B>K3L5N1M201aN`NoYOa1Qf0]13L4M201M2OO1N2O2O0002O001O11^ZOnLec0R3W\\OTMhc0n2T\\OUMkc0R3j[OSMTd0Y3Z[OPMdd0]3iZOiLWe0X4001O000O1O2M2N3M4M6J5^N\\ZOoMke0l0TZO\\Ni0:Ye0S1b2J4K4N2N2M4L4L5K6J6IRbc8"}, {"size": [848, 480], "counts": "Xij3=Qj00J5M5N00011N2N1O2M20ONO1301N3M2YOg0M4GQNPXOP2dg0^NYXOb1fg0aNXXO`1hg0d0O101O002N3M2OcM`XOj1^g0VNbXOl1]g0SNcXOP2]g0c00O;DO3N1O1O4L4M9G05Id1[N5H6E>A>GSoZ7"}, {"size": [848, 480], "counts": "njb9a0ki07I6K4L5M2M4gWOgNUg0\\1eXOiNYg0[1cXOgN\\g0]1^XOfNbg0_1VXOeNhg0R2O1N2000000001N101O2M4L4M1N3N1O2M3N3L3M5K2M7I8F:H" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sav_dataset.visualize_annotation(\n", + " frames, manual_annot, auto_annot, \n", + " annotated_frame_id=0,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Show the SA-V annotations in another frame - auto + manual" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOUAAAGFCAYAAAACSjT4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9WY9taZrfh/3eaQ17iL1jPPOQY2WN3V3Vc7PZMilalCFSMG0IhnnhC1/4AxiGP4D9DWzAgGBfCbAsyQJtQ2TTFAdLFMmmmsXuqq4p5zx5xjgx7XEN7+iLd+04J5vNdjWRhPsiVyIyq86J2LH3Wu8z/Z//839ESinx1fXV9dX15+aS//9+A19dX11fXV+8vjLKr66vrj9n11dG+dX11fXn7PrKKL+6vrr+nF1fGeVX11fXn7PrK6P86vrq+nN2fWWUX11fXX/Orq+M8qvrq+vP2aV/3m+8d/s+QghSSCipiSFhvSM6S11W/MIvfI/J8Q2CgXJUIoGUEljLhz/9ET/76Y/QQqKkQBtN8JEkJFIaxO6XDDQGmSDFSAielBJSSqSUr75FAEL8K+8REoKEePVSJARCiPwzSb36zpQQQiClRCmDFDJ/33BJJUFCSh4lNFLmv1dKIYRAICFJiILgAyEEEhEhBFqWFLqiNAVKK6SQpCSIMeB9QAiFEBqjKoyp0NogpUIkTURDAusb1s1TQlyDTDjv6L3Dx0AgkUgIAUIkUgpAYHcjhRBIJErk95pkuv670hiqsgQUKaZ8j4kopZBKkQRfuA+7+0QCJQtIAqIkpYALW6xtCT4gdMV/8D/5m3zre3+J//Q/+3t8/w++z7vv3uF/+j/+n/Nf/Kf/Lz54/wMePrjFr3zvDd59e5/f/dv/OVcXF8QYWa/XbLdbvE+QBDFKiqJiNp9TlAZEz9XVJSnAzaObjEYTvHdcXS3Ytg2j6YSqqlBao4SA4Ik+EimwUeLFIW8+/A95841f44c/+zs8Pf1HIBak1IESyJSQw30jAS4wEopxUTIuCrTWFKUiEUHAy/PntK7B+RZrLTEkRFToFBExIlXP/mzCbFJjVMnNk9vMZjMA/nf/5//y/6et/dxG+erYJ2KMpAQxRmJKryzgz3KJ4VARX/szEAlyAP83JxqlxLXhZgPK/00pHzYhBFLJa0MTw+EthgewM+JEJCafD2JiMGCVvweJQCFRpBBxzuGcJcaIGj5Xb1tiFxBCIoXKnyiBlAalBEkFEAGEvP78+c0nYughSYQoEARIAUF2IjFFSNn5iJQgJdKf5KO+cFOA175HCBBSIoTBB0sIId8vld+LlJIU87ORCaSQ+cALBVIRQkKh0MaAEMQkkbJgcdXz2afn7E0P+M2/8B3q8Yrf/p13uHNXsT+b8/L0MV97+4i6GCHmAakUR0dHWGtpmp71akvb9FjruTg7QxuFKcFZB0mwXC1xztJ1HdvtliQEvu8JSgEJFwLedkTnEWqMixWmGHHr+D5XF8+5OH2E8B1CBkAgID+vlD9rigliwDlHay2mrigmE2SURAIhOubjGtN6Yglmb0JpKoqiRkvJwWzO/kHJfG/KqCqpyxHT6Rxr+5/7/P6ZjXL3gGOM2Thj/JOD1p92id35CF+IeK8iZj6Y119/1tcHEhIpJKbQaKUQSZDCq0i5i5JCSqSSGGOuo8XwEUFEQhSk8CpiiNcMXab8UIXMP59SxFpHApTOBuy9x1mHvY76AgXEwelEAiVFzgREjvPReXrb5k8hCoQIiGSRSBIJhSAgskH+SZ89JdJ1NBXZ0e0cXto5Q5GNEhDC4LzLz1IKGFxOIhFTunZqpMGYgSQESiqSLggJUsgG++TZU7q+oygLDg+OUKLnnbePefPhAdut5Z+cfkrXbBFJIGIkpUiIAYDRqEKg0apju23Yrte4vs8RlOwkzy7PMErm350SKSZ82+GaFlkYOtvifY93liQMMc75zrd+i9m05qOP/yF991MQV8iQ74s0gkImFDnQCCGoJmPGumBalxztzdnfn3F4eEBdlZSFpq4U2iTm8ymT8RhjCpQygKQoC4TsUVISY6TdtlxdXvH89AnT6eTnOrv/RkYZUySEQIzZW+9Suj/xEpKiqhBCDoclGwsqEVMkkj3W9bcP6VMS6Y9F0/xgxGv//te8u/zXEqSWaC3QSiBRoIrXfo+4NkwpX6WiCXK0SAkhFJJIFPH686WUCCGglWKXJ+fXAkikweMqrTHGYAoDEmLfQ0pIBUpFINL5DaELgwFLhBxeMiZEFEhVobRBoNDS4KPPzkCIfIAQX8gn0h+Lhtef9U98Lq+yBqM1Aq4jsBQxp9xCkP7Y88l+IBtTTLvPm4YMQHN6djU4a4MxIyBitMZIgXc9MQrWyyXLxSXLy5f4GLDO4mMAoZCiIkRBDAElJcE6YookEqSI9z3BpexoB+foW4dtG1RRokuVH7+Eqs5p8NtvneD9E+r6Oe+8VTIZ3eVgcofD/WOMgkmp2Ks0dV1T1TX1eMS4qim0pFAG7x1KClLw9F1DdA3Rd4Rmy6bZYH1gvW1ISSKUQgiPVIrClOyNS+hX+MsnkOZ/yrl9df2bRUqGbEiAlApjzL/eKKWgKEoEcnjAORVCJuJ14ZdIu0Off2Soz3bRKUfM18+c+BOPWnrt3zktTMRcZQ5GuLteN0iBgCRJUVy/rhACYmRneWKIlClBChFEHNLOVxF9d0ATOeIICdZZXOjQRa5HlVIoqYgx+wFZ5PosiZhvaMrOCKEJ3uJDQAkIMV0bohBiqIFfferh2OaacFdb5/wWiPkvGKLmEDGvi2+RUEO6GoIjBgEp5nsRE0JEJBFiwHuf62MCIVlCdMSQf3dVlmy3C7wPKKlJwRB8RJUVkYSzlsuLDeubK16+fM7l6Yv8kXO1ho8RXZRIadBSIEVCS5s/W8rPoNSSoiwpyzLXetpQ6oKbN25wdHjE8fEx48mY+cGMotKU5ZybN7+DC4a/9BenkF4wKjS1PiT4RJEE2JZ+s8Q7h4+R9uKSq5TQRtE0Ldttk7Ogvmc8rlHJUlWK7fqSy8UCWRSMpnscHBxS1qN81gCtJUa0jFTL3tGUwvx8uOrPbZSvD5PkQ5EPtZH5sMEOKPnX1IJDypRSGl4rJ0jEXU2ZBlAm/7/steMQGV5FpfyT1z/yx36HGF43/x6SJCU5nMnBsHgV8dIuibw+yJKUIinKDKAMxiZSTvO00iilcC4QfAQVkcNnjkMqlo0zkFL2/tY3xNRjTEFZDLVkguQjKiW0EIDJNXqKiKQw2iCFIQawzmGdpbN9jqRSoIe0O5IdQ0qCEEV2FDvzFEBOcof6c3hmJDLuk4bMIF6nuRlgy7+DEAcnKAjB4V3A6BJnHSlJoog43xGiIwmJMCUIaJoN3luabceL5wvefesYpUqc7WiHmjHFQAoWmQKVMpiiQBUGrTV1XTKZjLh18wajqqYqS4qioNAF8/mccT1iVI6o6zoHA7LTL7Qixlw+SCEzcEMghUjz5A/ZOouPPYWJdEDyT0ghEa0neU+KEWcdIQVSgsl4TNv3fOvbv8Bs/4Af/tEP+eD5B6zWGz795APeeesBL1485snTZ7z93nuobc/7nz4GoYjBI1PiV3/xW8yPFWO3YKQuwbqfy9b+zEYpYKglIgQoCkVRViBKUlII6RAiR6e4M7ZceBFTrr+QBiEVKjl24XLAUiAFlFSUyiDSDljKhpxEyB7zX/su5fAlXhlgghQzAilEvE6jSSkbLPI6Jc6vPRjrYK27FAkSQmSkVghN33eEEBBSXsfnnd+SMiOtzvaE0GIKSVFIlHrldKRgAE5eOSqBoKoqJvUUJTWg8ut4y7bdgkhICcFbXLD0tiNJQRwMOkfKwZGIHB1TGurfjBejEDnI80VHm0RCCoUpNdPJeKiHLTGBUpKyrOk6z9nZBTEGUgw5oxGSJBW6KIbaSmKtpWssjz57xrtv3sb7hLWR7bqjb3ukSPxHf+NvoHrHtB6xN92jLEuUBCUSSkZGkxGFNsQY8b0lpEjMeBeEROodzWKJ94GmbQnBM5lOqeqalECmyOXZKcF77r71kOXlC9bbLTePTxjv7eFcT0wJoxVBKtrG0tiGp0+fIQUcHh3xxttv8//++3+Pq6tljuQpoAvDB5894vHpc7yzrLcblv5n2BBYbTcUZYkSmllV81d+/VeZxoZqe8Zo8wgZ7M9laz+3UUY3wOZDdDRouugoCsVsb0ZhpvlDFnpIU4fDKlI+gTIDKEoXIBRG6mwQOv+VkBk8SiGgo0YJiVEGIRPOe3rn8N4TkifGHBH+1WopAuqLSGPKtSsxkoxHCHldiUk51MJCQFI5ghHY1aViMHB4HeTJh7QoDN45QvQIIQbHMdRXQgxAmENJSWkUWg1peMpePA6GIxADmJIRz9IYpJaIAcjQRqLKAj2SxBjAJrzX+KAhQu+y95UJknhVoV9npvmOoASAIISA7TuIQ3ZDdnwpBpAJYzRr75hMJlR1lZ+31iitqUxBZQwpCVxw+NgjlWQ0mVJPD6jKkuPjIxAeVQg+/vhD/uJf+A4SDULw9PkTlIKqHPGNd+5xYEq6zZZu24AHKROSQG+3rDab3F7SBiFgtj/nfH3F08cvSB729/c5e3lKWZRYZ3n/w/f5xi98h7eO36W3PcE6ZFnye3/wfS7dFj0d0cXE47NzPn78hPPTM6KPaCFJShETeO/ZbLf4YHlnPGK6XvPjD9/n8ePH7O3NmB8eMNufM9nfp2u2rJqWoprw9OUlUms65yiTZDSaUO8dMZ3sU3UNo0XPuA3IAdD60oxyZ19FktRJIaXC+w0qJcajGm0Ezjt0VBkAGFoSRgq01iilCRGk0AhU7usogVICpaCUkpg8QQzwOwoRcnarlEYLRY+jDxKPI/wJNpkRQvHan+8QxmzEMSaUEEiZiDF/k1IDsBQhpNwbFSqbI2JX7ezAnAQi5ggjcl0ZUxh6kPn3SSEQKeBDQilQMqGVIESPkrmVIkVAEvDWEXa1nVQUQqNjBO+zs5IQvafrG7bbdc4DokApybgqkYUAH3AxEVIiiYhmuAc7oxQgB0BOqlz/KyHRQqNURn21kmitkEpQFoa6LqmKAmUMk/GEUV0hBGhdIJVBakXvLM53CCXZdpaoR5SloR4VmCK3fZ6/eMHHnz7la+++xenLc37ykw+pihqs4KOffsREJE7254yrGqkkznu883gf+eD9D+is5dd+49d5eX7O0vW8ODvnfLlAiQJXGB6dnVKVBQl4uVmx+MEf8PHZGQAH+/uc3DjiPHiax0+YzGYIDA/feJPN9ozz1hFcQAaICLQp6axl21gWqyWzW5b20RM+v7xkmxKx7/CrNUd37mDqEZtti5Al3kPfRYpKIWNFIcZ0a0d1p0aScJfnuLNzun5FCo7Zl2mUWmkKoRgJw56s0ErSsyFYTyLQNBes+p46jNGlRhmF0gqtFVopjg6PuLq4QEuJRKClQgswQmCEYKQERVnTbJuc5iZIKeQ+6K6elIKYdEZ/d2jna+8xDcazy8qyAWiUdDmBCwVEmY0tgUCjZIXWmpQMIQZ6tkT8kAaGnAKKIbalHMljDMTg839jyCBMFLmvFz1JCIJPGZVODBEyIpVGxJgDerAQHaRISKB0CTEQ+g6RIhqD0pIYOoRrKJOjkJqqVpRFgSny8xiXU5CKsqwwJiGHFLia1JR1hTYGJTXbpsUnQQiJwhSIlFBCoZVGG4VE4FxPCh5SQmuJFIK+t6yuFjC0S3pncTGgjca6HmU0G+uxoubr3xPcvXubw6N9rq62SAUJRRQFP/rpR1xcrSh9g0KzvFxxvrlgXLxL02xZrVf44On7lkJrLq5WPHlxyptf/yafv3jB2fsXuBBJUqFMyfT4kEXf0a+vkEJQ7s1wKfHhp58yGo0oJ2MoSvR4QuMi509ekpCc3HnI45eXfPDZE4gCGXIdbYpycGzQ9BE92WfjLVsvsEIjPNjlloOjW/zoR+/z/PkZAjIZRBb0XcYkVlcdRheMyhExOPrNAnH2EhGXkMKXa5SlKaml5qjeY08VkCJrO+KsveKjj9+nrPdZ9Zbp0TGT2QRTapQWVALa9Zr9/X32ZzNePHsGMYP5WmejrJSiEIlbB/ucOocNudhOQiKUQGhB01siAiMlPmr8tUGm66a8uE7WdlassuEJhdEVRt9CS4NSOQVTSqMLEDIgpaZ3DSE6Aj7XaK9lySmBi5EgBsZQiqQQicEPiOQAmqZ43esUKae7IubaZVSUHB+dcPbilNV2hYgBjaTQGegR3kLyVAhuHMy5efsIYSCmxHw8ZX+yh5SJ+XzCyY0jirLIkL3L5IWtd7RNTwg5PfbJs+kaQoLWRk7PL/js8WMuLi4IPlAUhtl0j8ODQzbNltMXzyDGHJEVA4glMLpAK4UPLjfvo+fk1g3OL18SE1xtOsrZDYqi5O7xbe7du83V4mfEKDh9ecbDN9/g+ekptu853BsxHk949qLFNg3rvuXzx5+xWC4wxkCMGKVpnGUymxOForWWpuuwwaPKiqooKeqKKBM+xYwfJJUx55Bom466qrg8v6BrO2yI9D5hTAVCs9q0tDZQmSKXCgz9ahJSa24ezLlz9z4ffvgB6JJSakRIGFNgyjEvXl6y2jRopTCmoNC5RylS7p8WRcG9u/fQpgSl2TZratGh5L8GBP03N0rNuB7z4OFDRkHw8vQFRVGgrOSXfvG7vPuNX+L7f/RjVD1ClQpdKGJyhGZLs15zdXnJrZMbjEYj2m1DDB58ZnSIEBEhcv7iOSJECqGIiIwLRjJzBEEUiaQM5XjCumvZthmqZtfETztII1upSCIjp0kzKm9yMPkO0YUckaLH+Z7oLVH0Ge6PDiMEWkn8gMKRFIXO1DQtFISAbTu6rqEgUcSEDTHjuEKgtMSUhrIqqArNqK6YTseUZclkMmV/vs/X7t6lVDpHvrJCqZKyGqGQmCSQPjKfTpiOS6KJeCEyrdEGau+wYUvz4gWXtsfFxPPTM9rNlsumw1qP0SXjyZh3v/E1lueXnF5cMZ7t89HHH/P0+XOc95nBIwWzvQ3VeIz1llWzwXY9RgmMUQgpMKaA3rLdbPDB0dsOXRbcLgrOLi/ouh6fNIfTI4K3SBH57ne/wwcffkTf9Tz6/FMOjmYslpdA5O7d25SV4enLFxC2xFLz6YvnLJYLqsLke11VSKGRxqDKgsVmy7bLoBadpaozDTKliPcW5zxESQBCSNi2IcbI5eUlZ2dn+JTT6XoMWilSjGilkEpSqIL5fB8p4Wq95ODkiNF0Qj2uWG1W+OiZViNi76jrMcaUdL0lpIQWueceQ+5LCiICTwqCqipwQeCtIAbNfl2i9ZfcEtFaIpXAy0h9cMBRpTjzG/wiEQMcH51w986ajbPoQlDUBikFaTxlXNZcnV3y2aPPSDFD8olIigEhQRPRmU+ASrkkigICEh8jwTqMHPpySeJioKxKet/hQ8y9tLTDe4diWiSEzNGSpJBoSiNZbZZsNxeE0BBxJK8GVFVR1AJVGnxq0VqBlChpODk4ZlKPKItyaCprUkpUSlIJhdGKoq4QRqHrCj0qKAqFJmG0RA791uAjySeS95RCIWygby1904LNQNp2u0Fpg4qOJx++RGq48i0vN1vENqD6Dqd6DJE31YzbkxM2FxvOXj7hw7QmCtgrR0wmE7y3vFxccbltadwnrJqGrusIKeEJEAVN17LtGuTQGrHeEoVEJIEWmqZrsdYRvM896bJGGklvLV3XEyP4ECmMQSuJIPDwwU3efvseP/jhj3j64jHP/+5TvO0ZjRRvvvMGEbhcLYhuw8Y7zjcrFusl3vYYpZjt7QOSg8MjMJrzxRVt3xKJ9DaQkCyWV5xfnOF8T9f2BJ9wAUIEpQS6NLz49Dnb7RqhNCl1aClp1ku2qwWFlpAc48mUW7cO6fsWWQRmswpUZDQRPH/2Kcm3+D5SoLh5OOfi9DmTUnM8vUlZFJTGoAuDUhItBKUxFGXF3RsHGFNyHis+u4Tu+JAaw/GXaZRJJhrf8unpY7xw7I3GHNw44oPPP+Xq8ooPP/yA9XpLUgZZGkRMmXkiFGVRI6Vi0zQUpqBQGlL2KylkZFTqXN9k/qXBhphTTKFApMyqkYKYIj5YRJKUKiCiH3rhuUk+ZFxIIdAKlBRIAcZ0jEYb2u0CYxZMJ2AM1EwYlVOMFsQK9g4LDo4qpns1RhU4B4UuUYVCDhQ0BkDIdz3R94iYH0ZMifXqiuaqz0BO39Ftt3jvODiYs1qsCX3g9tEJd05u0FwuOD89Zz4/pNQF9XjCg9t3GR8eUqmSH19t8K5HlWNu1XtUqwsebZdIlSjLgqOzwM31BXUILE+3NIdbujI3/Iuy4PTFC55cnLN2EZcEfcyUtpA8SYIQkhg9tu8ojCb3WwNCanSZUU9vQ24FlAbvAnVdo7XCWk/wEYnMNVQ9HggTgfG05K/++38ZHz2ffPKIbdNQGsU7777N7bu3WJ4+Ytt2CAKd96ybhqbrgJjBwq4lCclRqUkSzi/OSSLiYyAliXOWzWbNdrtBKggx4HygsxnMG41H7M9mbNZrzBBRQ0jUWtIvLii9oxqXSCk43KvBbhgpuPfmXUxVUo5q3rx5xF/+je/imo6Rrjk5PObth29y4+ZNfvvbX8doDVIwmYypqhJEwiiJiJHOWgiWUVVx8OY3Ob/a8qJrMErxa1+mUU7mI1arFVu7YeM7DCMoChKCzrW0/SYzQ7RAI9ABVFJ0JPqQ6GNCKHNN5k4pQEhIrSBGgo8YyTVPM4ZcLUqV02CtEjFEtBDUwuElVLUmjUuMqRiPxhitKXVJWRYoLanKgrIo0KLg8PA20/E+Ih3juy1aRka6wC6hKMaIStBKhzAFbdfQrrZcbS+wDqK64vjmDYK9wbPHLW2zwcVTTNkhU2J/vo8ik9y9TGz6nJ5PqoLeOi4uzlhvt7jWoqPg7tENtNL89Gc/5a//9f+Qr739Hskl1lcLjt54SHU0Z3G5ov+X/5L1Zsti1VPuT2mMwyq4+6jna0vPVDg2R4pVCdvoCeQJlELnltJysaDfNERhsAkC6ZqyNgC+aCkGQnbOYKIPBOvwhaYYGvdaG4L3uOiYz2Zstw3BerRXCGlQokCrmsfPzim3kfFsxnRvym/95m+wN53x5MlT3nh4j1/99jfYm1Q8/XDJxdk5e3sF0Xtsm/uXpjR4Z9kM0W2zWbJeX9E2K4qqJMWI9YHpuCYGx9HRASfHR6SYaZRKFfTOURYF777xkPKv/GWWV0vGw8TO/Vt3OD48ZP3bfxEk6MJAqdFSUBUGbTQ+OISUTKYT7v+P/n2SjyQXkFHQrDe0L54wwePbHucDT589HoJFdsIxenrXM53P+YVf+h76+IR07226rseqLzl9/Y2/+Gt89NHHtE1DOTH0qaFPDVE6unbDzZNDHr84J0o/TCCYHFQQhPSKOSOVpJAaLaBIgnFZMFYSGTxGa7TJ7ZO96QhlDKrUJNkzno6piv2MKNYNstBIXRJlgRAGpTMY450HEkrLTJtyNrNkpGN5+YzkHHWpKOuSYC1vvfUGfXSs7Jpt23D60vLpp8+5f/+Iqh7z8vwSF8+xSFxzyOMPTmjXM5r0E2bHZ0wm+yijuTy/YLFecXRyiAuetmnYn+9x7+4Dnpy+oF2uSDZQ64pV07LpO5rgMdMxnzx9jO0sL5+/YPzyMbqq6HvLcn3J+eKSR2cvEJXi9o0TFlXkqlzzbKYoTcHBvT2sUXzYQFtK6qLAjKrsHLoWnzwhCRKK4PJ4WU7tM8FCIxF+YE7JjDILEjLltlRRFrRtR/CeSpdUpkSMyFxVKUlSo3UJlPyDf/hPqOf7zA4O2Z/tM64n/Or3fpnf/s3foioUJR6TLKOy5HBvj9lexcRUPLh9F3fiMFoxn03YG4+o6po3HtzjnYd3+F/9L/4m48kYHyIxCObzA/YP9una32Y8qvN5koYUE855QvDM9ibsv/UWfdujbcI5R+haVs+eopTAec9is8ErsL3F9xbXO0RKROeoygKpZE61r65wznN0dMT+bI/Li0suzi4ISI5u3sAYRYiZDimkoChGNC7x2Ytzzq8WPLlc4ny4ZpN9aUb53tfe4e7tW3jvWSyv+Pzzx4RlRirbdsvB3pTlas3autdGugavLGVu0jpH0pJv/sLXOZnP0N5RC6iFpFSKlAJKwWQ0plQTooh4ejw9IRk0+wQsvXS0MdGuWrbrSyKBg5N9lNDYvqfZbhASJpNxfh9B4m1Ey4JN23FxvuT4+IBvvPU2R8d73H/vDagMl2vH3/7df8zTZwtW6zX337zJdHqDP/rxkidPEnY1o1n8Muur5/haUbsGo07wvcfbTGoQCUJvkQmabcu2abl39wFPn3yOjx4fA5uuw8ZIr+A/+b//58ymc3bc4MXmir7rKJXhYHzARdfQ+A5zYTn1nltvPmBT1Xx8eU5ZlZyNe5RULPcLJhFOTo5p1w0iRdrk8SQ0gtl8zvn5kr7vkUqhtUSkRJEUKgmMUNe4tZYao8yAWhucdKiizCNoSTAejfHBM93bI4kCqacYM2Jzfsl4XvHTH39EsI5RPeLgcJ+HD+9z42jOSCYOKsU3332XX/hf/28Yl5rpdMxv/uL3SMEjU8T3Ta7BJTjXMk6R+uQkty10lQGvzrP57Cnb7ZYFEaMNRK7Hz5zPdDkpZWaM2Ui7bdBasz+fQcpzpJ212BjwIeQ03XpESMgYSJ1nbz4jhoBMmqbd8vzsjG3fcnV1he0sLiSWn3cEPNb2pBTZdi2dCxzevkexf8K/+IM/4uLskqZp+Xl1z39uo5zWY2ptcNaiBGxWLcEqpCxZLJY0V0sqbVhZB1ISdkyaoXGRG/SBvttijGQyLtFBo5wj+UDve4yUFEIzqQomoxJkZLXa4MKS1kpcuMGHnzoQ30COr0A9ZrG8YrHe0ie4urxARI/rO0L0HB0f0lnL3uSAl88vuXVyh8XVFc1mgXMdv/XLv4rUFVJUOAK9tRS6QKM4f3rKP1uc8qu/8Zc4OjziZx88AR4xuiGx6hGjynPj+D4yCvpNS/IJJSRKyIw2JOi7nk8/+Zivv/d1bt64wYunz0mAi57Hz58hS0PjLf3qihgTITl625CIOAKxXXHVtmyjxWDx3Rb14pTDk2O8iJyePWPfzpiOJxTjkqmZ4Ltcb01v3WI8maJ0T11MuXnvITcOLR9//IjeWqL3SC0p9RiFYlTXHB8eMRrVjOoR0+ksT7kYk7mzAzlCSEk9qSmKgnfuvYGNksYaGjHBf75kb3LIv/MXv8Hy4oLNZs3z58/54R/+gNoIxkZw73DGN+7doE49jYDnrqdttuAt0XYYAc71KCOxfUPyduDlSqIXFKZktn+AVJqmbWj6LlPbjEZrjXWW3jl624PKFMZCFVjraNdLni0uMn9aSmxwWJu/nAsIqdhuNkghOJjNufr4I2JIjCcTumh59NPHrLYrRuMxD+4+YNM0/PT9n4FM7M2nbJstTdcxncz49bv30WXFerNls9ny/Plzuq77co3y/OkZ3nY42+Mi1HrKwazkxsk9Ll48JrjAqBoRmwa0IcXcX9sx/Hc0NGctpy+eU4nE8f4eq+WCbr2B4CilYj6f8rVf/Abf+sXvUFUa12w5e/5DfvKDFc8+/y6f/2jBZn2b6e0POHjrgjaNWGw3nASF7yPBeUQSlPUYrWu2VxvGtWC13jCbtrRdT993LJZL/uk//z2+8943+dH77/N0e8povI9ij/moxK0Vy8slP/rB7/Prv/2LfPzox6zX/5R6/hPGasXbD94i9J6Lly/Rw1RLoTWF1tRVxaZpcv/Sez599AlvvvkGy9WadtPQ2552uyUBdV1jrac0BqVLaqNQQjKbzkEYzKijDzPq2nA4mVEXNYUp+Ma3v8HFesXJzRsc7e8z0gX4SNd2xJBQxrDarNmsG9rW8uJsAQcF88lNzi+vWCyuKEtNPSox0uD6wLgeM6pHmU4pFIRE228JIeCdJ4ZARMBZghCRPtHYSOMLisOHXF2seP8nH7NYbmg2Kw4PD7h9+w778ylEy8WzR/zkZ++j+hUjHJXIkyerxQIRPTLm1HOz3TCaTCB5BBB8ILpIVdQEIfCfP8XHmAejuw7nHa3th0HzPOoljaIaVZiyxGhD5x3W9nnuVZB5sqMRpTacvTzn/PKCcjQixcTe3h6TvRGr1ZJt19A+XWCTpw0OqzU2RtLikovLS55tVoxGNb7t2DYNPkTcZksxyiylly9P+eTjT3DeEUP8043sz2qUpz/7DNc3iFIzms1JfcwNVWUAWC2W3HvrHdTVFZGhfSH8MOmRkDIBniQivetZbjecHB5grcV6h7cdvYARY+Y3T5Cjmj54VDHG+xGda+jchtHEYv1jhHmCs1eUpudwXxF8h+v73HIRAttFiAYZDUSB63q87ahHBlNMMUay6VteXpzz+ZNnPGvOmc/X3Di6xXjqkWqKe7ZmeXXKdrnmd37jN/mH//C/ZVQE9uqae7dv4JuAbzeEYNFFRT0ec/v2LWKKNF1D07dIrZhOJhyfHPPGgzdYL1aMTElZmsy+KWvKqs5NaKOIwZFCHo8KSLyEICNKCWpRIEKOyFFLjk9OkEpQCYXdtiwXC9bLFW3b43yksw7bWfq+Z+sTdb3PfH+f2fyIy4tLurbBGEEILc8ePwUVBvqgwCiDlDIfphjyJFDK2WAiEX1AukjnBbLapxKa8WiC1oa9yZzjwyPKQvP8xVNWiwsO51Nm833Wly/46LNPSd0VwvY0qxXNdktRGqaTMWVV8cmnn9JbR1VXaF0QQsyEdSFo+hYEWeUhhMyD3pGnSUiZmWSlLKnrEeODfeaHByw2a5aLBc22yb3V0iP8mqP9A9be82K5Ia0aDg726TZr2k8+IYXI2fkZ203DN771LTbPn2K9Z7Fe8uTZKZAZS01rsTZQlhVFpRiNxxwcHXG1WmCjZ7w3pu96fPBfrlEK57DbFiMqdIzErkMJRXIWk6AoCr71zW/y4ekp2yF1TsRhvCihVGbZSCEIMWZdGqVwKRFlIkiIIWvYfPr+R/zX/9Xv4r1DaE3TJ1R9RBj/9+g7jxntdZjpJTZ6SjdiVhbI6LC2HcjYgm7dsz/fRyuNFAJTSC4uXhKiQxvB5OQQpRVN8HTBEVMipMBoWoGYMptPuXHrJlVdsTfa42B+wNFfO2S8Z/ChoTR7GAzvvHMX5/sdxT0TzGPE+TwHGEUgpCwJImJkfzpDhURwlqZpebk5JYmsjROjBwI+ZLWCznr6FIgyt3qUFwgPRsjcx01ZX2c3xe+sxfbZoJXOrKUUc00vqhFgWNoNAs1m07BaLTKwMhvhrCWkniR3DKndhEwmqwtgR3BKKY+UBRexTjAr5uwfHPJrv3ybxbbj4uUFxiiqUZG5s4cHqBR5/6c/oN9scNtzSmU5mk/xtmOxWhAby2mzpTQFbUh4BNaDIeXPIiS3b9+k6hsWl+dIkSAq3nz4JnU9Zr1ec3r2ks72BCkIQvDo2XP6R58z3Zuy3KwhQVlWjMYjlDYslgtOn5/hfcjqBkpwfrmgrgo22y2r5QqSQKmCR4+fsVotM2HBBaJP1KNRPm0xDc61QkjJfH7AbL7Par2h7x3b1mFMSVnUX65RetcjiJhhmr/r15TjPaQEoxTPnr7I8htljlqJMIwP5VGm6d6EFyllkaKQqHSJViUxSpyHGCUkCCiuLpY8ffwUHz0nt2/z4vIl01nPfD5jPF8gdY8pC1yUzKqS0XjCdH/ObK9GyYKiqDCmYL4/Q0pFPar5xtffoSjMMEdsM9nAZ5L87Xt3OexvIqVCWkltxnTdBiGga1uuLi/59OOPST4RsIRoSVERfZb46PoOhmkPpTLqLGImrVvvQMFoNKYqanznM+A1jGtZm8n11rssXaIVIeT6NilNFHlyJYSA6ywyKcbjEUoJts02S2nsCOcJ+t7SdRatDePJHuvNhslkws2DfazveHF6jjIlo6rOJGkKEgbnWpIIGG3wPlKPRvjgMUrStx0+eEKM+BiR2uDJTKbltkWMN1xendPEEXv7J1SjCiGh61uabUvftIjg6VuXaWjTCYVxPHjnLfaPj5gc7vPs+Quuzi+wriGP+yliTPjr8TjBtml46+0H1KOKZrtlNBqxWW2v69/pdEragA+O6XRK27aMxmOkUYi1QEpF9InlxQq8wNqe1WYzDEuITD4JkVhotpuW4ALG5IxhsVgMZydzmqPWmaCxDNR1SV1VtF3H/PCQvnMIaVgsz7m4WrFYbNCm4N133v1yjXJxdc7+wRwpI1oliD2jUjGpDAf3H5IS/LPf+z2urq5IY00gokWePFClZD7bYzIZ0axWTEYjDvf3GY9GHB8fE9weKeaWyPHREfvHJ3z7l76LkInDk0O+ZnPvqCgL9C98g/WiY7PtccES6XM/c4cUWo91nuA7Ls5bEIKuz+lcijGjZCEwrkZoWXL79h200TntkZrnz57y8Scf0XQNNnikjFRFQWUKos+EBinlQEaPIGX+eZFH1WIe5kPJLEuRBBSVYXtxhRJrvHUICb3t0aYYxrxyzS2CYLNeUxQaZUpC7AZiRE5f26YBIRGlZlyM2HQdm+2W4D1lWSKEoGm22N5SmpLRbIYNjsvNFfGl4OEb74IRXC3Pme0/4OjGnKJWCB2xoUdpQVGOcW7LZFTSdIHZbMZ58NjOE2UmtN+4eYPLqxWJFtNHjFYcH+7xg5894ZNHT3AxcHC8jykMs9keJwfHLC8uODm6QfSa1dWatmk5Oz+nbRqePHmC9wGtJMmHPKSsBYicPosYMFKwuDjn8wLq0YjHz55T1zWH8wMWq1WmfCqJMblOlhK0UbRth6GkqmqcdfS9wxQly9WW3vYonRliUmf9I+89t+/c4fLygufrZyAk1ahkMqm5urrEB4+SOYXvrWU8nmB7y8XVIjvmiyvu3L2NMQXWe6Z7+ywuG5o2A0BfqlHO5xOmswlJKg72j5BmRFKGvb057XZNHx3/4o/+gFW09AakUWip8S4gXMA1G46Oj7D1iP2DOZPJGO8ds/0ZhED0jhQDm+2G9z9eDoJKnscvng8gQ6IwBpTAO8Fqu8F6CzIDSBn5VNeHPIRAVZfDZEOWefADYCERtJ3D2Yipa1aLK7rWMp3sURQlXe9IyGvja9uGdttdiyRotbttAhRI73K7QMpX4NYwiimlpAgB21uqosJFRz2u2XaZrymVQpssESJiQBYKUWiQ4IcBcCETRV2y2i4pTMW2bxnvTTIpX0liUjQuw/K96/Iws4Ao8/tz1rG4vES9FXnw4BZ/+C9P+fCDH/PG/fuMak1MjkRAqizDIZJHySxbudmucxGSAs57WmtJKXLr9m0WV0tghSBxdXnKe+/eY3p4mxfnF7w4O+Xi8oxnTz7jcTXl5tExh4cH9K3l0w/PWV4+5fnjz3LLAYEYnJg2htlkD6M055cXKCGx1uPckjfefMjzF6eYQlNWJS56JrMJjx89pW07xqMRzjmkFSiZM4XNpuXGwSFKabq+p+89PsDDh2/w6PNPabsti9XiekQvCfj0s0fUVUk1GhFjoihKQow4nwcVlJKMJiOm0ylnZ2dopXjvva9zdnZB0zZUVU1KiYvLBYvVhpgExpSMJ9Mv1yhn83meOytqLq9aWhdxdCQl+OzpMxatZzSfM71xQF0bdKUplMbbQL9pWLYNQUjeePMNHn/+iG61Qcs8ypTT3IgUCaMzj1BphdI5JQw2oBAUWuOcIyWFT5kuhsyzj73tQEikVJRliXee8/UaZXROdX0YaFqgpcoHrLeZmO4sicBqu+ZkNGLH1VNSM5tN6PsW21qCdShphlorEyMyX9QjhWRU16RBic4NUh1SSprU4K2nKxyBSBM8LmbJEF1oNAmdIoWQ6DLLXGZ7zP3eotDU45p0MWjUyTwFEoYvGwJN0xJTQBfZMfmUaNoO3zumxjAuSm5Mc992fe8EZ3uO5jV37t/k6XrF17/5dVaXl/i+JzqLVlnMC/IhjDGitMJtLcvVgiQVs/kc7wU+KT784Md88uQfcPvB24xnc27cvsXd22+i0LTrjsuzcz766YecHNe0mzXRB27evsN6taRtGoJzaK2ZjEaMqoqqrDCmZLNtcr+33fDos89RtcJ6y9HJCW3b8clnj5iO9vABtCnwIbDZbBmNJihp+N73foXLywuWyyWj8ZimtbRtz9OnTxiNRxSlRsiEUIKzswtu3rzJ3nTOarm8LgUuL69wLrK3t4fSiaKQw+hezJmeD2w3WwptOLn/Bnfv3EfrghcvXnC1WOBd4PBgn+Pjky/XKB89fg5S4+SElJYEIJnEy8sVbZfoX17wzvERs70J5azGC4GRGpESvh4hrOXDZ49plpcI56hNgZElXdtmaQwpgKxgZkyOFFK+GnBWSHrVD4JRaRhNCogAUiicc1kfJVq890gpCSHmmb6YmT4u+jz5b9Rw4PIQczWqWK02hOAQchhUFpqUIlpqojIElYdv60mBQpJCRGqJ0oIwAFuF1PRdQ980BJUYTSZM9qZ02zYrxEpDIrDteoKA2HuUtUiZxZNLpTBAhyUlBt2dnFZtNi1amdxj04q262jahsViRQxgisw/lQq01uyNZ8xGU/aQfO3BQz5pV/zv/6//SW6wv3allOidwyjFgzt3+B9897soIjolRmVJNR4TkqIaTZjO9uj6nno0wlrPfH7AdLLP1WqDT5f03Ybt9hIbG6Tp6bYVs+mMt+6/wbv3D3j+tCC4hu9+51uI1PPrv/orPH76OT97/2d88vEn3Ll5i1FZsVosCE5xcnTMe+8ekZLkk08/5vNnj2jaPK3Sth3TyR6TyZREBnDu3r1LXdd89NFHPH32DOs93jvOLs8RSIp6TFmNmM0Oefz0c7QW7O1NkVLhnM0BQSguzi84Pz8fhNt0lheRWUZGSU2z3TKdjNmbzpBK8+TxUxYXGwpTcblYc+/ePVKIdE2LkhJdl/zSd38FqQt+nuvnNspn6wZSAXGKlJ6kHC5atls7pIwBmWXRr2WK07UQkyINtV1rW4okqKsx0/GcD16+j9ICqXXWZxFA15GSJ+HzwG5R5XnJlKjKEuscbd9n9XGZZ9hEytqdQkiC8yQpUEIiYkJ40CkPHDu/g/0z00Ukyd37b/CTn/w0ywimLPnofEBrSfAerQwhNBnIUrm+1GSlBKEy0up8wLXQbSwySY7258wPj9CFYuEjstYIVbNqW/quRcT8oI8PjyiKghQiwfYEb+l7mxv8ERAJbz19axEiz2lufcf5yys26w3BRe7cucfh0RFN21CPK8aTEZWpkS4xHc/4l2fP+Pu//88Z1xVS50e+kwupjOY3v/0r/PizRzx+/pz/+G/9LX7rl36RfSTKB1JM9N4O2YbHFAUxRqSUXF5cIKTJfE/bMN2rESowPxxxcDSmNhLbnPPDHzxheXHJ6fNn3L99k/3ZhO2m5x/8g7+P0pJxPeLNhw+4f/cuzx4/ZT7d48bxTRCaYD3HJzcZ1RV3792mqA3f/8Pvs1wsaTYty8UKkGhpuLw8Rxs90DUVy+UVLvYUZUnfBz748BOE1BSmRMqEjZ7nz19QjSr6vsdax9Onz/LAOhmEMxpUYfDe0zY9Wmd1+/OLK549OwNUfi5J4oJDisStW3exzlMWFbdv32W+d8R7732Tjz/5+Ms1yj4VyFgigkbFSEoue+iokSnQJ4/1DpHHdrMy27VhZlgZFH2fU85f+83f4OXpBZuu5d6D+/yL//73uXHjhKo0BN/jXcfZ+Quc91SVuF5jEGVJYDCsQdfOe4ccRnbigNbFRBZYEoEuWXzw+BhJSFStB+lGjXd5sqCux2w3zbV4VlXklQOFVphCU1cjqnJMZUo0AoOh7SzWdzjf46zFe0EY5XTojbtvIpVgvV5QywrvI9tNi3ceFWRe2aAllRxhksmtIlPgpUcKi5EO5z07WFXIrLW72WzYbDdksT9NWVS0257H26coI1gsEkJrlDToCN988w3+0ff/Bd96+JD/7V//a9cjcFlBMxJTpJSKzfd+kafrLX/vD3/A7/34p8R33+V+YXj8ycf0UpKEGlQL05DCG4LPTs6GyKa3HB7vc9VsSOKAxfICVyhi3/Ho449YnJ1xvH9AoRMyRSpTIGJuvxTK0AlF2/a0bc+0mjCfHeADfP75UzarjqQSVVXw1sN3eHl6zvFhz2J5yXq9wjo/gHkeFxxWZiZPFJHuqgehUarGeQjB0vc+B4JhnUO3WOXRvaKma3uqqqIeVTljA7rW0ndrtDbEKAhJYn0c2kNZxSIEn2dkq5IbJ7doNh3Pnr6k6yy/9r3f5IMPfnYtOv2lGaWy99FuhrBzTChQ4pIYCjY+ceUvieKK3jriMO1PcplEwIAe6irvqkiJmCQ//vFPmc3mSK3RpuDmrVtMpxOc65gdHKEElEU9GHXEuh5TD5ExJsZFTT2IPLdtS3SB+XSPq/MrbOuyWHSIaGXQUiGTwCCQWuHaHktPNa5J3nN1cc64GrFZLAl9jyJlVT2yyJVWilXTsF31eRokSQpdkOIIY/aR2oDYggyU1Qyl4PzcEkKPLiSz2V1OT1/irSX53EeNEiSaxeUGLYpByySQ8EQRs2JcSIPqQRj6mhu22wYXIpPRdOjJSkLIEw8xBnrbY0MLSVIIyU9Pn2K949/77neZKj3MpMZBKVDAMOEwQnB/POI/+uXvUVcVf/uf/h5v/pV/F/v8KdYUuTVjHSFEjAlonfAuSzo6n1iut8iu5/jebfamUzq3putb3GbN4uIMLQW3bhwxGlUoKUEZopGDRhB5hjJKRvWU2Wyfohzhm57Z7BApck3ddGu8TwgU4zoDhbdv3UIZwwcffsDpy5cIJZFSZ3EvH8gAeXajOzGzTIDI1M+iNIzHE2LwTKcTFmlJVVVA4vj4GKMNFxcL2jYDXMvVGpccwfmcSUWPVNnARXQcTY44muzxyceXFEHx9a9/m9Pnn3N1cc7x4dGXa5Sie4hq71Ks7lO0e5gY8SIxNgfI/nMwKwpZZo2ApLPildzp5WTxYKl0BipS4vTlGYUpcdby6LPPsdZzdnGFEJFt02TWissCKjE6nLe0kNXNkkBKwWrVvQJdfGKx2NBuHEIIXEjElL0aUmdtPZGwdujpkahQYB3LZs3Nm3d50mV9HDkszem2PVfbhpu3b7O4XGB7UDGnyuPxhN6BtRUH+3epy2OU3hLkZ9i4Rfa5xh2Zij6VOEYEoQl0QECIrCTQNCtSzECKEDGzoIbImOIgvmXAuW5YgpMzjePjfZaLFbb3tH3HRE1zq8VHehcyX3VIwwG0kIh4rV13LUXJa3tJpBBo4JfffpO/809/jx9++hlHAzjiB9AJRO7XBo/t/cDIiljnqKqS/fmc8XjMyWROtC3PH/WM6hG3j08QUdBuG6woMnE/pEHkUCEQrJZNHlb2kZgULggSkuV6y2iSgZt26xBJYzvLZrnlYH5AWVTU5ZQYzhEIqukkt+I6hxQ1MVXM9g54efYc63sQUOrczy7qGmMUXbNhs+nQqqAoStpuy+PHT5jNZiwWK7y3tM5jfSAQMg4QBUorpuOK9cU5YxJfm7/Fke24aLZ8czbnbl3zt/+b3+W73/wmM/klM3p6/xQft0TTEsUYjwBtQK5xnSMgsNYjk4RA7rtdS+MzACsMkTJk9W9neXD/Ab/9O/8O/9n/7b9AKkXXNWzbBmKupVIIiEH2UTCkzT5ctyB2MokyRaL3qEHY2MedJKSmi4qU4vW4UgmMjGBiFEUKLBZXmJObHE5GGBI68xgYlSNkiBRKo5MaBq/VoPMzJTrJ1l2wfLYhxERIPVrnPSJSBoTyiOUFZVGipKYbpvXLskDIQV2+2IlAD0Jh0tO7DrXb2JMS280uCpdIJxFKoswgHE2ksy17ci8rCniBdfmeV0pdK9vtpFHy6Nauokw7Rczhe/J0xmhYufDi/Jz942PW254oXq2miMGhhLrenyFEIqSYx+7EMB/rBhAuKSpTEWwELfC9JyIoy4qqlDlyOQ/k+l0IQW8tn37+mO26ZTzeG3rDBmNqzs4uCB4KXUFUGFWiKLBdIAWJUprJeI+2a5lNp7z15nfwvmK5XhBFR2dLnAu4FIjaUO7t4fqWbW8RMRK8Z73dQgqZyOFz2SBEfq6FEvQu74Qpq5L5bMqsKpivF/yNX/wOv/bwPg+uPuZwtOXb37vDcrXizd/4Fvvz/ev7/KUZJdXHbERPW/8BVTnGGEOha0rjsOsF3keWm1UGP0SeDhEMqJXMm6qqsmAJKDmIEStBUWp+5bd+nb//X/8j7ty5y5OnT3j2PAs4EXIfMkRL9BmRjEHSNgnvAtoIjJa0fZ/Vv4Wk1CpLPqbM4LBhqHFjwJQWFcDIikoY9qziqAfbOOKLF9wbjei7jqK3eCGoyxF7R0cYXVBLQ1IKJccYM8Y7Q0qa0UgiDDT2gqZdgdLocpShLqkRJLwPuJgjixCDwFNMJDnIVw5IcxJZjUGhMmLc9fQ+S4Tdf3Af7y3bZptZQuTFRErn6Yh6PGbbdiQhsWEnpWlem+HL+1J22rOvL4HYCZDtis2xMXzjjYf84MOPOPmVX+fZ4icEn/t0DMLYSIkUACLr0whBMRAYUoLgAjjPqBxz5+Z9CqmYTyeIKFCiwCidtX5TJmGEkAj9JdZ2OJv48Y/+iJAEv/1bv8O4nmC04fvf/z5N33H/3l325/u0XZOd3ban23SopBiXY44Pjnj+8pS9yT57kyOaTrBpt4xHU8bjTBRHK5I2mCpLQR4eHHL24hlXV7nXKAZFv663BO+zZpHOqHtRmkHxT7NYLOmd5ZfHU35rb8pb61NmTy64USaoNXJqEPIA73YC31+iURZjaFOebfRF3kco9JbpwR66VMiYp/FizDOUOYoN6WvMkpKFKTNxUgiqQlMVhsX5Of/gd/8uF5dnFGWBdS7zEIUkoNBCDgY1GiQcZd7Dgc1tgNGIJFtsCFTliELoYUuTRIgRkgkxKLQQyOgGLVkDvOS9e4YHo8jXb8wIRQ1VzWcvTzm72hCFwDYBmyAJjW0D1teUdYlNFT6OqEZzRpNDmq5HqSMKvUBJgSnK3HqRjpQc1q6zbEiprumHUYZhA54gRk8clAOiSER8VvCOgUJpjKmZTQ9ZrReURUIIN0RrnTMQmXuTcpBTiYlrIePdScis3EEdfqgrX0XM3ZV3ihDDdW/S6IrCTEAEtA5Ays8hZKlMKSVhEK8uyiIr+SUxiJkptpue7bKl1gXt8gqFRlIi0MQ4KEwkaNuO5dUVTbsEGbAh7+H86MNP2JvOuXXzBpeXa1zwvHh+nilt+1O0Vpy9vCCGRGkqBJLeOkAQvGS5sEg1hqiZ1se03QLve7QQKK1J1pGU5PDwkLLQHB7u0263xJBV/S7Pz+lps1JGzPfs+PiI05dntJ0lWMvJZEJlLePtBtGds3y6QU0Uo/0pwhQgJNFmJPtLNcokAkVZEGNCqozgRRHRWlJoyTblh1WWFSEMXjdlkePsUAVVVWeh5QRFCEylZI3nzu1b6KLg2YsXtE3P8ckNjCn54Gcf4wX0fWD/4ARSyHo5aowPARdclr8YBxKgpEFFDSGzXEgjgquQA7opkkdEQRETVbGG/iV16Jn2Ad8IVosNZrlg0uU0vG+3BMBLhVA1vfMwUnmbVJzw2//ur/DdX/kl/s7/84e8/8FP6X2X5e2Dzkt8hmxBq2rgi8g8oa4E6EgSjpAcCJezgZgISeU6OJlBz8hgVEFZTAlhSVVOQPTooiYIhVKay5cvmc73s5h02kVfwe17t/jnP/qn7E+mvHd8ZzCUXUkx7DQZ9HN3mc0ft1Pbe7YbS0jgfJefcWFypqMlSSTatsPHSFnWiOsWAcQgeP7slPX5kmk5RoRhxV40SFEgRTG4CzmclRolYm4/JUgicnm5pCwmGFMiyHq6XdMz2xsjUsJoTddZYhBU1ZQkPSEknE8IWeBakSVqQs3+dMalk8jCMz8ecePWTX760YdcXF2yWS4Its+rGmLmABupslK8L1iuLgnOEZDXvFjnPJLI8uKc6Y1jZnVF5QuslTQvt2wvGoqqpqjqYe/nl6w84FyTdytqk/uRMm91UjJQlYZRVdFby2q7oRYTpMq81wzs7ESPBIWpKL0lXCwRkyum0xkP334LWRmqqkZXI27dvc/Dh2/ws59+gpSKpnVcXC3y5qeUODi4xbZrOX35MhuBgzDsMCSCEsN6BV1idEb7JAHSGoKkQLO9PONtUaNmY0Yu4OmxSaCaHu0iOiaSFDghSCqvOvAxgyFKFxwf3uSv/c/+ArfuzPj88QU/+/j7rNsXSBUYjaZIVUAqycygvF+CZEnBU+gaVQgCHdavcCkvnPUetB5h9IjCSIyJONdTlhOUmtI2MJ4YqsIgZQmYzBrSmr3ZlG3T5Zm9QW/HGMW62XI4nVIrQ1bLyqp/w9bJa+DtutwQkuvFQMC4nnA8P6EPjqvlJdIkTo6OKIwipAzKLTbbvF1L6WE9Yi4fUlRoVTIeT/nW179BVRTDkttMNk/DjK1AUJUjzk/Pef78BVdXLbbLotZFWTCdTrF9Xs9QFob3vvYuJE+hEiJKCBKBJsWcYo5Ge/Sn54wn+1RlyWbrSaIipRFHx/d579t3+ff+g+9hyhH/h//Tf0xvW5YXF1y+fIl1HSEFlNIYlRcCZ1aTzrI2LrK8XOXtzUNv3BB4885NJlWJaUymoEZBZ3v6TU/0Mi8x0j+fuf38NaXYlRy7FXVpFwyZzWfcuHOfxarh8ZMn3H/jTUxZkodEIinlcaQUIsfzA+TyipksqJ4tEW/u0QpHb+A7b73HZt0SY2IyGeNcT11X+Ojw3rI3qTMP1a5xwbLaXmJDGFIgsdu3hRSglWBiakxRZbpe8PhuqHWVoCnWuBSpvEElT0pZDiMO6bUYpu2VAE8ixLxZy3qHSYLxeJ4PAQXB1vh+TN/rLNkvakSqIKlhYj8gYh7xkQRkrJCxBykRqadrEn0rEBTMZzeRjFHCo03H2kaUqFB6DJjcmywLUlRDdEns7+8PrZN0PTFCShildnGR3So8EF9YO3h9DbiPFHnTyrbtcqQWNZUZI2SXVQeNoKwNGo1OiVZYYpR5aexQb+b17lli9MG9N3nx+DFFWQzAVECbmKVHRL43WWo0cnBcMNm/xycfOz77fMH+/JAH9+/RbFfsz6d5bWEKTCZjTp+/RJsKqSSTyYT9eeD8csG4zKydmARlNWbbJy42PZM9TaeXvPXGA/6Hf+2v8ku/+jZPnj5mMhnnej5k8osAiIFEpipCrvcPDo5JKfLs2YvszoRCS0GZBDMJJ2WN7LPgsq7LzBqzmrbr8NYiEHmn6ZdplGVpsmx8SiCyoriQKUPPumTbtpSjitV2zbMXLxBCD1uBAyk5gm1pN2t+6b2vs/78EXMLYy/Y9pYuOHRdYuqSPVPSbFqKKks21nVFcD57filxQiBTQMs8fxiDH3iiGSSRw0KhJFTmxeo8qyiUImW1SpIRWQEtCYTPbYEoY26hiEiQMX/vLtsY5gq9txg8IVouzlf8f/7uh9y5f8If/sGnrLdbrOuRZlgcRAHJDF2HvPCIlJDCg1TY4Oi7LZeLc2zvMeaAg/0TZtUxoQElenAO6QRmVDCqMthRmJLpdJ9tv87qAMlTGEMK8XrfiRSJGBzjavTaE1TD16tdldfZVHq1ql2Qn8n7jx5xcnDM5aM1IhbA8MwJQ+bj6fuetm0hJWZ7e9fjaCkmpEr0fcMnn37A5vKSvl0gyAi5MfpapCslR3YDkkJXNF1PXY+Z7U8YT0p86Oi7NvdWRcJHz2qzZr1umB/uoU3BdDzh0WfPYOA1X5ydEoPjk08fsT/9JocHb1NNBLpomR/dop5MrqmRSgqi90O/UVIWBpMGqVORcwpSYrPeAnD3zj26tqdtsg5SmRTjKDgZjZB2iSSQBKhCUpsKU2iatsui4eFLXoVnTIELHbtlrlIJpMor2KazPX78/vtMZnOE1kxnI+rhEAkJ0XdsVwu6i5e8ePmSMuSarSo0l12bHyJkWcbJjL63VJMKU6jsvVJECYFRikKpDEQIhl2Lr1bQJRFzFBjW0wmpkELnVDtBkoEQI0pKhAJ8wISEEgkpcsomk0eJ3SyoApHR3LzMy6MNuNiwas757/7xDyjLmuV6zcY+zy2jVGY7RiHJpIAkhvESaQmpw9mGTfuSptkQPYzL2+zP7jApK1TfYWKHZEukw0Sf2zQie/PkU2bx9A1aGazrKU3BThleqpyiBuvITNqd3clhOv+Ldc3r0VKIYZng9Xo/CEESoiRElWdeo8eHQGkkwqVrAMQoRdc0NM2aotQUtaAqDTePD+gqw6jOkdIoRYq5LcaQReVWi8wprRb0rsOlntt3bqBSwdHsCGMMt+7cZr1d0vuO0axmbz4BHEWluXXnGO8Se4d7UASkBiVrCp1IacO26dChpesPeP7iKSc3a9arDcF5gnP46LHBIRJolTdwF0WBMTklXy3zuNm3v/UWH378MYHsjPYnI3Tr2atL/MUWdN5/E0UCJTGFZk+PsxD3ly2cpXXWcExxGFwWcljgIplOJ3Rti0+Bm3fvMt+fMh3PcnGuIPqeSaXpF5d8+JMfs6/g9vwQXRt61yNTojS5baG1RKk8XBxxmRWjhuHoBFWh6XpHMRkjpSLXP68OWNoxVRCvepliSE1EyBMBMhu4kRo5/IN4tWfy1SbkIaqIiCSRhEMYjw1bOrVg1ZZoa9i2C3y6woUGQZGHpYXc8YGGusmD7llsPmXdnuH7kkLvcTS/y159i1JNUW6DjktkOEPKLDOibIuKM7xtcH1HmyKu6/OGQSmHLVWO+XyfGGLOCFJOr6L/gsn9KU/3FbqT2/Wv7mcQkogkJkmMEuEhOIcsDXVV4EY1i+WKrm3ZlwckIovlFc16ye3ZPgfTMcFI7t+/Q4x+6FPDbt3ggAISQm65LNdrfvbBhxRVntDZnxxxtH+HH/74Jzx79oxypDk8mXF29pKihqbpqUaaB2/cym9aQuc7xuNbKFXSNAueXz6m9S26Ezx+Evi9f9by/MVHPH/2jGfPnl/T9Lqug5gYVWMmRcVkPKIs895NmRTrxYqzFy/Zbps8p6nh5PiQ8dMGTWb2OBeuR/cy5pI3CwihvnyjzBo7eWmrVnqQ9Rc4RzY+aWgbS2UqtNAEZ7MRKwHBo6RibzojKUUbLC54tBDEYFleXWAKTdu3nBhN37UURkH0eT8FETG0ErTM0hdK7Ngpu6PE0H/La+nErkga2DO7976DGIUocHLMVu1RJMdGl7TREYTOrzds7MkGGpAiZioVDkRHkiuC1KQo6f0K55fE2JLiZODcRpIIuTeYINGyWj9ivX5MxDIuvsnR7C1GxTEi1ggv0KJFxQaVrpCsCcESe0t0M1Jss7pbdPR9g08uy4cIaLsmc4NjzDs8Q0CJklTl+c7f+PovUMicuqaB2fRqz/rrV8YJ5Gv2K3SB1AERusER6LzOMGXlvlFVU+qCEByz/TkHN04Yj2uaxYLFxUv81RWuaejmY+rJiEQW7M57QXcRPNdbRms62+FcZvZILYbZyYLtdsu2bahmM2SRWDVnSHOXiENrgxF53WBKCZkChSlARMZjeLA3ATMHBFp7njz9jGfPH/H555+zWa7ZbLa0TUvwWfeHukLJhJJglERLyXw84VQqLk5fUkhJKRVGJJqzCx6agtRuCNEPabEYhtbTkAnkFPhL71NebxsWYpBI0KShoBemQKCIITCpZ8gkyNzbTM0S0Q+bp0ye4hB5wlsTmY5qVtsVjW3Ztls2mxXr1YLLi3OEiDjbkKInpYAmoYyiEdlI1IBfZPhG5gUkKeXfKROJAMJntDHmWggp8DGyFIk/dJbYtxQyy0QqMoUrgxYZEMmIZCTGrKy2vFrgZEHpLVJ56mqCTxtIDdAh8YiQp1CSCIiU4X4hAloWyHjM3uiQk/33kHEf4WtIioRFEFHJIlkjaEnBQuwRaUtpPDdvHrJcrRE6EIeVCUSLkZkNJFLAuz7rgoTEpt2QUuJwMhvi5LAQl53056uv3T8i5cM4mCSICnCk5AnJURfloKeaE+ZKGqqiYLlpct+PPBs7HY9YXV7y6NNPEMGzPx/zcO/NIZMZiAsJksh67RJxPa4XokMoiS4kLvRILeldByJiCgUi5oxHQyRzWaXU+bw4RwyBojbEkPEFtELooYcbfSakK03wntV6hbXdUPdnAFPKhNYCY/LuVJUiRgiO6gkyDEr9SaKcpVxtuHM4YzScjyTzGRSC681tScRBbvVLN8pXy1OVGrZcDXC8FHmYWaM4mB+SYqaCpewKYRjmqnRWJ/OuwfsekSJGKo4O95kf7NFcNRwcHvB7/90/YfPgAQKPd30+EM7SbtZZDzYEjMobhuns4IHy73n1XkMe/4qBQbp6dw6ICbZK85MQWYTAfHqAvVgysR0PR4rcNn5FEZS56YbznsurBV4a1Kah7XpOjm8QUz8AFgGRsqxkJKCkIS+ZBZFKSnmHOwdvYeQc6SUpFAjxin6YiMgUEMkiRDaElDzgeHn6mLOXT6lHUwR+kArJigHGSHrbICSkmEW2jNKvsXkAkZUEkgh/zCBf/1+vco9Xz93k5ylAyEg9LjCFyWYU84oKIVTe4blDF8WwA9tapPOE0JHCLrIPvdKU8qrD4dnt2jLe92gtmYwnHJ8cMqnmTGdjrO2BgBKBvtlSSE10geAdiIy4p5SG1pInRUdKEilUnkZxfmgCCWQCkTyFlIwqw3ppiTGDMFrmfapayWz4AzttWpTcuP8G7ctzfGexlcKIkgMCD8ZjqphXagipUKSBJxyJMhFFJrz8vKHyz2SUWklciMQ03CBV0bZXTPduD80IKEw5EAzycCgpgx4iJmpZU4qKJiRkACESKjomA7vHqZ6y0Kwur/i7/9XfJrQ9emzQCXzbse57hJ2QkkYlTaErBP3wkCUpKRAOKeKrejAVmfMZIwg3wPWKsTeYUNFS49fDSJfWWELeIk3MuzXI71PkJ0kQWbLfux57dY6SgvneNO/iiBLvMn9S4HOUFmkgLih0rPPhTY7gsmREkjY7jABxQHnFMIiaF7smJJG+y2u/o/DY0NPZPj/stDuMnpx2Z3U7LXcHfudewmtff7rX3jmKXRqWYsotrR1TS4jMrAqJUhf4ENFlhVRmqEhF3irWO8oIQRome1NQ+bfraz4u144yk+Qj22aLs5bJ8YjSFCgh2axXWciMhLOWs5cvSCliewtR0Lke29s8LijyTtAQw5ChS3TMift13Rwhup6xkWy0IIa8CjHvFpUYBUoMCotaoYVmj5JvTQ959myBSIFGZVCtcluOK02RIkbIAYCM1w6AnaLjrsT6Oa4/23p1kWutvu8pSgE+Ik1BWZZoremtZb3eUI3G7ChdIqnMXxWJAhhrQ4vIcvHeY5JG9pa6NDxbXRG9o1QK23Qk65CjQN75N4AmwSOkIviQo0FiOMS73ZS7RzykaInrlEmIXCEiJDEJJvM97t18gEqaikg6/ZywfI6SYpiD3q3Yyw86EnOGvNvsHCMhWFLMiFu6jrDpmnifj5/ccXsgaRIyU65SIAxsVxll1hsioOIAVMX8fm1w9NsVkYhPnqZvs1ZOFAiZl+94J4ghlw3RB9BfPAI5du2+shfPQepVjMz/+SIgFHxW0gs2kAYKZRruad4EH7G9Q1Z5dWAkEUPASIVtW2RKmLJkOp6CyKsS8vsRQxI79Lx3kypRIqLENp7PP/kcQkFV7rNYrEkJ5nsTZtMRm80GKSRaZbG0EDKBfDqdZu7qNcmeYVXiayVY/mAUWlLorEpIihDygLuSu35i7r0KGSkAVhvGbW6LaeEJLlB6y1iIvMI+pKFsGe7mjtV2/fXz2dnPbZQx5cOcUkaYfOjxqSMkxbbNdyDGSNd3jKazzE9NIFNCxDQsVQVlFFEkXPCEFBEx8tlnn7BaLdis12xWy+yxyMTIFAeCu8jMfCnzfKN3bmDq5GWy125o6C/B62BPepV+D/8OIbLcrqkWF+xVUzarNcVqyZ5Sw3aqdP16MuWjnGcydgbPsJBWEEMelM5Ra2DJsIP8MydYpNwXfZXS50VEIolrFDIfoIxuxwGllEpxdn5Og0IWJXG74Xy1JCU5LDstEFqRQlbD0+hch6n83nYGQCqGGjldv78vJLDXWQ3XP5f/Kg2DAIPjE7vomb/PO4/te2RZwq6HGSydD7iuhRjzduW2I1aKKECFNCDEOweWMxUhJYSUt9p7kFEznRxQ1Qc4l6PPdDpFqoQpTNZWipG6yrO6o3qEKQxt32eq304pMMXrjOIaAc1/QPTu+p6nYc50ENDIdL0UcvkSJLH1zIxGep/LMwUFWeZUpUD0EUfOxlA5o9hpKv1Zrj8Do8cMwEmit4FNs6btLT5BfL7AWotSktV6ydGNExKeJBJRCBQRlRIBDzqbik8JiUT5rGWzN5+xvlpwdnqKdxbISgMpZrUzmbJ+rBASY8wrArKQiOutXq9VUbtzNjwMXvtzUnYgbdsilGQ6n9G2LcF7UvHKcPO/07Whi13tM3j23TqG4OMQ+cg9uLgTAovDe8sT+xnUiMOhTzmPGpS9d7zTfHBe7WCJkCX6Q0BLRZKSpmnQZT1MZwxZeozEEClMXgenlH6tUBSIVJKHqIffIV6rH/+YB//C7RL5vscB8TYy3+9ruCZFtBJ5f2iMpOCzWJq1tE3WPZJC5/lLawddpTgY9fChRc7CQhJst1uqsuTBg/sZVFQFdtAx2pvvE2LCd3mpkZJy+DuJ8IHClAip6fs8jC2lJCS5W+3yqn6PWWDaJ0u7bUkhDWOluV8qZZYcvXZUEUqhqYTAaE1MAiczkGMIlCJmXrUcWoeDQQIgBYLwb6dPmT2ZQRpJ22/pbKDrHFGIDHSInI8v1pd0/YakaqRWyJw7IgfNHaFzahgQtD6BlmybjrIaE1pHu2mxvUUlMRxScr9v8NZyIDw7EspkMCPF9NoRzgaBSF/oWSYGrGeg4Fkis+mMG0dHTOua8f4Bzeqc2C8HxYE8exiHyiBHGzXca3F9uHcel6EOjNHnxnjKQNNwDBBIYtLZycQdu0YONW5AJEMUnpgcu5ovpd3CbkEgUSqVBcYS11qxhTH0jc0MG2sRSqCMZP9ozg8//gFGG757711IOt8XmUW102tP9ovPmS+0NHfc5RA8IkXEsLjV49EoYvQczic0RaboCXaLfsFHl5FSkajqAl0W2BjQUaBk5idLJa+dp48QeM7VZsnxzWP6bV6317c94FGqQErBZttwcHCQNW6tpdCGiCfGhO17IG/gstYSkgCprjO3lBIhRNKwb7PvMiCU77VCKI0qCpQxoAxSKHSUTIsKve2GpybRCFx0lCpSFwqdXFbjN4og4uCw8+rBkEJ2yH9aq/jfxChVUWZ1uhCJSYI2TOYeHxzWK7bdmhAd682CzXaF0KBSkdPOmNDBAz5L6KNwWuOKcuhiZCMYV2PeePgWP/qXf4RrGpSqULJAiDz5IaSEmEWSuhBQUiPEMCB8rduZh6J3US3xqgEgpcjpqMpEeuk61s+e4sQpyllMtIMBqeE1smFldo6GwTnkdCS/dt7TKIbWTCISiOLVUHZ+H2GIhAPcIMQAwuS0VwxaMYkWUkcSWXoiAA6wKSKkxpgKZH5lmYZ6J+a+se19PmxSUNYVVVXxybMzpBBMjQK2INr8DNilscO1S/8Fr9Lp4YqDo0spkMWKHdKo7HCiJ7g+745MPVdXVxS2IlYl2A7nPUIphJJ4H7BNh48BlXK2o7RGxjgsfxK4EFgslnR9z7ZrqIopTdvx/PkZnW2orMAYTbNt2J/P8wynVtc9WgBneyajOj+fBC7EvJ9TyEyoGBYUpxTpvcXHgS4hVJaPrEtMYbIekZKZlyUVtZCEtkWHkCdkRCJGz6Q2AzE+AzopDsaXciqfN2cPs5RftlHqskSWUCCo96YZ5pf5jTRbx+Xikr3ZHs5HrhaXtK7FFGWOESlRpIh0jvF0xmz/iLZvWNclSSZWTY/3oIqKk1u3Obx5k7OnT7Omz5D2hRhyeuQ9RkvstkFXI4TYwfzZq2YW/PAAkmAnbLTLZ5VUmIEJdBR7HtgVhc09Ju86qpTww17NmCJKeMKAqMGOzP0qXd1FGjkYHSINs4waicnjZCjktXZRnmpIYfeTubmsBaiUWyqZ/RB3lAmiUCidmULZrHP8VUiiz32zrHwQabuOyXQPJYtXaaiwIDdARMQq0/6EvTbMV9HxXz01SSRi8oTggIT1gVrKvJouOtp2w8vVJZPbx9y6eZMgE6Hbcn5+jvMJYwy6rEgIepv3c8qY6Np+IP/v6jzJpulYLJYoafj80WO+9va3iSHx8vyUGDyjesRsOueR9VRFRaEMxVhzcXlFiLmk6Jpm2MnCADwpQhKESF5/MCQ1Wmcdn6bN43aIQTi7yJM3aUBxRQSdItJ7Yt/lszbUiEJE9kYVYkBYlcjnIZcwYaiV83kQ/zZaIlGq69cUiPywMl42TMIbSjOBZHny+XPqyYSyrknJ07VbhHNIH5iWY47v3uPsyWd8PtOYQvHs9/8FrdYc377Ff/tP/jFSgzCCKFxWiIthqJk0vbdMTd4tODESIUPu6YkEQiFiCUhSFDllEwOLhTw6RsqJo/ctN4Tnd6oD6kLSKM3SwouLKzY4gvAI4UB4pDDXtR/XB3lIal9vBYq80kDqHI2lEDndGQCcGBwxZmKCFDn1lsO4hNxF1UDW7EnDNObAKjJqx219NSgtVRpkM10GJmKk7x2z/czbfGVYOcqJWOXaUrYg+yG7+FfbIz95+oyUEr/yzV/n7PGWJBwRSxK5L1oWGS12DoSGtm0pux4lBHuzGeX+nKX3XH7yCUlKxtMpt27eoovZuTKAbiHkO+m8xTmPUIZxPUUIzWQ8Z39+iOslNliQgv3Dfd58801+/OM/YDwe5e3SZZmj0jBKFZzPS2NjxKcIwoBQhDCsYxT5PsUU2fYdnc2pv4seLfIwgZQi83lTohJQJ4mKASccSsWsGJESOgr2RjXJu+y4ZKYOxrjDGzJaH0XWIP7y0Vfk9XG8hsWJ+ZeFQPKei/MzTFFy6+YNHr75NgdHh9SjkvVyQegtq/NLfvyDP0JKxTol1lqjjQDvCDGBh2dnLzBhACPiMDI1aIGHlAdLk0j45BCFGDhhcqj+dmlg7lftVgcA160TMUTOQETEjknsqKNHm5KoIxfCIaOHgR6VDWPXKcifPS/dEflXvzYGlQCURBqB1DltJ2YtWiEEUQA+AFkdQJJrLynSLibmfuCQunoysTlTHONA4h6EBmQEuZv4yAE4DuTuy4sF79x8ZZQZSxl6oMKSyGvExQ6653UwTPBisSClxLSaceq3Gb0UAanyjGaKYphKyc8hiUhZlezYPETomhbXZ16zVILeWbwUCJX7xEoqjFAkIsYbYoTRZM5q03G1WHD71h1m8znj0Qz7D7us8CciulAcHB7kszjsCzk8OmC12CCA8XiKKYqcNsb8nEIirz7wjkjCesvVYsVmsyEOEy8pxQHgERQmL7HSElRKVFpgokeJvNMlbzxLFEoyropr/MD5/Doie9oBTBN4H/Hh1b3+Eo1yOPDXgF0cJPvyrGQIge12izYFh0cnVGVFCB5nBeNRjVeGMHWElHj09Cm6VLQRiiSRHpCZkmekgGFCPXOWcx24o7zllEcOkLokpWFy/bVrZ5yDHQ0gDRmU0SLHh0IRcSQZcGTldNKujsx1YM4GXkdxYUeovgYNro13QCMV2SBVQomIlAotQMSED4P3RGSyALmPq0QGiZJwtK5BhI4oEh0qL9VJkegtShXoQmdvPFC3tMg1m4xpeL8Rb/u8xuGP3ROZNCmVeQ/lF6ptcW2Y8QuRP/9cjB7vLfPDMdO9cX6vKTfoffQkmahGoyy6HRPaZLJIDCHvO0Fk1buh9bNzuHEAfLTKEyLL9ZbnT5/jQ2Sz3nJ5dYUxFb1vCThC7Lm8Ouf23Tt51WAI9MqyP9vHdWEgfdv8voVEyl0LSlDVhkpURBLr7YZNs8n3f1BgYFdyDFS8FMFbj4sZOc/ZCtf9VAUUCiZVQa0jJuXvy2leLjNCiEQ3fNYkCF92+rojDux6S0Budoec2SmV09uYUiYGEwgxYF3KtKOYx6pMVeAWkeQ1286hCvOFKJTyHc1q5cPvyeBQJr/FFNls1njvWW+a64U6w8kb3uPQbxtGghIxr6YbUooEFMZQeo8OOQeI1/Vhuj6QO0N7HWTNv2QAbIbXy8Ll+eeud6EogVbk953ydukMDqSMBApF5rwC5PUHMgV87Im2A6lyLVtXjApDSipr7pBXMOw0R5UctoCJfO9C2k15pOuvfCfD0EOV1+YYX4N7rt1KesU82fUzY/L4YBEyOwSGdlBK+RlHKZFFNZQz2ar7tmNUj4i2YzwZU5QlVVmAFIQQSD7fT4HAh4AdJDQ363WObL1ls1pSlxV9n1dbCClZbTfszfY4O3tJ17akCJPRlGJQbu/7Hhc81np8GOpvJdGFGbAJT9u2AyMqV4Np8LhikEsJzmO9x4isUqGEQgk1TEp5hiyVQglGpUaLHpVTn2F0MDu6LGMUcmQV0H7ZYsy73lm6ns5IA8QehxVkZvg+socY+nVxiHYp5eWluiivBZOcC9ezj685bIQUWcCJPCIWI5jBKfjgefriGVfWc77e4L27BoOGmJhTwyQILmE7T6khpIgLnpQGmN5ZCB4Z80hYkrlxvDNmMbRkXp9AFH/sK732FUUAGdEmG6RSOx5PXv5jpIYkuPXmlBDgxWdb+q3LD1DnZTpaCKrKgKgISGwSONuzCZ579x4yGc95fn6WRZ2EILieaBjS0sztVSKv9Pti9jAYnnR5ryY79SAxIIXDoWSolYeUPMMX2cEivwjpxwHZDnFI8ZUkV66R5AO2b6nKAps8o8l4+CEIKQyiVCpPFwkB3pO6vPC263pG4zGzyRQtZG5xDEuGy3LE1dWS6f07hJCwLlCaxGq9pqgK2qbD+h6ZMriTfWgm2IthGW6MEWMKbt26w+n5GWHgCgsyKaXQmrqqKbSiVJpxkkydQbZDH3YXj4gUSqBlIgWHd3lJMFIgZBbbzvdm59rkvx2j3PlUds8RAUniPWT9X0UMghQz0JLBlh2HJH/ysiphgJPDQFAeEjrUgMbBEHljrldD8KjEEH0To/GUZdyw2m6JYnewdlSmDMiEKOh6R3CBTiUkjijzVLj3loqcIu6IwyHlVkH2BRHkANwwRF4xpC1px+4Zsof8rgjCk2Tk4GjObH9C12RyOWQx5TtvzPhH3/+7fPKTj+ltx/3bb/Dd934LlnOahUUYjRaJkSkglrgk6GLKzbuYePr0KbNZSxxmRKXQBB+Iyg/vM5uhFiKPtcV47UwkQ00d8uoIlXYTo0MtmXaOk1fehp3rdaTUI6WgLsbXBq8k+PQqM5FSIoSk7zt0DLi2wfU9xITWWbUixh4fMm1PpqxB5EMixEjw0PeOlCKFMRidl0Ntlku89dSmRqusVo6Awuy2kyU22w2T0RjrLXEAa8oiEwB2iukoiY/ZHZnKUE9nXCyWOUBEECjKsspatsMmbCUVhdRUUSNdm/m+ccjkgLrQiOCJIaBELn9IOZsLnkHILAeJmBI+/HyTIj9/TbmT0CenEZlqldXq8iIaOSBP+RfHga+UrtOD/Dp1XSGHxTkZ1BjSRYaB0JRIwTKZjHJNEgKETNVyUhBiQpUG1WWQ4PpN7eoiMnSfhCQMKKeCIZIOdWAIeCLD9s9cf8Y4UAYGHHyXEQuRdVlFbu28InnvWjWOuw9uc+PePt57fvr+D/jgOfzmL/828+kh2pdc9af8X/7W/5GmbbhxdMTBbMqjp5/w6eOP+PZ7v8Svfesvs/ysRflXglYk0AjqoqSXEhfBB480Zb5PUqJ1Rlm9z7qpIg0JZILxqCDEyKSu8/LeVCLijCQyqT1PV+bOqriWhBTwhQgb8zKn5JBSUZUjlCwRKWBKhet7UsobrxBZLTxGlyd7fEbMhZTU4zH1aEwaBslzIJY4F8EG8JEYMkIphLoWqxZCQggc7R8QyTtH1n1Ps1nnle1GkUTEOU/Td/TO5XTatvgwLO0dajyhNEnkpT1S543cTbPNwSZGshRsvgN97wkp4ZRCo4mhQrqQ10JEjxYBlRyVVqRgcwlzfYrzs9txpnfAYADsl22UWUx0eOIDqph2BBqRUHogVMeQDUP4gbZkiCJDyEnm9XFZhDd7GDF8oDyInGcPo4vMDg5BiDzelfJgcxAJH0MmPBfmWrz4tW4bCJsdgkh4PEqURKG5zk2HNsNrfgKBQqZhPAk1DPHuBrhy8zm3NtLAgxXXCeA77zzkBz/9/SwgjRhaJ/D/+N3/cmAPaXzwvPngPr/1S99lWo9QSrHabvn06VN+/49+yKeff8jf/Kv/Sy5/sEC5vLk4JEhJZlHjFJmM9vCDbIpIZAMQApQmxZ7oA97bgQYomRxXbNr/L21/GmxZdt13Yr89nHPu+ObMl3NVZc0DqlAACyiCIERSHJukWhJFSU1JHVa43SE7rAiHwg77g786HO0PDneEu6Ojox0tt1oSNbHFeQBIgCBAECgUap5zqKycX+ab73TO2YM/rH3OvS+rQFTJ0AGy3nzvGfbaa63/+q//GvFjj3+eJb0MvgA1IepJ2tHDQgzewMvCjto7HGG0pig6ZBmYmQwWiFERfUxbl8iUWWM5vr7B4egQu9elYxS6muFnJSoEsm7OYDhgsDyUPFqJKFlIgtkhyamORxPKuibvFDz08MOsb2yQmZz3L18R8nmuGQ57bN0u0UipTacSlMkMWZYxmc7wQZhlztXiJJxLaITGeUftHSYrqJyXPkpkfkskddgoGYVYV45IzSxqXIyiBeVk0lxQHqoJ3WwF5R2tikLjIOKcbk8LDsqo+B+qUYrHSKHmQnEuQqJLzeUOQlLYlbwjNXwqmYLkcHgk1HO+FqJ726tJanbN6PWXII3Q00pKHlFJ54mvHXlK3JvukAZ8UEZAHWHYeGL0wpoxmiP9hfccGpUMMWKRMLAxdhtBejsCTaCoY2R9fZUb2x9w49YWavCjaLOM6TyA0ho3fZ/o9qnH34YY+fyzz3D25HHGIyniL/e7PP3Iw5w+sclvf+Ur/OF3fpPnlh5gVI4xODwwC1A6ESY+e/9xbt7eoq5KQnBoleptLTgW5HoVmEzoa6RnE6PF6zFKldKloZzkP22Ekf4pmDrPd997Tzi0oyl5Dko1iyl1vsRINFbKC96zv7PN/U8+SW/Qx3jPbO9ARhHEiLEWHyVVUTq2YXKIEn014KAyHucrur0OT33qKR584EGIirffeZcQI0v9AYrIcDig2+lQTWfS3WFkGpgLgt4vr67QH/SAkOQyRaEfNLWrKGuh3u0eHIDyCXFPqYnRFEVGJy9kVmnl6ASFcR5XSz+oC44QK4yrJXxttIZI/ioZxaJioE9ZSOV+2J6yfW6LC7vJJ2TgThsaOic3GmmR0lGJ0aROgMZDBedRGGhaZVJ7S4xRdFHaFho5AaUNOgacC4TMtjlRbGQVU1lggeUgtCpSfqibOsn3ubwgIapW4hW9mpcFhPgtoYhCWpAeeew8X/3zL6OKRymWnpfXSTttNngMRWQax7jxS9JJoYPMGjFGSNMusNTv8/lnP81XvvFNnv7ieeoPnAAsCUmVtDImForhcDSWwT/apOG2DSgTEwk7ozdcWtAYDQQ9gaBQvouJlsiEqOtGqIGmhDSnmTc3xRF0jaMSmU/v8EnepK4dVe2YliWT6Mk6Gb1en76VmZJbQcLPTqcQac5qKjTJpgSR8IgQ5LzrWhqN9w92uXjpIrNZydJgGRcDprCsHV8n6xSMJlOWV4ZMZ1PZcJSiqmsyK4CNzYzUGG0ueS4aZYQ2F2IndSdJ2qGiwyiwWmOtIc+tlMJ8jUHYWTlgEtmAIPNTvfdYFelkFqKQMJxPhknzPCA09MsQcZ6EBv/g4+MbpW4S/0ZmspFOUDSPU2kJg6o6sfSVSXIIAsDE1CeoU92RGLGN8hySt4Gw5fb2D+SGqgT6OGH9GyT3IO30Db81RiD65HSb+tMiPtqUOb7foeY9ffAhDmhCQ5AlrMmsZjQ9kO6J7hMLxfeUpjadJVpQaWs1/V6X3BicD0wmEmpFNR9+VIcam0ArlAiI6RiwZByMDhkuLbG9dwAoOkVBd9CXnChGvPM4F8gzi8FAI5EfQbsuqjomjB6zD2aSnmOYG+E82WvvkXczynrGtJ4xq2fsH+6j9RLKZEL4rmuquqYYdLFWanN17RLYITq3WV7ggmdWzcA0m0ijii6N0iHCtJzJzFBr0VbjQk3pKg7Gh2AU3X6PytW44Cl6XSazMUWnkFKHD1hjqas6AYMSwgohQGGQkQFCf5RNxdVCzG8AsUaTNXghHRgdsSrQMRmF1mRaSbtW6vAZdHOKTEMtvNsYU69tg9enDS8xh3FB/fA9pWl4qIkRE8IchkylRbQxdLIshZhyg4zRaKXxyWOGWvrTfIyyGFUqRSjZWbWSBmCTJj+pKHoqIUlAGqAO84ubG6S8SCQtahZ65xTzr5Xi+x2LBtvgkzHlp1p2AAnHtRjS3Z078rt2KIs7CrFa2nWaHWAOnFirIWTUbpoemiC/Ta+nVlAYAyHDJ3BgqdNBK8V0MuH45iaoa5BArNxmVHV1JHoJBKajkYR2pBy53sDUq0S7h8u28WbShuYqQa7zemVzLyLXt67x/tVrzGZCr9vb28HNpuTaYrXBOxE2W+qtS0ksCsAWQyJdBCl7zWYlCo8MPJaGhMYoI4JoHo5nFL0+JwdDhstLVN6xd+sml65c4ub2bU6MTtIbdAiI0UWg8o566tMwIyPtg1ODsVnKX0Mr6aGVEllUa1HaUJZVu6FDpNst6HW7dLtdCqVQBDpEVlXBEOiUlUhPukAdS5Z6Gp2eXYgNaV/qkTE124t+unjMQBT1i49xfDLlAWgX9dwTSd6SZYIELi8vo7XmYH9fcgqj08YhiKsG7jt7lt3du7TSF6QSS+o3jCj6vYEsNh8lN1gAWaPz0iGxCN/HhZNcsLu4uNKOXsmRT1UIAoAgD1Gp1LQVBPjRKiPGGq8insCg18V7Bw14QZDzFwxMCvpA1nuU+vAv+M4rr/HMI+dlmG0aT64SJ9UYoeHV3jEsZNydj5Ha1/hqRukDTmuqWUme5VS1Tw3lFZ1OjgtSC7VWiPbelUkIKl283SPauwQ7Ai25OaqJCRbC/aYJGzHKaTnF+RofvTBdvGc0OkTHSCfLMUZ4ot1up73egBDjnZJw8s7dbQ6+9zLkRkC+zBDS9prZjCzvoHXG6HDC7t4eKNjd22Nj4xg+eMqywvma2WTMwcEBvX4fpRXaZsxKaSju5R1igNlshg+R0gXyoiNavVq36UeeZWS5kAEODw5EyycRYoqiYDAYsLK0RKEVVkWGPrAyC3QmM3Ijw4pRQovsW9HimafkAu4YpBQSIvQGPVQMHE5EfrXmh12n/IjATyXPZKyhyHPyPGcwGAgzYyRKasZaXF1TljO888zGhygSUBMTV1A1OWV6FxW5vXUrNQuLZwpBZgQK8Ju6NFr4sDEy1aKK4nnVHHSdnzRohfFWkD9lyWLdei0JycEECblD8pkNnhYSF/ehh8/xjRe+CtlJrB3wod2hbbwWTzmZTKl8jU7IaTuvk8iJjXWKPOdbr73Krz38FJNrNzBETHSCqvqaqHLu3NmS0odWaKOZzmYcP7HJbGuGUoJAVs4JAb1RT1OBmO/IfUPYU4v3Ri/cndhEGkhuNBgOGQ4nhL0RCkUnz+hkFpMQ1Dp4olbYTiGj5VKFyWaWvBAu7LSaMts/IBhFHR2lqyUPLKUuHLWi1xvQ6w2YzmZ473nt9ddZWV5hOFiiqmZ0TM50OmE8FsNpwuTpdIbNMjLlyG2B9xArx6yawLjEq9COGdRaGpQV0nN5d2tL1lGM0haXdzDWiiJfQv1tjNjaE2qRfPFe2rCcd+Smh07N7DJXp4mOFMoY6ghbO9s4awlZQRlmqQb+g49P4CmTZEIbwsZ2/Vll6OQ5Rin2d/eJMXDs2HGWV1fpdLssLy9TlTNmkyk3rl7hxe9+G1dPOXX61DzkPGIzirtbW7jgyBQ0jaI6LRdBPyI6amJc3H1k1xcvp0mVqgQGCa1MaQXaYHwmw2uLDDOrEaU0AXlEk2fuPSASlScQQEmjcdGVcd06OyZiUjGmn6dkP6WkRvcxxRl29m5zZ2eXE+tr5CbD2BJavyRH7QSaJ3qijgQTcUYWQ8Sze7BLFUR9QGnDaHSISe1IIOUB5x2dPEk9pnsizC951CGGpPymRFCsjVDkbN7dvkNZlXz+05+hOixlQI4aC+KspO8wImlAwMsooCxLSnYRa2T+ZojS3bN+/BibZ06DNXiEvuYDvPH6m2R5zgMPnCdE2N7eZd+NqOuaD65+wHBpyHDY58zpk4wnI6aTEeWgS8/3AMP29jaj0SG9bg/fH2JNxsHBCG0M0qxsUFahbcI8lGwW9WzGwf4+o+kUH9LABCXcKx9hUlUYpNDfLR1u5ogu8bxjlN5WoJ8X6BDapgRlTJJzafJIiNqgTM6scozGo/lG+QOOT6T72nxsC/7phKw2onDuPIcHI7K8g7RoyIzD8WQkf5sMwoeAj5GqrlNTcqpVagFRlBKeqEljEYIX3Vaj5o5IkFvmvNVGakPN2TjC24wElaf4WBTOdDSY5CMS/QCUhB6iPCcgQfP9JqiOqS4WNWzvbgFgug+JEWrQQfSCVEKe5VAUK88zuf1v+fMXX+Nv/uxPYIyh2+0xHk+p/aLko5xzjI46iIBkTcTrpuNASjsmjR8oy5rJeCr3OgoA5pyD4kgLswQQjfiyEgM/8sOFY28ywfnAoNvj9p1Dopd4XCXCgg8elAyKDd6QdbvtM7VRE71nfHhIVU6lu9979kYHKCvRkDWWyWSGqz2Z1WiM8KWd5GTDpSUefvhBTp48QTmbCUCkIuvra0xGE5YHKwQnhfxut8PNWzfonn+Yuzt3uXrzumyiWmh2cp4kil0DRDaNFKlBXUFUgf2DPep6hrVG1rMLTOrA8cEq3kVcSLXG4MmIdPIMFctWkY/FZ56IA1lWUKLxrsZXqSD7MY5PlFMeNcgmGROkMCrNbDqjLmtcHRmNxqysrxMRvmry7Ng8w2QZzpeCoiZPKItfpzkWaVaJarpCEPSsQUQDlFWZoPw5NKHahSfkd5FzVIlJIsF/TMxyk9giKgR0ClktGqtkspNwX5PSGkJ8UDqSZZqNk8e4fec26C7arsr5h/nDaNb6PAYQBHY0mbX3qum8r0ODgKa/iwk8CIE6VuneaYbDISFqJqVHmQxrZWhsXXu0koU9m5UopcUjpEbfYa8rRqhEQyB127ZAj+j1NHDHHJ6WMkZNWdeEKCPnrbUpj0+81xjJiw537t6lzix5p6ATArObN6irCh2lYXx/dCgGEMVDe9dwo+HOnR2c97ha2s589PSHQw5HEwiBu9s7dLsFmyeG7O2NKDoF4/GI5aUlxpMRq6vLrK4scXBwyKnTp5OSg8VFCXHLcoq1hlldCnmgCiI7EnwKX0UhYjQZMZlI+1f0gY4P5LYgdlfwMWCidETF4MlUFKX+mEgxMRJdo3YBaN2GswoR79JCC/vhG2WrErcA8qCkv0y6Q0i1yppZOZOTSNBsTMZirMIYQd/q2kuZxDSv3dC/F9DEZEAtR0IJYuu8lwG02iRUKxldakZucTWVvr/AQmneIYQGzp5vNKIg0JxBFAVYncIgFRn0uzz0yP387h+8hh58HpulVqYjQXhsU12lIMtXUXaJm1t3OJxMscZxOBoREMSaNH6AKKGUKMaFBAp5bGY5c/o02uS8/vZFQqgZDodMpzP5e6UhcTJzm7N5/Bjfe+t1FPDjjz5C00cjZ9g2o6XndxQraL5yITCZlVRN/U1rKSdo1W7O3jtmzlN0pRY5mUyYjsfoyURKXTGwtLJMzJM39CIgVZbCee72ujKBy2icr9EalodLTMdjyrKiyAt86j8djcaiPkGUEeyu4vDwEKs1mc0JAQaDAVpbesMhxmappbBGKan1Ou+ZTqfs7u9x8/YtXJROFxMVRlsybZNebiSra/o2k0qBq1usA+/JjZRINCIDGlKt3Mdm40mBIlImqmoZrfeXIf+Lxydi9Nz7dZNXtsVg3chlxKSCplswqDUqrVBKGmUbhS9DQlejklawxt8oUSKziVIm2K2Z1wBNQkiVT8hhg/+ltadNAmsac08Mj6AEzve+YQySYmHJA0kEguRJVMojMwOPPPUY333pBVR2gu7KZzFaJymKBultrhYaSUalM7TucTi6xa072wy6XWiCdqVbkoSCNGzXyM5ci3/3ZcXFd94jGIsPInFxZ/suO7vbLC0PqasKpTWdoivj+oxpOchHJiJ+aE3ED33Wbi5K+gsbaQ1jE8E7AbdyXyQFeeSB+1k+flxSjNmM3cpzsLuL84per0vILQ2rl6jY3tmjdBVFt8NgeYBzFWU9xWaazWPH8M6zPFzicHQISJNwXYuCuQzLgdHhoYyw0xYC7O3s4gOCylYV2mY0ItoxikpGi4o3/Oxmq1aK3Fj63R4dm2GAoq5Z1QU6Cj/YJeZZDJ4skwZo+Vsj8qFJ0IwgonB12gp90h4K6p6U4i85/oP6KedAT/NPfI8MbYk0HFYZs93kVvJQ6krYDyGxVIIPIlIUkypdbLycwWYdadQ3ObWdMNMCZ/sQiHiUFTkQHcW4VFsvshKlKS31KmSkHUpAEh8j3kvnSgwKjxaKGonAEEkobpCNJolJK6s4rEbcvHWTwam/y7Hjp/Hesbe7K745LLS0pXvWhDHZ8Fn89u/zzqUrPPvEY4ltIg960VaM1lijRZw5isCvjslzpuZVCfFloI3zwraRAcyBqiqP1sNShD/nQqj5D2i3jwXfKV83ejXOO2Lq+Fda5n8Kd1U8bmYsvSS+XXRycm04SLVKa6VLQ3rjFtYOkqNmnYyikxMmjrou6XQyrFV45+kUBYcH+3R7hZQyTIZGarOlkbk1eSaIf6eTSQlIWbyvGU+cMGyiKDoQYyvQ5qPicDKSzpDE+TVRk5tMhhUZiwUGNmPddumExMdG0OroHUv9AZkx2GggRrQSvR+FBCy197jgqREp1ZkX1ccfuqdsvWEDSLTo6/whLnrTuqqJLhIz2mRYzFKLEYprJHhPDBaTVOl0BJnsq+kvrUI2JWIoNjIOa49OsiReCRSNc5IXpg2i0SSVOqaglBiVKF4ZJP6uU5YYIllMUpIxtuhYe/8UkuvGgI+Bcw8/xNdeehHbOc1Tz/w0/f6A0XiEq2uqssTVQpZvGqa1kb7QCOS9c5QHa1y6epUnHjpPt9ttw+gFMpB4ywQoCZnCJp1YjVJWQvbMoJWIUkkJV56LMtKv6GnAI6ELKmLKreW8ju7X8zwyAofTKQD9bk9C1cR5JkZUUmiLUXJ8QqBTdOnkHZmhoS09aV7FYMgyLXloJpxlouSRIqmaZCu1xFB1XdHv9XF1JcaXGQaDHk898SS3b9wUL6zFKEkMHmWV3Eet6fa6VD6knkZNJ9V+VYiJfVTJz0OTP6f7A2i01EyznNwaMqXoo1iKBcXYY7AiIm0jRSdnqddJvbIS6YAR/ENLDVtUBqSc5tJ2HxqGzMc4Pr5Rtptvyidj8zDnHjTLMsoysTVCxDtH06atjYYQ0rw/g1KCqtJ0PoQFRJdA6WqqGAmmIOic2O8wPhyJXIWKeCWJum/6HxuB46YZW0d8TGG3UikXzRLg5JnYAo+V99Y+PSZFVFLnU2kmpoQ4GhMVnW6P8WTMcONhllc3CN5RFAUrK6vs7e2jVEVdVamdLS0AI+FRYQaE1c+wtfUVLl29xhMPn0d4QvPZHuKgndBCgkaR0fSIagpU0lktjITw/X6/7VltNF+jCtS+bA1PR09UNUQZ8UcDeS08wybB8BG++fob8iwbu06P2dU13kgfpVbgBS1h2O9JM4IWFYXZaMrscIIKEaOtTJtWKZNNj6iqaxEytknYOQbO338/23e3Cc6R5x06ecFrly+zvXOXleVl+oMB3SLDWml8KIpCaHl5Rukd0cocTaLMvCkK8aJZqgc755jWNdPaMSqnRJXIJ8GgokaTYUyOMqZFNopoRMlOWZSJGDzd3NDPDSoht013jXB6G7FrWsHt2rlW7eKHHr6GhZDoCM8zGaSwO6SDPgaYzqbMplO6phB1gSh1TmuztvUHJ4pgWZCdUxBTyUdrH6mDooyKKkClc6ZZN4VwoY0wAVC69RZy6ckw1bybPrYhaZrEpGAWPcHXaOOJSiev1XiWRBmIqciuFLVoCDJYfUzU11IYtry8itaW3d1dqqpqK4Q+SL3LGOl06S0/xmT767x14RKPPHi/cICZh5CQuJdp3JrWTU3QoE2GS2rsAgI5kadAeCRlLQs0K6RAfnRPlmSn6e+DxjTnS0XRpCjpTxIRwLtI8IJkhiIjTz2vaCHvW2PT38rGqkOEOuBcTT8byKYY5+hyVCTEWGGMTaF2ZOv2LY5vbLK5eRKrc/p9UStQStHpyDCkbrcHRPIiZzgccjgZkxU5LoaWvN/sIg2s16zbhnU2qx0NX7hZu0qJREk5KwkWahfombk0ZqDJS2syG8lMFI+eVA1QihAUXklE5UNs9V9d7Vrv/DFt8pOhr81xhGKH6LApBcZIYp/nHYKvmUwOiaoi6+SSX0RhgnSyQgroSgr8KtWzXARlZNepiIQso/KOaYjEIiNmItMYYxsUSIi6GFqruUJCTIBNAqvbnMkoLawLXaPT2DMfaMsfQv8LLfPFaI3VlitbtwFYWn9cCvpR8pUss/R6PSaTCfsHsZUYVKkWq53CWsPa+jHciR9j68bXuHZzi3OnTnFEcg+oA5QhUgVR7NYarLYURYdyOkVoeUI4z/OMPCtwdYlzkl/aVGppn1Xz6q2+KguGeQSHPXpoTSPHqBLbqUlADPKctFIp8rF4FTBooqtQ0eGjxxZZCjNju1gVUNc13W6XTqegrism4xGjgwMee+RxnnnmGYyREfW1Fxri+QfPpzUnddiTJzd5/kd/lBdeepFbt27hnE/j72R2NipNWUubQYM+a20k2mhaICMoDFobvPdMxmOMgY4HtMOpLmXw2BjRUWrgVkc0XnJ3IpnVGC20uqBbmLGNJus6JHzl6Ob7lx0fH+hZoAgtAgYCOEgNpygKTOpvm04nXLv6AQGHyTMGg6HsXjEy6A/QG5HJ4SHNPA5hRShBWX2g0pbQsehMkXlNjSbvWlRd4r0IFUWERRFbrxbTaQmc2tQtRX9VYbIe0UjvZx41+Si1UsUC9Fx2sUkqVSIhCBTbYsLEGClnNc6XaN1wc+U+aG2EmZPafJr8snae8WjCsVM/xs71r/HKG29z9uRJWTQL4jdjpdnXhjIoZkqDDfTyPKXg88GmIXhGo4pub0CMXkZBVBWdfo4tslTfFS9vokTErfk1+5eaf6vJRhYcZfJyXmQXiwJjM0BEzfKEGFe+xhMoq1oaD6YT6nqGUtAb9sk7ObVKnSNeVA7KqqLX69HtdJhNp4zHE2azksuXLgEiPD0YLHE4GqGV4d0L7+G949y5M9hM896Fa1z+4Ap1cGR5LoseklQnYoxNJqNUSx9UykgLWwAbdTtAyWQZWZ4Lf9taBiHQc0rmjCppnoh4TPRkJklPqkgMTnSJlUsbgYh0xfSeIZBKOkmxQn3k9veh4xOgr4ufL1p8atHJDMYoRocTjM7oFB0ef+xxTK7wSrGzu8skcWLHo31Wh0uUs6kw6DObwnIBODI0pZK6j80zVJB5DlnmKV1G7Y3IPbQlGSEWaBIrJyR+aFvEldKA1wUYaZzOsfTiFIWMDTdKpdmCqg1pJI8XXzNYX+dgZwebDcjzIZPJmLIcozTCOa1qDg4OWqdn0lju4EO7U0+nUzaObZD3TrO1fZvRZEKv0zsSbG4H2KqhjvJPpmUHfDkFX6OSfEVVV1QuUf+01Nt0dORZl1P33cdLb77LI2dOc6LfTTIh81ih9Z+LaQgwT1Dk0CkistZSdApRf1Mk1lqkP+gzmoy4evUDbt29w1JWsFx5ynKGMopev4PSMtNSB8nNQy36qJ1+X3pCURijGQwGrK+vE6M0J0+mE5qxdYNBn9HkkKzImFYzfPRUM1EROLG8IhPTilwQ9ZB6NKJMC1fGCMinRY60DVt10xbYyKp0yIucwlp6IdCvkXEITiRHdXDYWFL0M6ySfBhvWuwgxkBM4mLDlRXKgzEhpKpAk1z9sMNXtVjxWnjxxQlRTWzu60CRF+R5Tnepw9LqCpsnT1CXM2bjCS+//CJ3t+9Q+QpvFN4ISCBthIIyjg8PuHVzB68sQdm064FXARfEW+oo6m06hYBaiUKPIrSGpVMiroEqlu17ZVEz9jPoRrRyopbA0Q1HASpoCqWxK+tceuVlit4Zut1VylJCxhA8znlGoxGTqTTegrBfjNYYE3G1TBtWSkbH2WKVyeQa09mMTtFptVYjsOsid6JKA2kClhrtRYAElTRmVZD2NZ0iGBXx0RGDo/Yymryqazp5Tp7IFjThU4zzcHShOhIRwoAPnk6eSzhIgr/a5vDYevXaeUZlSTZYQRvDUn/I6dU1/NYdtl1FJxdJRq01RgtF0SWmkneOfq/Xag0Za1ldXeWB8+fZ2dlDa8V0OmsZPsaKhqu1hqoqZeSAc1itKbKcidYURUHlmoG9KR9O/bUm5ZllPeVwPJoP3IkCCCojzdHKKIzV5A46RPCiNKCCR1OTx5quLaSODYKOG9WOLYxK4yKMDse4NNczhCZq+5hsdD5RTqk/lHzE9qMmRpF6dN4TI9TBSYE4FjgvimaurDFGuhn2RocYpZjWjqzTIyRvJdGixs8qwrQUiF/Vbfc9yqGpyUItyG2QepFCi8SI0EDnwXWUHRqlcMpQG01TR53UI/Ad8lwSdO1lerNB5EBcc6GpvALgveNgdwdjk6FEqQ1WZSUzPbzHGo3RMv5dtSBXwGqNc46l9eeY7L7G2xcu8qOf/UzKhyJLSyuMKscsRQAqemKomEUpBygrE62MMdTBpbDME2Ka7oSmrHxS6F7MVOcwmHx1FAhqALEr27ts7e7x7BNPcPXKNZoJVU1hfB7aasromFYVx48dZ3VjndXVddaLDre37gohxGryzKYGAGHJWCOSkd55Op0e1tpWke7gcMTZc+cYTUucC8zqCq0tg/6APO9i7UyU5ppp3A2wmNQFMis1ypjeKzLnKiutqWvH/v4+VVUd3XgVZJml0yuku0WLQXarSDOXuikHqeBl8hm0mENjCFqJyLc4JomMau9bp7WgTvwDj0/kKT8E6cZIDCp1IDgUlhAEfXWOJD1pGE9cQmUVCktmipY8EKOo4qReYkzj7p3H1h4dFKWObdFfh4QkpjAuAjVJkS1ECDa1yIhHaXb7CMJfRdBJ1AwXJkS6WA0xKrRX6BCwNIS8KKWdpkOElK64Kslo1tRVhQvS4RGaXCbVDq2xVFXZIrkiyFTOGSWJCXR76y5lVfHQ+Ud4+7WLECUMF+X0GqUDxmZULqBUhrWWzIseT/BCso8BJqpD5gq0L9IzS9BMImc3WO/icxRYy6d5J0kdXhmmTlHXYpRKG+rakWlREI9aMalqIor+YJA2Wiuq6K6WUFprjDVSt0suXZtIWc5wzouwtBKK4PLyKmVRcjAds3ZsnZs3twgxsLaxxmOPP4J3jr2DXbIsp3Y1q+sbbG3dFv6vlu4UoxRWCwoaYjJIJS1uxlpG4wmz2ZQmcw7pWrNcs7TUpd+Tmm9GoO+hb6BnrBTNjEKFwEB16BcdrHJpfqWg9EYJCSWCdIk0wtghjaFIT+PjwTz/gdxXWZwLMG+Q3dNaCTPFnUcqL8wKXEWuBG1VaSS2CuJBfFL4askIEXSoObexzKlBn52tA0ZBcWtvTK0SKKLE8xzJgRauWBa9MHIEg5EBoDpGlJeulGg8PoovFHRWIgFFQ8lrXIP4lXnLsJQrrNZkxjD1HpqG3cy3ujnSCiRoirVZG1LHGMiLVZTusLe/3zJj5LUDhBodPR1ryIyAYKeOHWdldY13P7jGwaSUPKvXlZFsQQx+aWmZMJ1hbD4PxY/4x3STGj7gAubTmGvjP4OCCkXlFUoXuBgpfVNCkPxpXNWgDZ1eT3IuldDr6NHpuVauhiBha1SioO98bDtOYoRZWXI4GaO15tLly5w6fRZtDKPxIVU9wxrL+soqV96/hFKiDXtsc5OdnR3yPMdmNqUMIWn4xiOiVTphCzYziErAAsKuoFt06BSdpKULWYh0laavFR0VRalfyTDEpTynZwxWCXkhRFkLizXYZKcEmPOqY5Nm/LDR14UyyD0/SB801hQ01uGjdIcIkWD+GgqD1Tk6yqg6V6cfJk6lJrK53OeDyT4vXX4Fayzdostfef4ZtLFMD0ru7Nzh/asf4JPcQkyjyxrwIkKaWpVIBWpubE1yGhJVLCpPHUR6IyiN0VlrlJI+GXQwtCPHo7y2IpJbQ7fTYVp5lpYHFJ2ukMmT4HCMsqOa1FEQgii8dYollOmwtb2Lq127oegYyVzJwCjWh6LIdugUalKhO7UMKq1qQl3TLfptL6XWMBwOyIdL6RwXk34SCn0POJcQQUkXZChEs5h9iEyqgKshKpHgqIPU/BwwIzJyNbqTYTOLw2O0oaMNxnuyhEBUriZUUCMS/kTFZDpFGUNURmZHEtnZ26Oua5ZWVvjMZ3+Eg/0DRqN9JpMxxmhWV5ZoRiRELePr+v2BbOohCClf+zYiavGEBuhTkZXlIUbDzVu3hNQSgwBYRZGiCIWJgY5XdKMYpFWiKAERS6BnE5kgzjELFUElFYymK6jpp5SSjjp66z/G8R/UTwn3IrARrQxZlmOzjKoWuMUl+Q+tdOt1BFK3KGVReBldgIaUfGsdGS71+OpvfENusDYQ97l66zqAQNb9Ps89+zgrg2XKUUkZ4WA84eKlazQaLi6NEkdZQCQwQnMKMUIanaaiQpeeiCYjx6ITX9NigixQHZobL57GJ56lUpDnGZPKYazFpsReaUVuMrwDYhDAR8NsKh3szSSuiIA54/EYgKVej6GObHQyVnPNpCoZ1RVZ8FjnoKxQPmC8pxcVeZazU86YeYcuumRZIUJUDTsKaPpB4ahhtpUfFCQg7YULlwHY3DzL5SvvoJ0meunEl9Yrj0bOf1o5up2MNnRUoF0NVUWmJN+u6op6GqhixFUi9Tk6PIQoTJeD0SHj6RTnPbVz1LVne3ubzePHqKoKgufO1i3uP3uGU6dOyTiM6Nm6u83K0hKT0SGTyYzJtJRWLBIw1SL5KvkMjzGWXr8jrJs0ZctYI/XzZGAGTRGTrGQIImKmZb3kQD+3qCCzVZSVlEAmUUcadfRmOwxBxmSQ1n9QR5v5/7LjE/dT3nu0Mxm1JN8CbMQk3T5fHPO8Roq4VqedMtQp3JpzV03q8t588El+8q/+DaZ1zXsX38S7muvvvMzhZMSffOfb6RHIsba8zNn7TtLv9Tizsk5V19RRUfnIhfc+YOok5PJRC48xRgbDJeJgyGhjhVu9IbUp+K3r17i2v9em5Y+dPMWjFJSzGcc3Nrh9d4eD8W26nbOoEDBpDghRZqp43zBnaGIW8dxJ3j4mEGi49ln2b3+Fi1ev8u6l98XDTmd0DHQNFCpw6EqUCQyWl1oZj9xq+tbSS7s0RErvOdzdQ9kpg+EylZeOiodPnpLIoY1i267S9HkKtZME6M2dHQCmtad0gcwL+txyZlNPZohRCCNGiP/GGsn1q4pYVWgNLnp87YVpEwKuclJeqGVwjq8rDmZjZrOpgFpKjOPqlWucf+C88IgDXLlyhRPHN1ldXWdr+w515SnrGSc2T+Aqz3gyYTorE9oaaZIPpeYfjREB8IZvCxKGF7nFGGlysNqQKZmsldURFUTnVQWPwmEJdI1Oa1PyUbTBGJtCcRlfQYz4qKl9EC2lSBIj1/8xjHKOtbaxceOZlUFrYZpYuyDV513bbL1Y17c6zewIaaYkwiPUCSCRgit0+8sMo6KfFaw9/hmUhupTzzELjg9uXGVv+zY3L70FwKSa8so7b3/orIss49jaGk8+dJ76zi53DkpOP/wg5Ip33n2df3zrFvuXLnL34PAjr/ov3nmHzFpWh0ts7aZFe/AO1dJxjBayRGYsoZa+Pz2/KWir0QmAiL5idOjJraCnNhsQY2T/cEQIQcYP2IwwGFB3NGWmqa1ijMMPC8azmkorbC4MmsbTxfQ8QlTgArPxtM3TM6uTESY/qZJZLswSabWEFjZcj+jvqKiT3AXz9ACJl5UxqblaJXpzxFeOaibAloy4M5SzGSoErBeubOYDylqiF7XD4CXF0BiiVxzuj9ne3pMxDQDacOvOFpubmzgn80l9CExnJevHN7l8+bLMsREfSdOVExJo2CgiKCXj+EKr7UQq2TSEkVQeUbIeQxQ9HvDoIKMbchOFvVPLum6UDJr+11buNMnXNMroklZ+PNEs+ERizAsQMKkNJ0kkNGJTWSbj38Dh64iKDudLTFBYq1IOUGOMMO6Vhxh8O504KjA24xsvvwzA+fOfwlc+TcOVdzYqMtCKJ0/fD2cewD/zPJHI1NXcPdijrEouv/m9BKBAXc64fu0SN7bu8Df+ypc43+vzL778RynETiGcVaw90hGK30cc0y3HnZ0dWdQRZjt/ytXpe5x68O8xNGvoBLk3ugMx7dDaiAqAVeDKGlc7VLcz7+AH3nrvEjFGnnjqaS5ub2OGQw6NJxiYWMs0y9gzirpjOFTCrqkVjHxNoTKIkAcoaolOcgOdpDX75tVrqE89RWtP9yQ3kdgOnwlN2xkyw8SiBbhp5FWYy0YCZFkHpSy7O/vkmabSkXw8YlrNIASRAp1NwdVon1IAH8i8p9fvkSEeOtZB9JYCaC8P+uaNW9R1QOmMqDV37t5luDRMNLsaFwLXrl+n3x+gjMbHRrV/Pl9TyFweHxTeS/1xNitT21+KGBpASEnXkU8fQ6gJ3lP5moAjCw6iIzOgUzsfURFTpKeNWqT3yhrwadq2Vsy7Nz/e8Qlodh9h6WmHCdElmlYFqqbbE9qSMgEfxpRVSQyZwMvBoawD7YhRBvioZrZH2smbnd7Q6GU2TBt5vxgjMQkyC9dRMVCKpdUNbG55+r77cSGCVzgPW9MJr7/0DX7ja18Tj2EU+ZLh5HN9Vh/oYBTkHd16hLlXSD1ydZDNIcCdt8bcemlCPb3G9ff+GSce+s/JiyWiCngvObBSUojWxogKGkLGP7G5yfLSULRu0jU25ZGzDz/Ci2++Q5HnTHUAE5jajNJadquSTrdHpWRT8rmhNobaVcQQ6ERY6vcp60AwkabCev748aOgj5p/ImAYLWIYzBzoWfaR1egIRhOSekREyPA+SpiojKJ2Ne++965QDesp/bpkBU+uFbnWqNmULKR2u6DR3tNVio5X9KtI5jVlCVmlyPIc66WcNhpNmU1LbCbPfG9/l8g5stzCJIAXdfbJwT7VdIL2XjpkIMGgKYgNSryxMdSVYzye4luCuqRaXpOMEZyWzqDOzBPLmjLJqJgQ0SqSa02mNcraNCUaQvSCT0gYIkeUSNFoIyW+KE3WP/QukY+GkBooP/E+jUUpxdr6Cp1Owd3tm5RuSpZ3pISgZbzZdDRiZX0dbadkRS5hgGe+UJjfWI1qF4tEhotyH4s4tKinRZca9rRIg2irqcspN976DhGwueLBX16jd7KLNrIqdZQxL01nfPP+7bsYsB0hD5z6bJ+NJwq23yq59hc3uXnhn7H+wK/R7Qwlj2kmSzUgg5eJTkWvS6fIUEgHzcHdF47cSa8iTkVMbqmMAhWYmoxp0NTKMugMULYD0TN1geHyCuPxmDrKxrScNEZLHFeufwDAj9x3H6p5TAsI7OLiUEZhlW1rpgAnuzmPDjJqpamUiF87DJVVHM5qpgGqqmR97QSPPvkog0GHro6Mr33A3VffYKWfCRndKdAZaItTmlnw9IshuelQhFyIHd5gVEaRd4lRY01OPZkImFYHMiUSllanDT3UhFkpJArnqUcjjHMolzJlLb2zpqHRKQmv67pOBI80W6apY1pDNLL5yyS5gKtEMyhoh1KBSI01QijR0UgEkZ6vD4oQBZVuKJ+NVIpRChtFB/bjwzyfxCjjEWGJdFGRkASFadg4GmbTCc5V9JeGHD9+jMFwhU5WsLO9y3h0yKx22E6PJd0VBEtrgvfo1EXSXECzDUjk1Xy1WIqNCyGj/MeHCN6nMEaxOx3z7T/+t9LqlCse/qVVemd66fWC/L9RKG+R5cV3ii0Hs8kYso7m1Ke75APDpa/cYPvq77Fx7pchaqbTCp/O3ChNbhRry0M6nR6EQFnXXL/5Hq7aZmnQ52A0Zv3YMfamY7KOpeh1pI+zrommoHQwqyI26+GDAgxliJRBobIOvgx4E5lYjUm5jW6sK6GQ9zZyNWBAW1MLnspHZnVFJ88ZAsczSyXBBs5YSqUYh4h3kbosqX3g2MY6RZbTyTrkBlw+YNhfZ8lrMqVQ0RJNhssyKQ0NLcU6suCBEBW57dGtZ3z62Wc5ffoU+6NDLn3z67K5Lw/4iS/8KHf27lJ0C/pVhwfPfYpyNGNne4elPMNMZxIKh4bdK3VKQdA1OoD3UfR4XNO/K00EimS0SgkRJThC5VAxoHUTRsjMkV7RQyV1Rh1ZILlbIhL1NS2CMTVokLykSnXK/whAzwKcfoSmpBFFcZ0QNMPOzjaByAPDAUtLy/R6S/SKPoP+ClU5Y2dnm5dfeZmd7X3OnNpMZHKZZLxo+qI4JrQxgVCapBkWGfdSWpBzTBU4+d0Qee2VbzLavonJFI/+4iqdMx0goHyQMszC+7Udh1G1r3u08DO/F1HB+kM5Wi1z4ctvcvfSDsunfxVfS4E8xojudiiKHkUho7/rquLuzi12rv5Ljq31+cLnPsNv/v4f0+/3uXuwT9btoLNCCA5Bpv+avMtgeR10ho9SU7R5QZnmdFRqBrlhlOcQPOBohrarKLl4PJJPNtFFs/PI3bo7nXDh+g3OnzrNlau32S361IgXqEOgCp5aK2y3h40B/IzhsJemfymcyZl1VhhtnqVWlrwOeGXwWqPyHLRBW0MwkZKANwaXgKKe0YzXT7BVDMhsj7i8Snf/DudrRXbpFvt+l8F9m4TphOtvvYXVFqfgYD+wpCOmTkX8CIEgLVRB47URj2sswUeMCxRRkSlpbyuUJlQVlVJkKmKCwzrIFWRa1AKsUnQDLHcLVBRurY+eqL1ERpHURhjbTEFIBcyBH6MXtCB+8PEf1E/ZNIeCGKUUn6VWabRNg3ykLqeixlWeUjkZma4sNisoy5LpdEZdSVNvc4FHyEgq3eTai1E2xOjkkY9eZPIILSIJt0e73LjwKhFYe7BgcMLK7Utk7xZ5hFS+WOw0TNeKmotiMV/aQYmBbDzUgQgXvnKLg1u/w7HTfxui7NK9YZ9+r0sMnv3DQ+7cucbBna+SWcePP/8cNhdAJsRIgSHr5VROhv7oVFe1nS7D9bWW7IAWwkTpZFyeRIiWuhlvHhS9BY/foJJHzz6Vt1pIHKoUdmWdLtfyJXZioFaCxBIi2tepPBCJvsbPDsk7mTwTY3Cmx6iIXOsHZkYmgnkvxP9cG4KrqKczNJGZ8gQt8pMChmou7l/Be0ecTjHTinPLazzXXcEfjLk7u4M5MeCsydnod6hiZDuX7oxjw2Xi4ZRpKCmDl/wwRmofqIPHBRGoVs7Tqyt5lqmDp/CBOJuhvJDYdXD0TIeuUhRGgzZkKjBQlmGRY5M8qVD0kHxT6SRpIqGHML5iOzBXKyW6vdFKFPcxjk/AfT36gu105kY/psm/tHTDhxCEGJB+LmPX0yLXuqUghVTXUzHpy+j5++RFTq/fE+qel9HqwTtpmF0cK5ZCYJrTSedy4/YHOCcyGcc/28NZWn4qKaxonUaixB29zI++ifNAQT459nCBr4Zc+tr7jPZe4uTpHycqRZZZJtMp4/GIvZ3LzO78LxBnfOrpJ1lZXmEyEz0cX1WsGMXIVeRJzClDZlfIYCGfNsJAlhVkRd4Wpo0xYDSlq4SsoWMLZsCRgCIpoav2sanmySrNN955D4AnHn+Wb767TWmKBGYEIjIyLjcGGz3eWKI2FL2eaM9YS600d6c1Nw5Lqkzy0egiWVRkEep6hq8rrIooa8Ea6axAZo/61BhunWKgLUu6Q9fArWpKzKxMdC7hXBUZa9HDAc9pW5B1LQe9Dk7NvdL26JAqhNQwHihjZFDkTFSQ4bsm6eqEiHZyfVlwDLWiby0mCuE/U4oiibHo6IRGmNQx0NIw3yprpC2w9mWr+RSTKobWhoPR+CPX073HJ/CU819tc620LptmYqUgyy2N7mwjshQSzDcfCCRexsSYRpIJWBEQwKPZvYOKyPhKhc2yZEuZvF4ipHvf/PMiY2iaBDxw5e3vAdBd1qjVxOiJQl5vHEVzQZKTfpQR3vO9ZLhthptaso490uX698Yc3vkjvHfk3SfpDgZMq4rRwVXc7m/RzSPPPvUsjz3yiJRRZiUAt27d4tzJTR7c2CAqLYXxsuK13R0GmWVQllTO0dOafpHLuDsrOWuVNGCm04pyNqXfs+2uIcanFvCwha5KBaTwsYyRrb19rDF4lVM6KPEC3kV5jh5ZiEFFUYiwOTYvqJ2TIblEJmWFqyuIChMguKRciISCESWtdVGJXqr0W8jUagVKmSR+qClINcLCstZdwVSOrA7YCqKOWAOd4Fnxiq6GzEAZIzF4qhCwxpD3ehS2Q1YU+BgYlTMmdc24rJhVFU6DMzJvUiMN6kMQ+UhjCDqgoifHYoAYaqJAOjJNTqcpcUoL0quSIn+QiC+GSLDSMGCjpgxHcZkfbGk/4Igf6gcTI5SBrQGlRD26oTgppRKAkkbhhdBOz7I6o8hyDJ5QT7HRQZDw09mFZluj09CYQCB5MS3FeIWZg09BSgtVCLjoIXiuH+ww3d8GYPXhglzk1mVhJosUp/kxQopFSmEL+kpemXpHsIXm7HMDLvzxPpOdPyGugc4/zejwOm73N1Gx5NNPPctTjz2ectfApfcFJY0x8u3vvXzPWyqefexRNtfWeXzjOD54uqMJ127dIsxGzLyj2x8QlWdWVsyqGmMUJnhOnTjJa7zF5f19njh+TAL7xAIQZT7p6XExUvnAxd0DXnrvAo89+CgXLm2lpoI0JbqRNknSkjEK26fTG2CygtL51J0f8InbS/AEF2W8gPOotIBDE4hEiK6JUFLpKW3kSit0kFrsfgbT2tHRGb3ag4rsGM9d7XE6wziHUxGnoWMk5NQ6IxJxtYWoicFRHUyI3rMUYagV5Dmq1ydYabCWck/F3vYOqpyh8p4InkXpsLHGSFcSUcYgapOuKc1NIYmlxJBIByI23UaXweOj59LH5A98sn7Ke45mcSsFKgSik9qQRmZOBB9BJUHkNM9SR9Aqw5ocoia4SCNzpFsCsByTcsZ4NsHaDJtEioU9kc5G4p80WUmTo8mUheiZbVV4JwSB9Uc7rTeMaVWkyLV1jn8ZZB3a36HlizZtUKYpNSjYfKzH7vsl2xdmzPa/STF4mDB9D8KMp598nE8/8XiL0KkgnfEAeW/Io5//mTTlWrFz8332bn3AK+9exPuaP3/lFQBWhkPWVpapJlOee/Zput0ud25vc1CW7IxGTGYTVPT0ex0Avv7mm3z6/vtE3c1KG1KGTL8ahcikqql85PdeeQUfAo88+Cm++cYNapXhSbS1BBJpJPSXaDVjc3OdtELbGlwMNUp5ea5RGF0aUt4lNzsQEZqXT+WjmKZipTw/VLIhLA25XniuXdth0D9GP2q8EkphLGSKtw5AXYsos4faKHyURvIMQ6YtIUgnTWEsnSwTNQiUDKAtpebpowA13ldMpzNmdZ0muzm0KzmxOkzRnQYVBXhM0qEihSMOKKQIzSWWElo4wCpKHr2r2g7dv/T4xIT0xa9jCGKMkvRJ60tqPm2oFc55rA7yABKYoALkJic6eTYxNdIqpel1O8zKGSbLiRFGsxlalYnCJzMwM21EXr6Z+BOazUE8sVeai2+/OLck3ZzvXK3tSPj6Edd35EgLU+w5EKNKk5rauIuIDIUdnszZvjAj+hnV9CbGDgnA6vISRjfdEoG6rHnvsnjKvNPniQceE+1bpYkPPg5acWd/h7IuufHBRfZvX2M22uPyVSHmX7ryAUZrBv0+Cnjg3DnOn7sPlMLXnpXhkLc/uMo/+af/X86dPMF9p05ileb+jWOsDwd86733RKzMB1597z1+/PM/xnsf3MFpnW5nmrdJ0vOV2B9FkPECK0uEKPq8SViREGu0EmaTUQGsRwWFMQGdSSEf71GI15PWugTtJfVxQkntZrBxmoujW1ypxjzePc0wRqihEy0zRLw7i6IaUCnNVDmqmETcbAevjDyn6CTNiRW1q9J60FijyJXBWi0Sopnh5LBPRP5uWpZMxofU0wM6nUyikCRf0na/NdGWZFML/1IFQEkXclAel0Vm+Q95PuURBZfkYmJwEFx7Q2UIjIymjl6Y+NPpmNzkgrxGUggZZTqz1XgLXtdYJUJTx1bXeO/y+ww3z7G6stx6MEEca2Z1jfOBvcMD8izHGM3u7h1OnTzD+nCZDHAkzVlg+XRG1hXv2tRTGm/ZWlxsEMq/LJRtE09BhaOM22tUy1Qrdjw/ZgcvsXLyl9jZ/1Nef/tdnnjoQZqIoyxn1Knv8dQjn06j5ZP4V5D62cmlNZRRPHzqLEpbxqWMG/fA5YtvMtnb5vaFV4nB88pbb/PSG2/IFal5m914MuWti5d56+Ll9mcNV7P5+kvPf5FCDxnN9kHnosquJFwLKqCiFq2dGImVZzI+ZPvuHc6cPi73QgnxvKxHODcmGtFn1UqYV9pClkWskcKAMZBlAoBMplPW11YhBqrpDK06BOep+x1meonVxx+n7BdMy4qpiqx66M00FJoqz9k2hiozHBrPyIv+z2w8oRpN2BwMWcl72MzRjYFhVRPqUrydS3NRtKWvZKzfzAeiB+8VNQoyy6odciy3dGNo4jkBv7yQAiTUb+JyJTKgCVGWpiJJ6XKj+ezxzY9laR/bKOvJvsC+KWfMjCXTGm0lr7TKk2eK/YOA1jW9rsbVE7ybESjJEj/QR4jeUxhNR0E3Bga+pNCOrNfDT8fEGFk+ca4tUzTh5sF0xqULb7F1+W3G27eOeLes02V47BQPPfkjzMopezfelwssElsjAuijeWT75w0S8hEXfo+tRhYRTfG+4ok/7H0honUP23uY3f2LbO/tsra8igJubW21VLtefyg13vQGKsZEcA/EKuBTi1BhDJv9ATbLuP9zX8IDh1/6BWrvubO7zZ3b1wHFeO8Od99/Czcb46ryyOUsTk6779w5Pv3ok6wVPS5evEYnBKoYhDodJfJBGzwREyHUFeV4H1+VdDu51GINSRojsDTMKIYbDJaWmJUVe7t7HOyN6PcLTp08TpFbrBHPOJpMCAFu3z5gY73D1q3bWBPo9TqE2OXATdCDLnaQMXYztA+8vwzTnlDj9voZk25ByDt420W5yN3tHcowwecKX1huDzdY6nXw0zEr3nPfbMbpyZi+9zgVmRqFyzVrLtDHg/Z4BTU5B2Tc7ig2S8cDMaKSgFYDCIaYQlQWKsAJzZ2Pr9BJiiYji4qTtvN9rOvo8bGN8r03XsVo0dfp97vc98B9LC0NKXKL1iGxVTyHh3exKvLgw+fZH4042L2D1VCWBd57Mp2hnAgwP7p5En14l8dNTr26wgsXL/CtP3yd3spxHnz803JBBMZVxfXrH/DOt75MPf1oWLmeTdm5epHvXL14dBEu/Ffqkqq1HLnBjdV9Hy+54FWPVELa2ntseyi9ixxcnxtBqPcoywnF0nOMb73Ly6+/zU9+4XliCNy4LfMtbZazsXFCBMPaOKgBokI7hsEHha/F+1ezGdqkFjQl8yrPrm9ybuMU1ghKXX3h57l7sM3ocI/333qR/VsfMBvtH7m0rdu3+c50CjHy/Kc+zZlenyzrsX0w5u7hiJt7u6hCYYoCqw13bh9SzQ4xMdAr8hZdJ6kqHDu2gjOKqDUmc0RfMB0fsH3nOoc7tzh//jydoiBGGVNgrSXPIrPZAVV9yPn772dnbxsQDWCCxqmI1YbDbsHlQZebyhKcZ2Y0VZYTsg5GdSm8xq9Ytre2KKOiv77J7PQ57sYatzRjrdAc3r1JuQNny5pSa651M3Yyx4OHJQ/NZnT8lGgK9gdDPlg5zgf9QNy+i94dkZU1dWyYYvO1IuhCopwH8LVrKuY0JPQqanTeY9DrffQau+f4+DnlxOGVI6iSjtJ0rWZt2EEreSA+KjpFxrDbxSpNcNJPd3iwTwQ6va4ouamMWEEMgQfP3s/261vcUpF/+m//DRFFd3mdz//M32Wl26fyjjdee4Hrb34HN5vxcSbhfu7h89za2+eDO9vpxJN3oEFeG+97NIy9J/JcrKsn8HWRrDanOMzpBpHdKzP2Pqho3Ws4RIUSlYYcSfkiQnDcvHtXXslmDPvDD7/n/FVohsew8HXdqIKHWsKlpo9QWzJrsUZzZvUY2cYmT97/MAeTMYfTCbt7d7l++S0iMBsfcPvaJQD+/df+WOqESbf31PHjPPXQw2weO4arHfsHB4zfuUXlS2osuc3wPol0JcTVlSUzPD7l8NYieIIvKV3k/csXyLRhaXmY6qrSIXRjdsjGsQ26wwK/59qylgoBbRQYjdeWSW4ZR0PMIraK2KlC1ZE8i8RM460hWkNneZXBykmmuscsBJaPn8ZnjtcPdjhcHbBb1jid8UG3YF8HnCpRxrAyyQnZMtePP8S765vs6G0erkrynVHShkp1gGbO5EJZWwEkpb7FtRKVYqwUW67ETo5uit/v+NhGmTcMnhjQoaJjYdgv8MERgiPXOUEZVtfXUFrz7rsX0FmPzzz3BMeOn2BtY4Nev0dwgf27+1x59wKvvPM2p5YLvvXO25iiw2d/5u+wtrJGJysovePF7/wJt9968UM+TCtNpjpoZTjX+xRWSQf8xdGLHExnzKq6/d1qJKhwME0+Ge4JMZu72kotM5+TsvDjxU9ayDamB6MY71S89wf72LDCWvY0t+s/lRtss/YRSbqYvLJafO10b9saaPM7KhmkILwSOqdSTGwwLtXmyTGlBr6WPKacKTKryayhbwuW1wbct3GcZx58jABUPjKeTfERrt14n8P9HXa3rrJ/8wpX79zl8rVr7Tlurq/zM1/4PG+8+Brv7ezT73XxzlHkmZRKKsdsf8TBdIzqGGwvxyhFN4OJlTsQ6gk+KzDWcLi7T57nRGVAazyOUTmWJkgjTfMiQZmeCZo8ZEJOsZDlMv7CVQHna1zpcd7JPEylhUFmFEsrG6wf3+TarcvsZT1CHtkdivDZhAKC5dJal/HJTzFQPfLOKm55k63b16l2L7NZQadqBjclGbCoZLNomiOiaoEf6RGmFX8MaO4WGe91NSZU38+8jhwf2yg7/TwJ6np0mHHt8nv0Opr+8pIM71EKpQ3dwQBTdJjtj8i0yGzUIXIwmmDzDlVVo4sOZBk7o0MeO3WcP3/rbfprm5xYP4bRhpl3vPSdrzL94C1+9rnP8IcvfI+uWeHBpc/RNX1yk3OqfxINdG2OjpGt0S4XRy/x9rUbR857tOWIo4gaQh0FtLjXJpt5F21/XWz2ujg3VEXSS10MdkVywpWRy189xPpVzhQ/R4hz6HsymxGDMHeKTp6YNEfPQDc1uvRFO8ouJtBm4Txbma223jo3yiPbdpT8xjlhQWml0GUKrZTMm7Ras5J1QSuOPfwpohJdncp7RtMJN29f586Ny+zevsL+bMq/+sof8b/95b/O+7/1e+g04QscNhhsqPnMmRMisJ285d7kgKo6pAxjlM1xRtMb5hgj0pkqyDiI7rCPzTMOp2NMtwC0ADblTEpOKoiETKHIO5Zuv0en06Ga1YxH+6gIpUuEcC3qfONZSTWZ8fCxDcbTQyKBjdUNoivYLfeFcBItxuZkg2McbDzKbuhQ1yWT8W1u777K6cMdVoKjcI6YxmRIWaeJZJrNNT2DEEWOE6S+rqCOGYd5n7uDbN4U/AOOj22UJ05v0rGWUJW4eoxzM27fvsmZIqfT79KsjP5gQKffw2Zz6fyYUKmD8RStZG4D2rbiy80RVQQdef/SBW6+/SL/+Jd+ngt37qCAHzn2S5xbPtN6ksZAQoiUdcUL21+liqMjIWYTWt5+vWTz8x1BCvmoUFXOs/1ZYyAoyfGan6jFwFVKOAfXK65/a0x1Z8iZ4ufITZ/Kj9HkBCoqNyZOpM742EMPHQmC2/df+LwhX8xV7o561cbgBNlbAKgSgDVPeeRi242GuYMXY3aiGxMaemTStNGajtL0+kscf3CZ8OATuBC5dPMK3/qt/4FXPrjM+vIAo0EZQRgpx9y/usx//8//BeM0Sq9bFOR5xheefZri9Fn6gz4YxUEIXN/ZxvUlN9Qx0tFGMM0IKu9Q5AUH+/vcurtNPR2jvOP48U3sapfoArGsmE5Ldu5uoxwcW9+g9FOijuhMFAZMBl0NZb3PZOzJOxkrK+tYlhgddNjeuZvG8kVKP+bq1juMZpG6rglhl7q+RTbZZylobBTBLgHIVbtm20pR+n4kNYRHIDU362ipiz4Hy/2UOv3g42Mb5dlzZ9Eh4KdTdrc9QRkGvX7rSWKMRCMzJ/KiaMcGNB7FR1qxWtBpoKjIMJokERhVYPtwxDvf+j0+89B5vnD6OP/zn36Dnl3neO84iyllEy7EEHht503uVJf4tZ/8Al9++XW29g458/QXuPrKNwC4+07Jxo8UxEw8S5NKtj6oCc2JbauTSgapVGqwjho3jozv1Lg6Mr4l5IiD9yuMX+FM8fMUpg8octMnV2vM4i3C/u8BnuXlJZZXVuZWv3ikBDLI8AlikHCJ1FYkoXUTxEpms4AHHXmZ5htCcjjK2o/t0yBRwcLcpqMQqds3SQvNaKk721aM2nP2zBlu3rpFvjTE7AeGbkqtPZPplKVjpzj1wGNs37jC3tZ1/uDP/kIAK+YbxGMPPcAja2tsHtsgG/RwnQ63qwk73lED5IopnrWlVbqdJXa37jCIHWbWYoNCjxyxrghTR6gdk2yE7WdMfUlZBTqdgmFvgA+G/cNbqLzH0vAYWZGhHNi8YDBYIoZA7RzlbJ+D8U3qGIlaYTLN2vo6nxouc/rSdQmptZbZMOkGNgba7IgxKlyQZgJnZd1br5hkOZP+kGLtOJPwgzER+ARG6RwU2mAxFM4wzDusmZ5E1d6ltZBhjKbQGcrLNCqJsQMaaZXSMc0LsTk2y7ly6Qqfe/wRvvP2e+xP9rjw2qvEuuZvff4z/Pob77J/OOULx/9Tcp0dQU2bBTmuSi6NX2BlacDnN1f5E23QNuP42fPcevd71NMJwUVGN2o65wxNfvKhpHGBkC5eODXBoij3PFe+esDk7lFGhkKzpJ9kvfgUeTLIeQUlGV4QtPjc6fNoY4mp2/KId0QWrIxWFxEu50SSotl42pWQFoJ8P+WYqFaqJE08SihzevV26tPR0LkBuhQNqaI5syY0FvI2RKq6SuvAcfv2XTafeIbh+jq93HJCVbz85psA/Mwv/Crnjx9j6h0z57h49QMmkxHTyYRLbwih470PblK/d+nI9T947iydbofPfOoJennO7vISh0uBSZHBsmVMJMsDHkfwGuUCwWq0zTl0E/yuY1RO6A2HrK2tUXRypmWNqit89NShh/EdMoSRk2UdnK+YHh5QVhWdjiUjjZHPClYLy8rBLj0c0Yj8KEqnIVBJ/zadvPSGRmmYCJGowUShgs6KnGplmbEu2C6nP8jMgE9glK+8+g7PPPYQhVdQRyIOXQeiq5OsYSB6i84ycpuRWeELmhiwRLLoyaLDJAJkhiirH04DZ4oc7z1vfvvr7F27wj/+T36GqBW/+63vcLb3GY73N+c1onZBScng8uG7TMM+J4cn+K//7EVu7exy6unnOX7iJFl3QD2dCDPofUfnjOZDFpFWZ1QitqRT+KgQQKncdbz3uweESU5XbdLVZ9AYCr2GVoaeXZfBqEeW2IePE8c32jeO93SjLHo8kdo30jqUgKkQA7WrZXaJb3oHG4BBVMabtz4yO1TNG7caBzj/YbNrfwT7t42YFyQs0ut6HyhdZLiyirUFRZaxYnNub2+TFR0GmQVX0zOaXpGz9vDDoKT5vH7ueTRwZ/+Anf09tnfvcuXCG0QUH2zdoJpNeD11qwAMez16/R5nz5zi0ccfhSLjQDtmWnNjf4brFoymU0azKW53D681m+fvZzDsy1VXNTp4Yg2z/X3sQIxm584u4/EhlStxdclkMmFtdV0G0TqPwxGo6FVTOk50eYNulP+Ew601OBpZyyRbo+bYg4kyQa6ymtuTMVsKKvXRa+Pe42Mb5fbODju7e5wYDNjcPMH0cJeDgz2yzoC80xf+YxSGT6eTy8MOAa0UuZU2GT0/fYIVIrFSmvuOraKV4u7lCzxx32mODbv83/7Nb7Fs7uOZ419Mqmm0XILGID84uMI7B18jErl0/SZKG9YfeoonPvdF2rgsHXuXataezjFLKdy4p6gxz8VovUq553nvd/aJ0w4n85+la9ZS4aHxbnr+y2kRN0n/vUfzjqr535E8UUL6FpltQtAov6+1Js8zsiyjUUjzTjRzayfiTb41RnktpXRCmpMsyoescuGCjyBEi1+Twub5vQwRbHdA1ukRlUVh6Pa7XLx+g+PnHmFVGerJjJZhrlWSzlBk2qCt5vTGGqePrRHj/fjPfhbl4e7hiLKuuXrjKrdvXgUUe9u32N66zt3tXb770qvS4G0tmTV88fnPoqylJrJ+9izu+Al2yxkm11gdmMRA7UZUsSarDf7Q45XicDLjztYtOrbgzPGTHJYTYrhDXTly3SUPGXrQ4cSS5cx0TFcrwKIy0pBeWu3X6JOGTRSGVFCRoJs+nIiJOVMFUw3eOT5K5uqjjo9tlHuH23zrxe9w//oG5zbW6RYGXXk2+6sCAMZAUI4YaowVoMIoi3M1RI1XTfe1FPC1EfK5dZ6n/D7/73/0n/Ldy1s8e26T/8s/+31i1eGJ4z+F0hYHiSMpC9a5itKXvLH/NbJC4UvRIP2RX/mHrK6s4Lznpa9/mfJgpz1/7yLbL1dsfrEgGuleaQPNKB0BMj9TyZzMGt777T3UdMiZzi+Rm26TaQJzwa7WulL54vsdMdIygbQyPPXQeb750quCkmpNTGPAI1E4pTF8OPVsvHhUMrczywhREUKUaWchyE7vPc5V0lljrLREmbk3VR+2zuYsaX8phfCNm10sh5tOB6dEVLuZvxmi0PBUSJRDIKZpX1E15fVkpEq6QlSCnSOajX4foxVn11eJTz8NSjGtPeOyYn885v33L1KWM95/80VC8PzR1771obr14w8+wLGNdX70C8/hMs0Omst7MnDIKbh15wMOplMyq9lYWWG5m6P6BZ1Bj3JaYsqM5f4G5sSAFbfPycqjMuk8UZnk187V1E5KTlplxCiN3wpFmnuHTbfRG9jtW7Z7BhUNufp45vbxx6sbRRk9N/bu4nzFoJsRjeP4E2fxzuGCR1kDSvRPVZQlPJnMZOhmkJg7JaHCrQwVNZ6dvV2+VGlOPHk//9WX3yJUXZ47/ius9FZbvRvh6DnquuTV7T9ju7rM2lrGL//YF/iffv8bxLxDr59z9+4dLnzn6+xfvfghh7V7uWb16ZxsTc5hjmk0w7hV0h7S3Hl3gptGjtnPUJheO5K9IRLM3evcU0ppRUkf6EeFySSDUJq8kCE8rpxw8f0LPHL/Y1K3i17Ow1gpnjfX3nrQxX/CxdRGkVnbAlQxpoFDYT6qPSQR4ga6lRqgERAptheTQLAmZCDlp/Mjxkje7eG9jBaPUZoSFq+wGeIqxhkWbDuCj20ZOCrHYsgQlJb1kbRxu0bR6XU41u/x8OZxIoHpj34BFwKXblzH1TWeyLuvfY/ZeMzFa7d56+Jlvv7t7wLSs3v6+HGy3HLm5Al+4dmnGLmaXV8Shz32/AgbZQhRx1pUJyPkGqdrlKmxweGDS/m9gFUxBBFvNhk+OJLWAATQMQ0nRtTrSmUxKyssnzhOnEHH59/fwBaOj8/o0TmRSKng5uQQNa7odUQ1LtSO0XgGuqbTtxRZQZblKGUpy5moUutICKk9y3tscDyweRw9KLg9rbgxuJ//5o/e5LW3bvPUqf+MpWyY1qDwDF0I+Lri9Z0/Zat8g5PH1vhHP/8l/l+/+WVmVU23P+SVP/4D9q5ebgfcfOgafOTyb49ZezSnGGqWzmcy+MksLD6tcLPA1ksTMrXMUnY/ShsRWmrQNjWHcloJkjg38cVFfuRIfx5UpNPttsTx0XjM3YMDjJHHmVtDryjIjEgaWqOTWLEUsFGi2jDvB5dNDwQl1EpT2NR8q7T0m3pRB3feU9e1SGT4JlqQCWEqjZVD3ZNnLlxOiNDvDlBRY1Do6LGh8cJzhLgxQvWhcD7OhfXiHHaSvxFR7ui8tBI3xds0fdsYTdcYlDV85vx5aZ9S8COPPo4PcHv/kMPJmLdee5GqnBJj5PaV96irGZev3eDr33kRrRT9bhdjND/7V77AarfDsftOUhrF1Gdc2NtlUnpUdYCb7TGOU3Q9w89qiAGrNF5ZnNZkeZYaLDQxeEzUmKjTXm2ZmoxZt4u3Gh9KygVSy192fHyjNJoQIzMVWtXvwhqcC2mc+hRMxDMhz6TFqtsbMhofsrW1hdcyozIED2VNnByw3u9w5vwprlUT/nf//e8Rqy5Pn/y7DLsreCc7cAgyOzIEz83x+9wqX+fv/PSP8SuPrPGvXr3C9sEIgOnuDtPdebiKUnR7S5y+/xmi0extXWP71kVCHbn7ukyuuv4XUzp9TW8zS5mueLJyz+OncDr7Kay2kkcmvZVFFDPCgp7nYgVUs5I9ya1ykcjQ5JLyLieOH8MYk6YNW1xUlGmc3qR27E9nWKWxWtHJM/rdjsjsq0xewzu8D2kmSlJfi9JGp6NJnkr+o5SIYVubkUdD7DTj2qXEEbyEvbVrBKpVO/cRxOM03lNrmXxMkmPU0fHy5asAPPLIs+hFj3vPoRb+24BJ8zJNAqQarmGMzXgO6ehXtdD3mmgmNRnr5PGNMZxbWYGVFZ44dQoQYeadwzHe1RyOx7x74W1qV3Pl7ZeZVZ5/87tfFlJ98ta9TsHnnvkUQ614+NwJlscHuOmhdHqk+ymbImgsRmd0e0PGVcWkcm16I3pThph32O9YpjGwd3CAmXzUXfnw8bGNsgUSIqgQicYwrSK37xxyYnOD5ZXjEHMZfV6NWB4uEY2lLB3T6YRuv0+R5+Q2w/YjvY0VNnpd/uCbX+f9a9cZZCd5cvOvMSxWUC7igiIGTQgyl6L2Nbdm7wDw3IOnGd16h6fvO8ObV0+zubrCiY1Vfv0rUpfs9ZZ5+Mkvcf/Tz5OtrlLlluruXd7+rX/Jtdtv42KdwjSYjQKzUfmh613habq+j/HSbd+osZGKyOKlEn0slSearoGgwKqj5GO18FnTKN3eW1cnbVuLsCslVK1DIDrPqPZsT6bk1pBbS5Fl5JnFKtEgzbTBKCGvqyDzPkyCaFBzecx2y2gcmxFDbcApH6TlTVQEhVztvfQMXnn3JQDu39jkbjQt60jVjlt37gDQ7/QWrnXOCr73Dtx7X+aR/hzgkv1kXq5RAEkzSAGx8gSEAAFNnmqkHUvaLdFKsQJEbVgdDDj76ecIBMaf+qyEwLdvUlUl165cYLR/Fx8CX/32d4kx8mffNpz4hZ/gF4c38JMR8fAAgyDyKiqszplVJXXwBG1l+FDw0tSN1LUnRcHN2nHrxjb1QUW3+iGjr25BgUmnncKR8e7lLXrD4xjdIUYrmp5OMZuW1MwYDJa579x9dPo98k5Brg0bK0u8+MK3+N0v/z6uMjyx9qscH96H0RZCTOCFwgVF5SquHbzE1ux7uDDmkQceoJ4prh0OKCa7/G9+7BluZT3+/Z9/D5Ri/cR5PvfL/wUrg1UiUAOh9pjegKd/8R9w/wfvQ3RMDu4y29/h+s132Dm81SRT7RIaqXfItMa4HkU8TsEKyvaxWUdugOj9p2G3afEkiQKd8rbFYzHgFb86v59b77zIyXOPHsE8kzaGhLvIBLOyDJiqhlhJ/VcrjDH08oxekdEvLHmmMaRpYYgXbXLRxag6ElpgSiVJDqM1Js/SspDc0HtPVXtcLTW2TrfL3et32HeeTBuOx6ptQYNmFodYlY7NdaZooiVpHL3XrUnGtNsx1/5dvIMNGt38iaT3cxZTVC5pAUkdNyzksiFFXZFIFwHlnt48hVeRzz74MCa3eA8fbN/Fe8/3Xvgz/k+/91X+q6UBzz1wjp955lNo4GfXenTGY+ztLbqHh4z2DjgY7VFWFS4GhBKoyOqIefB+wmYXfWeE6Vum7odcpwwha8O7qEEpQxUt46pgdyQhVXCO6J0QnSdTytoxHKwKFB4ix5eXefmlb/M/ff1PCT6yVjzBg5s/QTfvt8VvIVlDFaSr4uLOl9mrXyfLcn7ssz/GI2ce5FsXbxPDGivH1nn9rVd5+eWXQGme/sLf4tRzP0beG1IGiCFSR8+0rinrGtPP0U89Rt7r0tfSPvbAaEq1tYWOgWsXXmNv5wa3rsuEr23/ampmVjBR5OUaS8V5NoafwpiCTtYXUCMGoldEn3K7ZmzewtGQzAXkCCyOvI3BSY2r+a126E7jRxDigY6pK0NyxCo4fO0YlzX5RNG1ltxq8ahGU1hDYYz0vSZSQUt2b+LX2HiiBFikhR4bAoJSFJ1cSA3ApK5QWnPy+DGWBwM2/Ix33tuVTqFQ43zVki4isnmJQF/DLkqZeHt7mt7De3zpQnjbmLJSzT1Jv9Dc2Ui6f+l11AJnufnQYlealuKRbkNhLdbmYEmhL5zZ+Jv89h/+O+7cuMbvvvIWv/XS6yjApglzX3rkQR5ZWyWuLfO5B/qcnOxLdUHDzOb87m7FH333FZ789JN8tujy0PPP/vDV7JRdE7esFDEzqCyXWQnd40zqInUoOLxzVEGByhIYoTBKcXx1ld/7nd/g3XcvMMzv58zaj7HRPSkSGF52MCngK+qoKJ3n0s4fMFXv8jf/+q/hq4w7d/d48d2bxCxiisidu5d56aXvobThs1/429z/xb8q7TshdVKYSHCiEODjfAZ9LEtUXhCNgaUe2eB+AoEzD5zjdAg8trePdo6ti28xG+2zffsye3ev4f2YO5PvcGfyHazusz54lmNLn6Zje0mnNYlNxe+nxTJngfgjNMi572j+N1+iyfsqlTraJWfRyoiCmhOlBWIkukDpPbqsyKwYY6Yh12KoRWbJrSFL06JYCGnnC3eOvCpI4lm+/fZBOWN5ZYVB1sFooaO98Dtv019e575jx1AanHeyMTVZllIoHRtEjXlGfvTqF786GtIuMJbaP5qXXuQtmkggLr7MkYtTTbC8ILYtYK+VdbhwVqu9Ln/rl/82M1+zezjm6vWrKAWX33uT8cEuX3vvCl+u3wXgv/2IJ62Aotvnj77yDSnd/M4fAvDf/N//nx/x20ePj22U6ycewigRrxJ6k6YAltePMXKKqpb6YzcbUqsKpyxBuUQ9Eu3Qt995m/XeMzy2+cuykybpQpV0YQIiQVgFmLqa/eotlpb77I00d7buUNZO6p8+8ND99/EHv/nPADh37tM8+sWfpzZzGQxRl6FF/0yqQ4q2iyaLGpNmL0aiqOklyppeWUOFyPG1dQDO1jWmdFS7e2x/8A7vv/sXlNNDbh98g+3x91jrfZqTSz9CrjtzSty94Zfinu8vrJrkmVouZdsZ0sQmC8FeMsw2/FVG4kQAozBGJXK3aJ6WTsAYq8EqTSczdHNhXGU2aR21p5HC3Qa0Si+7WPDQWcby8hrKGMnhrGI0mbDUW2Iw7GLNXPaFGHG1zKX0IRJDLWFtApEa5pRcxxy5bS7z3nvYEhka41KqnUYtvOpm15r/hSjx3XvvEcNUUVBnpSWPbf4uGXY3s3Qzy2q3y/njxwB4/lPPQIDbB/vs7u0SY+Tm7RvcuvZ++/pFt8+jjz/Duc3jXN/ZpnaOd15/mZvvv8vHOT62UXbXTpPnhRSsjUZlmg4Kj6GqHLNQM60OqXb3qQ+3CYiKXSOy++L3ZKDN5uAzgMgbqtR7FlWafhTk+9O6ZHf8FuBZWz8usxm9yOdHHyms5fbV93B1jbUFj33hl/DGSniWhHJVyiuaGqQ1GVprjDUib6kMGpMADif1s2YRKkXQKk2gjpAbyCKdfp/TpzY58+znKKdjbr7+Pd5/8xtsHf45s+oGT2z8KjGKRkuMH76HDdOj+dgcaw88STPZec5DXfi7Zj21fLwwz6daEWCVwkRZlKYJF4NJU58idYzUpWNSecl7rElsK0WeWTKrRTWwwVCbMtGCVZq8IO908QFU1GQL5+obxp9iLs+Y59jUABoDuNql8own+ii5sWqmLi+wnZr9ifkGFVtjXNyg1NH7+X2xlPkP2o1YycBbKS/H5g2PbAVxXr8BRJBaGTi3vsq5tRViDDx1/zn85z5Hk57QOABg6fRJIjDoDfidH7ZRHrv/UbQyxBioteh8aleDE30WqyuMcig3AiUTDpUSGExrg0tgQAzCn2x25UgkapG7cCGyfXCRrfHXcGxz3wMP8sBDz3P1+pbshhFUptk81eOrX/4yxlie/7n/kqUHH8ER72HUyMPVFgqlyGIhi0VrMmvbke9NT2JMyWwTDgmY1QR4gvmFJO6VGUtWwjH61L1TjMY7TKstjPfEaKijp/S7R+7fexcvc+b0mRZ+n05nrVcf3b4Kjz5L2xnLPIhrFshcW6fJmxrPkIAcJWPkom6UaNMS1lLjbEcJRvl7jyjYT51otbZGmqWpxsZIfdRoyuCYTQ5l3F5VMbAZOGFkZWnAL0pQ51aKdzEcVkmG1CiyLEdHlQbqpCnPtSN4h3Mu6Qg316dS7bRhSzVlk7mZLHrae/3rfDU04W97N+VrjaC1HN0q22RiQRic9i+bfLyp5ybVuiQ5H5OBN2R/mnatD+kmf//jYxvl/qwUN4+CTJNlGpvlGBw6iEZPlnY+rRUzJXp7gnrNXUdIquYNIhgA5wOlm7Ezeos7068xWOrx48//Mje2Kt65dJU8Ey8XlWJlZcj3XvhTQgjc/+CPcPpTzzXqh0duaRPF2CSx3/xUdmSp44VE9g4xtAu+hVaimISKoEOgSo+tM3Nkl67z9W/8S26Or7b3JzDl7b2vcbL/OZTpcOjmxGqA0XhME3apqLmztd2iluVol8p5rNWNDzwauMXm8qLsag3gERdywnuXYlq5MfoUjIon1u1C1xhr5RklLvG0FlBMgyCxRn53UpaM7tzg/jNn+ODGdY6dfUjqg0G6mtozSIym1qGl78VFjiHC7FIGCbcxmMLSgk4hyogK51qmWEzdFzr9z6Rp4fL6i898YRu9l4l0zz2ds4rmr9EWcdow9sOExMaAk3ttI72W6UVq/1O0Gwl8lGry9z8+tlEuFYciBW8s1lp63R5D08H6SKwdrtTMOn3qyRKXD65jCdQxUFczZrMZjz7yBN954dvsTN4i030AXKjZmb6Dj4796g1cOOD5L3wJla/w6rvX8VFh08Rgqw294ZDC7LG3u01eDPjsz/19bJ5THQEtYloQap6bxSbyi8ndOhHFjxBiU5cLrQeSxCetryChX3Q1K7slBy98mz+48Lt0bcUXjuUs9QKby5aoMn799e9xuHuZM0t/g0H2MLPyxj13MVH57tmAZwfbvPHlf8Hwvsfprp2gv3KMPC/aHsb2SHGdrN/mahdzsQZbnC8/BRKRqIVQMPWJpluFUQpSAV5+LJKhLsgwm8PJLKWJkSzPmJUTYqkY1yV79Np30nFOOFDpfOW8AjJcOM1GuSdEXAwPmhY2kxtQnRQhKIJzuFqMta5r2ZsSJbIhO7Q76kLEGRsPqRCebWw2ijm3uDFJjhh4U+ddOL8jJz5HkOfX2mDYYeHmNy/7EfnM9zk+tlG+8Rv/9Uf/oFld6T07RcFf/alf4M++cQOlhII+nc4wepWlpSXuHLzA3dl32z+KaWdZXl7hMz/yC1x4/zYHh3eIZChbEJXkKhi4/8wKf/Dv/i1Exef+6j+ks7EhDBZkEm/zJNrcJC3CQMA5J3kMURafkq4M711Sw47zRZsehI6gg+iymHcu8eaLX+O93TdYKwL/5ZND+j1NnUU6WmO1oWs1/+PLu1w9+A365sEjt2ltdVU8dEwSV4uhdoyUe1uUe1ut4XU372Nw+iGWNs9hTEan25eQu9lsFvLWVuMnqmSWDVAzX+wfatBqvKyar8zmFiqVhK7TFOcsS9oy6XffvXiBQWfISreHKZba1wtOBtokbUqaDrUmh1PJMBfHmM3DT3mNRbkUCTFlE9Paih4Q4oFijELHq0WJ3SeGUfNS89EZ8pouUQylmymmdaApdNHaWvPs28afIwa5eJ7z1avS+TbXKBUxeY+bBweiu/vmK4z29/i4xyeoU3qWhxl5/uEhJW1oBYTg+Mof/x4//uM/xa2bdyjLkv29Pd4cHfKLv/DX+Po3vopLUonD4ZAnHnuSANzdOeTl195hVjlikJF6NolEeRt4+pFT/Okf/DpExYNP/RTHn/kMPqbO+aYo3SIEzU2W0LmqZSJVi1cYqaKF1AbVCBPHxoulfFdHMKMxt1/8Nq+/8vuUfsJ/cqrLj9/XJ+aaSnlC7Rj7ElCc7Rv+/lMD/sdX99irXzxyj+4/d5+0/niZRNaErjIc1TKeemblPKyf3rrM9NZl7gA6yxnc9yTLZx9jee1EopfZhZ39SCZ0NNeaB+T3PjH5zbigTQQ0DdGkexHb+woxRDKdsXHiFMPhCoPM0O2mcX4hMh5PqbIMldT0dKrp6eTFYuvXRX29yRJVWj+xmVciOibzs1RaDLqJhlJYqK0mLzSQS3kkRHxdC1faOVydCOMR6iCDiIo8x9gMbYV4odVC2Npuy417m3vIxdjDpXmdSsH7t7coy6oJXLmzdYsbl94BIgfbW7j6w2yxH3R8ovmU/+gfPMLJzcE9z1i+8E52otms5v/x377Fn3/rT/nc577E1q3bzGYTuv0ely5d4bEHH8eajLp2zKYTXn/ldZwP1OhEJA+po2Qme76BMyeP8e2v/gbT0ZhHnvwpnvrFv4fNckHvSOGlbqpQiobRIWyUirqWRlWldesYQPKoefvPPB9SSqoMg0nNG3/0m7z5/p/z4MDyN84tc2IjYxwDrpIujOAdxNQZozznBhkPLFsu7d2jUqCk1cpFGXzz5ruSc/a6mv/jf/EIk6lj/6CicoFvvLjD3kHNtVszQESQDy68xMHFl7nZHZAN1xicfRyIdNdOkfeGZMayUMxIc1nuNUbS4lcf+t7it8QQ5RMVYeeOhOEPnD3HOHbodVfQ2pIFZHYL0OkNsJlENnXtqErxjIJ4WzHOFJ4aoxdkTubvKuHiAtTbRottp2nygvL7PuUbzXNXVmGMTMjKYj4XIKMJYVV6zYW4Nf1tsyksBjCTumZWe0BTes87ly4QfWT7zm22PpDnV44PZTDtPYdWiscfeZKV9RM89MxPMspyav0Rz+Mjjk9klFkBJpuHHvMLBp3JblZb2RXruubW7dtcv3Gdp596mpOnTtDpZhilyHTBeDTh+q3rjGYlzgdsp0On24Wyogw1wde4oDlx8gTVwRX2d3d49Imf4ulf+vuoQpT1ZBJBs9PS5i0hpJ3SOSlkk3IPLZA/TZ4RZJweDaiTFool0pnVjF58mfeufheI/KNHBtiBYtdNqSuPVjblNCblKHIKznt+4mz+IaMUUTAFWrM/OmjZHZ95coVux9DvWjZWCyKRR88v41xge2/Gd1/bYzrzvHVxxO5BjZsc4iaHTG9fAUBpgx2u0t28n/6J+zl24hxFZtvNqUmq9T0GcPSz1l+1HqwNZ1GMklF2bI7KlzFB+J8mBl774H0AHnjiMzKXw1gypYhOADTvHVVV05Q6lBKwzRh5FkrR5oXycxmPJ28tO8PigNs2l27zf9UaroSRqT6t5oBNs8Ec2YBT32cdIlsH+4QYRGf4rddSFKPYvnWNw+1b7b3yzhEBm4jwSil+7gs/Tb+3hEPjgNPnnkQtP8DIwNtjxZVx5NVDGFlLZeCff1/rmh+fyChDIBGU50ha015FFCBg8ZiVJbOqRBeW0siDyPKMOmrM8pDedBmvFWXtMYnOFYg4J0NEN08dQ9dbvPnaSwyXNnnqJ/46FJmUZVxoW7SaB+WjTAb2XmphTS1KJ46o1KQUjfZrO/gW6VuMGtBgpiXb3/gmf/H671CHkp+5r0M9CIxdTQiKXn+AtZkguagWvXTeUdUVa0XNMFccVvP78c67F3j0sSfp2oy33r4t3SFK8cTDQyIxEf7niZa1ms2NHr/4Ez0UkVnpee3CAa++vc+V61NqF5nOZPxgvX+Xev8uB+9+l531EwxPP8TyiQcYLq1IA4DWbaSrIBXcF5+VWljkR78/z63kJzKZukaFwMraMr/xtd/GFl3uP31f2pRkwI8mbYI6J1PySiH41OMZqOsaraUcY42R0F6Jt1RaukBMCn9l2FBoQ0th8sizk/qsAhWIhBT+pvNtr1Hhoqyp7fGM7b09iIrtO3e4/N7rbN/8YJ5/L9yBpV6fjaUV+XywxF//4i+idcHJ1XOg1znUhp2DwKiOTKOhUnCzVhzeUdwOjlvBMTYGpzVETeb/I3hKYA4wNBefFmRjoNYoHnpgyOtvH3Lq1Alu3LoFaXSYjwGvIsoYdNSQW4K1+LpKw2LFcAFWVpYp9CFvv/YyS0ub/OTf+ieY9dXUVe8JdYOYzonWTftVWNhZGzTPWjkHFh6aKA40NyLiTKCYlFz4rX/NW1e/w48fK3j21BInlxWlr9FB08s7ZL1+2uVVm29JqcdRdAqyvORYt+awmnvL0XiEjdIYfOGiiEbdd7rL+bM9GXswd/dzwKm552g6heZHnlznmcdXiTEynniu354wGju+9b1tDsee3YOacvsW5fYt7r76DWxviC26bDz2HKfOPUqeNqUFmkJzJ2je/ehH0S1yrm5LUsK3kPYlbGRnfw+0obC2Df/lb2NL0G9CY60Vmc3JE9gSfMAHj3OO2s1agEWbxhN5jNbzZ6cSrUEpwDOfTC1hr0mlt3Elw6W8gvc+uE5VlVy58C4H21uUswnVZM5B7RYFTz/0CFFrBv1lfua5nyXTOToa1vJN4iwHa3DRMB4pYtTs7njGGsYGyijN/7Pg8MoSlWwmXZvTVx5pw46isP5RjJKPOD6ZUbZecaE42tz1ZBjGwpkTXV55Yw+TBpXWdb2AsjW7ryLLc4w17cuqFGZGBQ8/fB/f+trvMhge46/+yj8hO3USx0LpQ6n56YSGO7uAoGndMnikrtV0cURS3IsiYiMEowkmUtQ17/3Wv+Ltqy/wV451+c8e7nO75/Ezh8ZSFAV5twcmWwQtmYdQQvzu5AXPnii4tD83yt3dPf67/8//AJDU0zR/7WdOYO3cIJp71D66hQSnkTa0zaY1tKwOO4DiuU9tMJlW/O6f3qSsAu9eHjOZ+jbUvfYXv8f+9Yt0V47RXz3O8sYJukVHGgWa5wdMqlmbHzUhXzmbsXvpNQa9Hlc+uMq51Q2s1ZgYGR8c8MVPf5o/fuG7vPDyd3j6yWdZ7fWO1PnkelKLWyqxtNmugjzPIMtwtbTTxUQmEGK7xhpLFSsOyxKjIlZrrNU4PG++8zoh+BSoCc86usDld17FVaV47kpIGg1p45HzD3L29H14DPedf5LuygPc2DPUsUCT8+rYsKIzlqvIoVJkGowNKYM1guRHLaPnYyDGNDRKmAh4ZagxOKvwTY6qAugP4d/f9/j/y1M2W5s68vP5NxSStwXn8c6TymACSQcZhydlBzEO0XiJPHD/fXxwWca6PfO5v0731GnKIGRycY6xpWZFICaKWlMEVlrGnOnkJRfbfZIrlU9CaEnkvXHF27/961y4/iI/caLL33l0yEEecVOHD5B3euiiIGqbBIwbwoFub4xsQYLsPrhakJsJlQz6wBpLWVXEGBkOLP/wb9/HA6d7Hwr5QbetVM29bQy/Tfbiwn1XYLViaSnj137pLMTAtZtjXnzzgLcvjbmxVUKMHH7wNocfvN0aSm/jNNlguXllIjC6cRlffUR7UYzc/9CD7B+OKcsZSlm0NajDEX/t8Sd54713eeeFP+HSa9/muZ/+m/T7fTKbcXJ1DVCYRWpg85Ip/PRejFRboQNiNFkmm6hzcFjWfPXP/5ib737vI8/rQ3dPKfq9PjazaGP4yZ/+RVR3hY2zz3DAkFt1wY2pooiafRcw25JP2xDoxcBaZsi1hkKIL44kEh2lWSKgUrN1um/RJ+FskYTzRKYE9kNkHAOljrgjjXo/+PhERtlogQJpUcipNbMU7n1n2SQkztdtHVBJn5uWMdU6gPGRDIXywm1dX+ny+ncvcv9Dn+f081+iRlDSRsqyQQxUUktr3ks+OcqhbD1aTJN/hcIhoY8OBBUYlJ63f+tf8e717/J/fWad9RXFQR6pay/FeJOhtWjglHUtUHt6EEpr6ZbRBqtSCUApNvod+la1RvnFL3yR73z3O9T1lP/D//ohVpaL1oMshoutWsDRq6JBXhK23N5h8fdyj8sq8P61EbfuzLh4dcrB6CO6VdImMLlzDe5c+/DPv8/x+jvv8KUv/RV6RY4msjrs0HOar7z3Lsu9Pte3d6hmY775O9IkYK3l2Z/5VZ565AlUCNigFsA02RTvBYGFKxES68gQjOYb3/wTbr37Pc6cOivtVen8+8NlvviTf4OgM0oXqSNUMRIxjLP7qJyhMAU390pmKvD2diBERWVygpWNtZMSHqUCWgcsQYbcKrDKYJRMoxQf1KgXiwd0BFxAJl6r9H0MDkVNpIqREqij/M6HjOMvOT65UXJ0qTSximIxsW5/CDHga5e8WlpOWtNw44zV+FhTK49VgScfe4QXXvwzjm8+yGd/7u+BVnjnk2MWHm1olrPSrfEtvCPtCbV1ywaIatZDapDSkbVJZPqtl3j3+kv82PEOxwYwNVCHgPMebawgrSjqStgksruDybJWgMqY9BAVuAhfvrTPfmXQFASmuKYwrqDo2nk+9xFUrjYGXwhom5kiESjrwNsX9zkcO8YTT4iRw7HjjbcPOZzUR1KX5bM9Nh9fZvn+PsEHxndnbL2+326iLZ9WKTY/PSTvWXq9HmVVYa3IWgYfef033ufrX/9TVldWUUqxt7/Xjof/qMM5x/e+/G8I6ld5+pHH2/HkWqnUFN40RKfboMFoJSp3ovvPxRtbXH/rBT73mecZPP1rTLINLDlKKSaZ5k+igSj5Z69bsLw0xNoctz9m6/ZtooV+pyueejaV9aYjyjtUQETZtMhvWiXGYJXGKIsOoBMxJcSmuqrxUeGJMphYKeqocQqc0jg0ddRUOlKBfD/93Ycf8vc/PmH4eq8rVG3Y1uze9+ztBGA6mxJ8ANc42pA4pRWZCWRWU+F58rHzvPydbzEbV/zs/+p/j15ZowphoU1pDoUcXbTp3RahwhYul1C5Gc2hAiKboR1974hvvscfvvKvOTuI/MoDXaZW45QU95uNAIRE34xBK2wh3RTGSoG8ndoLo7Lijy7e5auXJwyzp1nJn+LG5Df55je/Tki84P/l965xbK3g2aeWudckGyZSkZsEskRsplgeFijgYFTy3/3PF7m5NT1SFkBB3jecfm6V3mbO8EyBQjFY7ZJ3CvZHY5S2rB5fYv3JZXwIaKOx1tLvDyhyuSabZ6AUznmGw2UOt/b4zq+/ymR7Roywu7MHSrPRf5KVbI1z/QfIlKWTdZjWI97de5nr43eowhjvHK/+8b/n3NmznFxZTlo/Eiq2ekcqgULRS8+lJAYQHdvbd/Cuprd8jFdu7KHX+nSLnLzICNomKRBQ3nNYzvAjzcbmgGwjJ04OqWPEaUMsK5TPiXWF8l7I46LZj26I7kpSD2My2TzaHlJZZ8IEInlJpASiwGvRvPcq/Y6GWkOlQpJU1XwoJPgBxyfOKY8cDez5IdwuHQopmCdBprr0zCYVQdW42ZTR3hYb6yusLK8Rlebtl15ke2eP53/6Pydb32AWAh4/L10s8J+0Uve820ddeDLIKF0erYI1MChh+dJt/viF36FrKv7OQ13GXUU0TduSvGbTUiUFdk2WWWySQGwAJ9l9PBe3D/jnr+1wd6JYyp7g9OBLGGXJ9K+wNf0Wh+E9Qoi8+OoeAH/wtdvf99b2uoYQIrMy0Ck0953ug4ps3a3Y3Z+PVDv5uRX6xzosHeuhhwGTa4zRGCsGZ61FG8tweYnh0hJFXoi0ZHp02lqyrEgzF2NL/i73D7n59i2+9U9f4vDGjJXOw2x0HmSzf57lwQpL3R59bSlo0G6PD6ucHBxnd/I8f3H7j7g1u0BdTrl54xpn1zfkfkbQyssyb2+0hDAxfSSKPtGF178n0dHyg9y4cgc183R7q3QHA7qDAb3+AG20zOl0kf3DGePqGsYagjYEBdMoeZ4tDEHZ1Hyd5CwToysq6QByETFkAi6S2q9SwzzSBeOJ1Cg8Cqc0XkkE5pXCA7UCrxU+NU3LxqM/LvAKfGKjVPd8Lu8UUS3wo4AH7xtIiLO3xyOPPML+/iF7O/scTqdULslN1jPG4x2Ci5w6+yDWeF57+Saf+8l/wLHnnqcMcsPahb/gBeccjqNHczbtFpFCs7YpJzRIYCDfH/Mn3/jXXJu8z//5qQHdZYtPBtlQ7UzTFZPOoUFzG71UmGvJ/Nn72/zGW3tkepUnNn6eE8OHIDUQK7XMifIEV3df4870JQB8mGBUlzJsE/iw9OBkOmeJzMrAO5cOP/KJ3H1jxF4xpXzE8djPn2NlbZkstxgjm0fwER8CSml6va6Uk9L479xm1N6hFCkyiEwOplz8xmXe/eMrTHdKuuY0z575WU6vnWJJF1g0yqTaYtQybs97qqqmnE2pqgoVFEN9jFtcAOD2tcv4J56WskoURTjVkh4XN/TYTlOrXWRyuEen6HDnMFJXgbA3ojyo2DN30XlGp99nsLpKr5M8fWaoa4/zQdIqrfHR4whYHVFWz5uvlTzjrEXTpDuFIELdURnBBwDQeBWpEc0nB9RRUWslZT4kVK2VptZQm9B2x6gFMPTjGuZ/gKe81zDnJY7mW+trXZSCq1ev8MQTn+H21ja7+wesrq2ztr6GzjTTyYT90SEHkylrG+v8/r/7l5y871Mc//RniMhu1XTMzntakzkucFybo/Fm955pTHktUWEj1LpmqRwzfeVF3j+8zOeOFeglQxWNTGRqJUx1GxpKGioPa47kJoOMkT+7tM1vvH3IWueZ/x9v/x3uTXLd94GfU9Xdv3TTmyfPYAaYQRpkgCAIgCAIglkSSVOBkihKlGzJNm3tYwVbK1OWtNLKQdbjXe/6sUVLFC3LlElJDKIkUgxgQiCJHGeAweR5c7jpF7q76uwfp6q7f/feAd7Rku553rn3/kKHqjp10vd8D49e+BZm440OoWLurFK6MZujN6L6ekJUVu2SshhxsLxFiM1gaLONLvkyqCpXD7/AItzskEOIsrt6gvqgoT4IPPvh67SHcOb+7RTRtbG49dwB23fOiDFQFkUSyDSayf3IAxij8tRHLrPYq3EqnBq/ikfv+G7u2tmmcIFCAh61UYhGbrZatiyXK5qmoV61hDYSCTy3+Fw3D9efe4oYIg5n/gMWSe+eU/vNzchb4JlLVzi8eY03v+4tfOzpA9RPoDU9hQ+EZc3h3iHza3uMtraoqjHlaEw5m+BHFdVkTDUe4wqHStEhuzRm9JXdT+Y3DxppVKnbmojHeaFwZc92jrFiNAJNFlBRmpBNWaH2jpUzoRVyp7FjS/WrHv//ma9A1j3rF84LF567+AJRlLvvvZvxaMqprVOUo5LlpEHdiPP3zPj5//NHKasZr3zXH0DGU4iptx8mHIN4x4lC2S3CTnnnlWv3YsEgi/7N2siZKwf8yyc+SNTAe+6a4sUbXE/7dAvJhzAjwExglZbQAt5TJKLgK7tz/sVjt9goHuTR89/OuCwt1ZIJm8Uwn4UX1Bl423vPpmwAsD3b6AQvE2atPUZ64e7T96TdNj2398zrebIDhFvzi3zmM/+UFz51bW12nBQ8/4mrtzmXwshv8fLtb+DC7BWcmp1mXGwhFAb2EFvMEZcA6DXz+YrFcmn5whComxUX68dY6QGvvOduoipfvnKNz3zxC7zuoVekgI+hcwbIVHLtakxWV2yT2+JHLBmDZlRSRGPnjKKhZtnuUpcH+KKEsiAWjnI6ZTSbMZqOKMuCUVVQ4I1VIvmPvVtkgSUpSko8jQqLomAhBUUkMTdY0+FaoPHYT4UWIURHcKYlW4/lLJOlpWlzHuyzX/X4dwj0aPdbnsijYZ5h9mi5nFs7NWfmgQYgOkZ+xD133c0nP/EbLOcL3vUdP8S5u+6jiULMfhxJKNeuP9xg098au9e1W8lZy/T31XhhaxmYP/E0V5ZXePlWwWgCuIyX9F2HEU1seMZGHhMCBUJbMypL8Ma5+mOfvEaIjgd23pf6HTbWoSkBJ0j51Gx4gwHlvRuY330cK+3bvTYczqQkX9oq8ZWymnbv71QPMnXfz/7yao/5BDZHZ9lbXh1AI/tL9r6zbWgOx52bL2NaTXGFZ1SUlG5JIZIQNTY3IQT2D1bs7jU0DSzbwGF7jYurj3IQnqXWXV5x34P84Fvfw/33bvLX/vk/50P/6sf51M5Zzt19P29+41s5u7HBpCyMRTNvYOkWY4TPfdryknfd8yjxc4EiOERiGj8d1EQ6tGmIwRO9R1YeLTyxXrE62EfKAvGO8WjMuJpSliOqyYTxdMxoXKJtS2xbGgoj1iwcIp5WhAM1pJdEA8tEUqBHggV5UNsgYsqTuyTwYtyvThSX1unRCMhXOn4XNCWDQKj2k9y9p4Rg5TTGQCBogK2tTT7y0V/it379Azz06m/gzCtfQyh8pxqO+YudoKX0QNZe2gvq8Lo94ijrElvq03nLv33sAyzDkm+7f4Qvj4LN7MtDkESIqV2ApnhuMgVF4LBNV46G1AnBUD3OG1AdZ3w5ufkqIrjUDcsPYmQZp3s8WKb9nWWDoLOg7Tua/KMLm3dyYfOOY9Nzx+adSDcCrI3b2onzJQU8pt2zwS4I0XnqENg9mHPz5gF1cFyaf4krqw9T600iDTs7Z3jf1/0x4tYb+el5wx1XAn/o9/8QTz71Mf63f/lP2bv6Ak997mMUZcX9r3w9W9uneNXLX8Hp2YRSXHc3q9TLsWkaqlDjtEhorwLFEcVqaFWc8UFFhwZvZV6tQ5saCm+sEyIc+jlLvw++wpUlflwxm06YzcZMJzN8NcYXpTXxqSNLlChKqdFALd06U6JmIL3YBuHErHIx5SOqqdWFFXWHGH/vAj3a7ePr00kO9Axe6d7XiCs8VTXCtZIo9oXDw6v82i//Wy7c/Spe9y3fB0VptBxZwgemY38uXfvZ38NAJAcQwF6wTJhGMdJeusql+UXunDhOzwpjPNe0ZNWoKhRNpNDaLWI0X9cY2jRGvHPcOXXcWAT2V7t4CkuVCB2qSFI1hJPQp0/S5pXb6uV7z2xsHQvf8D3oBCv78D2VhR3SBcYG83LSPGrGK/djsy6UgnqlSRuLZbEiddtw8eY1buzeYNHUXK0/yV77GEVZ8MjLH+Y1b3gve/ECF/cr5vEcnJ1ysYh8rKnZeeAc/95f/gZO1df4yL/5pzz+5cf50sc+SFTlox8QLtz/MKPJlHsfeAWnz5xlOZ8jIpTtPhuLa8RQ2e7jCrTI/yoCJZGSIJ6IJzpHjEJsPdp6cKnqxHmC1FDUBF/QLDz1/j63vFBVY0bjCZuzDTYmE+46fY7RbMZ8scCFlkoVDxBaS6dhOOuIg8Isqt5dCZAwu96ltoVKQv3c3vHvrCn7/buPjNrk5kY4aSyCQ1Y1VROREAjtgs0LZ/l//9d/l42Ns7z+vX8UX40STw49cxv9jt4V2X6F7aYXWLu745oStpc1j33q11jGJd9w7xg/LiGFLuy72VTN104nlC7Y2kH0QrBOS9/xQMFjN1ueW/w8Pvx+RkVF4U0YvbO8n4ihQSSmVEBnYttPHWwEoOusBIPDiRhLXRpbUlULwjGKkQw2MHrPXGnZk2rloTTlnL9pIu/wON+yrBtK7xGUOrZ84drHeO7gIzRqgO7CF3zL+76d2bmXc2OuPLG3zWp8Gj21SSwnBKlog6JScDU23FoWjPVu7nrPX+CV39Sw1b5As3uZD/zqv+Ti80+yrFc89bkeTvf6hx5ie/8aZw+f43DlCThaX1CXJa04Sj9GXAV+gpZjgh8TXGkmNg6NvbAiBXhvtrFroLW0Cd6xXAXaumE1X3LDeS5fuc5kNGE2nbExrtgYjdiajqnKkoJIbFpCjAQVVJylUFCCGCTPe0fphZArXFzAvQRt+dKxr8Pfc/KWvlodMca4/LqFle1zPka2Nqf865/5Cbyb8XXf/efZue+hVILV1yT22kM7/+nF70d7AaIXzC4dkk+qSnnzgCdufImxF+7bScKYTu2cUSviTThDqrU0bdlT/BsayYIQQRUvyrQQ9lb7XKs/x0ZzNyM/pSxGFGVhO2os1ot6O3PIhDLGoaZnTSjXBY0BTM1235BREQhmdA7qSwemQjaPVZUm1v0mloJajdbsNc/R6WSRdM/QxgOu15+jiQfcddcdbG7cy3g84dWPvofHb2zwVL2FTKfgNgiuovUFmtIFtpcJEU/LmAXwxabkS41Qcopi8gh3f8c7ePdsn41ml5vPfobHH/8Uk6rg+77m6/nspx/jnETC/AaNK3C+JNTgXUXhR2bO+jHBl7hyjCtGqCtRKYh+THBjAp7oRmbeemfCWHjr3anWcTxoS3Q1zpc0dcPh4YJbewcUhacalcymYzY3pmxORmxOpkynUyN5ChCahqZtaWKg1dwKMVs8LsUX1rG/X+l4yUK5Zm51E0hacBko7gafT8lXVdzGlA986Jf4zCc/wdd+w59i574HU0DDolVdqzn6i0QiOXoKR8zZZAYOd/7+7rRPH2Acs5c+/ymuLK/wjXdXbIxd15hH8lXE6i5FHE5zG/OEu41ZiwZECtswVPGqfP8r4R9+vuZW89vsxo8i6pmGB6mabc6OXsGk3EisBxmvkx8uprxdus8O4tKbOiJZsNKTdTyv1i9k0c7T2RzzcJ1lvLI+Q3mz7GYvchAeI2gPQMivG1blhDkXoaoqvvcP/BHmKtzaD8Ryi0/Pt2h2zhPGGyAjLCzS69tsWuduWSaczkxOcdRiLcivqvD4wSnGccnWqTvZePu7GbdLfubaAboz49Qb7qN6/glG9Yr61nX29m9wuNindQtW3tF4M2W1LomuNKF0JbGYEN2U4CqinxDLEYGShoLQeoiF3ZzzSDHCuwr1EFxExdPUjWGb64q9+ZzLuzfxpadK8MPZdMbGdJPZbEoxm1JhxQGr2HKwWhp6SECct3OeOLrHj5cklJ1wSPZvrFxFuhbaUBaeejDfTmBSjrn73vt4fu8Sn/vMpzl19n7OvuHNRMLAdMre1ABwbWtlzW/qAjxoL7+DOEj/SxLw9GLZRHZvXiWi7Iyd+QOtQExGnQsdRWcuhnYDzlHnXBJM159XTUjOTBx/8lXCl261fHE3cPGw4bD9AgdBuDX/FHeX38q0OJXoLV0KVJmsZWQJMfaaTBc0epAu03Kr/Txb/iGauGQen+meUwms9AWGyYWvOocizDa2cG7YwFQ4e+4OHnn1WwDt2qEbW4NnY+M0jWzzwv4+jQM2K4KbEkaniH5i7R80CzadD5KnoWvtnoYtSiSmzSK7JxFYyIjae66LtfZzheA3PeMzh0zuejXV/AbTw+ts7l+n3r1JfbDP4d4ut/b3WC4OCALizd+MriRokTR3iRYzKKc01RhXjgi+Ql1BdAX4CmJILZiTbhe1yK4WtHWDFN5wBW1g4RqcL9ibN4jsU5QF4/GIsiqYbczYPrXD1sYWU1GWjWnQum1+b4SybhQVq1O8enXJtZtGPbhYNPzqhy7hHfyR736QjUlPrjXb2ORwvuLG4iY/87//Y7Z37uad/95/QjWdrZUtddFHzf5QcjDlSBCnF9kjQmhHlxzpAjy2b2+slGupYqNRCNHhWjrWAHVCcMnclZTSyL6yWFTYiaDqO9PYLmjIm1NT5S1jeOM5a75zeQm3aviZJxdcaz7Gufh1nZAHFqz0pt2iuA6g3eg+B/EJWj0kslwb+8P45eOTV5Tccef9+BRhvP9Vb2F8+s5ktQyMJbVghHMO5yuuLMdWvZIqIbwYyPrzhzXOOcblmLIoQAtcHNMurHcJU486a0EfEFZlRXAK2ZoZ5GK0C9rZkYvJzcIIOI2do+4GG7OKlRtEB43zRPUcVNvIZJNq8xxlqBmFBZN6yXSxz6mDm5y6dYV44yLLW1eo53sc1ofsN4EGZ/08i22DDoYWqfcZO4cWY2IxQssxWo5pY0UIKyROkbJC3Mi0rohFeYONIcE20iiR6Mz8l8KxWi3x3rG7e4srly9TTkZMNjepJhNGkzHTyWYfa/kqx0sSyv/pHz2emAGMnqJtB9KQBOp//F8/z6Ov3OrC9ZPtHc7eO+XH/+GPsLV9F+/63v+U8dlzNGoRqz7goL1A5rRISuoyEMSvfPRY1yzjkjCIcbHkqVtP4AUe3PEpxZFYxUnRsYARW2mkSBUg2Q80C8F3oXFIWjsHVFLOzIvgHdw9Ve6cCY/dcnz+xrPsxRdYxC/T6BU0IShPOkSEu+57gO0z5wEYT2acvf/VHFx7hvFsB9l+iJi0XIvw5ZsNOAv9fz4oqz3zd130iLouquywqHeuPUUEX5SMyxHeOUtZTQJN27K3UopQMB1PrLYxmtZyhc1TSBok+IIosRtrR6bqIGnCfmnY7BydLu3eH+jWwTeS3Cahr/0mq8Kzj+KnSrW5YnLqkNGFfTaXe8wWu5w+vIkeXGP31iX2d69xuL/Pfr1gEWrUFcZkIAUqI6LzBF8Sy4qyGlGWU/xkCxdnNG5EKyOCHyO+tDpay4MkGs0SdWLdpoPQthbYgUQ0vXDs7u/hygpfFcktEuDur7qKX5JQrkLsFuXpV25R7ZSgSjH1nH54k8sfu8nFD9/gg79zo5uFnVPbfPrjv4X3Fe/67h9ifPpsAjDHtfyNJGpDN4zeppNkpukeDDAM7Ax22RzJHMx+UGumGhYLrq+uIsBWaTQXFhtJuzWZBS8aR1AIidfHKkEk8fEMV1i+T+sTmbtiSddPQnA8ehY+e6Plpv4qVVlSesd9DzzM2XsfMlNYcnBGmJ26g3l1gUsreGrffAAR4Yu7DqpzaFOi16eQTWhqkBaXfKAYR7SptQQ+doLhxFNiiBYw8mXvnRUCVyM7nYBopIhK0zTsHh5y7cZNZqMJm9MpJY6RFBTiUBxxWLKXfdxhC/rj3sWxn2kr7gJTFsOyBHxX59Yl3mNqmwGRwsqiCs/SV0i1xdXZPfjYMG5WbNQLps0up5bXOHN4leL6kzS7Vzi4fo0b88CBjkwLO08RKpogaF0gUiGHU/x4E1dtUBYT2mpKKEaEoiBKgbiKViqCNOBG4BzqHXhnVoQzC0+DEJoIPlhw8CVUirwkoXztH32ArTtniDhGkxG1Gk/ObDxme3uLN75tg+e+9hJtHfjEz3ye3Yu3+J0P/xoHewd87Tf+ABsXLnQERm1KyueYhks+jGY7Z4D9HGrAIXpnII5dBLbLS6Y3IxFpW3S1GghrApc7A5criQEvUeSjKUeZyLkkETt5Z7td3lTyjdgGqmnp9HcW1fHxqy0CnD5/By//9j/JzVXgsIanVjPwJWiwgEAQOBTcoXUIq/xkMAz9cg4aacV1mslRWOI6aagyWiezNq8DMXRJ6UsKZ3wz3hnG15cjxPuBUFpyaDSaUM02WS4WHO7ucXDlGl4c506dZmtrw0L/OMouamwbp5njadyPrsHOIjpqWqdgYQ7OwaAD1lrseSDkiehMrfpHnCfiaHzFqtjgYCxU7V0UmyvcuRXbd+2yvbzOHXtXuOfW8zR7l1juXeNwf4+ry4aDJtA6wFUQ5oR6n+DGFH5MWc2grJByDNWYWE5Z+g0WrqKR2sAJhUfLwgoQCoePJBeoILQJddTZA1/9eElCeer8KXYubBEVJuMJGzvbIDAuCopUxPzar38EjfDMJ1/gxjN77N68ydu//o9z39e828pcQlrwmlA2R4I4MXUo7oIF6bMx9tjQbrpk/TOQBNtOhmIMc7Ja8cKtiyzDildslUxGFbHwVqAsPqU3THhDmxjT1ZZI6Mi5BC0LglohbC4xyouIrLmVtDMIbXQ8uRupxhMe/K7/iE9e9YhTWhyxKi2AhIJ3KZ8mOFXKABJPMNhFidISZWUCGR1Ox+bLCeYO+MQSHpUqbXROPKPxhKKcgC/xAl4Udc6a8uRQ0boMMJmWTKc7FKLQrLh1/QYvfOnLlOMRO6fPMpvM8M4lkzhhV4XOpO8marBJHs1urYEk1nfa/NXBpyxAZ5tf/kSmAbO/1aWi40KIFKhOuTneZrxxnsnOvZR3vYqyWbK1PGD78DqnDy6xvPE8qxuX2D9YsLua07AguAKkRJYVrhjjijGBkraYIOMtitkmzE4hkym1czShplk1UBu0DilQV1L4EvWGQvo9CfScOXeW83efY7WqOTw8ZDqZ0KZAR0AR8YSg1HXDYs+YobdO3cldb34njTgC1tMiptHOubtOiJI2HJAwdGVGHfcn9CogT0UnnFlOTchCbKibFX615HDvOq02XJiMGFcFdYchNYaBqIbNzcEnq/JwqAotwkoqPvTkHr/17AGvODvmzMTzuvMTRqLMCqGg90/teSJP7Autwhve/Z08fmOK0wKJihcDrHsVfDQzqnXOML9RcRoHemF4aAoupE1CbJFms1oF6/asUIhQ+YJRVeF8iSsnSFFazxAsOdGBJqQnrFjby53t8MvYoLFmsjll1Sy4fvUKBwf7bG5us7m1wXQ2tj6Pa/d8NCR+9FGSeTo0Ve0JyQ+TfXkjafbpVOZfdhjlHMUdamAFxHV51iiwoGBeblD7ktaVjNqajfaAc/V1dpo9duY3uHPvOvHGNZY3rrC4eY395YL9Zk7TeLQc4X2JjyNcvEnRjqDd5nWvfDt7deCLX36OVRNZqYJajlSK1Ji4MMG83eMlCeVoPGJjY4aIcOPm9Y6ZTNMgGhFy4OkvPM8Ln75GUYx403u+j3Jji5bMOmaDmFMrNohpOYh22jIbM2vCmA5bhD3oTCRPZyJolkiMLfVqSdvUaNOYxktTGgUzndtACMF8W1IpHZIqUxzqChDPxy4e8gtPXEcVRpMpX7wV+dyVA3796QMA7t0qec+9Eybes12aJl0E+DfPrLj7odeyuP/9LK7XCWIHaMTII3IqySgpBMt7FoQU5Dq6yB1R/SCIxQAaK9b3L7ULKJ1nXFaUZYmII7rUqVibPigTE4Gxt3B9iGauxzaQQQ2rpqFuloTVAt+saFcLCh9oV4dcrxfc2i2YzqZsbW8znW5SVBXOZ++1N+eHmtOQW4MNVvKTKj2gY+BvDrRMFt28Dvo1ld/UZI4b96zLpqMY3K0UZ5ttMeGgHHM4PUUVA6Odms1zB2zfu8ekPmS2XHDHwUXCredZ3rrMwf5NDg73WdQ3WTSeZRjTtDd55rcPjI5kb85IxqyKMcFNiMWMUI5oi5ImpWjibbbDe0lC2dQr6sWC0DbEmAl1CwvEqEUgLz91iV/+ex9CFV72irdz4ZFHCdqu+3zDgEmybTRp0Ww2KnSUkGtWlUBuyZd3UrqfStRAG1qWywX1cmF9D+uaNiFUljFS1yua0BISXApJ9JPi8a7EeQ/i2W/hJx+7wcUF3P3wo7z8Hd9KPbuTQiLVap/nPvqLvPDlL/DszWv8b5+1aOrWyDF2wiIoZx54DTvv/c/4wvXWktlKMjUjXqVbqqKpmFattVyhR6K8gwE41smlCzZ5itHYwNbOUybWAUgBMGKiY2yJ6iwyq6AaWYVDq/FsGpq6RkODhmhVMYjhgOOKUB+giz18C04rGlcQNHKw23Kwv081HjGdbrC5sclkMrUNwTk0cbbaveSoehamMIyddVpufRvOCKi+DGpdaDW7pulfQpSlRkOZpcI5oRBFnAl/FEfjhFo8h1qyP55wJZ5BVCli4M7lfWw0u5xZ3uCexXVGi1uEvWscXL/K7s2b7B7ucvjUTYLzbJUVbTGldBW1lGgxJZRjQjlGRzPasqJxx/vwnHS8JKFsm8hi2dJGRaRgtWpwLplSKiznCz76k59muVfz4Cu+jjd86x8lFq6rEOkEMh8DTXkUGmeuWTYl7WPG65LRPSlk4LBmr1FpQ8tiuWCxXLI8PKRZLUEDPkTLcfkpH792yHcfVHjfUie4nHe2O3sRCvE4LbheR/7x529yvXa88wf+Cp+cb/HbiwjzxN2jG0xe/t088tYRo6uf5pnPfIhnH/8U+7Wyh3Lvy1/Dmff+xzx2M1J4Ky4eCloO9ecjt5lwWEolT98wePKVDnGeqirxZUlZGPOAIIQYCLGlDQ1tvaJpamIAjZkOI7KSAwNNRysCNg9ALAiFRa9FG6Q5JBxcRect48lpqqoiuIIghZneGjisG1b7B5RVxXQ2ZTydUY2nlFVlzAPpeToUU35OoTOqswY0ATuqCo8Z2ekd7SyGDlmGWoJUzOAVAZ8CYHltFWiK8Frk32dQqCu4tHE3InfybLtkVh+y0S7ZCnvsrK7ymmtXmO7eIuzd4MbBda4ud7mxf41ri8g+jnY0I4ymaDHFrTaIxZja3Z64vbSUSBNZrCJ13bK3t6SqWgtctLBcrPjkP/kdXvjoFaazUzz6Dd+Dm0wIkhq7nCBsuTi5S+DrAASetGkXdxRr3tJNSvpcDErbNIS6ZVWvODg8YD6fs5rPQSNCxKsVFl/YeZhnr3+c37kO7zk35axEcMkr84JIxaE6PnJtyY9/6RZthFe981v5+PICyxBwWZ2pEkXYj8pnbwQ8r+HU17yBN32jMJEGh/LCsuLxG2otE5Lp6MhdwlyCpQ/A5enwGE9q9qC+mlD2loKjcAE0oMFRN9Zop6lr2pAq/VPbABUPWqQAVcR7S+aboLr0iC2EFWiDo6Gp95HVTU5N4HD/JvWtW0QpGG+dwo03CH5EjGPUOTQK7Qr225aD/QN8WTKZTpjNZlTjCUVZGmgiB2o6odOeAT0F0zRZQD3g3jZlFcnMHp2oakycOE5SMXWOAichHWx8ln7LoIZkdXWtBIU8FNFB7UtW5QY3UbzUVPEBntto2V7U7CxucLp+llcsLjFe7nLr2hWu3bzB5cM9rq/2WK0q4nJK6yoaP7otORP9SmjvwbG5ucm7/8LXEgK0S5tk5zwbd2wyu2OL3/kHH+b5D19kNJrxru/5i5x+8KEU2cvjnYXPBmlYD6n5vdySTm3Qh6XBhc9NTc3nDIngeblaslosqFc17XLFarWiXq3Q0OLUSm6cCGOEjUXD44/9Itf3n+ZUCd9z5wb3jgpUjLMlKPzrq3M+eXOFlCPe8T1/jsuTN/LkwcooELGuYIISxWgFUXAx6TXpvSdRB2oNgLwYq4FEQ6+0LgeEjg+9w9IaLo2TubknS6V0lkPyqF1r/nSwtFNotUvxOBSvkUC0FII4YlviQsS7A3xoIZjgEmtcXFKxYlJ6zpyaMBoJkwomLiLzFft7c559/iLPXbnB4QqYbDPaPo+b7hj0zo2tWkMElcI0eWEkzsWooBqPmUw3qEbjVGmRkYYCkoRWSDm+FMpJ1ozz3vCkyWUKMdIGTeB824Bd4VM4yPLAXgpy3AJyEbJQDIJqxkmcDOIs0AlMrmnmpWuVAFGEqmkYrRZMl4fsrFacXu1y/8GTTA+vors3aPb2uHZwkydWt7hG5ENPn0AqfXReX4pQlrOKsGqJbW92jbcnbN+3xeXPXoGoPPyab+LR3//9XcPRDI0zn3OQvsiQuWMCme/M6pLyaXKPEVJzmLquqZcr04rLJU1dE5oWbQMaYgpixI69rHSOEs/UOw6vfJknvvybzFe3TgwOlqMx7/jTP8xHb5zFtWPawnhlnLap0YxBrKJY4MVpb2xq8pEd1n5c1OGzSaUKuC6Htx68sMMp+BiQLjClfWTyyFSt/S0mlIiisbVmR0GsUslFfGwpsPv3YNX6K6XSmpEsmbFg6gM7szGnNidsTj33nT/N6Z0dzp7ewY0LYhHZPdhl/+otDnYP2Nufc7hoeOrZK3zp6ctc3l2yZMxo6wLFxjkr3yoSHWTKqnbk795TjseJBWCDYjxJ2r7E4c3vdYa9JfHBehEKn9rCO0shWXAqEiK0XeFA8j/zNTG+YHstJv2cNzUF6TVx/qlYUbfV2yb0mVgQKQcLozpQby1HgyKtx8earXCZreYGZ5a3uOfwOuf3rzE+uInMF/zQr/3oV5W12xbKM2fPIwJv//pvY2PrlMGVypJnnnyMj37ol9EYKasJ3/RH/jqTe+4mSuw03dBnzI1cjwplJ43JhZBMmuV67RNjpFmtWC6XtHXNcr5kMZ+b+ZqZyNTaIHhxVCnYUXiPFB6ZjZmMRoydo7l5i4tf+jj7ty4R2pYrVx8jhpY7Xv5qHvr2f59PXd/BNY6V86iz4tYogSix2yUdak17UhS/iyKK4UMl+tRynOTjQI4kDkMdGQqXJgQXQsLU9qDu4TjmzW1dMCNIQCSicUVHshuUQmuKuCCu9vDaMPKBsYOZD9x9ZsIdpza4sD3h9NaE7dmEna0po1IoFZyUVi5VONrSYGUuKPWq5nB/wY2be1y/vs/+YcON/RVPPnedJ5+7wZVbLatihtvYoto4BdUEdRVtymtGDAETnS3+YjxjOtlgMh4zLicGbHAe50vrOekdlqf3pim9CXpufRg0dV0LpjlDm+F/KY8pPgV6k+WQUl5O+mTKsCbVJTM5s0VoSmPlsiyjIzF6yzbWBorRiVWg0OBYUsUVo2bO1nLFhf0Fp5c1P/IPv+erytpt+5R/+L/650RRbs6XtH7K4Uq4dvMGW+94G1uPf5rda1d44OF3MbvjLuPh1Liu/TrPXQfyJwOBzA69rFlrGiNNaIhtMNN0uaRe1b1m1D6NLN5TpNxcVZXGyzIaIc7RitKUDnWwjEo8s8W57Xdz5nDFc5/6TfTK57nw4CNU3/VX+M0ryiyYpo5i3mAWpEii+RABAoG2S9ibdvfJQrKSII2SWCIkxyEGRnmiQmRQM6qp+3AXtBg0NcLM2jjEtKoiGlEaNDQ4aQnLXVjtUcUlExfYqVq2x5Gds8KZ0xUX7jjNbFqxNR5zfmeHcZHMOSdGASKNIZQUVCJBrKSrqFNtbMq+TE6NOL1znnvuPM3e3pxbtw54+b2n2T0MXLmx5EvPXOHLL1zl2gvPUbsx4+3zlNNNKEYEP6JVT6ZzrFdKW9fM90uKcsR4ssFkOmM0nqR4guBRcvdKSRUskkEmsc9z51Z/KWRllkoHUjHJE7GiEK/Zixwgb0VsPJBeUHNrji6F0/cOaVFaiQStGZNQalrSuIrD0Rb7Y7i4FSlOaC570nHbQvnT9J/1IwAA+FBJREFUH3siPxJNqoWbTOHVtz7B/o1r7Jy+j1e957uIHiKWljDtpX1LtPTA5MS8GK2hJQhjNyC5PBTs/bZuWC1XzA8OCU1jxcetnVvEUZQOPx7jvWc8GjEajy0d4Kz6QRXEO0qAoGjTIPOaem9Osz/n6rOfQGPg1d/8x/nVS5FCC4OyeRO8HGmxoILdX1fASmELwAFSEMWKZjVY4CA6h0tjEDFggAl3gXQjKgNfOyQjOGeAzXQuVI25oLW+HKoRaVfI6hBdHtKEGxSuZXPq2J7AhbMF5zfH3Hdum/ObytakYGM2oSphMh3jXYVER4sgrklLMnEfpR4ZZqYFM+9IZlwei87fEqpKOH9uxh3ntpgvavb2V9x9fsHL791gd3E/V27NeeK5qzz+1Atcf6EhFBuMts4y2thBxao1ghhHawzKKih1G1muakbjJZPxlNl0DCVIKXgtbYw8lm5Jm1bUHplUON9tdKKKk2zO2P+9BgrA46zmUcl9kywEl39PQt6Hk7CKojRLXsBR4MUA6zGm91JMxEseKweDOuOvdNy2UO76afpNUWmIsuTNd0/47b/9I3hf8eg7v5dya4NA20VTY8KSxpDIhLqcmnV9toeIhLZGY+hQNC73oldomhVNXbNaLgmt5RUtYS4maEVJVZWMRuNElOwsSiv0rAFi19emReuG+nDJYveAuKpZ3brGYnGdycYmNyd3Ivse1YSUSTk1EWMecAlUIOKTxkt+q0QLQjlPEEn+YG2BnuBQCUQXTDGqPVc24YdF4aoBtEkpCEVokbhEmzmhnkOooV4SVktG0rJVwNlZybnzI86cPsW5nTHndsZsTQtm44KqLJiORxQuVb1nlwEhRoeq72CEvXUivZ+Pomp9IjPHXleiLXSblVEwGgZ1UjmmZ6acOz1ltWo5WLTc2Fvw4F3bvOU1D3Dx2iFPPX+VL79wnVtXrsHY2sUX4w2CH9NqQZARaCAQWYSG5fyQw72CqlSm49K0ZzXBjSaU1RjnCkQdhTeeJxLjQcbTiqTXpPc0CzRp3khJaiachM6lZ+rdi06eUbB+ItmSSWNnXblSr5SkQV36TA9hvC1P8faFMnTcMIq4COWKM/uX0Bi45+G3cf7VrydqoEOnCt2DdoUD2Q8KMeV33RqowMxd478RIbVJr2lTW+sOpCxQVhWF94xGI0Yj4/bMKJ+o2qNTNFpovGk43NtndbigXdRIG5GoBmxAueeVr+WLNyOFpPYGMSatnfwR7/DOkuGQzSNjNIihIdYNjdbWYUlqhIBT0FDY5pRQm5Jak2dsr2DABVHFaYvEBdrMkfYQiUtY7ePrfSay4tTGiAt3zTi7s82ZjSmnpiNOzwo2Zo5JVVKVnqqEsjBzD9cXZMcAucbRtHgLBOvtGa2oeMinq5Ca8r7IUjIUPmAmNEATWqLSEYSNK89kPOb09pj5qmX3YMXdZ2Y8fN8Zbh5GLt7c58vPX+bpS89x7UqNr7aY7pzHjbcJVBawYkR0FaENNG3NfgOLeoEvJ0gxohqNGY+mFOUkGbdA7AUso77soczDdGncnaZ4pGqaz3WfcniodnvQ8NUuCCfal60ZN659ISOXbk8c7bhtoSx8oooQLIStFdeefRqAcw+8hoC1lcsf8s6DF5yY062SfMwOICAgxoFja8E0SM8mt0JVCaFNFI/JVK08hfeMKxPGqirNtJKedpJM3REtqhtCS31wyOHuPqFuoNUUGRVuXXkMgPu+9tu4tF9SFYmpTLOwuJTPymllS3Vo0xJDa/SZcUmMNTGDAZIj0oq3hkLRtKFDKRBciKA1Ehok1IR2QWzn0OxDs8+0bNiaFZzeLjm/NeHc9mnObZVsjh0bJdbkpiipUsfgovQmf6J2e6oJIJC3yAyqj0lLan4JJHZa0ntPJg8zbiGxc5yQKM1FAy7lC7MWjtm3k0h0LRJrVD3jUhifGnH21BarIOzPGx443OTRl1/g+u6cS9cP+PLz13jmuYvM968iky1kvI0fbxOLmQV8kjfRrGrqJiKypJnPWZWHOD+hHE+6KK7gkgUSk5/p+k22mycTyuws5afMAhuPCZQM/p/5h4bUN7mCSdY+f/u8EHbcvlC64YVK7t6uePpXfweAZz77YcZnLrB15x34kRXgigiFK0DBe8OixowzDQmlmmI/2RLSpOJjCF1dZBsMoicilFXJZDxmVI2oyrKrcbTdvk+ttKE1gYqK1oFmsWS1v0CXDdrGlLsTdHnA/t4LbJw6zS1/Pt1MKgsSg/0RbKMIlr5LExytKxPByr2SGWvNa3ziJ03NUDVSxBbX1Gg9x7cNGpbEeoVvDxi7FbNRYGtWcue925w/dRdbGwWTkWdcwKR0TEYlYwdVqYy8UvoSkRJxUDiHdym/pn20NiZT2eJBZr6BEi0gaytFk+8qiQoxYZkN9mj+0cCKWz868H3fviGnIgIW6COS6lSt6saJgA+MvWe0VXF2e4s2CvPVNnuHNa97xZ1cub7g4s19nnjuKk89/xQHVzwyPs3Gzp340aYxBWBd0aIYUim0NVGXcHiQEE0lo9GI8XRqHb3F43xCS6W4QCa1FlyfDknrO/uRrgu4pUEdaMuBh9l9U4/868X8JC37FWTtdj9YJRwlChqVM2XBZ555EoBLz36MK//HJ3ngka/nNd/yvRTTsW1BasEcl1IEFN4A4G2bNGJKEKihXiTkULVdI4RAicMXo9TpylEUJUXCEIaEVNEkjFkrhsZylRoi9XzBcm+fej4fCKQtwusvfJS6vsVbvutP89lrNSspjM8V1503hpTrzD041EEi0FJijl51BYSqSmyXFO2cUTunbPdhtYfUB4xo2Bh7drZH7Nw94s4zm+xMzzIuPNNRwXjkKVxB4SPjsjAmQFfgRQw6Vyilt5ybYGgqSdoRdR3CJd9mMmvsPruCAMu3IRn0n6Ld2m+Sa7xJg8LIoUlo3MPaLcw+qJJM3+yFdr5pupZGXOHABQTHqPRMRxVndqbc2Yy558yEg+U2b3nlPewdtjz7wg2eeuEGT196ioPDGW25QbsxRssJUk7s+rFNQRqlrVvaeslicYg/3KcsSyajmbk5ZWlF67049htT1pcKmYk9Pw90b/UjoK7TpP1gCYNtqgMgHKst/SrH7WtK6T/qisg0JfOdjJmUb2LZfJanPv/rLA8OeNnb3sfpB1+GKytC4lF1eQF7401xMU+y9GaF9vtLCEpMvqSZVUrbtsQ2UIv5QjFqagkgVnaVBF6bhnZZUy9rlodzmvmC0DRpR7QR2r30aW7d/CL3v/oNXD31ehY3KmoBoUlFvJCdXVHFx5x3dWkXDYgGJAZiW8NyQajnqK5wzSFjWXG6ajk7c5y5MOKOM3dxemPCbFxRVlCWQulySsOWhKOldJ6yqqhGVoDtnKMsPIXzOBdTU1WAVNOZF4BaMMaIk4c4Y4EU7Mo1oI78fANTLovXIG0tqTysp6PU9J2kJ0wyB1oh+26xE0hSsK2/T4tMe4mI93hnXZRFPNvTip3pFHUVTavs7c956EJF/bq72FvCZ5+6zBeeucKzu5e5disQiy0m22egGCO+QnWESknAouAaFbdqWM5XOOeoqpLtjRnT0YhxOerQUDmmLta4oFsjmnPM2g2WiW8UgusF18bG/Ng8rpnE2rak26+lhJeiKatxGnrFE5gUSdnLhO3RO9go3syi+QIXn/1lrlz8JBfufRMPv/v3MTp31lIBQsfmBoDLJoRLfoslfs3UMr8ktMZssEoFzna9PPlqfoOmHTsEYl0T6hWrgznLgwOaVUNTNzhNln8S/vrwJjeufRZQHviGP8KHrgWCiwg11r62oE1Euj5CJVBGE8CmtjImaWtcs6CKC0ZSM3WBrbHj/KkpF85sc+HUmNkIJpUwrrzB/fJ0qyK+X8qqisdTlQWjqqSoKnyZCpS94J1YKzeB5PGack6aL2rip1XzFw38Drkm0RxbSf6jdr5UtnoyAXWeX9LCQlOJW2485CBDIAxq2PtYuXzPDZ4p+7HJIu4qedLeTJGeTQRjr5MArsF706Cz8ZRwZsxq1bBYrbjnwhne9aaz3DoUHn/qEh/73Jf58qVnudWUjLfOM9q6QCxmICW40n7iiOrQICybBXG5z6IaMx2NmI7NDaoSUEFU8KmfjFUOSS+QnQ+ZtKF1H07v5Ty2EDUJYwryRLK1IENr9isety2U44mlREQV167Y8ktQpZAdxAklFc6/Gucq9usP8fyTH2b/2jO84t1/kJ0HXw6lTwwaGRzdoUQNkdM0lhbJF4x9tk4Sg17umAwZ6QMSlFgbmGC1mDPf36c5nNOujHDYom0p8JSapV6/9DFCWLJ5+hzXOE3LPpF5NspSfbtDwpJquaBazqnme5Q0eNdSSeDsbMSd21PuOX+e7Y2ScSWMCmE0chSFwxNBg+XHFMvvibPkt4iBpnOvDhEK5ym9pyodUgjO2zQ7l353xvKGJp9bFcS6EccM0oiStLsJWY4GMgzoJDMvG1qaIj7DQijye8l8j4n+ElJktecPsRcTtjdrErtM0izS91Cxjyq+8JTeeoMYJ1MqSFZSjrclZp9cYDpxTMYVW63nsLbN746d+3njK+/h4o1DvvjMNT71hae4eOk6oZwh1YxquoOf7BAZo1IYCB8FdTT1nP16wf6+gQQmvmI6mlCNZmxsbjGpjHuq1mwZJJc8Y5YFcr2rlRsmH1yS9Tek2Px3OF5ClUjScBqJEeZPfYwYA+PRq8w691DgmU0eZlS9jGX9JfYPPsjH//X/yLm7HuXV7/9DVFubKFZiFVtLfWQfT0PodtOOqKrL4bnuPSEHL5TYNqzmC1YHc1aLJYv5IW29hKbBReNvdb6g8j7Rfgirgz0Wh1eYbu3w+j/61/jE5QXj0KJxhTQL3GpFszik0JYtH5jFJadmFVun4K5z21w4t8PW1ojZuGRSFUzLAomt+bLBEu2WbE/RPjV6k1T/QClWKibJNM19R7wIhTOBFJcT9j1+T/NePIDXRQ3Jj0xuwECoOuJnyRHUxMSetG0+enNVjr0m9Gz3KkkjpzSJ0VrSg+IRCt/zGFl7NegIrhOIObvgknzZbk7T7mEF7iGB7FOaxtk9F17YGBeMKiEEmFWwM5ny8rteznve9AquXp/z+LNX+MwTz/DUpUssdEK1czej6TahnFHLiFo8UUoEn6wfw1IfrFqcm1Pt3WRjOuHU9hbjYmyBIk3Uoul5yHGMbK0zNGRl8NdLdCbTcdtCGcPgDpCuYYmmWknvSQ+gFH7EbPQqRv4CN5Y/z+XnPs7qp27xsje9n3OveCXeiWnFvBMpMFygSSvmnbeHoGWsrLWcq5dL6sMFzXJF06xQFJ/wrpOioiwLw0mqmcLtskbrBSGuuOOBR/nsU88Tdg8oF3uMtGGDhp2xY2djzLk7znD+9DaTIjLbGFFNCmZjT1lqKvdyeEkoIWddf733tmhdXnxWrtXZBCKUYpFs512/MFN5l6Qc6RB16JwBDUw0c9rH5iCzNNi56aKGthlISltoQjUlYe56i9Dd04sektr4JWhZwEq/zBweEFaL3X+ZKnns+r47vz1XXtCuc1vSRUgGgG08oqgLXQBJAIJ1fME7ipR7LZwwKh1b6gjqCKHg3HSDB+7c4J1vejlXby347BPP89kvX+b5a1+idTNkeo5q4wxazIiMIdWBNq5Im2nDqq1Z7C3YPdhnXI2ZlmM2JjPGozFSWrs865jmiEe0YdeQN0ODNG+C2Ve4PSG9ffBAP1OdGoe0Yyc0To6cekCdx1dnOef/EIv6KXZv/jyf+uUf4dSnX84r3vZtbN59H94cLXJxc1+KlBZCiqpGNcpHC+bEROFhEVbvHeXGDMeGaY7QUChUOELbpmqSJaE2Aq3nnvkNJtMpj7z2Nbxw6RNMJgX3P3AnF07fwc50zMakYjQucGWJKwtwfSTRu4hI1gD05mCq4hexapYcfnHOcJfZnSiAwmVSZLf2rFkjxTTVqqlfSZvG1pnwum6cXBLuXjBddJ3J33s/qTi8Qw0x0K4nHznnm7+fhdI7Z8BwsfZ+JCH03kidcxF6PsdwCWatbTdBv+HSY6Ehr2fpNn9INY/OwB7irBWAfcUstDJdazoq2ApCHeD0bML9d7yC93zNw1y6ucvnvvQcn/vSJV649AIrmVJMz1LOzqIyI7oxIfWWjBJp1FO3Lfv1Hj4eULhbjMcVs+mU2Xhq+dCyNL8TCMGqVLwGMgtHSIvEeokk2/c2DdrbFspu4JKvcvRNS0u4Ixrb4d2IyfghnPsuDurf5Prlx9n/+ee4+2Vv557XfS2zM+es5Cbv5tpHFGMCAITQ0tRGQZI7U5EWjS8KymQ2WU7TE5Y1+weHtKm2Mqb6xPnVLzJf3eTP/kd/jvNnJ5SvOkfhPdPRmHExonQeJFUxOCu+jSIpvaD0KMvczsDoHAliQaoBA10uUiZBHlM6G/G2uMX3C1ec68RI0qQmQgUEq1v1Pi/2jCiyXcGlhd6zNGTLop8I8+myZWOIoiHL+3EBTWkUETwuKTPb9b13JoRprHIbBtcl5nOKZXC2NWE0E8ClIJApkkR8lTabNTM8vS/Zj8uwNoDEioCm4BeOqvCUhWdcQt0GFnXLxlnPPTv38+43PMS13RVffOoyn/j801x87mmi36Kc3Uk13UKqEdF71E9onNKgNA5WMXKwPOTa8pCSglE5YjyasbGzxebGBpNyTFF66nbOsmlYta2VcmlqgKyO6Lqn+arH7Zuv2UxCKVKFYD4scpoGuRuwrtcWTmHsLjAafSercJn95oM8+dgv8vyTH+HBV30j97zhHUjprbokBTE0RxRz96tu0WtvEWAaIKrSLJfUqxX1asny4IC4WFGm4EHhBJaHvHDlkzzyykd41asexjV7ndZx4iicR3INgsuES+bLGnbRwAEae8YEq9WMaJsrFLIGlQQV6bVhR7voxBjnxM6ZtyCr+bPgiZcC74q1RkkxGutev9YzPHEQLe3M5H7ecthfXE+96TkiiAO/ct2adQO/MQuxpmJzQfDk6ovBaujONbhAdx82BoN57O4zPZNAjhrJ8L1M0gwJlJCulXcAqUGEGD2iHo9n7ITxuGCzgtAqdVQuTCY8dOYB3vWa+7l0/ZDHn3yeLz5ziYvXnuSggen2edz0NL7cQNyYVkA8qbu40AaDVdbzffaXcy47YVyVbG1OOHVmytnTW4wnE5bLhus391i0IaXYojGr38Zx+3nKBB4QFGmUDlHXwebisKDCAhxZt3TV3Z6xuxNffTuL9gvMm0/w2Kd+lv0bF7n/Td/I6NSOmabJPA25En6gQV2OFCjJJNNkQrTmYy4XCYRgA+Cx8pzVYo+2XfHwI49As6CU7tZBhKCOmHZ71Yz5zMWvimpLTICGEPsAldOIhkTRmJBH3ns0USJaKi8Jd/JDvBPE01UuCAZoL3wOcNGdr8vPJjM+laPk2+6WrvnjeRGva0+SX9hBGiERhaXPRjOBh5uABaGKpGGzAGln1vYSBl2oo7tuuo/uvV7DW9JaUrH4EZa7NJuWPshpnRR3SCkKxSXQQhZsi8STNihN0W5bd4ldQByu8MYJi7JqAptl4PR0xkP3Psi76oe4fGPBE09e4YtfvsyzVy4xD2Pc5l0U0y0YW2uDIAUhrbmgqXBLI4vFPjfnNS9cC2xtbHBm5xz33ns3r3z5XVB4bu4fcuXaHsv65K5mR4+XYL72pk6omzVTbTg3svb5VJ2RYR5pxysYs1G8gUn5Kg6aj/Pcs7/FzetP8rLXvI+dl7+KQGYrj4S2NXA4WQPlfn+k2kJzusuiwG9uoNMp9XxBW69SQl6gabi094x9RzJznHarR2OkdckUytRNYjAz702DKa3dUxdsSkn4aGiZrCatAiaD2TOEy/4uCmcMCKXl6VwCZGRtEzVYP5O27a4zHPvcrStrHgto9oUCXRrfrft1Cuv0KiJIMfg98+0eKy2ywEw2Mzv/cvB2cqo7Lbz21pEVstYtTdYFMgtYsoHzIsp3bymlSEptDM5JVhBJTLvvJMhgKgDIHrL3MB0J06ogqGMVG2a1cmZjxqvveZjV217Jsxf3+PxTl/nUE1d55vJTtNUEJttWzTKaEqQiaoFKCQKxiAaICnB4sKSZX+ba5euMJ2NOn9vh7nvP86bXXKA+uX3MseO2hXL/8EYai0i7v6TtQL05kjbYeaHLO52Urck5Lc+YjeJteN1mPv8wn//oT3LPjXdz5pE34CZjYjDSq877yeZa2jmjKhIsMOIg4RyF2eYGXjZx3tIB7XzJqt5Ltyuo87RG35bOlZjZB76TiAHPY0x9LEkVMEIHbxNN7GhHOnE5LxSlo/D2rywtIlwW2TeMhnBKhyX8Q0dlkV2FfL9DQXCi3RhYzWwPSMg9NjWmZr2D75q/SjdHOWoqaubZ8FrDzUBDb2Aj62avHBG9/B17j3U7uvsASSu6/oVBwKIT/6QlpWsPIQNmfZuzrtTKSSfwlkZJ84ymGkuLTEoSbEm9+bwTpkXBeFQQAoQ2UruazftLHn7gQd77NY/w1MUbFiR64jmuXnyOuRvD5BR+vIMbbaLFCJcY0C2HWxDwaID6YMHe/JCnn32B8XTMXRfOw7e+4fiYHDluWyjr3Jw0QdlkNk0TXmMMjW6wyWUzMA1eFxpO05X9TrUi06l/hIrzHMaP8fQTv8Tl5z7KQ49+O1v3vozoE72DZqxmFysAlDbfT0wgAe8oExt1iCZc1XjULc7FYm50/SHZr9EinSGZ4M7nBWt+c1QzJwMBTWZgZzql5yic6xa5c84oSMqSQgRfeHyRo8khAcVjQsr0i3FgbxzTWGsR6fyN4Xd1+O3jh2CgBUvV2Fx03S0SN6pdBzgiaC9+3tsLWqzfb0J0daZsMoxz4bRLJnrezDUXGGMWVyIGzv/lI4Te8FURRINtyEO1K31cOrteUcCK1EsKHN5DMbb8eQiR0WzJ9kPbPHL/Gb7pnY9y8doen/3is3z6i8/z/PNPs4glxdYFRlvnoZxCUREKe57oC0LaylHlYDHn5lNPAW/4qmN1+ymRZpVHFzxc33wQEcei/SQb1aMIbn2HzZ/lhGkWeviS2oB72WJD3oHXCYvVZ3n84/+MO6++lTsefhOzU6dZtjWtpvYCyc9DoW0CsWkscprychkoLZimXM3n1M0SEH7p3/4ib3jD67n/njO0i0Pz9VRp20AIDUhKWbgcZSzwhevSPSlTg3gLDhWqjMqSqhrhvOvMWJcCEEKAkAM9afFoDwLIA9SblkdHXgbCkoJB0Gm09cjpMCUxeFVAJEdMk5bvPpAN0zxdsXtGMnpTNU/Y2sbQA9KP3PHAVD72egqYaAbwDzSlgRt6SOVguZiAOTqA/BBxC9kSSPMviX4l+dlmKA83gnzXfYMpyY6pRIoSRmOPuII2wHK5YloopydTXnHna/j6Nz7MC1dv8fknLvKFp6/ywguXmceCYmOH4tQ5mG4DM3K3rSieoEL7u52n9CFjHgGiNX3BDA7bvXoWMeDIYmFtANFcNUCP6IkRjcKIN1LyKhbhgzzz9K9z6YWPcde9b+GOh99MMZ3QZLqM9B00Mh6PKZwzh14En03nEKlXS5746L/lcHGTLf822vgM/83f+W95+OGX84M/8H2MvELm+xRne1vSYiLGoEZMJqlLRFyF9RssxGoks4DF5As656y3SrIULPBDMtvyuPUBHUsj6LGRWmd/z4t6/e81c3JNonNQR7vIqd3bEcESyK0Gh79nH89lkGzekbopTJ85oqV7c3m4GUsXmVZNudhE+twFh7qNYbDRJBNWIfHEZkO6F8jj2dDjlkW2TiDnbNO3VRBCgsolKGEqeo8tlhvFMRrBaFSiAqFtmVaRM5szXnn/I8yXD3P1+pwnnrvCpx5/mseef5pDP2V0+h5Gm2dhNCOWU2ufd5vWxW2z2d39/T+SBipAvc8j25GP/tO/jegm5yZ/HHSwQLLtmi+S57UzbrOPmKBfWYOkezY854pl/ALL+Akic6bTC9z/inczu+9lxoimibRQDAHkRTp2a20Dq+WSxeEh+5ee4tknf4lSH2AiX0OhEMtn2Gt/h2oMf/Wv/GU2JiVtu0K1QclkXMFMUVdQeGsFUBSuW6Qu1elVReJ1Tc/mfKLJT8B6K79K2M9kqR0d8ExWfWxysn/u+p6dAgOWgDzMtuIz71F+o9OF4pJQyDHB7t8fXn8oGIPfj/ib+b1jdz70VtJNdwEp+jyqkDGx6VnEfPdc+9nt3FnEk5/PUCjTc9tL6fkswmfjHSUF8O07PsEbO+sjj4VkILkF+wRQabuxVcp0UkeM9tkYYLWK1K1QB8+igacu3eRjn3+Szz95kSu7DbWbUe1coNg6j5YTnv/R7z82z0eP289TPv8JGwhtcWGXnZ17OulyqZ6o49zUdQBSb/24buByyZXRcaZFlfCRpgUrKn0L0/gqFs0XWCw+wRc+9S84f+V13PHIWym3dnBF0QU5cpFz0zSsFivauiYuFty4/Ck0RjZmX0OhW8TVCte8jLPlvazC5/jrf/Nv883v/ya+9f3vZrXaRzO+UxSRNi32qjOF2+S/GDQu4p1B+3ICPZu50D9PnvQ1F2coFKzn7F5snzSzMAenGPi36TrOaBtJQ7q2oMnImYyn7c+5Zi6uvZ4N7sFErn9o7fVhkGf4UTN/83UzBMMl7qT8DbvX/O4QSJIDCXaffWArKVIbC3WdtZFZFKM4+u7A+QqxE+Csn1Vd/yjYBmLJBU8uwILW7l0NBuLVUxRC5UsUR9NGVk3LznibV937Jg6Wkeeu7PHJx57iU489xeUrX2JFCfwuCuUb71DOnj3L5saEs6cnnNoes//UO/jIBz9M0JtUxTlAiLFN9n1KHaRH7aq7xZq0WjW4Ee72W7r9sOhjMg1lhnNvYBxexkH9QS5f/DhXLn+S7e17raEnUI03OHf3q1G1wudmccCNy19gfnidw8MrzMqvxbtTlFIgUtA2NW1b4+NrmVaOf/kv/xUXL17k+/7wd1FVnlV90N1PLzu9ryaSKjwk4z4TuDzvvOmDnRIQM2ORAZnhIJYzrPMcmqTrZmvScIMGOd3nsYWU0zDr37fF3AvJugmVc6tHzeDh3y/2+9HXup/QBWi6NEi3WZn2U8niqXQbheoAdpn8yKFw5wEduEndriGpMiaPcCTlQkFIYJAjFoJ2t5M0vi3Q3vrI26UOy+YkYbajbQTYBl5Uwqj0tG2gbmompbI1mfHwfW/kW9/5Bp6+eIMvPPncsbE76bhtofyO97zR2nE7Eigbzp47i9IQ48Ko4p0nBKGr2teEgkET+kU6vyLE0C/6PPD5jzQohuQxH88xY7t6H8v2SxyGj3Pr5nPY7mXH809/5Ng9OxmxOXonO9vvQJuIthHnHaXYvTa14MPrOF/cx8c++gv8zkf/S972ljfxp/7EH2S+uIFRDSYGAFG8dymc3vcI8d53k567O9mzpMdIMDtrjZFNNpLRkFBSmcd1cGhitOuWZ16IYiftZWNdSI4HWOxi/TBn07fXTkcFbShkXVnYEcHLv6tqYoBYP0cuSevlR7sNwJ6Zrqgh71wimvLffeF1PqsFyk17+oFgZVqPbDN38tSto2wa91cannnNRklr9ShGN1+f7H9kPFHq2NYbK0pVClXpmERoWmjahs3ScW7jLI++/By3c9y2UF44O6NNnY4t0CsUfkDXryDOaOdl8NrQxLFcXDZv89hpx3KdK05yACfn7zSVAZVFycg9TKEvo403URYARFmx0s91Hqt3O4zLRyiLs/jyFE1tVR0uQfJEBFdUeITQ1Ph4hvPybRzKZ/nt3/k0ly5f5T//Cz9ECCs8ESfRyICTUIpYOZb5gtlETUMxmOOc4He5dV9eGAlq17Vs0+PRSkn8sSH0gIX8fMOgSOdfySAoc+zo56Az+bqXjwtbPtai6Ue14ZH31vOXSYF10Z3hwAQsIRM6Iejel5xjDMc0u4jFDRgIVzdmR2k5BvcXRRG8aTbEgOKu/+5a8unofobQ97VZM3htzu0KA/OeDizjHIwrz6gQ2mgBovFJU3PCcfvRV3HgCySV/qi4Ljwfoy0eL5aj86536vMi0tDSYnC1HHQAQ680bUNoU/FzWjDajz8ivqOZt52qwHEWhM6Hm8jDdL6VeAyOZX0eyrJiMplQiAdV6tWSplnZJlIU0LYUrWNH386Gfy1Xn/8Qf/4v/lV+33d8O9/yvnej8QBxEXGK99LB+6RbSLmBWy+ZGaCdynj7FInLQtn7MQzMV7pnlg743zRNXwmylsPshdI5l6ByvRaUIwLR+boD9oAsPEcF6ySBHL5+9F7XDh1qxWS2J61pgb3UkmGYIui0UkJVab7ffp3BMFc7eMa1kwz/n+Yo7ULdxpZt5/UzsaZD1p+w/9mtwf5zmoDykNkY+iJyUiDSjZTx+hbwosdtR1//1c/9lBFehQYl0KoyX3n+4//gP2DiXslm8Y3gMpeM68zUPOkxtklThjRpg/cHQ5C1i92cvW8RTNPKOaATM8wvCWa39TuXPusQX1COR4zGU+qmpg2R6XTCZDyiqVccHOzT1EukbfGxwWnqxaE115sPsIzPMRqV/I2/9p9z57kJQkhCmaYwVc4X4g3Pag/QF2gnZjvLe5K0LGRm8aFUDpdWrpRQNSKwtg0dZQoDjcvauBk3raQ6x7XFqtncNROxe08MONH7nDoQ0LSI5bggnvT3EIWU5ynPp8UBXXdOTSDpoTlr5xHoUmt22NhZG0T77CA1p0eFsh8fs67yOBRpb8rRWemslEH74cEWR4oEZ5MiDuanMO5eyQw8VgPbA/noNLemsYdcTwpve+f38tWO2wcPxMZQNUJKuAqjcWnv6T5grQRWyRRbM6SSs2+5IJO07JSv8fbkQaPzBMhRy4Gllb7Xnbw3aaTXVlEhtoEwX9EGg9Y1TWAxv8mocsw2Ntg5c55mtWK+t0u92E9mZsTjOTf6Zppwmf34cX74b/w3/MX/25/jTa990JgNkho3FvOAk3bguaWocmJS7yB5aXENN931o3Os6REr9mzOC+oEjS4B0/OCT6MhJAFjLQiUhcAGvK/n6wXI8stZGO07R7TmSXt2EmKlF4r14JB05k5vYafXJKGKsnWgcMz8PRLgKorEYK5y5H26zcQ2tvVzqA6QSmkBdakQcuRXGdY6Dt5O1Sx5TjCAu6YZioM8cJqnTKnSw8K7VdyPxW0cLwFm1wx8GFsyRSFMZzPahTWEES/oICckRyZXBpnmbGatoT/yIOngHEkwh3R+PXyq15b58TNeU53VWoYIy2WNr8b42SmcU5rFIbu7cw4OalzhmUxmRkfVrlLr+JZKPJW7k/NygaV/jL/1//x7XLjjPP/+n/xjvOnRVxObGicNUFPQYPUL6WYSgRQ5n5jC+XFgxsJwUQ0OgbU5dTnvKcQEsu6KAQYaUdNYZW2qg0XQkZElzdS3i4O+3GddQ/W30AtrN/6D6OhabloMSWM1qcmViP1ZDAZnPp4Qu4Y8Q8jg0cS/c67TxENwyhC/S3rufp9LW+TAIlg36webUMz6bqCxu42zD4ppJibOvEdpnrMgdlqaHLQbmNzHRvUrH7dfJUKgFxP7LbQ1j7zyVXz8ox8lxj2c306Caeq0E+FudZCstnXDXY9OfK/8OnOgX6g9piPNewe0zlQXIQoQGE+mlKMpTassVytCs6Da2aHc2CQcLqjnh6yWc9pmxdbmjNgULOcHqCp1aA3+p5EyPsjZSrh+9RP8zb/z33PhwgX+7A/+AG9/06tolzcQrcldnlSyyWe+kT1X1grJ/BLbhLuI3tpgSKK6l8Hz9m8fM02PzlO3gOlNfLDrdoLaQ9k6k5peaIcQvhDj2nv9ehgaz2kyUFQsKm33bbZDDt6pKNEpPo/VEc02fL4ejdP7n8civDn6LZLMzWT2y4sJQl5nQN5Q4gnmeOddSGryNHxPB0X+g40qDkZFsil+bJRu67htoWyTjd5LGqhENjY20wuZMKRPe6CsBca6pdbbtelzJ934QPUPD9WUr0qDmS2zzqzrNW+oG6pC2d7YZnMG+4fXWN24gk6mlNWIcmtCOGxpm5rdvT1bLOKIzhOSUCqCBkfFyzjv7mHpnuPalU/w1/7W3+Geu+/mB3/gj/B1b3wI2sNOd2cYV9D1AehMI1JUsHe66Xci7Vno8jY40HIZxndcq/VaJyZO3N58zR+xHd/8KsvL5RZ4GdUzFGob3PWUyHAu7ebyXMTu/g38Yb5/BpJnE86CYutBnpM2mmyV9bWtx4+14JeD2Pn1/V2mbXCt1LAzV5WBWhxYAHmTT8n13Cu19xUVYuocraRu0rZ5dCU3J4zZ7R63Hej5P//5P0zfoFPlUR2Hc8df/E9/iDEPs1W+G1VnRGYxc5EeYU5bHzU4umN2F+m+tXYfuYK/W7QKuZbQWOIcksk4xCN+jC8mVNNN3Khg2TTUywUaW8rCpwlrWS0PQSNlYVQdbdvAaoUj4tHkP2ItAqhZ6NMcxk9Rx1u84+1v5T/5s3+C89sjNKxANNGbxG4DsdsRijIHLCwPmVNEZqVnjKjr/MbhMTQ7T8oXDn/PgTR7zdaT/W1aTAycgiNz8vpOiGNnVuYa0xdZIj0zdGeaenGIJtC5Sg8iSD6GOAWneJwFsAasd8cjqes7+no4rP+Oc4J2mN5hIMwOx9E8cFKFWSiHl0lrtDNq3OCcOti8ohJyG8fBmIGkU+qJuua93/EnTx7L4d3drlD+i5/9scGdQ4yGfA8647HPfp7/4e/+t8z8qxjLoxBniLq1m7UcYYbfHR2g4aFH5uL4Dt259GsaJkfqfKd9je/AFrqrpkw2tgx6pdCszH90mH8bCcRQoxqsPULpiW1NrGtr1Z4ikUgvnE4aVvo0u+ET4A/5jm/9Zv7DP/2HcWGOaot2JFhJYCTzuHpbz8O+nfn5dNADck3w0mgcCYoMP7f+en9W87MTLWL2gkSIYtxFQ4EwMzFrysiwJdyx44hQ4kzzZqFEctAvfU4BZ3WpokIIhjM+2STvr9ulhzLj32AMXEpPxUwh0p0mb+99N9ETHyEeT1PkqKu6wfhDMltTgyTFWlocHffsImTBPnK89zt/F4Xy537un6QbsAkL0aU+8xXKjC899jn+7n/zt2jbhpE7j2OTDf8oXneAKm0oR0VsuBzzw2eh1OOfz7uYyhCXfMTQle6f+WaJ8tEVkGB2VTnBFSWr5YoYGnAOXzrEQbtaom1DOSopqoK2adCmMV7aTFwsGdFjej6EfebyGebxy2xtT/mB7//DfPv73oHqHDLDuKZ7ITMZ5DxnBtVbuiLGmHvvmGbsTMn+GU+KVB79e11TKrENaZnncyT/96tMv3T3edwcEzcw1dJCtr4xLuWxDSeKihkDqqgLZF87DjobH68X7TV0Bp3nFul5bBhcPaYRPToOIon86ysI5Vr2KFsaBLo2dl2AKYH4lM78HroV9kIv5Nql6vrjvd/5Ayfex9o93bZQ/sz/DtBpPqNnt6ruqGMCwsHeHj/x4z/O5z/3OW7duglA6TbwMmWjeB0u3E2MPt8xPefbcbMlV4+8iBWb5bb/5trD5yBJr6H6QS0QV1CNphRlSd20tLHtCoAzmgiN+NJACwRDMsW8sxN7Qep0T4u6PW6F32AVr3H2zGl+6D/8Qd79ta+DsEzgiNABD0KwFFNU6VkJhCSUmcUv0Dbtiaa8ae1svmXzLPuEZs7n2EP2gfpxs0VMMlfzzy7i3eXz3FrU8ujwZihdvxHk2ZTu3kAgijXrVkW7HhwpBiCD62UTFwGNa/cDlqvMFz9qyufnOXrkFNvaM6Qx6bR4/oQkFghtzaxWcoAgfS8JZf7wiQG3bA4nxbG2SOEbv/NPnfCdI2e4XaH86Z/8UZJV2EXSkmubNCagLvWHKKmXNb/6a7/JRz7yWzzz9NPEqBRui5m8nlLvBwpU8yAPdshOKPtKkzVNeFLt02A8+l+Gpm1ekPlaPgnmmKIaE4HlamnNU71199IkHKKRUhyqwdorhBayyYXVW4oq1hYgIrQEd4kD/RQNN9jZ3uaPfd/38p3vfycalgnoEFBtiRpps1rM/EAD7Kdpys5AAHLdbIqQYj5Ph/JR7XhxYzKful18MGbm0Q60QOR4ekJAcmQzz9IgMiqSmq4OWBeOAQg0RVkHLfWGPTgUOlKvYdQXetPefOx0S0eCKL12Oh6ZHa6FnEc8auabb9j78dmPtia/mgqlM6n04HwiiZXwZO2b2zqYbMYjQvmDJ35n7dZvVyj/2Y//SP8gJFRNcmijkiJtklIUOUztKcoNFMfnPvsZ/vGP/SOuXbvGxN3PRN6AxLOortv0WXyGO6EcDeG+iCly/NBuAfTnJpkYhhIvRhPK8ZQ2BDPxNLdK7xE1XpXC26S1TZNMwRTZE8iID8vDBrxEnFdqfY6b4UMoNe9659fyw3/pPyS2C4QA0iSAtXHGtm1DCHVayENjvA80OCdUVdXn7tRA/0MTKsZcdM7aTp6FMNsLHeW+KoRe8xw1jWPaA+1ZByTSQGZjz4LZDe+awNh453ygDvKipMU9rBftwgSdC3N703y0sW1vCucEWj5fHqPE+ROzj9q/P1x3zgh6u7nIFkr2b08KiWQf9vdcKH/ix/9+v8PAgDOnB5STFpTdh4ArcTJGXEFQA+l+9rOf4+//L3+f1bJm07+VikdAy7VBHUYQ+ztdf/AXV5fDY11T9idMPmcq4fDlhHI0aEYaowUtnDcBaU1YimQ+xaho6o0pGjofEzT9TYpaBlRrai6zH3+bt3zNI/yXf/nP4uLCAkGxh5vFGAihXavKyGZbbh0wzMsxGPvhQhqmCdwgMJK5b+zxBws2Kelhgr67tvS+e7Yx1gSIbMXlzmnaXTuboya+JpQk/tMuf0uvzaW7rwR8O2FZnrRUu0qUE4Ry/fOafNEwiJQmYVY6H1zpLRV7zHVNns+NH4AT1m7y/0Kh/Mkf/wedoKjRSHWZSeNENT/MOiiTrHVP4U0owfI5koh8f/Kf/zS//Mu/goaCSu5gyushboIWZkrl/Vlyh3p6AVOyx5SfYm1Q6D47rI0bmsEDVIYI4kqq8QxxJepI5WK2EgtfWLVG2xBipKxGyYfDSMSa2vxKJ5Cq5s3PtPGwXGQg6C2u66/wte94NT/8l36QZrVPjC0DTNY60iY/xkkLonszLewkSDFYqZtB04qupUAnlDlyGQfaIy3o7Jcdi+6macipAkG6FgiD+gjzxaOubR5djWkqNbMEf0wlff0GYJuA77oud5DAI7xAGa20Nj7d37L2KqwL8XDTynlY+zcwZTvhjh1N53AO1n7/PRTK2wYPiNpu2Cty4z213TIB0GO/09hUgIuBAjNTcLZYnXP8iT/yB3nvN7yP/+Xv/888/fRTLMMzFhCSN+D1HkQLNAWCumfq7c/uNZX1RZxiBQODtfdZlXVUSp4ZjS31ak5RTfBuZOBnTBDbUCMilOUIFyOhbgkiuLLAFR4npYH0u96aMTHFJatBc0Bhgy15Hb/+m7/JL3zgjbzn7a8gBgsmDCFlJw/+4JbTptSlBgYfy9xCURVtm9S3MnYL13Jt2lsMnf+2fhnnrBBd0wK2bmKgqd9GXnRrd5u4ltb8TsS6i0lh5GRk66LPg4bYoiq2LrSAIQBgYJaL5HHqcaonDlD3XOsBqGNChUW7TXv246FKaowka5v98By/18dL8Cl/tDNRbLcLg9xQ2nlSK3KitUn3zujjXU7qJw2DCPgSkSmjyYy6XvB//rOf5Nd+/de5fuM6pdtmg0eRcB50k54jNIubdn8eTbIMP9Vryv57eVwH8m3viwV/XFFRliMMxWH0lsYJK6k8KmkktVTLaFQiqFXQtA0xNIhGwwJnAQKEiLiaG/HfsHVa+LG//3eg3h2Y1Ol2TghYrFnxR5TY8Pmbpum+fzTF4FOK4ujiskBPgi4OMLVGhB1oQtvRYapYPtD51F/S9f6WlacNoW8+bdb2L5JN6OSPx9hVDnUoI/E41+uJPsDTC6S1lsiO55GJ1zzna1v52rMe1YzZXTmW0ui09GDsu9SMpIjb+nv5Hv4v05Sttmlp5wHpPYaOjNl5chvvXBEuZoHiiyxYfSGr8zUSlWnl+ME/+of5U9/3fXzs05/hR370H/Lsc7+BcyUT9yBl+0okbiBS2IIZLMTjQy/d/zOKpDNyzPZe+16nUTWisSE01rTU+4Iik2IVjrpukGhh+bIqCDFYLWhdd7QmviiTNgpoaPv7EcuTChVjdz/Xr3+C5y/e4v47RxB6AuaTduNuvAePtxaUoF8Q4gywkU3/mAVNlSgRCTlgNMzbZfRPukb6fNsG2iZ00WYjXIgUGqmKgspjQRvnKF3B6vCAw71dyqLg1PlzuNGIuoQgiqZOZTmK089QzhHqYBNJ7oUOhSJFSAczNpxnGFpMyew9Ej/ohq/TvBkOKt35TZYH2rHDXKeEUyd31q6iW0vSJUrsXGvb5fBebu+4/dKtEAcYwmSSORmAOtLt58GErlRJMvW/5pA+WGPlBu9jaq4TQB1vefXLecvf+6/56Gc+zy/+yq/wG7/xQRbuCablg5ThTpzeCVoOpvaoKjn654uZHLr2IzmqQGq519bE1uOLEleNKEpvPS6bFSFRf+QATNu0pvwLjy8KnCtoa0FDTBtTugcHk/gw+3yC/+Mnfob//D/9w4Ox6wXyuF95/N6HwQr7jF0nDq2ZAWLIvmXlSrnfZT650C/WSG6mFDs4nEShAuSg5tZzF9EoBDyL1QpXFEyKEbtXrlDPDymrkubUFnp2h52HH0Ano9RPJZmFdrEkGDkQFdf8xpgSrH2gKpveeaykm+hu6bsjC797aB3+ODa2LgHO44Bgq5uv40srab++5jePrAxGORJO0ha3fdx+J+fUL1FzA9NU4GsFxT14zmCxfUbQOau8LkufmtBkU0U77huRmBLRZj20zYJHX3kvj77mT/Jn/tQf4x//k5/gAx/4dQ7axxn5M1TcRdE+DDoGcgeoPCT9IUf+/srPN9hp049A6r0ZWsS7xL7gkp8VQRzlaIQvCuq6JrQRvKMsR3hXsVqtLImbTC1xQiFTfJhy8eJlCl8R4iIFQfI9rOuDE02kwe/DYEn2+bvgSfdoPY/OCcwZgyGw7znnE0Y3bb4KZRtZ3roOz94k1GZyurRol1EZhZZKA7KKrOZXuXnzOqOz28zuvpAoWFwS9N4nXPcV7WF7zTmg1RwIZF99ccTWOSFAdjuHgJFoJwskd+C2wNYRlj8V4591Rur2FUby3+le8vES6ECyMGUb36rpfUJ8KGLdm9Tyl33+ShGnuMRb0vGgDgczpVfobH5DzcTQMBvBD/0H38ef+v4/yMc++QV+9Mf+CZcvfxrvHqd0Z5jE1+DDBZyUyfKSgWp5sYEbapiBLAwnNkWuFEHbGiM6t3C9T5QnQSG0gaIaUY7GKTCkhGXDqBwx3ZgQ6xXNakEuP/NuRinbfOGxL7KoI6V02JsBeF3W7yXftVp/SOiDQpnH6GhToKFPmdMkfX/P/ggh0DQNbdvivWc0StFlhyFoxLRcKZ5VE6haKFqb8egwtqZocL3cXLeKQtUqOl/igTarnJifNYG21VybvlFR9iuH8zQwJ4dBKgY/j8rp8BjszMcEtzuxNYlCelNX0ga8fjjIUeL0rF3ke5jKonexToyaf5XjtoWyHNDl51bg9rd2kbaYQjJRehPV3Dpz6vNOqF0VfB94MW0b0qTlBjjmi8SwYGPieffXPsrXv/P/xQtXbvC//oN/xIc//BFWepFReYEt92ZccxqN5cCdOElXHl/sGbWy/uJRnYsJqRiwPlOUiEBT1xRVyXgyBYTlckXdBkajMWU5Ag20oTHfbkD3qDGm/hm2kQ19lKFVvXaffQVu2viyphSGFTlHF0EPODg57eIKj/OFmesutU5Pi1KCRUwTh1snfKZZBvMoZp46FQqEw91dNtsWzUXPqoN8JYnAIf+X78noRY8eneXa76CD+2dtrtef/SsJQ/Jr+yt0H5fMRbx2LgOcuIGmXLNUBnb2i7tNX/24faEsjrQDH9ysaUFjjg5D5oGsVoHU7ggDZ4dknmh3LpeDEk6tWY/EbqK8pPSLNsT2gAtnpvzw//3P07bw87/wq/zoj/1vXD381zgpmVQPUcWH0LgFjDpX8fgQnTBoJ45jMj3TTpqtBdRItCYbGzhXsFyuaJqWyXTK9nhMs2qo69oGuKvHA/Bs+Feyai/y2x9/jLe/6b4+45rWlRXrS7cSj5qh3cdliEbJf/evQ37P7jkDD3o4nLPA1aiy351L/Ubs+nFAeWGBsECrAdcR8CdgffpM5k21wJZQNw0xKMHF1IQ3L/S0NgaEWOs5yKE2HAZsTnJO1oX0uEZ6MRWapkSzVuvPl628o1Ue3XruzKt1i6RzEY7e6e+Z+ep7hEhnxqYLZkY56+fougStQe2y4KU+Fi5PinaBkt5oIJOlm/2uiew4mY3m/5tGbWpr2PNN73sH7/vGd/Fvf+lX+amf/lkuXXqMg/g5SmdVKtJeQOJ2Nwk9z8uRB9T1gcxHXkAidORH+X41tNTLBePpJtV4xGpVs1jMmUzGOIkEDSzrGuNIMe1qebtNAL789HO89Y3305vyw/s5Yral4yjiZxhNhFxFod3PoTWimrsw5yNrpIRgSdHQwZWtmZJGCIF2ueqYAHrxyblr7cjIDdkoNK0xykdVtMueRDK5l2bLKWYAQS8U3aQMx2PtzywUdIJw0nilWeRFjyxUmjffHva3Bo5IPjvOQYgJmbR+eOcghjWarX+X47aFshpV64M1fHCXbj9xXIjQtSWwMjjHUXxk3o1JEIQ0j+kNvzZQSuobjy2CRH/d3QqqvP8b3sa3vf9dXLl+wAd+9Tf5zQ9+iC996YM4Kbhj69vQ1XlWq2Zglh4xceRoCW3/3nDDIAUANP1X64pWoSxHlKVnuVgxP9ijEAdB0aYBDbYZkbQIBYJj/2CO4hFaW/h51x4+W7db9L7L0HfMY3o0L5mPIWxuKJykYIqdLwMRkmmdtIEmTesjLBdLdvf38Az4pFJgJN2dvRDs+64FaRQfIbiEM0VxODqimNSTwwHH1FK+jzX7PY+Hdpask5MshGOjMJjANKP5XIPL5oxCtgDW5S7tViEkSyb238lDhrWuH35VB9jr2z1uP/pKv2jWHe40ycOHywuQVF/n3FrtXWe+GOYH1Wh9/MQSr7nkJZ8jdosGM3+Tr9m5GOm9OszZmXq+69vewXf/vm/gC196gf/5f/kHPPXkv+L+nX+Puh4diZ8MvYmjRsf6+7mltyD9NSXazhgaGjdHy8pohmOkDsHyxsmH0mjcMapC5c/g2xk//wu/wp/+ge+CZi9pAk1rrtcKeQw6geQ41vVFYXj0C3U9Wpt5dzLRc/+slvdO50rT6tMctjH0PuTAt+1Hq3/NqULbIjHgnQWMovSCL51TKQN2Prcuh7IecxgesTPPrX4TXX/29XHQI6/3/uNQGx5tdNyTYKX51kFQLnfvTgKuOtxcOgxVMtl5Scftw+wGtIQM/BjAKB60361t18jCmHbdwaKRxIXjME4KTQMxeMZuBwZjXLAekm1iL1hvIHT0PkMIxOWSO+/Y4c/+uT/DX/5Lf4Xd5RMIr1r/8DGlefLoHYWzrW+8EQ0NEWhDYw1p1UyyjPu0zTISJbdet++H0JofHbOgQGah6yhvpB8D47pZD9R0ApfTC12wYT14lV2KkNpA9A/fo26cG4x6mgwRSzoV4q2xqoLXlExfu8bxsYurGq0b3LikTfOGyjrxlPYuhT3LEDh/1Jxdn5Phsw2PkzapkyB3ptF63zAPXQd7HKzB3n+35+gCZonRTgZr/MVsrts9blsoV/Vi7QZ7/KANqhtmU1OsO/Od9uFuSXZ7Etr8B+Y/ajbXkgmbJ0clYszqFuiIA67SY2Yx/XfQhtlsjIhQN4dUGlH1x5XiS7AuMvbUBqIbENMCMZr0yJBoUPO3sMLdFBzRCo1z2lbRJoBadNZJgXiHS0DyzlKUrLHlpPXfjbsi5FRO1kBDrRpCrkYJaRH2BM4GYndd2iUHtFDBR4eP4KPio2S2xTWB0fVbQZtIu6wpt6eDYBXZfBho1jznpvm6Cs5knRwF6g8Djl/JZIe+YuXF0VL9d9ZqO9fuj27dRhVisF0zs2mQ16EYsH5w1vxULzJhJx+33wpvsBv1fky623zfWeAGJkLvOLvB60ou0ckM0rbTJA+jwx/2C2ot9Nydo3+92wklgre8mWjk859/nBgjhZyhq90c+ES9OlJe4tgNvj/YUdfe12RqJxMnCYoTx8w9wq3wQT75qcd47SvO9IwHHpyUHfVj3qgGm/v6YqEXjIyEsf8nz22wQPM4Gdu4G+A+zaRsmgbvHVVVUlUlOeeW9LOV3wEn0Nqka+Y5SIITIouDQ6rzp3oh7kzl4eZy3BR+sWMtAzDYkG8Twn38fKQxleNCeHQ9dFZM52nEhA1JKzKDYQabzFF74naO2xbKowGF9cFZfz1/3v62FuXdwpXeVMsCObTiuwJk+wCmRfsmN5gSZoj4WDs60xkK5/jlX/5VhIJCLxDWKgzSwjjiu73Y0WlIWf9kesnueLBJrSNn0nOkxR0HPlzTtv1nktmrEsx7TW64PWYWTP+iOFkYaMUcJBsIpZ2rX9De+9RWPhBCTCZuquQQpSiKZMgkCF7QlD3uEVvZj8k44267VKCJxFVrqCYPODFC6iPjfXRzP6k28uj6ss3Fr33mJMFc0+Sqxz830PY5FtJtcoMKm+xi5U5hZhnm9hJZYXRW/9oaeanG7EtIiawPwJr/KMeFNjPLDcHPPXonD0ou8s27tWL5TN+dywbAdXWBIgL+SMIWTpgQIbTKxRcuAYJGv/72S9q8+tzTYCkN/N+kAtbMb9blP/+tNrFed3A4Hvvik7zl0XsIjQVRrNQrAci7GEEfOQVZ0w7d89sLx8aj94WGD9wv7KI4ToehqqxWNTFGfO6kFiOhaZEmd9DOvtTg0SBRgNpYeFXa+cJIx3y+Zr9h5Ygpa3eWC6u1+3z3zosGcl78taPHmlU1uKZtrIOxUtAw+GK34fRWWl7jw/G2P/4v8im9rDu93e6WhTMhze1lAedwrkQY+orDf5B7i2STNK1Z0GhdiZGEnBFKVyBeUi+N0CVqjzr5+VAR6rrtLdXMhTMwS7KZYYsp7/y9HwiGixyNJ9SrFU0Tkmb0vZx1KsMNJizr/fUtU6CjqizcDhocv/YbH+aPf+83ok2d+v7YogyYL1cAPgmNdxY0imLMDyFfO/TPEWMfjMjBh6MbmHm8/XwV3SoY5jSzBjU+3aIO1MsaaSNRfArgaWeydtaOGL7WqdFNhlUNbYCq6MbcpiFbS0fM2H4nsnNqvieHqdt8fy8+9y/ma+b31uaD1BctUY/GkOhUutvoxzYvkM6qS8/bX9N8Tonr5WMn3+WLH7efpyzLtb+7nSHxmDLQlFmVtyEmQHa+PzOL8hGxhLGpfQMu+dzwJwmjOEsjiHfgDKDQtuuNSk8yW2wfKGiblkI2QLuS7Bd9xrVhTMGIsiw5dXrEweGC3RsRTQn6XGzb+wu9wOdcYz5fXgdrsUpxFLLBalWjlIAzoXRCcMnyCIpvlCJE5ge7LA/mtKua2LaUVUUxGePHFaNqRFGURCcE51hl3p5Bv8rc+9PuQxLfraUgXOHTvPTLJ0Zb2DEIIShhsSSsAgSxdm+aKFByflfM88yRVY3goqCtNevtepsMnDJJWlUGCzzbJNJ7FifO2e34kCdp1nVhTeHGJJAh03l2wSbtBPHY9fMGQv7Y2pMMYhwn3v5XPG5bKIt+O+3C6/2D9Ucu3QrBSqByBFGErsxLJOUvRRLgIJupPpXS9DVpMSQai6EJPDhebHJUlctXdjk4OGCnfBMuJh6gvBAGfl33HdYFB8CXLU9c/XGasM9M3odwimxOdgZAf9FuHz0O0eqF3j5TMpb72N//FC9c3uWuUwUSTbOLQqEOFyPlsqG+dcDlp55m9/I1XBMoGqVyBWHkWRXCdHPG9qlTjDZmrApHmHjKUUU5GlkbeEgpLatycElXeht02/w8qMqxudU0lqGNFK6w1H+UnrDLZYB8P5yqavLtMYFMhTIkc1XjIKUmQ92Tcai9TTz8+3bm/iThe7H0SL7G0W7VFo8cmFQnHr20yeB+fzeOlwAeSNcdDEQOBzca14IPQz8mDiKpxsad0D6p32BOrWRUiWFnE4eL2Xv2HrbT5rD+iRPC+rjkjcQ5RzUaJfNzYM7F49/vjVqDFt6sf51FewmAVp6n0lPr5hVY5YUwWGhyBDi0JpH2S/ZRFBS/tgiKVqwMat6w++TzzJ+6SHVzn7N1i1eHRIe6SL2IeA9xd8X1F26A94SiQAuhnFSMZlNG0wmj6QgKj9+YUc1mFIWnKMxyCDESJUPKhoihPBb2bOW4opqNKdrWAjhqG6YSEnrLUYiY6xEN2BOjEhKRdTdfA3/ShuqExa9HtWRvIn81tfNim/RQIPucZbZqXuRcx7Sk9D9f9Db0yGePauevftx+160TUhNgQtJqLyg5KiZZJXbMYHlwhUykFDTa2+rWzilY1Uwe34h2OaGObU6T7zIwHDJesc9R2WAUhWfsRrTt3O4x+yokN1NOnhfvhVb3u7+jrFjPX9kiNM3bozgGDsjAZ8omUfqIsPa8LgtyjNR7Sw4u36C5vsf84jXkYEkRlCJf3SVTX62fhY9YlXwbKJc2LmG3oS0WhAIOC6H1go7GFNMJs/GY7dmUYlQg4xKdVcRxiRSuK0aWVJpWqOKCUo1HbJ07y3x+BUGJjRI0EFUppUzPpB1zgd2EUi/mhLZGdWSa2BYNfXNbevt+OB9dQOYl2n63cfTnTm7Gkeh0NymcLJJHf18/+ckvvxTBfMl5yk4Dxp7GIgyYyYY4VxOS9Zsafj/EJj2D70yXDDCI2UVLCy/qUbN58MD0Ed8+imt+W/7pnEs1h/23vuqE+yWr1ZXuzyVfYiJvNL/SHqY7x7FF1CmAZJ4n37mfG80f6IVZLDHt2kB764D55Rv4NlooQtTM/wGgXjTiYu/7OLGgkI+gIVqSu7H2cwDiI3GvppY9rhNptaV2kXZS4mYjqumEYlxRjEZU4zHjiZWeOe9wpefU/Xfhi4r5zT1YLtBmhTY14nwCPtrExdgaVYoGlqxYHh7itqeE9ByZL6g/8tgZL9K/a87xxY61DX9gyb3Y/A/31JNSZZ0C7Sbzd/d+X7L5Cic8ZLrxTCs4NF/z0stC3LatadPCIy6DesGIb12nwZLvnaKtmGCuETT3O9wwzO0SSZMqtCkHGEJg1dadQHbCceLEaPcvcAuAr3vnu/nIhz9IbNc/lY/1bMhx82U9BDA8Bp+JxgOrqviiYGNzC91YUB8sTPk0KT/WXQcjKNMIQRM/U277neYkIU8kEZnF2BLbQBuVQi2Y5UTxq5Z2b8HS71pdp3O4osCXJbMzpzj7wN0wm6CnpkzGd1MtzlM1DT60tPND2kXN/u4uoW5ZLOfWLCkKQYXoHau2pQohdaqQnr2dHGM4qoN681LkxYUHTtZAR3ORR9frkLsWZe29PKH9RnnydbPrduJ7+ebz47zE4/axrxYJAGyCnc+sYhGPo+uHGDV1U0oQKTCqwqEAgQGWPWlWIuISy3qalJCuZX6pWr/DQbObo/m3zLEiuNSGHH7rtz4JQMXdLJfL/MV+nAYDtvaagvOeZXwGgG/+lm+hKDy/9oFfJ+oeTs/kcM7gO4MA0sBPGsQT13zW4cUzc0ARAy4o0TvKO89w/sIZQt2wnC8I8yXtcklY1dTzBW1TG4PeqkZWLb7FzNtoPDvaAfvTZoXiotq4J1Y554XKOaJ6RjEFYLpxaFFtqecNq9NbuFMTCI4aYTqdIgeHLPZu0WoLBWyeP4t3nkYircf8Dwc68sj2jFqDpXPwqEYIreWfJfHTpV0td4DOR3dH2gtMP1V9TnQ9QLcu2CZ4+bORKIEulSceN0j35RwlKQ/bX7e7IfKuePSKQ2FUNNHiJEzUS8iL3D6iRzKPydD3i7QdljKnNoZwONZM234nSvZpSn9IsgeMeTxfMXfw7f9F+hKdk44YkoAGYbWKfPITnwaEUI+IicRqaJoMj279KimyGFmE5zh79ix33XkHD73sZfzqB36FyB6ip/uF0/mLduSJP2rSZBpFm+91wQyhpQmrJMAFoXAsK8O/OjfBsc2IyCQqsYnQNGjbom1NvTen2ZvT7B7SHCyoD1fEpoHESi5RKTCBdUoqoaKjSHTiwDnUubXGqg4hiFIrzLUlVDBbKr5uuPzUsyxv3aJZHFqXsqiMqhHVeALbU2Z3nWV0Zgs3Ka01fIhIKs7WCK3Ejr0A3KDYOa2hDGVS7eelX/b9mA6CNG5t1ffxC4sESxfUya3mEUu3OZFE7DaE68lgc02nGpy+dzzWX+t+qgFEoiRq0lQN9dVQY/l4CZpyEFHNZqSGASdqNlH7apIYIpG+PCgDDpwTAuCCR1K0DifEkARLFaTtBsm0pWmbYYR37f7ygGPt1dsgPPPss8zK+yiY0UozUGwvZpP0zyp+Thv2eeObvokYWr7uHe/gH/zDf8CKLzKV+9NOOthkpJ/MpOOPrKNshqlVhQw0dibiUlHURXtPpCM/FlGCRbVQL7hxiVAgcUSxOaG6cAofBOqaMF9R7x0y35tTz5e08xpd1sSmhSbhcFN+0aeia8QRkY4VPPv2gqN2CfcalbioufGFp5k/d5XYNihtqq1U2npBmNfo/gGxjUjpodqkdEIVIuNg0e42tXMQ53ClUCTq0cj6mGRCb1IQLcNLugxidnM6aeh8kv797Kfm1gR59pNOMJZIW8OZAgUSIVgGBZyI8z0aj0jKgL4hn2Yi7C7qe/KSO+m4faEk4SKjURD2bNyxW5C6tgBtM7YC5aMwr1SKJGZOOS9oa7kwwxsEyFyhDDWwDW5PaymdbygqoM5IotVxOG9ZrVZMx9t4tULi23XHi6Ik+CsQlDe+4Y00zZJqMubBBx/kqS9fRHWBYza4B+mIplVzzWOu0hhGn/OGkPba9KuZVuvghrUp1978tSGQNO5AVUIFVoI1wrPJRnuG2SoQlg3tsqY9WNDsHtDuz4l1Q1g1xBT06t0Km8YMqMnBs1kNo9rhDwPNjQMOr91C6pYy1UPGZJaaJxJgFVk+e5VrLnJ+8xUUhUd3D7nx/EXiyszGWhtG0xnlbMJ0Y4YvPdPZlFgJ0QktwayV7BuK627QsKa92Tp0DJIpZ+md5KsaJjk/UUIfp/RTUOz+AdeGLiCYc+iWW++pLod+aKeFB3pTE647pt9Zs+r09tffbX6uS0Vk0HJIDW7sZgawu4R0MV7gXP+Xi3HtXFmjZl5YjdLlH+smTQhhLTRuSeekKeM6I54JZTB/Vq2l+k/885/GS8Vd229n/9btPmUWhsg8PMNoNOK+++8j6oLFquGd73wHX/7yPybIdZxMUnQ3b0gDX2fNpM3InxzZyBPVm/PSNbW1PpkO1yXl7XxJ8LGNLhfTmsybZaFgpF5AXSjRQxwLMZTIqQnTO04zCQJNZFU31O2KZr5kfmufOF8i8xVt3RBra6XgJfnDowJXCNWiJeIoxmNWN60ZrtNoOPMIxQA2pwTaW4f4VcT5kmZRc/jcNfx+nXLVyry4Siwch0WJAOXmFLc1ZXL6FG5jgq8q/KhCnTd4petkAUfq3Jx8yYyXzeiZ7CLY7ahhpXNrxZwKS0OXe4fYMkpIsZy3lTTeKZvgfS5DHB7afVdVjxMoDNy2202LvKSUSDZd+yYp2aCnu+i6aZmjfrkrVUy+ZzIzYi4wMoFv25amyYXMfaizi5YN2uatU80rEgMxKG0UaoWP/NZvc3r8KAUbxLC77gJ+hUMBcTV1vMojD72cwnuredTAe7/xXfzUT/0My71PUsmd3YNbI9l+0STHqHvtqLms0DHI53Fz2b9OLA0iviuBcs511ohL7POoX1toFpPQ7vzkIEZCbDROIHrcRIgyBY0UMbK5rOFwCQdLVnsHLPYOWS1XrNqAc45Td58jbE/Z14aqcvhTM+obt4jLlgLFq+C8dIXcrWAlTN5BG5AY0bqlaGAUPMSE2VWgVZzWSIjUu0tqd4PrxXP42YTRdEI1mzHe2aYYTyjGpZW1VRWuLPGFM8EURVyuvFHUr/MMZc4nR2bXlLQxajK9xcDEtqrS+Im5XYk600Xrth1jLrBwIGU398OJlaHpm4q0bZ362071vKSUyFHgwOCNfhAGu4E50pZ7MkHOFSEgqrSxJcR6zVdt2jZ1vFpnbXPO6ixN6G3gO8GMRssR2kgbC378Z34aoeBU9QZu3tqlbptEbXjUFzj2hIhAcFeIoebrvu7rqJcLfGkt72Jb8we+6w/wY//oxwh6mULuzvJwxPPvd8/+IY68LTAp7mQ/fJLHv/QUd7zlQfPxfIHzhTXFGVgKRj+BmYwMfaReUw6FvHsekpZRIUgimBZoxQrLxVUwKpCNCeXZLdyipqprQtvgxdFMS/ZdxIswceBPz9gM51lcuc7y4BAXI7VCERNb3mjEaHuKnJ0Rc8Aeh8qwa3dAgqLOUjlFruyKUAZF2yVyUNOUhywvXScWhaXQCodWFeV4RDU13K+flIxmU8R7itGIWAp46Zj1nPalYr2XSv9bkthjc6VZiSSsk/R5eJECcW3+YD+tyZztjMZ8oQiBYcnJVz5eUqCnT9APVPZwNQ6fS5IVn9A6RKPCV8Nf0QZrHtO2oWsggwyKSAlrat9QPBlgOayllM6MrINSR88nP/1ZKrdDaEfGXB4V7Wgepb/nZP7kATTzUNmPn2Jzc5M3v/a1SKwh1qi0NHXkne98Cx/4lQ9w6dmPs6mn6WkspY/3cJIH0adEsu9WcSfT8g5+/Cf/Be9759+Eds+eLQVfEAZ9GhNtSrYSc2SyWwiStGN6sNwjA0s3ha4dgL0VMc6cHAuhcAQPrRRoBdo6QoysfKBVRXEsneLGwuju01RnZ4S9Bc1yhQYr8RqNx4w3NilnE7RyuLJMAZ0KxNNo25maEYtFRC80jrSxZMYGZ12U24gPEVatmaVOieIJTpiLBYdaIn48ppxOqWZTJjtbjDY3GG3McFUBhbP2i2KxCkWtkiNJTI5GZ3B9GtQUv/BE2xnJlCldP0tyEKev/c3vddxCeT3303Rbx0uqpxwK5lFzNh/9jiPd3xqU2GrXnNTM1Jo6tLQD0Hp/ku7ra4fgGZIOZ7CCLT4H3vMz/+oXqVcNLz/9+2jrEpW29zEkUehq749018MEKbpLLMNV/tB3fh8sDijGjqA1UWvqdsF8/yZ/+s/8cf7aD/9tVvIFRvooiOta3vX32v8f4ch7yXNtla3iDVy68W/4pd/4KN/6ztcRNRpuNFdMJP8zpgi2hfftznuOqxyRjImPd333DjEkjpxk5XQLJcEDo0vPDloJmho1haiGZ61bpKmJoTG8a1lQjks2trYpfIFLFCK+LInirGBabWE6V1CMxsRqRHCtEZDlKKfSAQkg06iZQLooSDT/0UAOyQYlkDJ/SSgVVnPi7pIlN1h6D0VBNZvhpxPcuGLz7ClGmxv4UUU5HdGK0X43aOqz2u/Kku5H1CCHuV5yrWi995q6P7R/gaEGNd91qDa/+vGSmQfyRHeM2wMf8yjaPqcy7D3tKfJDTd02tNFazR0/ZPCA6RXJwui6t4Zdi3N+6ZlnnwOg9BOCYDu1p/NH18U/BVzSr84JhzyG9543vvbVeCdoDITY0GpNSIJ37vwWDz/8MF96/AuM5BWITr+CE78uJCYQJhVBQerTjP05/vGP/zN+/ze9i3q5R5BcCJ4WsGbXAcDRaMnh4YLtzRG0B8kqyYu7tyAyZZCq0IYjcQB609gl9yHEFJBTBe8o8JQKumi4+vTzxPmSGFpwjmJasXtqh9F4zGxzk+nWhgVURBF1FDKgMxlVVOdOUatH6xV1HdEQ8EhnCXQFxiQ/sdMsdh6zQlIqPj2sk1xhmcnXHDEoumqJ810a3UWBVfUcVCU6KvFbU0anN9m6cIZia4YWaWvuWOhsu1PB8ujaj1WeP9OKeTVJasSQNznzJZMOSKm8PC2/yz7l0SDOSVCm/LPPZdIthiyQdV3ThoYmGuqno5VZ87myHThc0A7pomQ9fnFY1dCzC/SlXiKuE7q8sfVg5O7jOCcU1ZLF6jne+tY3UnqDoYUE88t1lGVZcHC4zw/+mT/BD//Vv8GqfpyxvH4QLKA/6fCRuu1VBq8BlEx4FTf2fpVf+PWP8u63vRqRGiex94GcR2XMl596no9+9NP861/4JQ4P5zxw/338P/7qf4I0cysG99m8NfPV+owobRsJwX6P2T/o5pV+c03vZVPYOUehAq0iN+f4eU0ZraNU3Fuwf+uQA+e55T2jyZhqOqWcTJjONqgmY/ykJIxLXOXZvP887ZltQt0w373FfPcW2rRd/jREgwP6vI4ASSvaZ4ER6XhVs3+dxzqnP1yah6Bp3lRxi5Zi0RAFmmu32H1KuTb1TO85z5nXPIQbTdBBPXCOFA2FbTir61Vd2s1u50LGVI8bLVXWEeX+bpuva0idQbDnGKAgvWZV68HyjkkgcyOZEFuCWuemLjt79IaP8IraOCm5SFr1+EYgKSJm47puQuQj7959zsl2tar07Oun8YXwvd/z3QgNvXCX3R4KRvVdjpT3f/P7+Zmf/llKuQfPuaMPwFAwO/jW4PWYfKiS83gZ8fO/9Cu89+veRB0DzhcgJZev7vJrv/Hb/NRP/Rzz+QJxjp3X3cNsa8yzv/0k/8Vf/+/57/6r/4y2mScDIwmWREJUQog0beh+Pxqos3GI3S0PA/7BwcoJVSV4lMYLq8IxCcpEHWWTgPkxwHwBtxra4pC9ahf1AuOC6twmm3eehlGJViNKN+XUXVvsLC+gy5p6/5DV4YJ6Mac+XNKurHuZi6l5lAqFZvqRXKY59KeTO5CLyjX54onAStJ45Ai5EyiCooeBxcXLXB45zr3iIfxo3LMrpvWTTdKsAGyz0k5fHI135rVl8mCBHacOpyfn6l/seMkpka8kkEMzNoRA21ppT9NYIr9tW8sDkf0b0ARFOr5QOPaamakZ55rMns6MVlKTqO51JAzEsscqdskIAcRRVQWuWrB/+Bhv+5o3szEbQ912QQBr896zWDnnCES++dvexy/94i+xWHySTd7LMOydNaPttKQ+pulVUTIiOwIFE06PXs/nvvBRfu23P0U1KvjFX/l1Pvzh37HF4IStV97BXV/zZs4+ej+nHjhH3dR85L/4CZ7/8kVC0iQx5G7JaWGgNHVDCC2tHk9lHQVn5/8rCfkmjlg4irKkxIMYVLFUpRBw1qfbnlYFDcnbCwF1SlPX7K/muLFnfH6HmPKNReEpR1PcxpjxzgaTGExjrhrCqkYXNe1yhTaR0ARi3RDrltA0SNtSRHCD8j3RiKjrSqRNyw0glWK5X1VQpxSlp5gWlOe2aKqKGEJqqOjzjo6ltELnNskgz9KtoySFR20kTTGEnmd3zQn9qsdL0pS5ZnLNZzziU2YN2abURoxKXdedlsxh4yh54UoPRNf1Bx4+gz1/HOxGvQmtaSfU3FIP+2zy3buRHFKR5Fo+7zwbGxOuLT7CbDbmD37v99K01pgnI3NsoBMMTByF9wmqFvmWb/1W/tlP/jM2ipvQniKV8Hea9eg0nOR5igh377yV+c2n+Tv/3f9gEzOtmD14lvNvfRnn3/4Qd77+AcqyJKwiB/uHIMKd3/xavvT//RV+59OP88ZH7k5CnyB70egtmtbao3dzpEeFUikK3423kqk4pAuOiatwvsIRcCno4hQ0OpwrDJklAm5QuWODZqbzKqW9Es2LitA6tTEsPSIFMKKIUETFR7WWD62hhSQq2gTqxZJ6/4Bm/5C4XBGb1jaAxiplXKqK8eJToCZv/NDkeyoEmVSMz22z87K7iVtTmqpIm7jQxR5Uj4UDhnO4Zn0d8Ttl4D71r99ekAdeiqZMWL4uAKFWta7RFsC6hmw7PGedhHGoaUUSRlQGzWEMd9fplxxVHB72XT0mkDmQ5AZAcAtZJ9lJr+T3suXqgMlkRB2f5cbi0/zAD3w/aIOGlmi5G4NiIV3O0EXBq+DxSGh4//vfy8/+7M8wD59kJu+mbxhH2jn6O+qhVzm1k8whD3v1Myzq67jS89o//8088J6HuOvVFwit43A/0DZKaANGRR1RB25sub+9/QOa0JLxvyGNRxP6TdICbjnwk+bApcXTWq2mF0loFpdgZp7Sl/hCkLKiWEU0tgRRmqRRguZSsbSjSq6WcbhgTW+0EQOZO2/jk8Zfcq/SRJIW0zoLaeisE7YxQBTiqHSbcnWGIig+WLAo1DVxWbN/cw9dNQbla1qoW9pljcsuUkIRSFUwO3eKnfvuxJ3eYlW6PoIvQMoHZ08jby7dfPa22AnCljfwBOl0pkF0sPZu53gJQhmyDWYD1xH5KhoYqOqh1myp66ZnC2Dgyw1uVDPFBz2WKueFshOfteYa8dYRk3oIhndiEKnCO0IbUlVC745nv7MqPM8e/A7OCa9/9BFiu6Jua7Rd0bYNjQLOIaWnKEq82sISKY3lTVa8/33fyM/93M8zcTeQeI71vXTdnO0IYgfR2sCKp2/9ApP7d3jr3/geLrzyHqanQEappM1ZlM8q9xWV2G2SgjHuWWTYpC7GSBMCbRuTD29Bt+xTQqJkSa3uQkyEV973piu2mAspDTLpC5wv8dGKpgOS4G7DVWLrw1qyW2iucNDWAXFlOn8GlpvAivMdk4KIdBUiGhUpkgJwzjSdgrqCiKQyc0V0iguBU3edxgdLqXhV4qpmdTAnLFaE1Yp2taIOAT8Zs3nnedypLepRQRDprCGOCI/okQ32mLbri6V7VysJf9K6qj3o43aP2xbKprUqi6MwuxjpQOpZI3ZCOfA1TzzUGddLhMxmR/a7Elb2aNS3xxIOTMu88wtMJhNAcIVjPK7SYLgUWbQqErD8U1F6ojtk0V7izW9+A6vlHqEN1MsFsa3tXsQhZQG5I1Vajt4pMirRGHjzm97Av/y5f81Kn2fCuX5aB/Owjn/Mk2YLdK6PE+KKl/2x97N9/znq0BIXDTIqwPkOoRKlXzYhBi7/4mOICG9986PE1b6ZayHQpn9N22vKEHq3Yzim/WvJ55WjZncCZzif2hhmgei3nqPZoNRmtItSahusgD0hsbz0rIY2O/01c4zduT4f3Y+dnUMVy08mNwbncFGRctDGYuZhZ8woKgUOF9RoOZ0VXtellauxJmu3r82OPHH3W9askAsU7NWXcubbF8pmZQIWcm5xYH+HdS3Zaa4Y14Rp/bCJiJm3RfLN9ybeUQoR6BeAaga5S/d3Gw75lvd/I/+f/+nvc+vwce4+/XbKoqJuUr1naMldk4qiYDwe8+S1n8UX8K3f8j4O9vaSHxWYbFaMRiN8OaJtlVUdiNqgGiz1oh4vtnjOnN4BYKXPMpE3JF/2hJ1RBj9z7xG34DB8nukDZzn/xpdR1w2FAC20MVIUAj63Cxw6yUKztwABXzhCbVGjXP5mfuXQ31+3MNbIsz0Jc2t+VQZ3h+xXpfciObgBXY1aH//o0ge5zBqFEAbNVFMENVdg2LzlzS77Gb7bLI7mfl26bMzroRvnRCOCdM2VNJvSpSeWJRmJHDVXNnkzuvUrm5YnRU3Xv5NzlvmzafPsXluPjfz/2vvXWNu2LT0M+lrvfYz5WGvvc/Y596ZuuVx+YbuCjR1XjMu2FKscxwQcISER2QEUAjggywIEQmARkEEKEj+QQOIfDwl+8ogAIUJ4CJEIE9lBOAEntkNUIthOuR6ue87Ze681H2P03hs/vtZ672Outc9Z+9S9Uv0442rdvc5aa845Hr311trXvva1lxwvNkoHafq0WuuQsPN77uSf25G3V+c77diKw1xDVJ416OfKMi2/hDQFu6orQgyYpwkh8GdaC6qNQOAiu+LL89/AT/3mn4QoZUp2uxn7O2B/AOZdRF4LSgnI64J1PWOeE+KOoVdKETFE7HeC3/t7fw/+5l//BZT6HkFeYxvqWAirnkk68TljlX8LRc/46T/zDyPudyi5QlJFrIKyViLKoe+0XGwB7375Kyy/+oB/4B/4fShlBcT4paFAKz+lGYuDWrGreaeUME0T0jyRUB7Dk2clEhAkIAQiwKUUltxaeNuv7fbBOmhUFFgvV2DNkP0Eb3MLsn2m7oXHtTM+7wCfXhZamaPnNIB342zXi/WkAkYEsNyy2mwbCCSUZuCbK1Dg661JmxEyfPVT8tEG3nbmOMePI3xdVwA9j/NhnSbLtnmgXqaIMWLNXXryw3WanoONYd74kDriyxtyC+0TYPBeOXrUEAJq8NHs1obTNGYFv/L234Ci4B/7U38KpVQLODIXYgzspYscmXA5n3E6v8frT47YH3aYUoKbWEoJ/8Sf/sfx3/jr/y1cwr+Jg/6hbQ7hYWfbPgFIhcSvcNK/ie//yd+Ln/wjfz+VAoSd+nUNKItC9smakZlDZqMmvv03fwnlvOCP/UN/FEterQeQaCixE21MHV5vwDzP7X7FGDHPM41yCibIvCVkAIGbYwgdWW0AnBuE9GvaHN2TeRNBMPQ1xS024Afnn2yBvP5u2sJb94/9FgtcPHs8lc5NjegdRs4QskgBhkU8sRn9epscPOUT1Y1xs/oWEfG3rlN6LiFisoQ3ud/trvfSwml/TX/t9j36DWD46tO7tvKSI5jjDwK+wFDw9979Dfzdt/8i/sSf+Efw/e99juX0JYIUIAimnCDXQAJzTVhXGsNuN+P+/h6v7u8xzzPzFxXMMeK3/vRP4fPPP8f7L38JQar1fvJMWn2S/2WAxVd4W/7PeP2HfxN+/3/+H0NIEbWwNioVqJmzUGquSGmGhIqSK06PZ7z7lS/wK//bv4a//2d+N/7AH/g9uJzfE4S31q8YoyHlRFtjDEhpwvF4pLezv5nmGWlKrOJYPa4qy0QAICpIWcyLjSPl2qV022xRgBfx2wJBFqK5MUZrUO/v4c/La8LN5odnTrTe0h1U/6B+3DqijQeFtcApo4kx5FaWroJE8263nvbrDq/Pdo/Zv/cLsHXc9rCXecuX1ylLv1aoGLxvw0cbeAEbM9AKJ84ytmlSuvEgAiAos7wAaQujN5LqjSH6xjBq4BgqWRVFBce7O4QQsJbHFlpIP22oFvztX/u/4lcf/gr++B//4/i5f/Bn8e7tryEgA5IhU8SyVqgE5BKhtQAVePPpa9wd97h/dcfFBWGTrxZKPWrGn/tP/9P47/x3/3uIu19EXH8rLlcTXhRPMhSQK3L8RVzxbyO8jvjt/+Qfw7TfmZq85ckFKKsgLxFS2WlxuTzi/FiwXq74xX/uX0X+1Qf85/4r/1Xo5QE7NItAFR+ulFjaDxS9nucZ8zw3LznKgHpepxYaejmKw2IDYhDygE0BwMEqHSfgDFGL+yC/+wkUEU1OORNprVCMINg4Dw+VDYVn61/sxtXG+9mTbz83ZH0w9KravCo0IyA23pxW3TbJOzGk1XDHXHNrSLfEmVuj9D7afv3Bcw689Hh5P6WFIh7BUPnMYuZhJ2B+2IQXaIhDvxov1U/YdVa4i/GBd4MEts3M23+7UUKtcW84h/ZJ4rs3b8xleY9fefgr+Onf/FP4g//g78fbr34NVReUckGICkkT4jJBkTBjh2makVLCq/sD9vtdnz6mMH2hzDYjCfjZ3/s78Yd/7ufwl//y/w2/9dWfwWU9tXM9yy+g4j0W/DvQWpHe3OFn/uv/IXzyW3+y5V9exyxFgWvBqVQsjxWn8yNODye8/7e/wK/+7/4NvP1//C38N/9rfwGfHSNKLmgq8pFyGiwvSaNchhCYP6aEGONmghqgTUi6Tcyy64uVGq0p+JgDXuc2leiPi+ElrFPFPhtAUjHGDJFZKgWFBlxxeJHf1zCEvMA4jNg3XwzRWlfmd6mQTmiJ0ZTnK+9vsEiJmxB/1zqfHKFv6+vrjWj8nDG9hV2bBe72i4+QssO30n2Vzb/8TN+l3Gui7abftD+M3n0kBADbkHnzGtvJg9X8/CFCFQ8PJ5RSMMV7M/C+aQgU5+uvAlD8wX/vH8TD+7coeQEkQ6UgTQmHww6H44zdPGGeD0hxjygT5ol55JPcsJ2fIC9X/Pn/zJ/FX/lX/hX87ff/a1S9QocHIlNE+t49Pv35n8FnP/vb8Olv+wGh/8rQ1MnkWiq0KPIpY1muOL99xA//8v8Xv/Q/+6tICPhn/+JfwL/rp79PIeTopSTh+HZDViWQ++rPwg1yRF39+bkR0Whu7rU9Q0HglGl0BHvQW3jOp7SNPNjC92lhvmz9PDzNUAt5BUb/a1pM/rexeeeROKJt4W/R1FK6Jw9CpD+0MLPan0Ww3PX8Wttc0TPOYQv22Ger3Jz3y70k8FFGuQVdtsjnzV96CCU9F/nY4zY82AJA/ZxEgnVotASu/6vuLemRl/URv/TuL+Gnfuqn8Ht+5nfhhz/8Zex2CfN+h/v7z3A87vHpm09wOMyWT3Lvj5W8ypqpGxRcm0cHB62MHEpd8cnr1/jiyy8x/cRrxDcHSIr45Od/F6ZPDrj7qc+RLJQspaDkDFQxrdxq78NFki8Lvvib/w7+1v/gLyF/dcbP/7F/CH/2P/kfxd0E1LxSW7UR+vu9rrWyljiMaRvFn26fx9MaMD1LDYGzXawoD3FPw5AzCD4wj8XvBzDWGv2RuMByO48h7w8Sh3McCSH9EfONyfVVe/ad1jYknNoZTNEAPz9a7Xx8+xfkki/LN5mQeUq3PfFvPj7CKL/ujfsN8QcG2MP+eHvs73oDGvU8iOdB1Cu0G19rxfc+/xz7/R5fnv4/+M3rH0EME4IA1/UR/9av/HO41F/Gn/4P/3m8e/tDfPrJa/zED76H+1d7hMDZIfQmAsogRgQIQmVNUdUQWrHQpVgXu4WfVYHH6yP+yB/5OfwL/4f/E773p38Wd7/7N1mubeqfkaE2xccyrtc6DGC1HXjN+Dv/l38db/+1v4P3//rfxU/+xE/gz/3F/yJ+38/8dtSyIgqQpgkqirqylFNcmhOj93l6H0ejLKV80EDH59mmp6mlGxapiPpgILRlwUdTW3jJ4Ml5tPSarj3Uzsne0z2kH2obXa97d+/e8AJLl1rediOe3NIsrZAgrba9iXaeOZ4r79160i2pZbimYPefnCd/xw9/2M3xrcYWfP2D3JYrxr/xh6r9hzeJyVNDHH/eZ9xb+FQVJYtJXVTUUvD2ix/iH/33/Un88//8v4C//ff+Zbze/xYoKn7xq7+Ec/1F/Nn/xD+F+/2E6ZPv4Xjc43g42iLrWyaFsgTTlBBFICajSd6mopaCvGaUUtFlN4RyFTU3YwjRyOt2rc584rnzfKGuzMb3Pf2dH+Ltv/q38Hf/N/8aDvsD/qn/2H8E/8H/wD8MLSvKuhAUgVhJikipgq1aVR20eRqG+WJ8Ugt0kODZZ0zkdQxpx42/qQZot4XRZz15/m7M9t+N/KGAaQw0b+31vqaYOKQJfiYsvXE9lJqbd8Zwjj3N2hb5mzHdsM0+VAcfR0GO13S7Xjf32NfGy2yxHd/KKMeTGI+OpvVEPEjX9XF0qqFn6vCLtJwSGNTrhs/qP3MPqTefbSHfWvG7f8dvx+/7ff8e/L//2r+EX3xnF5oS/lP/8X8Sf98nr3B32OF4f8T+uEeaAmpdoWLk88JapwiQkUkNKwVa1iGPMV0h6+rnQZ7jeFqducKIwQnY0RXXKkGashbkxwv+f/+Tv4T3f+0XsYsT/uI/81/G7/odvw1RKq7nRyK+7R5SHZANv3zwtbg059Py05h/jfdyU964ea7cQI20rka6GA1u+Agnfrix+R+JuUC5+UK9OT90U3uCatof3K7rtmnYdQSJUGEufnst7Vxwmw/as9GtJ7wdtRhCaKWkTW18+BxPHXq9ns+m/jgZPX7b+skMO5D9hCWH7a4aQ4KmgCCdwA6fCwKD2dHBBicl9M9xYkL3smOeGZON1atALuyve/vFr+Hn/+gfxm/6yR/gdDohpYif+4N/AFEzDvuEw37CLgVEsOWndTjAd2c+sIwMVwDCZoH45tJDRrUIoeSC73//ewCAcrraMFWT3RAxwwSACi0Zy/sFv/i/+Kv48v/5txCy4h/5+Z/Hn/r3/wm8uZ9Qro/QSGSyAo0FQ8NjNwV1yCqyoi0AVbQhR8zTpHfLuGy/SjNySbEZ6GikEYAEpXzLcsGEbE+AkYNLNLKHsxqow3Hl1dq5VMhTDSlQnkUiVKyUZkLIfk38prdONaOx+/5kRboIeOUIeKgYEO+horRgjNc2GKT35FbPNLtDkRErgPfvUnishe6N/BCG89luAgptNfyPMcxvBfR88MfuAQfDDSKYY0KNnR8bvMWrurL2AE1LX+gNbq5lE0K5Vw0hIoSIGBUxCWLMOJ9WABOu50f89N/3Geb5J3DYJ8R6xv2rOxz2O0xzgATqxIqDcLJt1NZa2/Xceu52Hto74FUp4lRqxe/7PT+Dzz57gy/+938dn/3sb4Gk2Be8UHbj+svv8PD/+kX8yv/xryMtwO/8Lb8Ff+G/9OchuqKWQonHmGxx0ICce2pmwc+sFSWvzKthNVutjR8agiCG2FBUt9pu3gyz2xwR93IqSAq2R9WMnBdMjmS3Z60d+bb3D8FkHSUiiKDYthZihJqXLlZnZk06DvnqUJK5XWY3999DWbFNPMBBqKdRQo94O7sMGGqLfekC2jm6/kIXIA+hM9eeO7eRi90AyQBI7d0kLzm+dfj6oeM2tq6DHKQv+Jxt4hIzfoY9weqUqJuc1Psym7yCkaNTSkhpMrUxPozjAXh1DxBL989lY66IIqaAmDj1Kech77VEyVvS2CPK3wURpGl61igBNG+jKjbMCCh6wT/xZ/5x/I/+x/9T/O3/4f8db37+d7bdWyD48l/6BTz8jb8LVOB3/c7fgf/Cf/bPIknB+f0XbaZFC8usyF2HxeDhL/V3sqnHWRRR1fi9DrZF5l0DDY1Iy1Cq4YXCTN1+GKjsxRcw/I7JBjBVu1fkpEbvkeSDRBUadJSAogIJM1QjWxVHUEHNu7VT2yAO33i0lKjlpc88Hwd1ZPu62/f5wCcw6rB1u3EeI6H/5muj5jD87cuQ2x+xUT6b9Hb5dMRI40kpGpNfeqM0zxotzNdCFKvQGzb7EbZlEfThGDOx8gvAMXjFcs6qlGLg7EuGL9WGTN46eFXr2Pf6le+gweUj20Vy6Sh3+qo8/6JAZjSMEBN+9+/4Tfjzf+6fxv/8f/m/wt/67/+Lm/s0zzP+6B/6Q/hH/+TP4/tv7rCe31q/oLTdeHyQ/UHz9bXaHJBqQ5SUebBKZzzJzSIUEaRhwtloAKJ9crYqSR+iFUUDQgVEApAmYFKoVCAbhQ8FKuQXIwASIwkMtaJmauuUKEj7O+QSiJ4W7SkAPDRE+9mH0M1xXY3X5UeBpzdPDU5MoX9Ecj26GbYdf0FbHwqBz8wZU6aejz81yOeMEWAzwAdbGG+Ojx6v7sfmZvEHT38uHXTwpN+/r+IPoA6UK2VHvRg3D0DngvT3HZNtDwvbYgvFxiFUqGbUuiCESuRU+V7PblhmuAgB0fm04IJs3mqY20EPTpWCNS/sYayKOO0QZActit/xmz/Df/uf/WfwL/+Vv2oPm57v5/7g78d6fkQpK86nBzYRW3jjbVW+CFJKrQjueUytpakI1OKTnoj+8veKlEJbfGM+K26QN0Kmbsxurv5ZIQjClLB7dYcQM/SyAqFQxzdG1BCohB4FGoA4T9hNE2IW1FIxH/eYf/A9FFM5GOuO22nOz3uwW0O4/d3tf48L3z1cUDT0tIM7PT1pyLGvQfvMcrPWbs9xPLfxekbp09u/fcnx6/aUgl53ei73eu7G9Ti+wkW0INYNH3sXOt8/ostnPL35bpDtYZcKH9FH8eCVpQiJzcDHZ9+Gt4TYOaEGVow3stgczi51UpDzglyuuF4vzHlDRFxXrMsV0zQhxgnvv/i7+Nl/909BbWpZrRUPX/0KQ0o8BwJsF9u4yLzx142yFE4qcyDJUUS+xhRRRTCFgCiwWigwiKryMzx+NDGvIIxvKlEizHcH/OC3/zTy2xPe/9pXOL97hE7AvDvi/vPPkI4z3l1OOC9XvHr9Cm9ef4JZImouKEFRXu3wwPCiqR3An+htTndzjKjxS9aV/7wpY9RKBfeB7zvWutmk0D1fQ2ArUwLfu0bvOBrq+Jmjuob/fGyXe+nxUQrpzx7mAb8uzKgg2uVNt6OUyBN3Lz1Mg8HVz8HQfmyMXNWAidoYOUR5a8tXvYThnRIxRstPU2e9mOivv3fOGcuy4HK5NBEwGumKUjNUC1wHZpGKEDJSWjFNM5Y1ISWG197LCSPdc2aISSI23/zMLW73dxRYHtTphYVxVP4d729CizfEYENPvdoCYT5W1JBa+18dwA6JEXKYMP3EhN1nbxA+/xSXX/wlRIk4vvoE+1evEA8T7pYrdrVinneQ3R6AQGqBakaZBAqOj/eNIQ5poID0vlZ0Hxb1cx7wuTVQiouBa9OJ8iNfl/Z8vY/UKbW1lbaGNWTRUOdo9+cwrtnb12xLIkPv8Qs9pB/fSiH9ya4l0i6A/33zYqVhFPDmZ/MYAUMMHsR1DdEfV8WoC9uh7u4d1VDAfjO9yZRvJRJaJzqNs28AaYpIKdBohq4JVAImOVMac8lrM8hR8qSUYhhItCJ7bywuBYBkxgLKkLifu4XtVU13Wtrm5jzRcVf3DYSfy/f2O0HxvMA6nQWf9Kjira7MQYPdC/X7ZvmnCBSxzdsQAQnzkfl6jCxplYkq65gDPns9QzRARbAIWT0lJRpPmvAYCqY4kfFThZ0rNEcaYOXkLVvaiJFjMMS4vw6ICbQBblwVta0yH93QSlFFbTPa6kSNS3E0GAVru7nWviG6B7cKwNiO1t9EuT6kh6rbdOqpR/8YLwn8KDwlgDoolD05HNSzfIbsGMLXYvG9CLocResgf/5C3AhlQOuqe0R1z/j0JETQdkrfLd1T0ivEvgMKH/DpdMLpdMKSV1yXZUNLU/CcvUPEFzTLFnxgjT8r0RaUGHJ6myPbOYLliXme23kBW0/Z43V+joe/fWitTYay9y8KhKrIJSNUekGGZmQXqQRAYkOYG+pr7WlNqsVyrDIL0uEeBRzSpCY1oiZFotGiAc9fA8PjBpbRJTO/NCBFYmgiYLANI5ghb2N7e63CpoTTKOmRpOkR9SiCXOVdmjDPc+uUqcas8ogg+FBa4OnGzlyqe0nQCY2u4zb09RTi1nu+9HixUT5HM2r3WIl+Pft7wN0a43dEQ/q0D8URoAM7HjZ4niT8nWyT5ZeEBSKkR7nnad321jExvlebmGTH5XLBu3fvqFerdRMOjchasPF8TMnE2tCk/azvvtLYTXxIEX2k9/acbx+iewJHKjc7/iZ6uH2t8LkUtcK3zQG96Z6ACLJmqiwEcn+tJ9gWOFClUtCZ2TG1ZMuQ10djNIn/hYd+CrXJzE7CINJq60P7l690tWdS27XZNalywLByFEPV0pUQ1Q2hWjhuIlqCTRQ0oq+uhCCQllq5UbaT+4C32WwVgzGOPxvX3ccc3yp8fXJyjhMMu007Mfs7EZK9vYDsoRh/5znMEMNLRGdNdI9xC4Lc5ptj3B9CpBq3ecUxFBwHFKktFAcUSqaXPJ/P/JwxetksfCcw2AOXThcUEXJaA5rnctnMIAnAiPAORlSA63WFILf3CSGQkmcb2IcR7u33PCdrsaqAqNr4ApLnRYDUEk9tf8+6r0AlWgWDhllsFskUPLKARQK0JkbhBrTUau1S2sJlgECPYZNtjXAUYoVU5re8E720I7B+Wf8ci4yYSnjJwhckp0s7YOVeK+fcPCPGe2R2Z8GKbRCDYQJwzNojlL7ynxphy/OBzUbwMcdHDfi5PZrRyfZn42vUTq79rX1fSjW6meUQz3mM4Ftq3xDGMNVf89Tr8RxCFMzz1Drub0MK/5wQwjAdrOJ6vuJ6vTaigujTvMG9nUhiqDf83I1fAzvsPUdqntKQUc6hHAwKsLrnNmwVrSa7+ETcsYXlvpg2ngVeJzaoH3adTUleoJJsc3ASBr9qFYRKo6rGQqq1cJaHbWKwflUuWgPWWhhPb9TOy86tWlTC9V0t/DQh6XZdNHCtrpvkw3q4XkqpuOWn+nU/h3046FLQ100MwVhAgt5Y73dqsxJbLuyfUptSw63u8NZBjGvVgaaXHL+uksjtLvCcYQHdpHqSroix54LuKYdXclPcbGM8YoztJo8Q9Bbu9kVNw/SbMb7mSXnG3vNyueD0eELOmTcyRtLCpHc19M+LiCE9+ewQAlu0muexc3Ev5yRlCS1EvA3Nx5qXRxbi9dvhvjN96wZdqzQxZT4fGqYtE8sk7LlYa5oza/xLK42qBOXUtBDNO1kOByKlYewZVCBIYTQwrj0DRniyJgPphlcrz0mtR6S9joZQClC0AFptrXhYyxDZl8xYUx7roE+Qee2bstcvVYCYEoWhN15S26Id4rf28w2YdJNSPVeuGWU9v+n4kTB6xB7MuJiAEaDo/+0nSmjfL+rWoOUZQ+2HKovq487Uc7Uwvg1ahqqKLnbEnzeAolZcLlcsy9JKHmOY63KXTcmvGV9s9U0Pz8dzUQnNKGOQQSYjECQxxJn59QDmbDyA78o0Fm21hCF0guvCGngCA38AwOqCAi/1EKkFbFQeYJKeNHiGikRNdVWsuaKGYPQ9esgAJeFB+J6o9MLQiWdRjcMq7DCBC22D3sWHyrI0ZDVRgPNDUM0BK9aFMHO1HDhXbZuLUw0FXtf2cLILWpUy0gZ57X3NGOVC0KiVzSidohgEsZfIb1dhe69bzuutx7x1AN90vJzRc3NmfXfiV7SHAOllgbHb3c6uJc/VRmVrpFQjjXqkhz1/Ac+Fqf2GBDAMM8NTBZrYEhdqbTcIqEVwXRasy4rsY/qKyVWM3g+BCnXBw0A0o5wSSQIhdu0KV1zQQG/JRa9wurUaqlmHzUgsNw0KaCnD3Q7NqFTRKKsjkOB1VQ+T3SAFzAMFlJyEbRIx8R6VUjk3BBMQEiCxQf2lMMe7LtShLXmouSlpfjFaEzgXBI00eClm8DaKNmyHagE9/DUztM2xoNaV4XKuqLkghmTRjaA4/9k3bCFyqoOBqOW5ChOTVg+jFVGTrUuryIp57aIoDk0NOEgyXjXDel/eFhk8sz57CtLDcH8mz7uX54+PyCnDzX/3jxmxJdcI9b/ZkHEH0aOumhagzUuUwSg/fNzuOB3wsdqVPXMdPYoGhmSKDhSsBeczvSMqa1ylWN2q9T7GzTV0MwdCSBa+mhhVsF07cLFU6eGsI4OArcdIj+iPLVKmvCtJbHpG3QP0mmvLflQQowdYrtdjYTYCN0sAqEBIkddnzjiKgoXOiFJpkMFiyJL5fNbC4To5s1c0xa70UNZiHt6edZKBANDLZAKl7pDde2iAFkHRbH2sFahAXUnGqMgomRtTSjLUG7nAq1SUwuU0JebZ1XYiR21pIAYWuQd0j9YiOrGooINcwT/Ho5bNIc0oQ9gSG0YPqb5W1CGtXn9+yfGtSiK3XmpDr/PkCT189Z1Ogm5eP+Y3/PstV3BzO4YL2v7KPG/1xF/bTbFXtvcruRiUX1DWisv5inXJ5gWKvUeldqoZZEoJKXah4tEoRSKCJAQzzCYHIGjhUsurg3VrwK5bHPntOUs/e15jGw9hIWew93ZPAMCkSNwbl/ZaX0BeElIrkqMRLgCYlGMFNWYTTFYEQM7V6GdGfLdyTC0KEZL+fdyhKPsZJYmJXbk3AfjuFVLJRe61FiAXjmZo4/kKPXuxz+Pt7B1CU0r9XlnYzPMxv/VMeHj78y0GAmxFrr4+vLzFTxzf8P/uYaq/obTn/THHR5dEbpNZEfbKtd/zh2039nwIgOm62o62OeHRMPtnPD24e42/YijJPKQxd4bkvv2dWg67Fqw5I68cgtPHpwMazMjE+J8xQGLAfNjbhrF9f+6rE2CMHojlRr4obfHxnvg3ulHQFpeHxBDWKQArGamIMUgqv2/3jd8rrPwAosT8nfUwBg58jTGirJmTrGyQ7rgpVkNlS+2E8VwoyVgFrOFZcV5FsNa1bSi1mqSJTV2GePhnpHpkCCqChe8iyigBAblU5NrZRVSyF5TKzSzFaFHASH0DhZmb4kKfjQnZOov+dfvft2UKe01Lyfoau0X6x3U1pmYbAAnSBR5trfMzn1nSzxzfyijHQ0SYO3l/2ea3FpwNJ85//XfdCP37Dx3tPWAGrd1bcLGyZ/BDaLAIMJmkRrGxUGmeEKfUSyWRUHkUz+N43fM8N4RzuACwdJCYGylBE44Y8HPdNt2Ocojkx4yiSvzbXBjKodrCM4OtAnRCubTPYegmUFucDeySgKoBxdlUcWLblRX8y7oipmgIJ1lZo5RGrd5Mbf+vglIVIXKujID5KSdXkTYHCxGhRIBLe0YKqVQnCEEhVnKtKsglm6GRUllFkNKEFAOHG2lmiGy9t57+tLVTTeNI+oZyW5oSy2dGcnirUQ9kdMByVOXGxg24d+18KPy8tQ1V2YyMsDvwDX64Hy83Sg9f1UIs/0BfBMAzOxA2P79FWH1R3l7riGQBTzeC0SDHvwshbJg3Lay2iCmECSlEgipTVzNodc1Aoatoi12wDc9brdVfVwVVZ/YUqotP9/Mpur0f4qwR6+kM2onWasV5rUKDdMaCL8B2PtZWVCvbs3rihgKT9WzghECz5VjRwKKQoEr5EK1AruS0tnCYMR3DV2GSxbCZ7wcRoxLyQ7lvkG9bK0kJcBKGgX+1cNNQVSpL1AIgA4F82xAsKpGAKbIMNaUE1JUzbAaPR8Bl8FB2XwxSGFIjaQh9xNMuEH9tTwXsPpuYtXONeznq62NQ/z3V850c87L+ydvj5UBPGOCcm11gPKlnX/tMyODAzIdfhGatLUdsYM4Yvz/vHUd0kugf31RFsIs2WHS8BrGukUAaoLS4s5MfABBd8M9HQK3Bxvk5ZxIGMACCaNiWbz7BjCog12wzGyu0Whht8nBaYSgwjyiG34kwBI3RQl0noYO5UeyL1sP1XJi8SWQ46Oe22hiJbIbZ8ynGIqUyt0ZWaAz2M240VVz4y6IWGeREEFBt0hQlSwRZKVvCtjqYCBUQIzDNpPXFlBDEqG8A8roCNZsx+3rgRgir1/q1V0g7fbay8dzmOXar/cDR7CYwWiHoE03P1kBIeHQGY3z6RtjD2PFfatdGhLCtmb70+HUxesYP/NCHbjs5xhNkd8Lzn4XBKG1LRy9nuCy81mrR2NM7Pxby+8lUiHFVg3t8vzYxypwZQCsyNM/H3JOdr94VIwg2ooK4gw9pZejqVLpan7YiCRKSRMRAxsxaVxQU8zSl9/H59fgZWb+nooMvqgoJilRZ32VoyOuTwA1AVJCdkla1sVuquhfcRg18ZMbAsc9xdYVcKK2CEDotjjunnbQPA1YDchgFZENga1EkiXx2Kze/IK7mU+iZK72qKhXM4dIxgeugmEdWyNDzGND7S3ie8OfnditgfVh9z/frjRa6io1JlHbPpa2BsbSh7bX8x1sOWSTi3jJgCh9xfLRRfozFeyj0nNFq/6Mnr3OTHRFUR7XUPZGVDHQYmbDNJcYkn+/RizedfNZ3PfTeRhN+AuAKjgzFlDu/qHNDPezlE2bKRuBizb7jGnm6mi9ti7w/5KAEaVgJ8VrcwOG1uM29JUmlHQUGAJihRQnGwbUGcrWJ2kBHOfkJKGVBkKl5z2aEQwgYQtgsKs97JURoMBkOhYlVF7uPEajC+m8pRJrVP18Mjw2opSPC0IoAvkeyMFZbnVBNjpOMnZwLlQ5qJ9arDMRzaxTTofzjG32LCYZvOunEjdo5ylxH/JvbdV/g5IPeq+jP1BlUgg7wvfz4KKP8kEF+HfNmuPqPOLb0qP4Z5jFLj9cVXhzf6m6GMO5w6DfKPKViuJd2mp5/bq7JPDYRNW1/ow1Nq6jZOidKJcyfgbxWVF1Riw/cHUsRPVflNcLGn7OJOdjq6eFQby3qb3DzvSGSVQRSmfeVah0TZnTbpjYqvEvspZexBY7nyL8b5UnG58Ic0nPiaobDe4MiWJbMgr/vhdXCdwDqpHgtgGRoBQKog+sE+uATiixakupdLhmxmDGjo7IhiHFMncVEo2SHTL9hfbMO2+/h+bh75Vv9YWzXJL7ucCf2cY4M+HWEr19npDwZbcZRm9z8y06u/1lfBDHGJohb8mCQ0o3vQ1KQY+jhoJR7ALVFuzHC7avhu19QoKC2XKka9axWRVbFuhasa0UtgjVXlLpyAKw3RA/3pWvGbKMI8fxx/G8Hq8Qaqa3JcQTQVDq6qxz+wZKPe2egyX7wdRW1EGvxjh3P0T2fDQEM92O0PkzmgW68dQBOmgKgCCrsHljdMbUUgtcWTfcoqBrZXlC0sBvHykCaayv7MiyopOiCPZPRO7hhzkjAzahmaxAY71+1PM+DW09XaLyNfOFhlXTD7Wvi5c7ldvPSj4xhP8ooN6yF8UOfADjfbLTf/Hk0oLGxeJom5FzJF3XApeOPm7DLz6Gfuw239UV5c21PznkI89ww+WNv+WLOogrkUrHmimVVLEuxcNXCbFPI864G/1rXddPX6df5nFEC9ALu0f0aRdCQQi0VOS8gGFQRU8KSM5BCk7swk7R3D6hajKQvm/xUXbYEERl1MHiglGhobSfbkzuaWXoAr3stQBUS1xUkd1DuxcwiBFNMsqZkqQA4VUsltZyuATGqQFkBodBaMZyCaQuM1E7UE9ZYDiGjiXVnpzkqaPkBIVRMs5PqAxCdzA9uLC0MHZONrz9434aSi1pd+hvQ2/H4Vv2UT3aCDxjmtz16+Ekj8fCJ3lKxqQt9YHMY80o7KwtR+L3/Mxo0gM1DGM4IrDk6kFOMdcLXrUvBdWUIuho5wfNfqBq6mrf3qgBrXk39gIp105Ta9Y/XoaUaUuvppD94sbYn63hAbzzWws2C9VXWGLUtYEWSYChvgYt4tZvS3r+asSbLSxVaVuRKmRPfRIrNRAlwb85maO8lZTMxS00Aa8ECGpELwWYtzDNFUDUhKBDF8lQ7L2ZDfdNseRsInmrwdUMyhDo+BFgW680JfIsY0WqmQdBG722e/ZP/+Oa17QbpKVYdz/sFx4+GPKB9Z9j+zfN/C3DX0Wf+BgPatc0RQzPQWJVawdXJ5s9/DnMJ9ywOyLRPaTufF4udtTM+CZem9LxvWRaGo8YeKgosueJyWVFqJUulVHg5xDS7+L0DVbbLc5H3eimZOdylW+O3UOQZIUI0m9fK6AyRFRTgAcnctogpWlWgSpV1eL5XmZ9qiFArOTjn1nA5iI0TEMD6TDNLNiJAzSh1pQe0MLrxep1QDwpG+8DXACKk/O8tQVtswwsytRMQjXDSYe99C5Awwxn5gu06D+6hquMFNk4BtQFl1dZGcHIFSPUrymbvFr1610xD2d0c210BQaHawSI8z9jpaPaPwSj9uM3Z/EPHnKn/DuhQMU/N0TD+13OH8z39733ndtAD3IHBm7sWrxDau1VP0r1Wx63PON6t15DeryUe9qCGsLgZioUylXliLqaUh2DUs4o1Zyx5xZr93KMZs3tGmGH772u7LmkGI5yqFQDSBhXrmk05HljrwntTGas5gMDmYqocxATk6woIEKMi1IJg6CuU7WGAGG0uoJaCiGLnasgzhChoVUgyJo+K5dGKGgCNCpUMr6n20JiLHfAbbWNlRXtJB2iLWY3sUKtAwkwOrdAOo/Ab75FkQ/kYTlaIlGGhKTazLI07y7Yx6XknAon3RkUstRrjxzdoASLz6DDo/wJEtdnyhXYW/i9r5x146uKpxhZT4Fmrfeb4VmLMt8DEUw+Jze+3hjnkfjd/1xYw0EjI3UC8Z8kZ+jBlfUHVsU/OYHHPZdQ7C9SMxGUksXl/z1FqqQghNj5sLTDDD1ZnY7mkSoSuRFnzCmgJbEsy444yTBobclK/VvcEzZMDdq4FVVaEKFCs9FyC1iNJnVISoWupqCUji3F4YgR0Id1PwOK1ZhsDDxqK0sOICqIWBFHUbM/C8z2LekRnu0/RPIXaYmfMV2yDVQNOXI1QPNdvubqtg02+bhFRoNJBDJEta4FlIQlkASFYKagFOR5qd+MI9vkO4jlg1ffyRKqhfd6mpVDt3imgtWLNtjEJ89kYzWOagbac1Dty4BukRzf8uxA8KjKC3Q3J5euOFxvlt6UMAU+9q/2QIcfwu4YkamfqOPHYH4kIG09FLJ+XAEE/txBcP9aMyju+Kyivr8ypgsSWzzhC1ryBFbwZPfWBOdVYNzFGGmbNDW1t5yi2+xq9pgVsAtvt3YNsPXKrA9eKGqyDXypCQwYVyMpiv3rYzjKE6/CE6OE34FGGAw9eZ/NCOsOtAq2skTIcNONy9TkLp117iMLGDLk1CoCEIs4XFgNTbDP126FofFJ1xTp4lt7XghpwxWfFjdH/rq2NgbYoNxvdGCQyQLM77DEpbNHEYLAyfx8qva+0WSvSNmSLg5+u3fZ50gzSN+AYpHF1uZ5tZckQzX3D8etSHhjBnpeSC8ZF6HWg23zUv4oxQFoFHzCyN3c5zy5imJrxaaOnmTm03RPgRq8mjGwbuz+AGLjoLHxaVvJTU0pABOrqxeJooV5Evl44zbmOC561OJXeARPkZnf28E3LBhDw0g3cU9n5eQGaotaGRpsbF0GTCqkFNCgwp5TmMahEF8SkHCXQ25oYl8qwyA1cqaiI1r8phieQ5xKBsvBnEkmPgyDUDqQA2EwJc/DEZVUgtQ0F4jySaqasiAiIYUYSNx4fc6dN/cDH0IvERsoA0Poi3RA9G7zFJzrKzXKII7eA1V6tra5I7BvFxrFIN0owZGNaRA/qUQW1n+oQgj9v4LfHt54l8m2OASzt4ZK4UsDA2LFckN9LMyg+RS7ieZ4slCWwzr7BiKorP6t9ijexwgwmWHc9d08d/toL4THwJoYQsVrPYDt365bQaswSda2hXpd1ooKYdIcr3rlcvg/LLaWH7bwdAi3uMQtSFFMOUNOzUYhUCxcVVTNijFjLyvx6XeENzhtmhFgYKxEo2VrtgCkRgcxrRtUACOl9jAwqgq5ABSZJKJX0t6CsKSYUnovAaIG1RbB+T90YPeRnr+ogMmZk72C0vKBMAeY0IYaAWlYEBMyJmrR+v0strd+ybeieBoh7SI+igOYlm8FaxCXBBu8yRGYqxEggBSNtBCBBWgDffLzUr80RN8QPfJz9fISnDB/4uQfuz32o3Px70ykyvOQ2Z/X8UjdJuP+BIJcC8RmIpWKapqd5b8tp+g16Uoy3DgDPPWksbHZm2UOwZH5WLdwgSqZ2qnG9LX8KJlMBdjzY+QqIQjLkNSTZwALVssnJ3VPWzDyQC7kgSESxcLIiN0CjaobUiFpX29wsOmA8a/fBvAoKAgQF1L2JwoUVQAZyy31VwZl15AkHVaQQqSwXAkJUZFFMQZnbBw8aSw+Rx6duoBRPj9fCX3CDCYFeqvh6aCmJWMFfEAKNMiV7nqWrEWwaEpKV0QyVZ+BCqt7Gg7pKIYRKhaWgqAMzPBFXz9Pb8FVhpmDJuTkUj3e5tMQ8ubczWn32hWWRjwpf+45++5ttfN9zJd38fDRI/+2myDp83Rp5/y+GnmUtbO+Btg5wX5ge9jUmz80O6bv3eCEighQTCmr7/FIVIgmlOuQdkFca67qa4LAT3z1t8bYvpaRGjAle3giBxWzmw84rVYTSqXUKcNSfkMXSXLQCtDSf32zhrxowoqEBHv6seH9hIaggREF09YMAC/U5Js47LVQGj28OgbU/bdTFECw1E4VKgYZiGfnQFdFCSvPwahKbgo5KGqDSzxnee9BBkuEZeVkuIaJKalFSCMz5Q2sFpEellEtqa/A2fPX75EhpXx/BdxReg6Gn4n+jjsI2ZkMLTFo429ahpTPAVuXva46PYPToEBfLze/6jRTbBeGo1HBxfjBkkTZHUpWLtPNZDWKWIbj0jby9V7BcrgMaPZ93TZTQPKYKO0PgPEhlU68Y7C4Qa5Y2GXyXyqgGVIAKdGvJqJX5kQo9R4wBIQbKIcJCI0QEyQhhaoX3EAAtBdHuUYrc1SUJJ4TVihhszJ1mSoBEab2a7DqY4UieYDVPnwBNcJvkZdrmIIFk+kpwKwRQHU4FQRLLLhra63i7HGSJAHJ7Rv15C7RSUd1DaQS1kNpyKLiSAL8TEaRg4JVU40llUCU+oCjDfXGFduEzlsgoIQzLiCqBPvuEU7wDsgF1FZzNZ5tJiAgDYdy7aIDeSVPEfKRYNBWEc0ljGO6nvV5p9GyYqMPmgbZWRxDKzUWwdUpfd3wU+jpS7cadxgENke3DQ/t5z5vGxlFVLu51XeHF8DEvsMCwvVd/bzGV8fEcLHRrSb4juVaP9FzWdkLPu7yYrEAnBFQaAEEUMx4R5JWeqqiiWr4BCBBN51W3+WFsmjL8+BjIoiHLhr0SCitLIKPqiiCKNEXU0jvgW/hu1y5WuKYxamPKeG1WDfiBRQVBol0Tr7VoMePr8hV+/1T1pj43PEr//JYOmIKCr8FAgoWfT9XcNkRVNb3nwjKH0CtOKQJSEYvjCwGeKuno0eD5qQ5nFFkDDXxNNEMJtg6Zw4eGHPB9KvpigIk89P9WAcMAhgKMKDySMDJ9sJ5OQbV7jXa/mvkHRh3+g3BzP7/u+FaE9FGW3bmXt3/DO+AhVDfITs1iyOFq16PBD5/ajJXv339+e17t4YnT0OwOixWtN0rk3kzr1UI/T5uR0fIUsZwuIESBhAwJBShDHGLaPKyu+LkYpc2kJWOC5WQCJIH1XaFNgtYVEI6N4yj0rgvjNdnhjrT/j3atoqZZZx5FLd1h+cg8vpZm5Hw/i/FvDkYW/X42qc3IJnCJAaEExEjwo2HggcV1WM4sIpDq4R8RXbMdhAgPGJGiXWu0OaQSiSKjf34POfs5EkEODUTT8fz5nb0mtLC24RSD4oUrwrfN1KiZfN6KEC3QHvLBcYv0Z9I3MWsO2GZHfWN6wfFROWXOeWN4I1n8uZKISG95Yh9cxjRN7Xcll9b5MQod+8JoSdYQCnQ5yv7ARo5rfyRMUHrjKw9X1lNwp/a5iGpgz0aeEOheUIjwlqqQ3A0c9uWep5U8PAgX5Y4aqMrGszFDtDyM4lMVUBOhUoUgNh6rn3d7+AKGoyFCSzbpCsWoUeT3xjfMYj2g7j3ctbkyA4bn+NzEr15GYGrgxu7PJQZXFKwI2ntA/VCjdwdB4zAjCEN5Mx4SPmKLZG5zSkZLan9vG4ADaMYguq370h0628d2K+0GI0KCgFooy/F/NnbCIgrF7cZo9D1/g2HdGVSIkaLXzuOZTfC546NKIm3SlBnR+LtbL9n+WwAUnz5cUEpoQz2pQSrIOW90cPieT89h/Izn6k58XdtO7T16RlC1q7H7PIhi2xpzh/7+bpTBBZWNEkbpSaAWMe/gxnkDf6tpBSkLxyEoyrpYqKdQZEBYVqiaAQ8DVeEKcV6rDYNeDMs1APVeJ5OCDBCl0hzsOcVEvm40CRApWyNzQI3Sl/QQvFXdkDcb7OAPAoyxZCAR10Tv6PC9yo8AQIMaQBTMoKMBPcFawBjWu4cb5Rv9KY74RCt9GGEiREPPh3UK9O4WpxW0UQkD6tKEziwPjalrOxEP8HOhkVYoQqgNFOsXayvIFeN9v+tXgJccHxW+uhdz7/ZNJPXxhH1R5ZybuFXO9Unoy5u6dfW3hgfITVjjv9uSBzifsCuRBShi9Pc2YMc29GbAngMND1hVMc8TykpdnWC7K/+Wn+bDewDQw7krRmmMmVrW1glWa0at2T7flO3EQS96FR+E048BYge1YGPggJ4QIhXcW/hliHQM2IwNG+41v/frH2lx3XC3M1Kk0dRGQanbZ/Xc2onWtcONjUCMqgNy9tyFwMyqsnmvtolIB/9GB6HKmi7JQD6zg9FWyQSGOA6Q4w7G9UO1hH7ObV6pWpKgPcmp1sOpDcB66ozI6+WXA1x45p583fHRygMiXSVszBHHiVZutH70kod34fcQ47lxdqXoZsGLWM4CQ1RrRzmfRbRuQo5q7Rp8IPYz9boUiQK1tpSwhcheGlHVpvxOLVIvlRAKbzmO3yPAdmIvaZi2aV2pHRWYT2qprYRSai/6iykNjEh333yihdMBMU2Y1ELbECGSSbe7iTo8OuC16ebf8b5TSmN7b90A21yVsB0l+Nwx/q6F0GriylAKgZmHDkFci6wxvLpqRDegUrlpiW435GCRg9gw3mg1RD4zNCX6IEBI3hRQNykPt2sHwm67lzzdsJ9ZX2ZLrTadJNw03GMPbvKjjo9ucvYb3orulqOV0g0yxj58Z825SV30GiSPFssPu3QIAdlKJnaljKrc2wVBitNNeNNJwQQ6zDCCP1R/yLAdur8nvRaHx3iHK6MkQUwTtFbsj3tuNHFiZ3ugXkwuQ7+TP5hxg1ES60tlz2O1/FGavpBNdxaOApjnmQNdFVBQFoDRbkAKE0JMVkKI7N6PEUG5yKluQFL0WPt1FfMQUjPyXt/zrhgztEiqHrW0uEEEA3dSmCjCVTILlaEDOU8jGTTaIoJAojCCMeHp6OweITAVAYSJ+rm11f4CgSGIjYEg0sp6a7TyEd+HxZeAajMz6c1MfT4AEpWlMgPuHGNI0bhXRnf0fF19vIY9T6+5egAfkMDIxhKjgWAQwVKNikVLNUBsBs1L+eMfBfSMu+3IVfWxcf5zKgS4/uoWmGEI4cX+kUDdd9gUArJzNCHcnQToxeu+UzbgxjyxG9Q2RHPEsRd7/XAD9ZAVWlt7lwKNyKSgkXPseB7ex0EHf78OudNJWnsTrE4J5QItVG8LVUw9LZAPGoR80CrN4zN/jI32BVEEZQjMcNzCUPGF1ze/EUDr9zm2fLKCzJ0UE0IMyLEY5xT8MtU6cXSkdpClxb43a8TzPZ67RVn2fu5BtLITJIAUwCiTTQMXq9ESUWXzcezEeO2OIcSAdaVnLwCkuI/zZ6CYAjDvZgAJJa+WI7LclWJgc0MNmwiuDqW90dkZHOBP3a4f22NIsdy7spy+dUhfd3xr7usYnjDJZyw/TdOGoTP+7bIsbeb8CGM/l8skCcPPzQjtxoybwtNjm4e5dxhzp3YNH7hGljN80pJgXbPlvk4scH6o9k4XywWhAynbvnOwpdaIEIwnGwbNs2ETETBELkq6ng/k6eoLoXVdON/WN6bxXm7uyPCzMU9umrhDu5v/226iWI5rRj1iAB4jPHe0PD50A5bgxXhS8hpDRjhnhJVb8zSmfKfCsotHPeNzcuwhhNCIA7wvrj7PEDbFiBQBSQFSI8syEpAC0WAxkv84iNY/v19lvx8NsyHj/pn7TSE1mGf3u/TS1PJbSUyOsDv/25nw2oyq5ZfrCoUil2z5k3kVS6YxGKS/7zgj3j+3edfmObuH8L/r3RrbnKYZPwYAStXoZ25EPRTu//Izqu2upRg7JSagcHRAqaWpe7vsZbTQT4yKBs8z7G2j2OwR1baQ/JqDBMSJxpLShBD5+xQjQ0dlIByE4WFIAm8Cpjp3HcCObhy3MxQ9ull1peFEAy6itK4QGhVjBgkDawr0RrcbwCjvL8baoVGqhbEBZA8yZA6B15DihIzeaN7yRAmIcYIPvm0cPOHC58CozpHWaugo22UAKIoqlqVCZob+KUXEFBGjk9ErUNe2MXrZT9xp1L560J6ibDbfTbSgaL/nzSLN7sPb19Pjo7mvt/lkl9Ho5IC+S5J5UmoxQ7Lpx2IzBzVsDBjY7uq36NvoSQHrQhj+3vVZtPYdNMZoDcKKmrchN4ILc3W17X5v+430rhCGoY6+AjEmVJs+pSZ/yI0jIohyDLlx+3i9NoEK3UsA3KE9/G/3KLGXUjx/SsypmJ/6ZlNbaC8iSJJIUhdgSjPVIDxqdbEaeOmm9M+K3YDZbtTv9e09Hu/Q7drYfC83EYB/r56H8dprBeKUSIUTGi4sx4aCavDZPZWXp8wOlPm1KqmD1cZBeAQBwzq8iyVNE6aZQ4PIA5YG8KhhDTFKMz2f1SnQ1lPKdjhDZ80wx9hLKyj2bHNSexj78uOjjdJdfC8wj2FsV58b53qMQMBohB4e3hric4uAwlKTIY28AbBcjjeRxhBjwlr4uU5UYJ7Sz11VkdeMtNuhFNZIm2pSy4PMUMe8yQrcMXCOowMOyyKt9to2kBCMZ9pjHYZ8RGUlwKZgmRaq5dci9BiSJgBKMCNw82ON0rRhBK2pmS81bykJ0IKUpk2fpw7GFULAlGbEkEgLcu6whflOUQTQiOSirnmD9vMW0Q2bZlsLcP5rIIGJq7xtqPBcuy1Y7zrxsg7zcR9CCyWvluCgglIgjC5qURqld894VQCe6libXKgIJnspIQJiNEjZorkiYqoO2ppuaeJ93aJ6cvKcnXgPJgB8pEXio3LK3rQwFl5dM9QvyPVZ2yHO/OCu4WGohxy3UL1/L40vBlMYAHIxjuwYy/uubntW0Ipp6h5MhL6JolY+IZm3eFlXXotdU1VSxMYcwhN6UVPejomweavV2c4pNozG7gmCcEAtHOH0wCfYoqOhBgN2QrK+z5YHJayLecWBoL2Wnj74EBpGLRYqIsJHjXv3Phf8UCwXA46srYkeppEN29/wE8W0fdDJ/B846L3781CwhKG+gOAbADWAHLyuheR+UWeMeSO2P1cvt8Fqz2JgEVp/rStDfOi86MUqFQcX1r/S5FFG6CSKIdQXABrUQlVtK4dMMGtV0x59AXyuAgcwh9f8OMJXKn+7zAXnCqYYsWaWL1JKzRhLJZ+1NmiTO6ZAsF4X7PY75DXbbmjDSWuxG1PZ4KqWSbvxev5q4YogthCoI7EFeVnNUGxhmgfUlkPGXrZxYwm+wE2GA13YyijIFhJpExKG1ewAhrK+O1bNFlEA0NLwAKKOZhhSbAcuCCkgCcsRJhRk5Qn+ne9/qvSOMfq5cAGVUhEktQ4V98i19qnYLImweF9KHXK2W3ICWsuR0a25KP19tG5Q9gAgpcjwXcBRAlkhSYwL0bdASLQ81NOA2uVCBbYG2K4mgQAaFVW6VhO0otgw21Ir6vVi80XLZlP3w5IcOhQT+aorUCuH5EoF0sTeUg0JebU1KNYtksb1Oxh3qciA9W2aJx1y7dGFCmAVE4/Evvl4sVGua26G5++95oxoaGquXTWNatp9B4lmCJ5IT2VqBjzu9j63gQTl8RoIZnAxWV3KAEeLYDclms1N8ri/VsvmFNXDFLWMQoyArMLwyAgFLp4Ee/84sohMKDQEwTTxwex2O1wXXyDWlW/SG6YNaZ/Jz1nXxcoNAIQ/EwGiN/NaXtSuq4WLzqYSiBSrXVrJRcX+7d6R99eQwDGk9aj8ZrGIb3QqjYLm6CTfA3aPnSPKUGbzPoPXAUivkyb4nOk5mvf0SI986DhxXF9s+EGvjVfL7WmIvff1ueuw0+AmWem1azVx6iq4oGCqBSmR78rnZawly/5h+WmEdxMpKgqiqjVm8zoasNiMz5NioJXiXugsv1WTsy/kGCPWdW033m9KexAxNl4rc68F0zQ9YfyMNceeU24BoH5VYpKArK9BgDRF9gUKoBumiaAVdqXnTirmBRgFNS/iqFsQQc5jHfW5h86/Z4nHCM+yA4Qc35oXJNtk1DpCxJIoy7QQkdh3aaWJECe4riklLgQuemzzpYa80NBa47km5zEM9/T22XW2Eet9/ncjZe5ZYKZW8+RAqKY7oz1SsLuBoMG+xEgAHUdgqQXQWoh+Wrkhxsk2t4gaE7QUOMUn2HkKrPfRgUb4NLDOFGvP+7l1C+e8wkJOosOlKrBmjmMIwTY2ozA6nGCsrCDB1Bqo4ldrQdC+WfT77SfDbh+rm+DFFomPMMppmrCuq+WE3AX8JvU88fmvxif03Va2gzndwC+XC3a7HQ3ZQhreyG7s3kkuEoz9ryglA40KNezYls905NaQVH9Qg7dQ1c4iap+p7aE3NNnfq+V5lLRIydgvMqFqwHqprWUIYTBKmAGrIiYKEKeYhge7zbFbTVeZq4z30u97DJF9vRbGjUbGi0Ffr+Lh1ujZegpwm+P7ovNn5cV/94TmV1sPZt9sFQqWi2r1eR0KjQH7eWb64akBGFKmaNKeEkC9pWCRBqwn0qIK847Vc0sMHMlnDjcHVTUlQ4J+EIEmRi8lVKRIZfXovFrxj1IQ5ZXGLoqFjWu8370c5x5yzM8/9vioJmdHVJ1F7+wdAFjXdYO4+mv2+/3mv29LH+Oic3SV/XsOhmBjxAR6GLpV83wd5d2e13JdMc87LMsCePItglGmnwsxtLzLQ92A3mHQPNTgzT3vZQlCESINLYGTizEH297premZrNaqkRo8O+MJpwk156a050CNq6ABHDleCxdASonPIfa0QMQjqZFQgOaFHQlsdUOnoblh3Yawg5GOJS4/uIkxLw9hYt0vRmolAbzWWpCmCRlUKQgGYJFEn6xkxo3xsqwkFySBhAQJEyAJQEIfvkrDhCqkKkQqqjAU/fDhEIvlrsOmVwqpjxzjTiDTJyt6m7evD9h5up25CBpD6AgJXRJV1a1Z2mb4smySx8uBHkMyp2nCmpfWc9YGzNxA4r7T5pyx3+/b4qm191X6a92Y3RunlDDPCeu6bN6rhYoim5vrO7nnpP4zN1jyaZnLKayDAg6++C0T2xFls1GEQKkKtdwhRp/3QfK2Mza83CESUISGR4RQID64ZgAjpCqH4kiH4VtuZrVQsjH5/ykmLOVqdcW4QRr5troxoPY5A+/X7w/P35DMEC2YDpvXurf1z/FhRJ1ZNJm0p0JSYu3PUwDzKixjHQBdEENCSmLSHRECK6kZBZK3NSElQMPcDFLRezv7ROwBpBLg65e8DH8vgwi3h8AFWqjYp34v1SMAtBBdVaBBuxyl+JBZbXBgZ7LVtvFre9OXG+aLjfJwOODh4QGqiuPdEe/evcU8z917Drv2yOzxXNIfcANkBuBEK5P6WooNf6H6t7Ncaq3Y7XbDji2crSi9tuTvywlQwFqzeZoxhJMGqojXygRkm9x4cDcUewRUgcPAWoFao3F/bYVAIonfrMsFAyxGlon9ZWVPphuYe78ABST66bYFwaZnULlA3Yt6jp8BsZwwwLrmgUYsCDTILf+V9VJX2uv3xSOO2J6XkxvWtWCed3ZOiintDJGnmoAIDKyyEkMF9vs9LpcrwZTEcyqrK/UxN86FImhFWWpCSNxAbfNlOQropP6Ojvc+1H5tt4erHjb7dYzJwt5SCAFO0a18jPcBj9ctaDZjNSDM93MAITAsrujeW+sYyr4snH2xUZ4vJ8y7hJwLcl5xOBxwPp8xz/OTOSK3+cn1em2LnFOmKFG/mxL5sDHyoS8rYoq96RQj5Y5XHwNzFJWOtrpnK6WiZC6qUhTT5HkL38wjudYp4Mpztrv3nE4BkKeqCqTA3sWm56qExU0rysyWjWDihpACycuVGwC7sYptKGYkdmprXgcS/7DoRJESN5w0AakIaEjBhJIrYmA+F0PEdVlaSOXe0cXOJEWElBimqXJWBjJSDJim2K5fbOVqFZSaEKBItWKeZ8SYMM9zM1amGURBmXpkpORykBExREzzhJCsrhe5GdeFZHgnblByBcawUlRdEdPOOLeVCHUSxJpQc4YuKyjSpUwDAlpKs4lGfNNG6OUZC+MZXEbznLZB1whoghM0/Hm2VwggBhAKtNmYC661kFUjHFS0RWDlkx+xUc7zZCFmaiGhG8UIAnj+50boXtRzMWfVTDFiWa7YzROWZcVlXTDPE4v3QTYXoOp8SYMPrJ53uxm4KPKW92mgh73R0GDfrNSfywjkAGihqocyLVcwry5BqUBgZHWSBlgymmKAaGCdjz0MyJYTqp2PNyQnmaz2KYDR9ap5sRbazwmKnYX8gSGxSCMiqAIlC5BS2/wAA6hiREpT20Cl0vNVqPWHxvYav18cxmWhdAg25FbbplqcyGGbSErAsirS5BtytY6WFRKyDRNi61fVjKoTSqlIybjTEEi0srsNms2VHhgQqwsLaqioNRhvmrPsghsUnvZ40tOaQaJvudp+CxAeZwRSi7bUIYgbJvNwUR32+P69x8SOhayF2kvihqpm9C/EfT6qJOLG5eFiD/H6rjSGqbvdruWQY6OsL/yYkoEwnu/wM5aSudAHwGIMiX1uorfb+BfAHHeed01Nu+dqtkAtXCXIENrciNbaap7XJy17WKlQyyFAIwDDZPdI1US3oF4TDEjREDqTwnSOKYWbLVyPkbW5FKAhoFSGchrYVePGlczYluUK2A4eDdl0zzjPM4GmAS31Y5oi5jlx9HtmFOEN2uOmGqNYSOrlIO/oKUbOsmK+kcEZslJCI2lXo4ChzNWErS3BpqB0zdCwouoKRUSpK4JR3mKMRF/DSOJwJhZ7R6c0IxrrZ5pmrEs29b9t1tYit2rAFNqeCtfZ5eE5K5Cz0USFg2xDlCeGju3LhvXPH4bAkoqXQ2pVy0d/xP2UbbR5KZjnuS2YnHPzMi3EtJ+7MXJacC99jIbWQZqwqV86Awdg3uEjvWOcAHBxjvmsbwT7/R6nE8NqdkKYUJehmZxmxdxFLSClJnG/+T4igPKBFo5Fy7MKrGPCyxtg7li5cKohepIGRW+xXk0Ya0UNtXOPWat1S0Tk5Yo0JSAO81HapoOW/4mpsLN9yZhFE8NaN7BulGrylrXJb3h+NaK1GzzAcicFF1QVNXV1/pSyKAGqPvY+EsgJs22aGbWwHatkhu0wYn+tFbks3MhKtmllimCgEURITNeVotRWDoII1Buyvd8yREAjiofdtwakipo55qAnRdyEeZ2GuFrRulbmhRKNKFC7p3Q7luZv0Z5vW7OWLkTDI1TV9HGB+jKb/HaTnB0p7YuGcx4ALspSu6GMBAL/fppYAlgvFxwOuw18v64rwpQM1eLBkNfvsW7Owd+TSGnCuq7Y7/dY1xWl1A0pvsHT4g/HKGUxoOS+CUQyySkYvbK1SVJk3hINAWxxML0JuxACcgn0NI7YwhN9PqRqg3cATsyqOSMGoOaMeZ7h7cE9KuhG432TdGIC5102jqgSYHI0vNcrOR9SLYcLlou1im0L/91bBnoMP3/nvFaCRqVUhMT6ISpQaqGWrOggoF1QNCNAsOYr5nlHvmshyYPgisnBGC5ea0XQCpWI4nlmaxoPbQ0QxOJ9iNGYUHZ/nzuyWjQ2rJ8e2XVChR+lsJapYRgLb+vGy2Oq3TC3lQe64ogeobVQWZ4/v9vjI/opA5brgpQmXK9XpIkeC0pDHHNJSB9o4zVDvxleCplSwgpsvOk8z91bKRN5ho82AxuwcKhzbed57kAS0LpBRlS2bShqRAC/kdHqnyHBe3F9zHm1vCvnjCiJoImFoKWuiJb3+pAasfphq4o1ZtF2e2w1T6XnKEMpCFanVLsG3NwfMQRR266PIcy0kgS6Z+0LcLt4/Hf+vgRcpHn/dV3ttWbsFZT0qOYh+SBQk0JDRcGKXK4IMaLoYmHrFaVmhKoo9UrwxLEBZU8pxKCzCsSZSuiqBMVqzS3c7GuwF+shQBa1jbCYOPczi14V2jSCukfr3q0j+JuXVW4w6puFI7MDiNkJAze2Yv+2jqYfV0mkFtbocmaoUkvdPOR2ouqTqDp5eeRgjjnpPM9walNKqRlXrT4SIFrn/W0Ddffcrq5OGldH2Zx0zhvvN48hdowJtRTYZA84JUqCQCowTQmXSxkMyxa4mhEouKAkIGhCKb1uyxIJC+PVAQTpjcghClAzH1GIzDpSgmZOV45xNu6woIKCUSQAmJf0Bz/k8m2chBW5S+0AmDRsStGJ+vxdihGrslN/mmbTUjIq2w1gNh58HgWowBQEJTL/QwXWTA9Xa2lhuVarB3r7l4uMeSYvQEgJxdpGBEoJ3NB1mEaCRAzeFhURw4QYlRTFG6P0ayl5BdAZOO33Q4Qm9ua+qZbCMp1xDtDHrQfmvDBsoRn4iK0YvlNrkx21O/e1NubHywnpeWmhXl5dFV1avuiF+v1+BxiNqY8j2KKlvtjTPKHkDITYCOyt+CwCQUIu2dS5w6YlzIkMwCALKBElCq7LFWEyUComrLmgioGtBUjzHporSmVjhhhgM+8OWORKyC8QcEjzzrr8mQcuy9pqsvO0o1FLhISA67rCxxHU6huIRQyGvHpfooBMGC4CCjExIJjBwT0ZLJ4DEmbbPFgCYQg41ladKO+81LGQ3Q2w5mytWOYJFHC5SuZjaDNBfTPiKIEu78LnCQAKLYowR+znHUKMuF4WrCtb57Kdo48RzJXpQa3KfDFSqWHVyqZgK9uwPhlah5FWa3kTQdOjCDZHxgSmJ5kQQmxblgowzTtcrxdGcEuwCATt2pQ7u23M9rMBimeErJASEFOCSoTPlZ1T5MiGZozeGxwstlADxCqq0Ij9M36kRhmC9PwsuJgxk1hknuA8z7guV0xT2jBCRiKBL2gnszvXVcAui8vlgsNxh9X+hr/zrcd3/9Cg+VEFIQRK58dEDmUVoKgCQZBrwaQBkiIu1zPEQjdIggQOP11NhQDoRHM+bM7fKFr5NzGiFOdzwgjuNoPEoHOBompk2IZgnFtBaJ6IYA3nXAqqJoJIgsGDmNCyTFasJgpMIOWZkAs2cr0SndaWL+rgY9HC4Mr+svZsRtaVf++Kg7e9ij5cyQkSDJulXVsjHORsIEfFsmRUBCQBF3rOUFeDMKCmttB7uA+wj2oEAVL4Ypig1Uo2sS9lFW8ps1LPFBrAxsvo67EgmGrBdvw5p3CR0he0IDXqHJH2XeKgIsBDWRBR1wLYWAbyd41jjZcZJPCR3FcvcDsgM00T8ppZIBb+bDfvEGLnqlLisHvBTfhkZQcPzzyMjUGAyIV4OOyZw6bUFqOIbGYz+OsUrDOlacLpdMLxeIfLZcE09YK3yyKiglSxaW43tpSCyTaN1qYG6bsr0HIMEYaJnH9BcKeqoA+pceDBGqFhEhfmfUQqwyoB+gh5Pvcqamrn7FyoLf8TwMepWzjbwjsP26ulDzpuVl014HaT9Gfhv2vtUUNO2kNI2P2WFuoyJ7Ui/wB8bDwSX4VaKkKaEIwt5CoM8FxZ2UvpJScJgFh9L4RoXTasyzLSCKhaMMdpA9SMrCwo+bZVKN0pvgnZ397m3/ZTApbiRthpmzGSFLFq4fSwwGdUCoBQUUsmUBu8r5L3otrm+JLjo9DX0dM1pNRJ3FqRUrQpux2S98V+O59CVZGmHa7XK4Ggwh7MEBMeHk+4e/0axfLOUnIz4pwrFuvtHDm09OKCpRSkeUJMAaVkzDNBmxjdeDJKrbh/9Zrho4jlykSMU0q4XC6tLugPqR9iHtRCM+GOeM2rAUE+Ro7/L+Y5XWNWVZGsuMnO0NDvCZw3CQBsCmYq0KcWZy22aMa80UAw83AjF5lexHOgEaTolMeqnvepeRTLn+25wuqFpWQkEzRWLSi1ImkavGgPbRvsqP1uwGQ0IwJ05b0qiDbVilEGI1lFVZINvHXNa8SKXqtOwYw7dWSd9xKAsgxUc6Z0p4ff/iztOm/ZZ1ybBVUqSvGSkxWHHCCTaqQQkzBRKkQUYYohXqsWYbTmN/MG9PvQ8RHoqzX6RnIgaSQT1nVp5REuil6C8P7J8YLHMMi1UkoliFRqwW63owKZeeLT6bQJU9trjRnkRPm+aYSeS5RMKN5u/uVywbzbYzKU16H5GNHoY26Y/qCYC7jRiMdZAGgQxVQA6M0ivIBNQKNVJw3NnbCuBXG2RmoEKilYAWycQxlEKJRVuhpANQAmDlO5xnPxZ+AAG8B8OyaGe85JZc2XdMlk1LutMZJk4ZOvb3Mhekg0QKMUD+P670nCR/NyLKs48R1orVBgylFqBWK0iHHMX7s3ooECag3OJE+U9rMNEFh533NZ2+YGVTgDCdgaZAf1eIQQDJwapVQUQMGaC5sOZPidsr1MpFPzRAQ10CiDyAcKNk+Pj+inZNeGakBKEdfrFUC0mlZ+YnheEllX8mQ9Hx1JBECf3DWlGcu6tN+7h/Um6nE34+6F9nn+Pu4VHk4P2O8PuF4XTOZpAcF+v0cuFSlMOJ/PuL+fkRLPY/TkI0XN86lSx1YnwLdmIoY9H+n/Aq3BVUDgyGpVtaihsiwfZQVEEhQrCPdRrYCQQeZodc46ACqZJr4h+X0eEfAREed1WE9itFCxAUMUGhttbiR4xBhJb3OEo4XkavkjsK4FtYrlkaQmMhAIbFgWQQjJ6oEEB3OtmKJ5R2NX8Rrp3XKh0bKR28NtaQYy9ouOqLwfHlb3nxN+8Ubx9vwEm3XlR7XdpEctaIbLNexA3HZjjBYZ6WDwVYAiQBRBVzr++uMjcko1doxgWTIOhyPO53Oj0qlis0iWZaHXyxXrwuGh1TyiajWUb20LwA37dDrBW624QCYalQK+y65rbiWVW25tHUbrTdNkhHfmh4fDAfnxzGbtYOFt2rVkKcYIVCe3d6TXd18+nN4FUZz5owoY9c/HuAmMV2BhnIigZMLsORcQvLa+UPPwlEx0YEZZZrBcxHm9lDXpZadN3VEcbJHWyunkflfr69GkzwmJLVfyOSEt9I3JgBffZIa8t3o4WNBwOCUI5z2g5nNRVSyisNa2qtBE8EwkmIyk12kjAJazQpgh4s3wBJ2CdC5u5z7b5zVWTn92tZqsiCiieS3xe1VqM7YxghOQZ5vz2jYEPif0DaJW5vctVxTU1mSgDTFWAUrghJYfuVEuy9q8oIiY/AY7M7z04Yiq131qUaQ02+/JvD8eDliWK2JMuC7ntgCu1yuc+pSzUUdEbQBpRNGKy/kK14XxUswoR1IrX3fYH5EN2WUuJ4BU5Lxit5tIq4oRWiuW64lAkHgHSvfKzRhDBCwvzYUs6dUYKcnqkWlKpo4H80ZxUDLooSXDnNqK6CpGXIYag0WxlkwVOK1c9Erp+1JWqHLcAZSCT2TqEGRyDYtcSyt8w+hxUcaFN7SbETZEUUp+kF/DHIhlMMuxqtUmUa0GaTNPQkVAQMkZqtS7WRZSDjkq0IzQNHlDCIjqm45Ah7YyrhuKU4bEjDJAEMPEzUq3XGvPoUupSJIMLa1A6a1yHlIqshXyC8fmSeUMk8CoxFXw15U4hUuNuAr7iM5qZeudFg5uclvTyOt1grqKsvFBxYYZv+z4qCbneINMjuQAQt7LQFqPRgrvYlO73b6htufzGTHFlhu6l6P3s5i/sf6FbV0WVnquer1ee0nFQxmQNeRhSkoJ1+XadtCUJsst0Bal81ArtrUk/9ZSLeONSvNaZPVUAydcXMlQU18SYvU5057xvMgwftsEsAFual6hUcwD+axKo4TxjRlI2ubnoTtHy7GDgiPOO7rq11KfFLS3KOnoMfy59Pf30JxdEClEQzMrSllRa4ZIAgnk0TwzF6TEyI3GyNrcsKR1+lO9wcNW1lXbIaY9i7g5V0eZay2o4mp9xrO2Ee40yIparxYVeAeTl108/LfNPlt+Kd4b2iOR9tkNzEKjZvr36or7XkEZIuOX+ckPkQWfOXLO2O127SGNJ+u/H8cNAOo1eKzrFaUsqHXFsl4QomCah5kigyG4gfUZlrkhisuybHKAsbthXDBB2VxLz2kLMfZkvX2edAArpdRyht59Ujf1PaATH/je0oyqZFNRkN4Zoi03Ma9YPbQ0NBZoRXw39BHAIZ1uzAENoYU+u1j88zAu2uodHx31HlMo3wxHb+Bft7XJ9mS1Axliu0QZ38NSD7935D0nTtaKCZoiNCUKTosr7Ad0IkMw4+z0yKalas/Fod1gfarsOMlAyJBQAOGXhAKOr2dbHUKBROIAIVSu0eAGiC2Ku81AW1rigfk3H92An5ZdPny82ChDCLhcLhhbsMaDlLktvEwPmnF3f4SCfXT7/Yzr9Qx/+VgbY3c7PaJr64wTvHw40Jjgl2KIbSu7BFOkC6xFmmzDlCYcDgdcr1cbWmrjsUH+ac5r2wDGckGrTtpCiFbwJ8+UuUkpHpp2YGhEQ73G2R6VAqiCWo22pQFq0oeuzN2HzQicZhhCaOPffABRB3QEXuznuMDEDUIpb1ktp8OwrNiSxXUzhmfjM7ktqt8ePdS3DbZ2jqmYh3OpFhESO0JKiCm1jbCtmyAmckwPJ0KD8TSGnr8wpQGL9xzSU1Elo9ga01CgkkF11gpjyHlgTq3Y6nmvoeT+eWKhrRsqKIAWhMP2jCbSjXW4Vs8vFduNraHJLzO1l4ev+30v4ndVu14LG3MU79Jw1s2ysBZ5m1CP0LeTe5tspW7HIIxeeL/b4d3793j16pWhwE50p7Lbes0QDSQ9VyBKghYg64q7wxFrzgR/qhPdAy6XE1wGf0TaurYODTNKtAVB2ZIuoamAejdLjzHbnEK1OA0OnFiuooCod2RkKEyisuRNelCKdU2IT5ji5/QWvQF5tc2iRQgV6FzWCpiW0Cgp8lz0M24s4zEiu/7fMKSap2XGLwR6Uuxj7pz8n9LEcNbI7lUNBKw9vBQPIaEMRwtxAecYA56Pewscc95NWQLsiglWEonB0VMLoQ28ESX32ZvQQ4iYUsSyrgiBvyulWuqjpkERNzgL1w1TGj9GUv02kvzw8XI5kPMZd3d3OJ1OzTMBfYfw8ocbbdOcaQarraNjnme8e/cOh8Ndq0MCaIjtsmRIYGeJG38jCtSK1cS4/HN8QfmF50wAYL/f47ou2O/37T0oAJVMWVuJMBYK/IawbQzmItYWjo2I53iT2654k0QIeijp4VZTUCh8WqWwMXqKVhfzepoCroLnejbwTg7LpQIlxFuo2MJeO59RIaKd0w38zx38BvgBnlzr7WvGJgN6XZZWtBq5ICS4HGhMO4bIVQEkA/Q4K0UiR9WVKogym8CxQDSxDxMT/9vvoQErFO0CILX9jpuFe9juwVzGxw+XlIkhIGdDuwNaWxllSMjMCsX6T8XKHapQnRBKaSGtr/E2yNhLZASDUZTVZ2ewfdPxUXIgblDuBW/DSG/AHVumzudz0/PZ7Qy0WUsDe3a7XfPAeR3HwokRj+vG8GIIyLVT+MbQik3MAQdjCtVa2VaWgGJ0Pwo1dYIDQQEX6FrBZl2ygOihBnhbe/eEL0YRsZyHR4fIzQClh8E9t1S4u/P/VeHYNrY0KYkD6Clit43+mSFaGcCRBW949K6RFnrfIA4OUjTX1o+RtfUcacD/FfOC3UMzdQgSUTUjpr3JTQpC2EHKCp+zoXDvb80GKWLShBQTnMzPXJehZa0FqtuOEQzrzCngMFV71Wq3IvgtaPnhWD6ikzUPKsJWM4kGxilSEJQoLZeEihEhrJFdBDJEiVynDnbZ04oB13WBYhw49fXHRw+NvVwumOcZ0zThYmFpCqbaFtgSReSpIq+lTXcKIeD9+wccDgdDaan58vBw4k6JHgIAilIL9vtD4846qDPPM1DEVNIuADr5eVkWXC4Vh0NALmxODiLsRFEa7WVZAIkoFvjkkrHbJRSbI1Frwbp63spifnR+a1WqlKlAq2A5X6HFwicFFKUtAlVFgQ0PxRjG8vpkyHFEBEutJgw+lAuMVO4hG+pKtqjQENlk7HkMxcC4GVSLCLzQD9TsenyApN5QgIYmdw+5rQFuCeudzGGdPMLwX5zwEFhv5aUakhYUCMBspQaBkBtaSc2MkeoPEtzrVUhIVCOIgrKsELHatimbawYO+2N7ViKK4qG5b0aVP2dEURAGLnYw5tAUBFo4C2WKAJR6QyT/28/snopmi6hMn9bU7cdoMYQJqMq0ysLZEih9E1+Iv74Y6Ikx4Hx+hGrBul6xrlccD3usyxXklnZql8BDBMVut8fDwyNimFCy4vHxgphm5KKY0oT9bt86A8Ycar/fY1mWjdcdPbIvPIAgk/NVeZ4nIqK1dz0AwH5/QAjBxm0rQQfPT2xHFlHkvKCUFdfrGdxyHcjRgdtrBHegjVHwGYlVV4pD1UzI3ogFtXlGmMHSRmsAslZkCZYdmWy+amvDcpTYGpl6WNlxmxa60Q1XRBO07vL+7jXVnEQPrW/R1ufyyNu/oZCYtX2JQGJoni+0/tLe0TNNE38ePeezcwzUDOJzcI2jAgmV+ZzwetqkZnVV/DF98tSD76vwkkjXDXLk3AGyWgtM6xNas9VFK1IANYBQ7LMzoPzSskLLCoE21QNq3lpZJwhSlAYYBXapDUDVNx8vNkrPKSknSHparRzE6c3PHdhZoKqY5521Zx1BRsaEaZpxva64XhaQfFBwMLHmWrUprpFBlFo46zfUd3DXkhWR9nnZtFgcrb1eCAK1Xb8WxCA47HfGbwV2ux1SitzFVTe7HkPkFbWs3HxMe6bUjKoFFdmAoGIhFofHkjNZNyjcCIu3MHBA6iB9grGLDjcQzISxPAJ9Js1rMP0tQ8WR0RH/9UX55D2ee+PNJ9z+xE+IDen+/GOIiHFCSskkWxJSYlqQYvcuHWwalAMV8OG/js6GQEMfz9FJK7WS5oeaEDAjYAfoBEEyeU8L9cVryO5F+yh2z9NVOZS31mKYgyPPXqYJ7f5yqBJDdv9960sFTATbO6Sf8oe/7nixUe52HD+w3x2x3x0Y9yPgMB9RSsXrV69wvlygAGKiwC7Q62ywsHS5XpFixN3xCBFY2LnieLwDQJRwmibs97sGVDhR4HA4IJfcABuvaXpuuq5LC9lCEKSJMb6jnqV2yRHWFIHdnFBLth2vKyK4oQMMcfm5S2PVOCna/B3QxIGd2K0tjPVc1Hf6W+OE0Gu1vNViUz5c57UGo6CNZaeOXncfvM37ah1mN3rIrKPBkpjgRtfyRfHGZ//icgmBnNQYYlucIQb7b/tdTEZmTwiS+Duxr5CQph1inNrfA0MIXQFYx0p/nw70uF6uakEpK9yDogqS7BAxI+iEhJkToCtH5UWBtwAgqMKnO+sQ9Xj5omgxX9sVz32t+ibjVMsxVOHeKlQmiBHBmrYlOMXxRxy++s7w+tVrfPHFV7g73gMwjus04d3br9j7uFyRC2dTFq3IdYVKIV9TgP1xj5wpk5hNLIq0Jm07pkgnsjuo5PXK/W6PFOOw2LsGEA11xc7C03lOkAAKGqMaxB5N2pEhR85XBFGsy4XdFOYlHU27XM4AgGW5bmqYrVDvt7r9Hw1UoW2n7eHuDV2rGWY3KucySbSx8NINQ5qCm+cx/nQIivj5+XuTgmbTq1FNIrK2XsvuGT3UG/ozLVdUBzwrP4eGRGQ1xgkpzkaDiwhmhCEkcI5pQAwTm7WE4xECOJF6JNKXUuz8q9V8FeuyQks1BNbV8wVTikgxNE0lNmEXVC1dGZ6niqqZbX9D1LCNBrYF/a0366BcR1mjXVvYfPFlbpxeZvJNjeWUj6HZvdgop4nJ//lywfe+/zmWZTXD5MlSSBkt91HLv9I8oYoiJMs1gnch9JKK35C7u7tGnXMOrfdLAtTjiSk17+G5gpdopokhk4c9u90O8zxjv99jnibs5glaMpbrhZOWSsa6LhaOVlyvlxb6qmqjDV6v15bj+u/6lxncMCukeaDBCJ+ErqOnNDSSoE9fIO7pGuvJAFW/7r6++D4jaWEsi4wQ64iY93NBu5/9nAxdbV5yaHOyf+NgmG6o/JrYQB5ZfnKiuz8b1iojUpxYR5QItuu7ykH/IuWSP29N8Ck2QsJIhRvxh1KyBUjcUZ4PH58P19U22O4DQ/fY4qWW7dodP78/B92sia9PD/rxYqM8nR5xPB4ggbQ59i1ebXyZYM0Vy1pavUokIts8EBoow6dSKrVtFBsmjgtnkXVzwTzvcD6fW/0TsAnH0heHq8DN89TroiItzHAvKvazWgiZl1KQbQf1idO5ZP5++DwijhXX68IKTbTdtxqQo3ljAKOKHh/rsBAUbceFbndkVULyqMXCfQMhzG+G2Fuz6D0jFGz78r5MWCTDR8pFrhqYb8F/3vsZu2H7+YZNjuSlIf4sNs/noa63ffkXIynPtdg4Hoe2OB8QxK9t+OfexjcHz9FryU2PyHtMo32lwCG0MYjJnxVwlscVEsiHpbaSckIXLMOo2nSKSOx/Spbw8N7vz3jwdb0uPBo7vbZ3QA3pygdU7z50vNgo2SzsO2rC9bri8fGMEGY8Pp6Rs+JyXnA6XTClHa7XFSnOgIqhqMJ5F9cr9Vk8+bYbM80zJCTkQiU3R/KIuJLpMs8Jl+sJKQpKXiComKeIeUo4HvfY72Yc9geUNSNIwMPDAxlCJZsMf8SSudjVZ1tIxZpXwt9zggTFmq/w7ndAMc1TEw4rJdtuaKFhXYGaIbaItnXTvkNy6CgXUIBClF0KosxxolHJgrBY09uPLBwOsE6QBMgMiQdo2AFhRkVEBWdjQidAKVBca0CQiWUc36nFIaFo5R2OQBCblULKH71kCNFywokSjhqhJSDFA6a0hw8BgmqLkoJNIYNJmtRWTkBHlGv/Yt5tdUcRBK2oeYXoAugK0WJ5YLXXkh65txEXcwxIEURKkaF1RYDH22rIOE9pHNPI5xM24f4ttZAboT0DB+qgNpSro8cAUVZfF7VmGrYbd3iZh/TjxUYJ7coD7969s9Ay4f37B4SQsCzZUqyAZcncVavidDoRUV0LqiGt67K0Xkj3luuaTWSJbUSdJC44HA8NqOgMf178fj+jlBW7OeHu7oA0mSHnjLvj0bpRbIQe0EjtbvBO64vmIdvDse4DVe6yNMZsN5woaykLcx97iD4azQEoL1iP/2L8ThyrYykmeDnAASOpLT8FWD7REFAlUuFdIqpEFBVwwOpkBjqhaIJiAmSHigRF8u2AQFIQtlPZfQgG7HR2T2+1olecIBaapjQjxD4RjffImS+Agy+lrMhlNQSbXq/YOAnPfz3vrdWKRMI+WwJpGUCGCLVvXF3dQR/fXP2LsjHeTuWGZK3Nsm2k4Ga5TUXaUm//vU1TOk/2qQfdeEbt5ZtWufpxhK/VcrbHx0d87/Pv4Xq9NibOcr0iJSep1zYuDdo7OcZdSpXKdVoL+yjthO/vXyGX3Hm202TF/bkxiEQEp9PFpDW4+C+Xy+C9MuZd6vmL9U2ONDmIYLkuTduHm+F2p/Sulyb8ZQ9tNsDJZ2dG06ZlLrQFcjpI/twxoHYV2Iztw/ZF7YFKJ6fXqq3JenyvrpPbAOD2doohcpZe8Hcv6pA/P9MWXgzW3REQp8TpXVN60uY2Hm1sQb6i5gUlX7GsV1yXC3JZbIMrZqS5bX64eb/x/V1y0iUr3cORtijwwb+tfixDV00rMdVmJE6hvA1BR2UDf+w9x+1I9LMo+vC8YPfbo4SPOV5OHjBa3H6/x/lyRq0Vn332Ga7LpU129hF51+sFx+PBXDkXzuGwaznFbrfDcrkgThHX9YoQ2ORcykrGDggseUmF/XyCy+VsYbTLLpL/6G1a0SZQudo3pS7NcGpGXhcc9jvkZYGWgvW6oKycj1EyuYxjfgEMRO1C0vh6vRrBWWxGBR8YZS/Z7FsNTXRk9dZLdosb0FrN0JoxIqGbDopWHwubwUa+SOFGWE2Ma7MQrMSiir72B68tEdSu5ZeXKhxdBLAB0HzRqtfgANzuPO65anWjK8iZ6unFar2lZnrHwSBvnck2zxPr0eVoAc+P2zUOno1GpSjKklYpKzeBws6RTrDYCrp1j+ZlDm6WJStqwcYob8n67l1bq5295wd25Q8eH9VP2SQhJeDVq1f44Q9/Da9e3ZFKVDL2h72pDHAmpQTFfr9DCqwRTZN3gFQgCnIp2O13yDXjcNy3m1ZKQYoBy/WCaU4mhAUDQNjlD4nYH45kkgRvVwoWklROsYJinidfrRAoHh/edyOpoDSjrYt5mqClYjJ2kpdjCCAFNikX8mmrhWEuKUE0kvMOxXMnoBWtt1+w/JFfMShzUxS4tGLvxJeNgW4X3VieMU+dbUZH8RKMeVIVkPsuG5STqo00Wnhfo3tRhzQsInCjbBsX4BPknuwBI/Ls11Csdu1eUpXKb86kkbHuqv370sjsXTDtFtWmUQDeUaOqrTTnkc9Tr/ZUO3e8136BWrkJsFzj19ZLTn70TW8oK/WY/sXHi43y7u6ueUpV4Hq9IKVgMXvBNEcsS29gvl5P2O0mlHxBihUiBetywX43tTAiGqoYQ8TO1OR2O0ddXViLeeO6XpCSoJQFEsBcpWYUrTgcDrhcL4AtmGW5tt7LZVmwLleIAg8PD/Q0RtEqmXmKFiq7jfM7+k3edkv0li6XLsntgY/oq0vWt6Vd1SmgCCo+xAnWUUltINn23G1rhk9/xoWJZhFeNuF5E8yhhIajp4MmrVkSX+LE8vBkM/D63Igq357Tc8e2RrtFNxuLpkHS9jWQH8bP2V7XNpKhd7wJdR288QscnuUtEDd+zu0GWLVvfq3eW/3z6pNr0/FhtGv5cJj7oePFRvn48Ij9fo/37x+aHCOZLkQl12XFlOa2uF+9eo3L5TrIT7Lr4nw5oxYgxRmXyxXztMf1wjByntiB8urVK9YIgxeiA+bdHq7bupsTYlBMk2A3J5wvZ8y7GcuyolYghKl5CMqScIc7Ho8k1E+z6c3uUAoVvVGdpmc32rr+oYoowyyTSt2YFCKL2wNgMXozPmk3tAqRCkjp/w5hrRttQmBHp479il2j9fah9s/xToZgANuWwuYd/SO1bQzZnjPE/uViWoJeEO/55y2A4aDPuFHocD3but1zigPPAyJMLbxM5CinkyOcnDGS6MlphWkc3R6jEX1og2HovZDLXBcoMkq1unYD/XrpyoElRjxOoaTT8q+XHB+h+xoZx1sX++VywavXd5YLKva7Hd4/vMcPfuInTZEuYjcTItdVkCJLJ9O0x3LNqFU5NHZdcby7w5Jt8lMlopZiwjTNePf+Hd68+QTn8wUxsjZZcsbd3R7LuiBNCdlzK1PcC4mh5Ol0wf5wxO4gyGuGoNLrLgtSoAnMaQcFcF0XCnoZUksGkIl3BUGt1ptoYSkMWZMExCki6wpAkTWzWwYFqOxbYN7Su1lU2cfJxeCLmKG3QFj6UAd3wPmNql2ZbvNcOjILUTYMS4VEAMZi4pr0trNu7C3sHkbnQUKrg6p9voDX76GkX48nS35NjFJ6EwFJMeSZhpRYFglDB0kTwrIopBZ4+7BW8lB7uKxg3dVD0WLAC8wopUUPHiaza6dufK8Ytu3RQh9px0282y8NLRe7Hs0AYtfKtcM3AGk5e6c79s/BR4WwH5VTOr/xcjnj/p4NyiIBk53kbrfD6XTCshTs93fIWbEuFfv9HYCI16/eADVgv79HrUCUiXnXwKOELY7zecGyZKQ44XK+mtxIaB5XK6UDd7veOH2+XKAaME87rCtD0MfHE3LOuF7PyPnKfNPg/JwLBDZ8J3qXeWhjAmCG8Bxn0T3CbrdDsqnIuXLYaC4rEK0DPbDeGRIw7QKmXSDtsK6mNs73GYv5OngZDEiff+/HrffhD7kcHHnkmr8FI7YQ/W3uCsD4mrZIwjbHey6sfhLmtYuARanuzVvhpf3aWULwUBn9ulw0mu/HMsuyXNAQ3uqfV7Zf8H9rB8HUqY80uH7XxhDUoxLWHiU0kAAuwsUva8xTB61WlLra59bhq3v3H3mXyOvXr3E+nxsQU02ThSLNue1SDw8PmOcJv/qrv4rD4dBqkA7RpYm0t5wpZrSsF6SJGqqn8yNUtRmZKxHEFFsNcZ53eHxkKD3vdsjriiklfPXlV3jz6acoteByvQx542IgT0GpGfNusrrmjABgN004n0/QzJmZ3HyCha9o/YqANtVz2GKndxEsxgDyRdQ8mgNBYJAGpaqdqG+cyglVm8G22x1VRJoCoI+8c08Uh1phe70vswbGfHMec1sSUNWN9xvzptZY/EzYOtL8ns+3QGQJ2SRQGE0EVETp93nkxarqJscfQRsHWry0NYI/GML2EfGmcdrG90yOOp4rwTuqJwRTdG/Ilt3d22vvXv1pDvkjzyn94p3OxoWScD6fcHd3xMMjc83j8Yh1XXA47Ez3xg7hSHStBZfL2bpAFtzd7XA6vYMqaVG59DIKF+3EcDN1pYHPPvsMp9MZtbCRep7m1syc2AyHtdATxSliWa9AlM42AUswtRScTydrQ+ODJ8eROi7caLjzsTLg4aDvttV28Q75hyBY1wXzlNqDVSUP2PNPV04rhYJdMXbwKLXQEG3hdeWFrcaRj1e49Z7jInkKzoxwP8Cc1UO3HsKpeg1wC5KM6vHjV+M73yCS4+vtv+xn1kVkXijETi/0HtdR+8nfd1SccAN17+zIK+9Rz59t+bWUwHPvWsmnXtcumtbJDL1ZwCOZjQF/0L6eAlXj/XrJ8WKjfHh4wKeffmpy/3cN1hYBSuVcStVqqnC8yMvlAgmC0+kR0cK5NAkgVAinuDFHCqSYOGJsZq/jfj/j/tURD49vcbyjx72/v29SFS4Zcj5TfSDZ0NFSS+sw8ZHf++OuIbatDxMkROQ1cyBL4DiGxUb5kTwQrK7Vd3Hx3I38QIQo5vU9xAF2+9koeoNKnA4aLUbRolflefn8Tb+ucQG0QvgQQvb8FJvFe3vcGq3/DEDjnqoylCf5W26+0M5jDHP5+qdTo90w/XuglzH4MwweyiOO0iIH/stNebebGwndvaF7Tjei26luTkjvnyVWYpKGD7Tqj3RFBT/Hbpjbrht/b7+usd1tvFbf0H49x0coDxA4ubu7b8RvEWme07V7gvUk7ve71k1+PB5wPp84AUuzIVkcBjTPc6O63d3d4XK94Hjc43I9AyjY7SYrvyS7MR1QcEbR5XJpzCFVnmsxJDUEDpElYuHzGCsu5zNmA41EaaCMHrmIXeS5IXm+gGzBqIWyOa9I1JFoRuZ/Nyp/e8jnZPdlXeCqZ7e76O1idyMcuyD8nvmzuTXKMT+8VRFwAsLoRW/R3edCreegfT/X288f66i3dLoylkTgZSf7mfTP9usaUW2//m03xrYO6ffa18TTa9Lh62n46c98O4+k31d+gyc/63/bIJ4Xh6zj8RFADxt8S824LswDmftxlgi7NebWQrUs16ZNWiswTbvGOyUYqLi/f4W3X71HShPu7u5xOV+w3+1RimJdCubpgOs1w3VV/ca7CoJ7lr6jMWfL186TXNcVooKSgSROzaPlrOuCeTcZ+SA41ZRNtqUAxiRiODvQ58wovNved35vOUspkRQPsn6mmIBaoblgjglaCg77Q1/M0r1dHQzxdqGHwFJMWTNHFihlV+KNp/SNoHvQLbgzGrkvyPF4LhwGuqGNP3cPMi5M/1v3ZKNXK7W2AUdul1oq8prb5C//jFFO5FYL53ZzGEGm21CzCWPfXNttHnlLTBi9I4B2HiE4qeL599n8zEposDr1S44XG+XhuEeaAq7XswE1Gff393j//r0hZEsTeGoPXSgNspupLhdCRF4LtFZMVut8/foTpDQh54LD4QjvhXv9+jW++uot9vsjlqUT13POePXqlXlHktPnOWGebRBQVWq7LisO+x0e3z8QtKkVEI7KlhixuztAJ4FECgQfdgesa8Z+t8P58QFTirhezthPk01R4w0P0hdJigFRgDklTDEhQDAZ9O/i1PM0mRfuiKIYMH/YzYgCTClCkrC0UtgW1upaUlurGGrBLs6YZMIcZwholAKBmE5u7zNkE3e0XNoNZ/Rq4zl9nZe8zddGD3773+OGML7GjbMWbU3TaiJFpShKrkZN5L1zb+gKEH7+t8wmXgdLQ7ks4PRrtSljAHV0SZETUPDatYVKVkCIpoaIJvPStHc18/daOFIhmP6sCFFZdC8LoHnxoCBZxJhVqArNBSg/co2eB4hQLOhyOQ36OQH7vauZJ6zL2h54KRm7ecbj6RHTtGvTt+bdhMvlbLtTxrpesd/vCAAddljzAoaLASVTvxWAUfgUDw8PADrZPaWEd+/eWiN2xsP7B+znPU6PF7y6e41afO4kpzbP84zJuZxTQi7kUwZEXM9XCATX8wn7/bzpuvFOlZ7jAQLtatoiVtPrXn3Mv0ZPE0PA9XKhYZneUYih6QB1uQsdvE+XuBTGyE10eTQI5xiP3/sz8XMZDW78nf+sbUJD6H3rBZ7zkKM3Hj2LGy9BlYJlyS0f3Ia328XuIeTooZ/7LAm9C2SMDngd/V8KKt+G4mMniNrve2QkNyUhCV8P2qivFWXrmBuk1h+xUQLSxpTTSHiix+Md1jXbSDzdnLAzShjSkhS+21F5breb7UGxjnNdzri7P6KUBbvdBKBAgiJGsEVqXW3kwQXTFHE+P6KUjOv1isfHR5MOYZi0LFdcrhdME2UKY0qYZnaczPOM6/mEFALWZW2j86h0QK+S1wV3hwNKXlFMqrLldMNuJwLjsbLc4ZvEsiymY7timk102BZ1F5de7bVoGkFqyOxtGOQ1U7WyTK0uBIxWrHfnNhqCGx+bkMOTDcJz3NG4Nk/8mbKH/zvmbc/mXPZ3o5K+f5Z7Tf/yvx2L/yPIMr7vc2F6G7H3DOrr/z6fNz71dqpe/P/wfejpAIZ/veSzfX9v5wPw4mbnFxvl8XiHt2/f4dX9JzifF+x2ByzXjGVxHc0uvOz5pQMvux1ri3d3d0031j2JJ/MuVEvie8TlesInn9zhfHnA4bCDM2qOxyNqrU2zh+8DvH9P75lLBoIiJODx/ICQAlbNWOuC0/mMy5klkPfv39HYDHhIQUAxX8V+P+Ph4R1mQ3S5AHt40h+4F5vZGTLu1CVnSBKs+Up2jzjSyPcSM8ycV6zXKy6Pj0AtyNcrUggm6jVBa2F4K6byZgTaCpc/iShm1A6ajRQ4AE0QzLtm2sMfgKO23G4M7LbE4n9zG+6OHvc2jPVn2w2453Aj8sncsxury6+MuZ6ft0cBfaPZypz4+41efcwdb2fGjNfiEdF4jMCZP8dgXUkiPYQGboW5n96vbzpebJTv3r3Hmzef4Xy+4LA/4ny6oFYgmCwEvd8Ojw+P7JUcQrdaFIfDocfcthgOhwPevXuH168/weVyaTeSI+sSTqdHHA57hChNonDccc/nizGMCDidTidMid4xlwwVxVpWxIkDStMUzbtc2FGiFXldIFpIpodyvJuiXZMDRk7K1gE0aTde0fJaV9MrNSNEYMlXFGX91I1nbCG6XE7N4zWhYAHlLlSxmyagVkymvmf+ElULclmQUjA5lDjcoy3gwu+5iOZ5GhgyWy/xHLjkz3Fb1tBnv27DWffOI1AzztNwA+k1wg7OkYV1bdcwGtxo9PxZr8k6yDMKRyu2m8r4u1t0tv1MsWEWjV9jxDFep4N2twDYc/f1644XG6VIwPl0wrLwhr1//74Z2t5AGFWTzrCCrBvQ3d09XMez5IIYElIiIf3Nmzd49+4tdrvJeIXUhm3DZ4PgemUt8nw+N7S1FJ+2Rd7h+XwFZ1fwIaZ5goKe+Hy5UKE6CGqhIsHj4wOW5YIocMQBOS94PD1gmmcsS8HxeI9cSMW73enaCPLE6ctVM5b11MawkcTc629XU5Pv3mcotjfDD20hjgtw9EKOBjsRwh98zhkVtcmW3OZ/bhCOgI+hnnswP5/bnM1DSr+349+Oi/oW9BkNcnw/fvX/dlK5e9BmTM8Ywpjr9nsS4TrBH/L6o8fsBIevYfSYgY3HS73d6FW/zfERRil4eHxASgFrXvD69SuczyfUUrDa8B2ibT3EAIDD4UBgRjmhebfbW6OqYjcfcL1kHA73UBVcLhTOenw845NP3iDnihQT8lqa3Mj794+oFbhcFpRSEUJCLcDd8RWWJWNdMo77O5zen3Dc3yEvGff7I9YLSzSzlVx28x5BqDUUQmrvNaUdTo9X7OYDLucV+x1LL7Ohqt5F7sT4IJxqHYXCTuuSjWBO8Si1aCLYrXaFPFVOnioFmOc9OBQWmOcD2Lwr6Lqi/X722iML2L3jXpun9b+7zbGAp/D/+DM3oue85W0YCPSw8naxfihsGwEYDHmbl7N8M3nuvJ9b5Ntw9mlr2Rh+902kI8gu3E0haNm8FsO5P3c/RoPebCD1+U3kY0LYjzLK4/EIdb5mWY2IXfH4+IjXrz+FWt1sDCPc44UQcL1csdtRJWCe9jidTnj9ySe4XhfEMGFKMy7nBfvdEdfrgnneoxRQH0ZotD4KAQg4Hu5xuSz45JNPcbYaZ0w7XC4LUpxxfrxA18rReFWAoihFkaYJay6AcCbJcl2xm3eo1sxKqZGCGDkXYk4RSYRetRZAC87nR/Jzrxm7+QBBhGhAEtY7k0TUVSk8JQnrdUWUBFRBMKGqWpj8Pz46HdGU5iRy0I8GiLK1aU4789iccOULyf8VCU2yUZUd+i7POS6ScWFdLhfs9/tm2F3Nri+oMXT0w70NqYnVwDAgGBWRbCWmIevKsRYePjtJgDkgf05FAgJ0XdtmS+NzZs+WuL8FaAA0jrSHqFqZu7vSQR0I4oqKWmCAH2unrl2rCnjniX/emBL4JgoEQ8Vh66fiuU3sx2KUrqnKUXVLY7zEGHF/f4+vvvqKNy/2t/RY20GZ+/t7PDw84P7+HpfLhY3TpwtSTFjWBXf390R41WlaBacTCe7LknE83hmkHbHfHZFzxfFwxPv3D/TApWLNBbsdF9phd8AUJ449hyCFCYf9Hc7nBce7V7heMq6XFbvdHqUCMSXc3d1BTKyrd64Yymnho/fM1ZIBBEgVlLUgSkRt0iCJBmL1MVICz22jgrLksyw01vPjBUEi8lJsEG2xgau9UN0IBgagAazxURIyNI6mh7N+bPLf4b89twd6wZ30st5gML7HLbLqUdFYMhlLHO6VluVq7CNtn5cs7C82jet24T7n6dzYRoSZYE7PDd0IGj+29Vl2po0zCDt62qVSxvuDbzAi/0zPhcfc2t/nY0Ee4COM0pGw6/WK+/v7Fpc7L3GEvkUEDw8POB6PANDCqlJKm6YcImlvx7sZISqu10fECFwXcmuv1wuconc6nWw2JjV6RIDz+cSdVyuOxz2uyxnTFLGbJyxX6tK60sD1ckVeCSQ8Pj5gniNqXXG8O5B0UAsO9zOQCkpYULCgYEXyNitUzPOEJvZUufOKFelLycjrinliK9rd8UigQDioKK/kAR8OB7x9+xYAcHp4RL4ueHV/j3W54vWre5wfTzjsj7hezzTGAIQYUGo21o88edCei65r75wAtgY4AjCj13PdXBpSaTmwamfv3BqJf+8hI/M7gTcZK55TqjMFiHXdhLx+LSOi/aEF7J/vihJjT+M4lt7fwymI4/34uq8WWg9ADUSeO5V2jJtQM8qv6cv5kXtKdmmsBrDMeHx8wN3dEafTI8js50U5RH+8O+Dx8YGk87w2TuhiHR+OUl6vF6gW3N/f4fHxEdOU8PbtV7i/Z7eJaq//hcAx6VUL3nz2KR4e3+Pu7oDrcsF+P2NZLkRTI4a5IrCHOWFdF+wPM94/vDVNoBXTHFHAdq/dfkZMAXGKSFMwhHNFSoLH0wNC5PjvFANZOgCyaRIFAcq64rDfs/YpAWmKWJcVApaFvvzySxyPR7x7+xZv3rzhw1fguN+bHAiFrhUVKny4yeq7lAji8KAgxAX9njj/+Hw+b6Zs07hsQvJgXGPOx9ICv/ye+YCdcsNAGWufLkgWAvsufWRAXomaLktXC1TVZpR+jL8bwZuqpZHFnUTua0fsc7R16zxFhm891m3JYzzGKC74JhjQ+M0inrs/Nfrb9++hPjb5qH/OjwV9BdRasvZ4a3ND1pUsnp4jUPo/mPdIU+R0KlM2S1My4rqHR9takiOLu93cHiABpDhQtphMk0zAc3GYP6WINCduBonNxmqiymJqwV9++RV2O7aVzTvmqsFqkF6WCUEaqcD7R0fidSkF80SB5mgSJZ5jXU6PECXB+no9c4YK+tyUWit2+z2++uqrtos72aDkPHi02pp5Q5DW4uXCW9XYUl6MZ859wfV6tTy+q9HVuuXS3jJ0vDPG140vLp/RMi7A0TC54Lg2urfwkK4DKu4hReRJ7XFD+jbA0zd478QRAWDPsXGRBxXz0es+ZywfAp7cpfVmB39N75vtbJ/nCQcjK6n9rt2b3vL1IYLGc8eLjfJyOePVq3v4XMFpSqiVdbdlWVpR38MLHw7rO6CIK6z12Rjv3r3F/f09zudzW1QeivkuTC2daXhvNlh7QXq326HUzK4LUZwX9mper2QI5bLi7tUdis3QpI5QwTTNnHGfAnZ7khNqWXE+PWCeJiOsr43FNC4AintxLDw5vYIQxUCGitPje/5trViuF2gtmNOEmgsO844e9XDYhE6+OL2ZOZpX9k6YEU1lCYDn4yqDIlRB8J+No9/H7z3fHEsT/vv9ft/yXoBA0OjNvJwC9F5LX3iNCFC3fZUOvPi59Ty238+24eHrJ1ONG8n4Z7cliK/zjpu8Wjj8KU0cXDv+7raeelui+iB4Q4Rok1eO7/GS48VG+erVa5PWKEhptjCW5Y3Xr1/jhz/8YVML8HFzqtoG48QYsRphfV1XBAl48+YzvH//Hnd393j79h3med+QSBdpnqYZqsD5fMU871tOez6fKAWyLIABTFw0AKA4ujr6sCB9SNE87/Hu3QNqVVwtrDoc9vY3M2pRiEYIElxHhufNYv3Dw3u8en2PXK5IU0BMgcwgVGgAwpwgoqg5I6giL1cEAfa7mdHGbrdZOKOygKOR63pFzSuglLPkGHBH+ra5kIf5gFoUcHlS7/Tvu2FbTAhpqDNHEh4GUKY0Ix7RTd5PK9jHaAN6uica8yz/OTCOH/dRFrynzSjJjtgYdQ8LnwOD0GidY2fIWLQfj9scFoDhAs54mtr7jLREP27PYfSO43X692PD921t+OuOj2hyPmGe9w0GBiIulwVAwMPDCff3r1oe4t3hjtS+evXK6FYJuSzWBUHQxRXlRCKmNEOrKaVnGs/DwyNiTEiRcw5fvXrNeSUTGT+n0yPO5zOuF+Yxy3LF4bDH4+N7HI97uOqYt5y9/uQVFQ9eHRECEEVx3M/I64rj8ciwK1eUpWC9rAgq0Fxxf9hzCE+pmGLA+fEBofIhLyUjzSw/pDhhXTiioWaOadjNM6CKslKG5Gr9n+4BU6LieLAukf1ujxgipkSRsZwzHh4eIWCuXMpq5QhGLf4v04czSiHB43Q6NW8FoHlILrqIZVktbOvkdwd7fLgS1efdAVSsK0WzU4rM7Qza6GFdsU4KtTyYEiwxCabZVBWs8yVEQakZMQmaho1syx3+72igtdqUM1RMU4SEp9zWPkzIpUq7Qdy2dnn05sY9Tnp7bqO57ZZ5EhIrFQxhihQYv36URgnA+iQX6qxeLtjvuyKA1xBfvXqFx8fHlmeN5GffvY/HveWnR5zPF5TCet7lsiKlGb/2a7+GECK+/PJLTNOEy+WKGBMoB1kxT3MDEpIZ7PFwwG6acdwd8Pj+EYfdEZfzdSghVKQYjLy+p+K53fSHhwfkUvDu3TvEwPphkAQBR7156CxQpCkgZ8p9qFYcDvt2rTxXhnwSyEWFwuqw5GouNo7BJ4ypsm5aar9XMU7IK2XyRSJUI9a14ny+2uIsBCSs5uZ1Qt/ZyS3uNDJnVz0+nlBrtSiEntLvDz+7tH93uxk5L3Y+cQh72SLl4weui9cht2GjNqCkNsDNQSH/XqQDPi6XAmyL9dva4Lbn8bax+Zbmdxta3oagAFrlYAyBx9AV2KKsY4TyfI6qtq7sM7HtQ33J8fJ+ysOhEc7fvXvXvKCqthzGcywf2jrmQX5hPo/EUa9p4t+ueWV5oS6tX3OeZ6RkZOYUcV0uuLu/w+n82Opw67oixQmqgsPxDoCNx1FgzWTXpBgxTQmX8wWv7o54eP+uQepsOZuxXhcc9gfklVo4825nN57I7eWyIKUZIrH1doZABTxRqqtfLxdj9SzkzFohOQ2Lep5nzPPEbpXrtRmiLw4HWTzPPp9pQEGCRQILci4Ds2db7vD5KTsLkf0915XtacuSzegLRzWI4Hpd2jn4OapWk2U54HA4gDNIZ1yXFT7Y9fGRUcrpdMLlctmgoL5oR/lKpgesd7v39s36duHe1lb9e1dc8M1mLLuM6O74PuNrHPO4NaqRpHBbj30+dO7G36+7Az2ODj/JOV9wvNgoRxd/PnOWyOPjYyMCfPLJJxxzZyWQ+/s7rOt1U4Ny3qoP5wmB/70sC968+QTv3n+J+/ujCWv1Ia0U6rpCNWNZzihlwd3dEctyxQ9+8BO4XM7Y7WacTydIYPf+UjKmeYfT+cJFVyp2hz0eT49tUbx/T9WDZVnx6u41Lo8XaK64LlecTKU954IYdkhxhyAT8lqR14oUd+yQKRWH3QHX84XKdQrcH+9wPV9aS5dvTk7U10qFhJQS1pyb9+gLKBsFT6EVWJeMqiw3AOz6uFwuA1pMJpDPR/SyRic6aJNNcdBsnmcbEIRmwCP31qOclCK1lkRMlZBzV2rhAj+fz7her23xjd5m9GS3wlRU2tc2O+bWO3pY7//tXso3Mt+Ub8cRPFeX9esdSRP+7+3nPsdg8ve59cJjftrOQZ92E7nBv9RbflT4ejwesSwLPv/88wa4eGH//fv3rRk5hID3D+8bAT3YzPspTfBugBgpTem718PDe7x58ym++OKLVmbxfGddrzbwp9r37Kfc72d8+dUPcTzu+d+HGSoFBStiEmilmsHlugISsOQMtakV5+sV026Hy3LBvJ9xXa+YdjMVBK2F63J5wH7PReM7+fW64LA/ouSC3TxjnnbtXjiFcFkWcnaHTgdfHI5gihlqTJEaq8Nn+OtyXnFdLggByOuC/WFveWNfmJ2rylIORb/WZoz+5QavqpgMqBtV9Lxc44QCR8EvlzMoxOxCzhW5rHj3/m37ew8r/dy9rcq9tofPl8ulrSVvMwOw8V6+fjoS3csm7g3HvM6/Hw3GF7+fy9hR0ubhDJuHG04vuz2VyBxf478fZTj9mQJoadGHQKBvOj5KjNnLE5fLBff39x3FMqXpu7t7+90rxJjw+vVr9ipGzwsnLNcVh8Mdci7t4fjh4YeLczmCend3h8dHMoSu1wuqZty/OiBNwOEw43J9RJgEua5YljMO+wnr9YQ3bz7F9XLF61evIYg47u8RJKJWgUJwuV5wd39vPZik2anwPX/4xa9gmkNjGpVCgCVFTv/ivETF27dvkVLCV199RQMJgsPhQLh9nhBShESis96ZzM4Sy28gzYM5Q8pLTKWsuLvbG6OHKg00PE5ASynh8fFxgxaOqcSYK+V8hc/BXPMVMUlX9tvkldsmbho7ABM6EyMNsHHgcVOKua1FAl3Bz0PUjrqubYOKMbYOmjFH/FBddQRtxjxvVHvwv3XdKHcYbnSjEY/0xTHkv81Lb0Gh0XjH9q3bhusfm6f0UocvhtFFn05nvLp/jV/55V/FT//m34qvvnqL4/EOX331jrzS0uuOqsBhT+qc52a73a7t/vv9wQS5uPC87DJNM3KuEImt4Xq/u8NyzZAwcXr0ZQVKgK6C/XyH0+kCCQHrarLyVgLxmuF+v8fjwwMfalagAFOgpMlnn70x3qRiXTPO54UzOjRgv9tBQSh9SgmX8xUBAdWU8a7rijo8tKoVIdI4IWjatiIc03B/OCJfFwQFas6YzDB3uxnLcgXHhi9QzTaG/tLqwN6O5ZKe1LexKrx5txCAlASKDEhG1StUV8TgCwZNObyVMeBsH7HQ1ZQKSwXHdDAd8U3BPayjvb4oR/TXw+DHx8fmVcfWLjeG0QMCaPjD6H08fB1pe6OB+Pv56x3/8Pr2aCy3xv5cLvihDWIEiEIIjkVvDPG2jvpNx4v/8s2bN1jXFd///vfx5ZdfUC6ysmVrnmc8PLzH8XjEL/3yL3Eq87XvmixvzPjqq68wzzN+4Rd+AZ9//hnevn2L3bzH+3ePuDveI8aE0+lsnoA767t3bwGhZ1NV7HYHGxzEMQUpTZinGaUo7u5eYZr3SPMB6nMqVFtIBwDH44G7+7SDVLZHJSTUwvrfw/uTiXUt2FkXiFrHwPW6AIjIK7sJnCnjYexu3iOEZP2jgsP9AWtd2dc5R1yWC6pUPD68Ry0Z63KBVs6lLOvSBbvO9JzX6xXzLuG6nLE/zKhKafw0OUK6QzSQywfOLisH0IhUhATEWbCWKyBs7vY6YZomQCtpa0reK0yWX4K2/w4mTlaVukHzPNmYQTKNdrvJ3nfF8biHi3bdSli6N7wtJbjh3BrnWOfzMPGWTud/7wCYh/Rj6OmGEWM04LBTDv09OQ+n0/58Qxj7Ov3vxxzRv0YertFnNzmtf84tqvvrNkqCOBGn0wmffPIJAAw3vkvoi5BEnstieUppIse73Q5rNn3XM0si62qI5G6Ht2/f4fXr13h4eGzE9RgTUpqw2+3ZpiSCNO2w5gpFQJp3yIV9mst1xTyxjWqad1iuGbMp6XEBR7ZpWbgVA0O8y/UKICCviuPxFU4PF+zSAY/vz+wXvWasVxIeuNsr1vVqedME5/5mu/HMI6WVbVwYS4TqdilGm4wdjYzwDvMu4XDcNVLE+/fvUEppBAjySQl25bxshKNXC0N9rMS6rkhTgpdMXMN0vz/Cp2gBFTEJ8rq2xmiWPNyIQlMo8JBVRLDmdUDOUzM2X9giHbDyhoAxHxwX8O3AVjfSEbVf17V5WEYJ1y5VaiGr//0t0uvh+Da03CKrwNiKth3fN4I+z73Oz3uk6ZVaAGw96S0o9E3Hi42SXmqHh4cHvHr1Cg8PD5zkfL1g3s3WsqW4u7vHsqzY7w9NneB0fsS8m7jwDGJ/eHhAtV0qhICvvvwK9/f3Nlyn5zgElSiWtWRybZdlxfe/9/0GpgQW7TjRWStSsl1ZC9XKK7mq79+9w6tXr/Du3bumJbSbCfdP04TdbsbpdMK6Ui5TBAb0KA6HPWot2B9mLPmCEClhKMIBtVULYuTAIdWK/W5GLQWvX7/CulxRcsb5dMJsXttZJLVW3N3dcZdG62TEYb/H48M7xCB4+9VXmFLEuiwQrdhNCaIVKQAoK6YYsZsm7Hc7EvLB2ZsCQV65uN1DuD6SL3iOWeizUHwxAgzHPO8cF7rXZGutG+mX0+kEH2khskU3x/fwBTzOBPH/9lBZtZPYPUR2o3W0+LZsMtbEx88d/9YPrwQ0Yxo4uCyTTZv38XN3VNmPW4/4HOr6sWWRj6pTPjw84PPPP2/GRq4qgYe3b7/E3f0d3r19i9evXuOLL77Ap59+2oy4Vk4YVq04nU7slnj/Hp+++QRffvUF7u6PuCxXlFow73ZYc8abz97gcr0gBsHp8RGv7wkATVY3vFzY2Ayrz5WSWwO2tz+tyxWH/R55WXE83uF6uVAO5OEBMYS2iFUV5/MJx+OeYxYSuzNiDEgp2MYwtQey3/cuk5yX1tq1XC+YU8L1fEYU4PH9O9SSkaIgBuDh4R1CAtIUBq6vjZVXSnZOU4Ko4tXdPS6nE+6PB4gq9qYB9PDwHtNMhHq3Z9eLQJGXpQn/igqW64rkfZ1DCOZhnjcHjF04XgrxfPW2tOH5EcPBnRES2JHiLCFvDnbk1b2pI66j0fsi9vzylormhuqbt7+vG4SHt6MRufcaDX08PJy9bXPzf8drHg2WFM253aMRsW2f20YcPuW73p7Hh44XG+Xj42PzlA5111pxPB7x+PiIN2/eNANcfbb9AFUvy4LdftcMe11XfO/zz/H3/t6vsua4LhRoVqUsyPGAh8dHlFpwOlGD9e3bLzFNCcc7Egg++/wNzpdTa+MKJs/oYwzWhZS1s40oyCsVBpbrgk9ef8JFYQN9rtcLOaxlweG4Q9EMFdb8nDRxuVzatQOO5BXMOxqkCNX0rld+/sPjI169etUoa3yIDBl9zqF7In+AKSUsK8PtEELzoiEESGDXR0rR5CgjzucTDgdygmmoXEhu8ECH8r3Fyz3NahKYXr5wDzEuZF9s4+t6PieY5x1yJuFiWVYT1s6t3OXvN94zB/dGds5ocO4tx8U+MsRuNxjPB91THg6HRtQfJSz939F7juT853o9PSQea7H+nHxTUXMK32R0L/WYLzbKzz//HI+Pj60bxHcZp4uNqN26rvjBD36AL774ovURHg4HfPnll5jn2WZYLjidT23BrmvGvJvxcHrEJ59+ii+//BL39/fQqvj+979v9L49p0fnbGEyPdTj44MViKdGZHj71Vd48+ZTvH/3Dm8++QTv37/H0R5Wg6aVHs9Ry1LYV+djBKY04Xy+4HgkHW6/3zcWjD+4nTF/OjiR2+Z1PBzx7t07HI9HfPnll2339sXpXuS2r9ARSl+o9Mq9cZidK6VtkPS0Ex4fT0SU7bXn87l5JzdMyn9w8aQ0NXKDe05fcL6gRyN0IxmFtoDu8fz6vCFh/Fv3Kv7lRuGhqpfclmVpJSKv8fo98s1mPEYDGcPgEQgCsAFt/HMdiR03htGA/L/HMPS2HjuGuM3oBBYVbnPPH7lROntEtfcy0oPt8eWXXzbwxGHnd+/e4dNPPzWUcLIBP7ORqx+a5/npn/5pnM9nfPLJJ3j3jgju+4eHJjeSDCTxMgDJCvTOTVEuRnzyyWucTqcGRh2PR1wv19anOE0TFPTYTnbY7Xb46quvKEtyPrdr8JucrS64rqyZ7nY76hQND+xiKufj6x4eqHG7LL0U4CGh/53XIv1zu6iyohbbxQfEzkNzgLW3xQj0HtZR+Is7/+FwsHMPrfwwhqbuAYiwysaQ/PzcY7kxjTmTL0wAzYB9ofoG4jRCX/gepneBNW7qHkb6gh/zXfdensNuCfWh5bSjwqFvIq15OfR+Rv8Mz4cBGGA12T0uFn2c2zn7PXGQyr3+7abkBxH//v1LQ9bxEP3YLPS747vju+PHenx7ccrvju+O744fy/GdUX53fHf8Bju+M8rvju+O32DHd0b53fHd8Rvs+M4ovzu+O36DHd8Z5XfHd8dvsOM7o/zu+O74DXZ8Z5TfHd8dv8GO74zyu+O74zfY8f8HGomHBNi5TOsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sav_dataset.visualize_annotation(\n", + " frames, manual_annot, auto_annot, \n", + " annotated_frame_id=30,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Show the SA-V annotations in frame 0 - manual only" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOUAAAGFCAYAAAACSjT4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9WZCt2XXfif328E1nzPnO91bdmmcUUAQIEiQgiLOolkK0Qt1Si+GWKYXDYT04/GC/9lM/+MFhu0Mh2W7b0WpR3VKraUokBRIkQYKYgUIBVah5uPOQc57xG/bkh/2dk3kLBeJWGA7zoXZUZt46efKc8+1vr73X+q//+i8RQgh8ND4aH42/MkP+//sDfDQ+Gh+Ne8dHRvnR+Gj8FRsfGeVH46PxV2x8ZJQfjY/GX7HxkVF+ND4af8XGR0b50fho/BUbHxnlR+Oj8VdsfGSUH42Pxl+xoe/3ic898wTeewaDAVJKZrMZ1lqkVshUcvrCWXRRsHP3EE0ODsrpERfPDJFYBoMVrly/zWQyZ9jJcPWMg6M5DxSSX37kDH0/Zbi+wlul5M29OaPZhLIsefiRhxlPpyRpytbWFkIo0AleSKQQeONIpCKEgCnn1JMpdTnDWEPwAe89dVNjg8c6hxcBqRS9TsbcNxyVEwoHo66lc+Es+U3PzFrq9YxidYDfH5NmGh8cG6sbXH37CK9X+OwnnqJ++yr/5ht/xryuEEh+7jOfo9MbUqytUltDliQIIQjOMz444ltf+yqTyR6dVPOxx5+gSBTTyQRnHRKBgPZnIIQAPiC8B28xdUNpasgV6UqHo2pGnuaMxyOSXoc8ycmsZCPv0ZkaBiHFzSrOvPAw166+Sdoonr98kbI27E8NO2bO/nzCk2vnCWPDHTzX7h5ikxwdcibJKvXZX+HawREXH7jDen8f6Q1WTDCdilNbG5S3Rsy295GlIwka13i8h9F4hFaC4foKjfJ46VFCkLuC2cGc6dEUUzV4AnkvZbC6jg1TTCX4qUd+jnG4xm2zjT/V57zaYP/tbcbjORIQQvDAgw9y5cZN7u7tUdY1mU5Y7/VYXRmwt7/PUWW4duvW/9fG8Xd+7Zf53osvsra2xtbWFlmWEUJgdDTj2pU7GONwzkFwSBGQUrC2tsJwdcDKcMCdu3dJsoK86PHmm29hjOGdO1d/7Pvet1EqpZBSUlXV8t9KKaRSCCE4e+Ysm+fOcnDwLbK0g5YJSIsX0Cs6OO/odnKmsykBg/cGRAO6wKU5Vd1AA73BKheKFS4lKQjBg5ceYG24wsHuHnu7e8yqmsNqxqSqKIqCRCoq69nZ3mYyndLYBmMalIqGCuC8QyUJRbdDZRqqqmRsa7orfVSnjy0dqkkIZp2pO0JqjZk16KSmJzNs1SAl3L1+m16aIdwh1f5N0n5CkiioIQRwziH+kjkMBJy11N5y584dBp2cEAISAd7jrMOH1iAFWOMQSIIXeA/OapQJ4D2CBGskZq5AKaQNBNswqkeYmUP6lEeylGdsydPDFdS84kJouD6dMb07RjWWvjOMDm5Ql46Q5CitcKfXOdotqcoNDq6nFGc3uf7WnHl+h77coUgVvmfYvnWT1FmkcWit0FmKAHwIJElOt8jIV7poLZBA4gRHN484HB8yNzVpJ2VrcwtrKzwgRUGe9ZFqhbq+gpOCEDJEKDAmoKTCmoYsy3DOI0V08jqdDq4xdLs96rpGymPn73/3G3+LC8Mh4IEfJq6FEO9JiDcHj2DiHP/dn3+Ft67fREiBlBJrLSHEDR4g0ZLVIsMlnuA9KnhSLbDGQFlSi8Bh01DP5lgbCEFG473Pcd9GmedxAQkhlj+llCAFPjiqssR6R+0tWglkopCdDG8rsrSP955uJ+P8uQ26mUKzBkJyttejP+wTJj2sEFihkTRMpmOq2rCzs0s5n1PNK7z3uACiU3Bre5ter0e/0wXnSZOUsqyxQGMFmUpw3hIClGWFTgUqlxinsF4TtOTU+Qs0kxHl/h7lqufCL53nylv7OC0p8y6bjzzEwEqsb+h2OzjnSIOmv+/J3ytRNmNrfY3DyQQQHI5G9FbWQHyQaQoEAq0TlAgIKTHtCYkAbz1N01Abg2gX+VE5BSVRiSbrZFjjMWWJFQHZK/CZprO2juhk5EVBEkT8mjvkFNbqOQ+PblA0KaJx1Fdv4qeGMPF0HGQh4HyFCAphG9Is4WBi2T14kKPJk/zW//EX6D7Q45/9029zeE0ihrcZXnLoTCBSjZIJQRa4REKWoPDI4Em7ls5wiMw1WknM0ZzRjT0Odw8obYMYJmw+cIrBYMD+zbsIozC1IpOr2LCKkYLaWTAJWg8JTgISgmBtbY26rvHeI4DQbmJFp8N4dIBUqp1teGRzk0v9HuBaw7x3+BBwrUWGIPBCcGQdK71efA0hEEIsjXHxM9OSB7wiuIALAiEFiU6orGU8K5nUNfPDEY1zGDmDLU1TN6xvbvxkjbKpKzgxCculJgSJUgRj+fjzH+farV329icIpVBZRlIaOlmOEDDodfE48A34uAhnpuFu5cDKaNzVjPF8RjZYJdEZ1nuM9TipqBtDOZ+R+4BOM4RSbGxtsXt3B5UkSK3AWLSQKER0dQWIrKCqKiYHRxhnkVIii4KRrQhrXQaXV6g+q7n1qER++hGCEmgluREsHZ+QhA7KBhKrWBcdujcDzd2K0a19nn36Sd68eo0gFI11mOAJywUg2i+QUqC0ijcfkDpBaIlCIoHgAaEIWFSakhYdOsHjlafTK+gP+6BBZJD2EopejzztYBtPbS14AaUl8RJrZuy7GXNb48YN1kJIAl4n1CnUqiJ4ASHgRTwtrAgkHjp1BtPHKO1DqDOSTiEJE4mbZFRdS+gK9DAlpBCExgkISkAiIAjwAt+AUSCkoj6cMr6+y96tPYyxrJ3b4NyZLZLg8aaiKyXCBIIHqeJ+1jQNla3JTI3MDM4HQFI3NfP5jKLTRRCQQGWaaFQy4AlLlCTOeoi/e99aFid+uzDIxW+0VMvnOeshQCfvkKgk3tUAmU8YupxgDS7MCcKjdMAR0ASEdwgPqRAEBK6pMc6QdbL7srX7Nkrv7Af/IggIcPfWXb7/3e/T0Qkb3S55UXD9xj71fI43FqkEt2/eZjafEj2MQKff4+yFx/hnv/MHS2M/f/Y0jz78IF/7s+9S1809b3XmzGmeeOwJ8ixj82zJ3s42p8+eYzKeorRGakWudetueFSisMaQFxm1qVFK0jSWJM05tbZOaBwHsxHlyDH7kuPgL95BBI/yFuktBM+R0GjVQzpB4RVeZcxHgktiC3Nk6BcZSgosghAEDk8QARHXPEJEw5RSorWOG4UElMJ6T5ZqukUXKaLR1sYgs4S0yAkEPJ5ZOSX4gC0NftYw3x2z09yFNgqdTqeooOjKFCw0dUPSBOxwgPQdaFISOUUhSbwj9RbnNXW7YOPSCSACrrGk2pCHHl/4b7YR9Tazuzv09TZoDzJFoOInkx4h4yL31qOURGqFdQ6cYP/OPkfv3ESMGoxtWHnkDGcfvsDqu/t0jkrKBDqVZ3I4jvOUpBS6oZ7M0ZnGzsdU4gAfdyysNYzHI7q9btzFgqexDWmaEmTA4Tlz4QJvXv0GF0+dYqMoWJ4fJ7yXe41ULB9ZGPri994H1lfXWVtdiw/KaM7KCoS5RHD7IEsUAWFdxC1kQAZQQhCAVEqyJEFpSdHv3Jet3bdRihMXlbQAxoWLD5CmKdbD7t4e3/rS19je3uHmjZsIIXjhhY8zXFmhLOfR9Usy9qb7rK2vUzUNq6ce5P/5L/8tqo1LAd5+7xpvvP0eOtHLHW0x3n3vKm++9Q5CCNZWV/iFz36Ko9GILM+pq4rdvT16vR6dTgdjDForQvDkRc5oPMJaQ1EUaK3Yv3sXmSqyROJrQ3JFobVmOBhSpDmJStjfP6CuKsDiA3gapswxWnLm4oBB6ZGhoUBTOgHOExD3uPgn508pHRdJiK7TfDolGyQRMJOSotNh9+CA+X7NvK5o6gbnXBtbgneQyox+t49OC4KwoByiliQ6RagCKRSCCmfLaHBC4oNAmJxZnrPrLbMgMHhM8IjoQAMglUTnlrWzb7KRnGbvBx9nPhlxqnsVm7yLSkHLBNkuOLFYviJeX/CeEAJpkOxducVk5xAzr5CJ4vQzlxk+uoVqLJ07h6yXgjKByjmYB+beQabJwgw/cxRpQeVAt2vD+4C1FmPMcrMLPsT4UkqElDRNQ5JkTOdzHjl7mo5W4ONm037gv3yNB9AnnuSdx3uPtTZiFO2KFEGAOQNMAQheEEJ8bnSr45wGAWkS50sISNOf8EmZ5TmnT59huLLGW2+/y7ws+fOvfIP5fH7P84pOwXB1CAG+853v8tzTT/HC0w9xdHiIlIoQJEqmDAddvvnNlwD4h7/1n9Lt9wg+UM1L7t7e4eIDF5BKLCfLe0dV1dy6eZvrV27y+mtvcTSpENYwGA458h6lFNZ6pNSkicQ6i7UWrTVpmjKfz0mSBGMsHk8vy8iSHDMZkZhARykSZ0mGkv7mGgd3x/zU8z/NJ174BEFLGjzT6RhZHVG/9X02msBr5ZQ0OOogqKsabxzBBkS7XhcegJQCrRTRXYprxFiLNYZGSMbTSRsXlxyMxpRNTTy8BCJEn0yg8ICSCYnS0Z0SChkswUa3WGkNQoGUOB8R5yBz3vWCV/bHvGQMMynIpKXvJL1lVswjpSDNHZW5zfr6l9k4M2I+n3L76reYNncRyiFUL94QcbzGBe2mHQJNVbG/v8/0+iFZ7cmHOWuPXyK5vEkpawZThxEepxRWgnfRHxB4BA6tGzZW1zlScwQevMAZh7EWgiTLitY7kwRkRKsV5FlCdsL1bGf/hCGGE5/25CPH3xfBxmIzFVKSJAla6+gIBxc3VR8QcgbM42YdBMGD9QHvlx8PL2LY0jRNu/H+mF2hHfdtlJcuX+bdd6/zxT/9i+Vjp89ssbm1wUOPXWarDWJXVod0ux0IgRe//T3+4s+/zseffZJEK6rG4r3HNA1bZ89y5xsvcv7B83TX+igHQinSYZ/hcIAIxF0QQZBxT06ynCeGQy5ffpC33nqX77z0Mr/6uZ8hIMk7XRwC5aCuDCsrKxweHmCtZzye4tzxtDsXUErhao9IFc4EGm9Q/R5WBXyo2RpmqDRw+YnLvPDXfgajBSJLmE2nDA4Pef2r32RjdISvMxLh8SpgnQUbEDYgvSA4G+Oc4FFakKQS8LjgUYmO1+U9RZoxYkIiFalKqBsbYz5CuzuLNlECQQSc9AQFEkXAEULACQ8yEKRHKKhkYOINSmaMCs0XD2e8XJXcQuBDQOM5TeABqSm8B2lBpARf4wKEbIpS3yUtLOS74CukArTDidDOZARfBCB83GmayZzJzbuIuqCzNWDz4xfxgwxDhRMBI2PMLYJAuYB2Ae8FQUQ0vzb7SBlQXpHUAm+iwQZnSfMChGZe1gQkXmiSJCOknlk5InUBGRabTODYdz3psLZGGOKGefJXAVDi+IGFcTrvscEjgotuch2Q2Wt41+CtxAiP8Q5jPR4ZgTsR8CKGM3U9QyoZLfU+xn0b5Re+8Kd0uh0+8cnnefrZJ0mThMGgh5AS0RpN3JjaU0IInn32Sb7zrZf4/T/6U/7hb/wNbty8Dgk47SGRzOcl6xfPoE71Se5McQunSIDudpAIzGyOODlxAdIs45FHH+btN9+hO1jl9rV3uHjhPEqqJfSstSbPc+bljO3tbZIkQSlFnhdU1RFpmiKEwhnHYDCgahqQAZXIGFtJj9SCuinxCrwMIDxOgRIS5QPCOTQW1d64uq5x1mFqg1AxfSQ0aCmRMqC1ZG1thclkwnB1hdHhfjxFRcxOOmsRIp5w7bKI0Z4QyCAQcZsmoomLU+CEuwVYbxFKIL0H53FpwjujMdvCMVcC18T4rEFyaBtWU01HCqKLbgneoZMsgp24eDq0KYXFphCCQwQFIRonIZ4OECi6XVbOn0aIhNMXz1IPBVZZ8BGpbJdGfO2FgYh4jSCYz2fs7e1Cv4Mxjiqr2nhcsX+wj9YJRRFwzlE1BuMasjSnKFLKulnOx0ko54NHNNpwz8kZ19/ikYWX0zQNQUtkMEgVME27VQoikIPACnCLjXPx96K9W96jdRJP+/sY922U1lp+/W//KufOngKIfryIb8iJ+Em2gW1RFPQv9PnsX/tZ/uD3vohXGYMip6tAlFNk+wFdcKhBAXcnhHbXDQFqPMPNdVSeUh6OED4ggohnhxAMh32stTTGMhqNmK6tkqQJTdkQgOl8hk4T4BjKXsR6i8+ptUZKSariqeXbazFNg2sMQgjm8zkZklRIpErx2pLkOWmSgg9orcjSlAdOX0T4jKODQ4RSIAVBeFAtiGIMBHj00UfZ2dlBIMizHBFoYw6BMxat9II+cGL2PwikCMvfLNJTEUgSZFlGESDram5nCd+sDnmnLBkFT6gFqZfoTCMBG3x0d9t7fDQa0WQ95JGik/ejy+wdPjicC1hrwHgkAZWcWD4hxEWYKjYfPo+Xnlo21BYI0c30eLwLy3ym9x4hVARP2jlorME5j3Ae2xgmk2n0BJyjrus2tnaYpsEag/GWLM8RIgJnH+SmfujR/qlv14rWGhIV3XYcYE76LiBO3K0l4B5/m2U5ZVnGdN5P2igBsjyNgIUQZFnK6toqSmkm0ymTyRTvHWdOn+bU1hYAUgnW11bjbnN4xIWyYX3zHHuTI3pNRb/XZfe9W7i7o8X2CQikELjaUJUVab9D2hjstERrhdQKFUAn0eCSNEUnKUejMVqnVMKC0szKiiLP4k4oJAiJVBrrPDpJEVLhfCDTLdASJFIqnI0u88HOPs467uzscvXKFXSSIDsZ86ZG1SYmjX0g1ZAlEpsXVEcNd27fZudwnyTP0IlEKOIJZy3z0Yg8S0l0wsH+PrYxICVKSlKt8M6SKNUitycX1XGOLfg259bGdQFQWqFUazze0zQVGs8NkTA7qnjTQuVAIcgI5CKQAEVWkFmPlIvpDxwcHlLpioPpAcPeCptbQwIVQtiYlzMGadoNTjiQsj1BwUvwIm4oQXqkCCReRmBLtuvVgw7ggscGRxIUCkGQkkp4bmxv4xFoF6hmJaZsSLRGCUmqNXmWYZoGJSW9Toej0lBJj3EeS6CsawCev3wJiC7kcWLqww1BNEipZBuGiBbIC8jgEMETMV+/PCGjSyyXbxhCoNvt0V9fXxr5jxsfyiiVkAwHA0QInD13muFwGHd459ne3mZ3d4/Tp0+R53nL/BEsCBb50YQz167jheCU9JS379DPc7ZvbcPBnLzXJ02zFu1y1GVNM56hspTu+gpHZYUUEdcKwfPoYw/zlT//Gm++/S6pTqiqBp1mGD8lyTJm0ylBSHSSIpXGBzDWkQXIi05Eja1F6wQQ+KZBKR3d3CC4dPYCNxykWc5Djz2KSjQNntF4zEZj2e91kXdBCU+WSPYnM1aLFfIs4+HnnqI/HLC6NiTgccZQTia8+eoPeP3VV5FAv9cl1A0iT9FSRuDGOLTS7c08iXgfx0bx5rcngjj+bdzP2l07BEazKS/OZqiQYgGcpKslK8OM1X4v7uIW0qMZqrGtkbXGGTx1bThyRwxXJYia6JwJgncEL8EFhAqE4AkEnGgBj9b9C9LjFcgW/fSLD+kCWI+xFt/iMpLoms9cw91be6xvbdJRCfW8xBpLp9NhMBiwtrpKlqQ0TYNE0C06HMxHpIMeLgicFNy8cweAh7Y2l3PzoQ2y3RC9D5GoQIjhCx6lFYV1cR6cwweDJ+B8wAWPB+KMSAIC6xzGB3SaMp9N7+vtP5RRAiip6BQZnaJAKdmiSrC1tcZsOkLr6NaOjo7Y3d+lNDHXKFxD7uZEgligpzMSqeLa8vDApUusrq3jvWc2mfHmm2/ia8P8cITs91FKY+oGYSwQSLMUgGs3bvBLP//TzKYTGtPQ7XYpihwfPEmSkLZ8xQVN6iQ7QylFkiTHjzlHUAopFWmSxJi0KnGJgjwhyEBoUnSWkK70MToijkpKtnd2mYUZDz0c00TOe/b295EStBT4lqrVNA0iBIosjZPfuv6JSmiahrzlFh/Hle9fMItvx8tNtKeB9x7nHFLEJLiTCT5kaCGRsqHIJFubK6z3Y/I9jOeY0Tgin6LlHJ1I48T5iidzzFNrpGgRTyGXn2VBVfO+RZalx+EgEJ8vNTLRKCkI3uKta8OImNaI8R00jcE4F11xFWNW5xxCCKy1dDvd6AKGQF1VCJWiE02Spbi5x/toCvB+gsDJf/CXWulR3fDGteusrqywt30XYwydXheZRuTcOYtzluDbDSnEXLJr00H3vpWg1+/z3s1bpMby6DNP/+g3PjE+ZJWIYDyZMBqNMMYgAmzfvctsOiVRmizLEATmsylFnlHOZjSVAaCWgUZJZEiQViHHE/7Gs8/iguftd66RZDmJTphPZ1hrjkPuyjDfP4yLGnAi3DupIXDnzh1u3bqFVIqqqWnqhmZeYpsGIWhduxasCIG6ZScthm8nV0pJlmVkeY7UmqzI45kkogschCIoBUmKyguCkIgQ3UIRAqE1JNVSvWIezdEYg3GWNMtIlEYGEU+aILGNxVQ1iZA4a9u8lrzn+n4kYBGia6yERMnjXK8QgmHW5+LWRS6ee5CHT11gZdCnW2QkWqOVQBPQIqCUWBokogVd2nsd54aW12uRQqKkRuu0xRREy4HWJFqTJZo00aQqIVEJUmgEcZOTUpEoTSLjOWBtPHmNs+3pAtY7pIzuYWNqnIsnTpLm1LVdblbee0LwONtQFBmzcSyOiCQDTnz6uMDFB07fD7u1AmicYzKfo7WmnM3x3pPnGXmek+cZqdZIG3Oji68AGO/aE/LEi4WAVBrnI+IePpB++cPjQ52UovVF69pQVTUbaxtYY3HWoZRCK42WktFsyvr6GlmqsDaelNpDJziCMIBDOsm6ziDAfFbSVBWuY7h27Sre+ei+BYl2IS74Nu6In8DT6eacOrPF/v4BG1s/zd7uLoO8Q20sKoAwhkR3Kat4o0KI+TBEhOR9sCgZUwqLZehcZP0HralMjcpSaueQQaKJhqbSFJGmrKyucSAUSQikBLT3YA1CBIypkULHWG2xYwtBkqUoqfDeYCpDpyjwtmFvezu67iGQ6oREKWpjj+8tMeel37+42o1EiUj6XsQKjTF4lfLY+QeQViPclCYcImykONZVQAfIhSQkCdnEUCkQKiznRwQBweFdPAt98HhsPBG8xtt4OiDbdSFjGgBBBM1CwLV4unUBZyMibUuDIBIV4iYLXgkckeoXPPgQU2cOgQ8KjyLJUirj6HZzZvMZOIuZz0nWCnpZHz8/JoyfHDK8/2AU7T53r2O7+Jc7Efe5EDnKQkiCa9FiD6mNa8W3uUjnY1TpCHgRaXuL0NKGgAmeNFGg7u8M/FAnpRQCqTU60TSNQWnF6soq6+sbWGtJ05Qsyzh95hRZEUnSD1y+SJJovvTWu+j+MLprLZT+mLBkScLbb7zD0eEheZZy8fyFluuoEUIjRBIRunZXFlKAFEgt6Q/6TKZT8rxYupxbp06hhEIK0FpFl/QEiqZUZO649nHvPUJGt63T6ZBlGVIpatOQ5Rm1aXDWoYVCtkn5oDVZnrfukieRbU7SW6SKiwr8CZ5wPIWk1pH/SmSneOdwLlLQWDzXeqSOe+Xi5FsAKfcsrQXi2p7KJxFmgPFkyvUbt3n3rfciyybRMZFd11RViTMGoRTZsEfVTWgSEa9tcdq27+uiVcZY0zvqqqGqGuqmiQT6uqZpaowxeOvwNm5scWMVKKHRMoI5GoluEXZk6120p7MXARcCznuECOhEtQYKAUljLfuHBzTWRjZUsExETb7aZdgf0jTNj6jEWBjfyXMxHN+bE18hBL5/8zYhBJ554gmsNeR5jjEmutbGxAqdEONG15YDurCM8tuwObr9kU0Vz8+8KCI3+z7GhzopF+iS84H5fE4IgdNnzmBNw+3bOyilqKqKu9t3GQz6dIoOnaLHxQtneePWbeZPfRp9uN++mkNNduhkKYeHR2RZQlXVlOU87vzS471oKVJh6S6F4MGzBH2AZWqj1+8jdMLk7g46SUjSZPl3QsQKDe8CqnW1vXfx9drFrLWO8DfRvcqLSNdzxqKkRMsIdkkpSYqcllRHqhOCi64OAoLz8H6qXQhoGb0JKSRSyEhLa+9mCPEmG2tI9ALsOZE3+xEerPfHrvcJNB4hBAcH+5zbOMfq2hpra11uX3+P8mgPX1tUR8IgY7i5gd1ax+8fsrM/ws9pwd6WvNC+/mJ+FpTIJElQiQAZWStBimVqILQusQkxPkylJlMCqSRdxfK+Ld3kE/lCrRTD4RCIMdyilG02m1GWVTR+3z6OoB7PELMKW9dtbePJxcoJVL8dYmGD4Z6nLcbuaEwIgSxJ6LYAU/R/Q7tWYgTt2xykFycMfDH/IdL/VNaWbAlBt9tdrq0fNz7USbnILTnvmZcVjTEIGdG68dEIQuDGlavs3rjF9vWbdIXmlM74xZ//DLOq5nf3DZXK4mlJwO5e59eef5rZbM5L3/keHkuqFMM0YYhjVRo2heO0hrO55FyesKIzNJKeUjz/9GMAHI6nDIZDACbjEUFEN1NKidIKrROkVBAiQKFkJBZAaIEMlrkwu8ifOkeeZ3GXLCsO9/bZ39lhPp4wPjhkbzbGJhLlBR2pkQG8FNH98YHgF6yXdnGHgBaCIsvaQuZIqBZIukGTBhlrU0Mg10mb5+Qe38t/QEiyXAwi0vgWm5VzjouXL/Los48iixyR5SS9PlZr5iIwDp66k8H6KsnFcwyfeIiLzz3BmTOn0UIgCcgQWkAjGn2SJOhExzBFa5RUMb+IaNetWGbMhQ+R5WMcGEewxz+XFETaFEoAGwQCSa/XQ7UItGg3GmNi7jK08xp8ACeQBvxoDoczhPHIk1zjxdy/38U4YZAfNBZP9z4ChfH0jbB0QCBsRFhN8DTeYjmutAkLMkULeCWJxre1n0maLrGGHzc+HPoqQAiJaI/txhnGu0esDldYX1unnM+woymnQoaaOgauouuhe+ES586e5QsvvcTf+PzPwhsvtTuWJ5fxRGnKilvXr7LpYCV4SCOzRkmJ1gKtoRKSq85QIci14JFLpwF4970rXDq3SaI0h3v7dPOcwaDPvCxJ04Rur0tdmdbgDFpHqFtphYjMN1i4lN7T7/ejq0IkFBzu7XHu/AWGgwGpM4R6SrrSw8hAGgQdlaKFwmkVX8PEKpUQSyiWO7H0kCYpVkHaorZ4T+4kWmhmOnIrU5Us/26xgMW9gOu9C6k9yVQLPIkg2Nzc4OyFUxyVh3jnSBR0N9ZxNBzu70Kvi+92GLcMHZ8lbKyt85lTZ/nuS6/x5lvvEIJdbCn3vFcgRFfVx/gztP6tX1yrFARFzOdJiQyRE4oI2KbBGYeSCuMsNR5nPbYlPkRmVIXWWYw9WzBFCEmiErRKcDZgjSc4EC6WnCkXkFIti0FiIZJYug4nHNflaflBE/pBIO2JFDq2bqitYd5YbEsb9LQprNbghYwxfpblVM61QBr/vzHKpN+Ffo6oDEpIjDGkWYbUcfGVkyk9AxtkeB9QkwYpAx0teeKxh/njL32Zm0LxsIgRshOBR/oFAjjYPWC2f8DDUpEhmStLJhxeJ0wIOCOYeIsXjiJL0OrEJiiIUg3W4Z1r0x0S52NFC5TMZnOyLKFpDNPpFGMrNrfWSBJNXcUT3znXurUeby1CREi/U3Q4e/o0VgrypkJ2E+rzZzjKCmzVtIimwolIMjfGkLzfek7cbSdiBYKUYknPFEKgk4SqLNFKtrGuXP7Zj8PtFidyXMiCc+fORxkUH40mCBBaMdjaoLvSRyuJSlMMARGZd0xnU3yQPPLIBY6Otrmzsx3zVcdvcvxPKVFKQFuz2pZSRm8qQmmRrUTLffEeoRRNbZk3NlZ1WEuDx1qBkxKPwppINVyMk+GHUpEkIUUkgJ888BbI9/sri5au//0Bnyf+MDKjkiSJOAaLeF3EOFEcOwYn79FiczTeUeQ50/kM76Oh3q9Rfjj3NVXQzVB5lH5o6obVlVXqxnBwdBhh7hA/6ER69pRjm8DYwUMPPgzAn1+9ueSn6CB4sJkB8PKrbyIdJGgmQbLtBF5KSiRXZoG3Z4Kd0rGeF3TyBHWScR9gNBotS2zquiF4HyH4JImnk7WUZU1Z1hE9Lus2R9ZOhJQxRj59KlZahEC/30cLEV1c0S56H5AiJVnZoEhzpBAUOiFtkU9rPd7F0wpYxhvL06ZNnbjgQUQ02REXdKI0Jrjovi1jzQh0+DYl8/5xkmAgEMgWBS+KAu8cSohITmhj7CQrKPp9sk4XkSQxzUMsCPc+YEyDVIIHHryE1ierC4+jLxFaW/UC4eO1SqFirWiLbi6rWxZ8V2LqCONorGM6r2msx7kYEiVZxsraKp1OQZaly+NJCdGmfdrYNbSoU3vZi83Ie/9DnuriYy/ivKUVh3t//0HxupCCIs9J2zBIa003L8ikRiNJdEwDJUotCrWOY+T28yV5jvci5mmFRsrkAz7gD48PZZR2WuIPJriqppzP2dvdZ16WXLl6hXldEoRHCrASDpRlW1smCgqtkbJN0CMjk55AYsFzXGOWBhAEZlIzUilOJwShMTLHJBpEQh40KgS0Oq4DDCEwG89oaoPWOp4yAeqybJHDiFQ6G9qK+6h5E7xgNi2Xd0cpQW/QW5L5hysrpEIxmc4iRSpE0a2Awnc6aBkQeE6TkKrIeSlLh3UC6RUiRENfgCUQ+aU0ts1/SmSQWAlOQpGkeCkoul3ypEAGFQ0SiRMSv9iZT8SRLD99PAk9AZ0m5FmKbWpSJekVOb08jzk2naBUilQJEA3JI3FBUFYN48kUYxq2tjZYW1lt3eEAOBAeKWPBgTcR8xetdoIUrYpCkIjFB118ME8ssEaQeJBpRpoXJDqLaSnhmTdzbu/foejkUajMG4Iz0fU1DYmUDHpdwCFEpAZmWYLWEuMsKMHp8xe4decOa/0+F4aD9+Gt7UcJSxr8D8WbIcgl4CSFiEoIuPYORGJC5jyrTqATRZIq8kSj5LGHEFo3Xqg41zrJeOjhx5iWhr2D0X3Z2YdyX3WaoGxgPp7w2//qf8Q5xz/6x/+AlZUeSZB0UHSR5EGySspYebIAfSGZHR0C8ND6Gu7WLUCSuZjHWcQdG0rGCxTiWFBDSMQioGoXofIetFqmAUIIFEXBZDolTdPIjVSKNM0oipyybBgOhzS1xXuo6tkSKV0wRrwPCOFx3qHThNIYsiwmja2N7la8ZZHPaVWXo6JgnNXUwpME0EIwnc1ojKNpDFrIGFt6DyeIBXmeoyToTkaa5oQ0Q3Zy0izFK03SH7C1scHtu1FdYHHShEWeYrmI4v/4E0YfQmB9fR2lFOODA1ZWVsjyrM2itz5fW5TrvCfPMpwzlPM58/kcYyPJQUrJxsYG+0dH8T5I0Ikky1J0GtHuRCsgppSCEK0STkx54SNlMBpqJG/rIEiFQuk2zRVg1lSUOBwOGxy3bt9isJLfI44V62k91h3nIr1vleREZGW54Ck6PXYPDri4ucmwFfKCBe1tgZueODGX0xmfaUNgbzRpT8aEppzF1Fnr4vvGkFrPMOtQK0cTojCckvI4h9T+kFojpGBazmm0pr+xSdHt3Z+d3dez2uESybic829/+39kPiup6or/5v/2r/inv/Wf81B3SDdIchGQHtZFgpUG7R3d4Pney68C8JnhAHfH04TIzgm33uPTj17mW+9cYX4wIjm7gZGCSNgU7SnXyi8KH9khpEydY24icupD4OyZM0wmE5xpKPKcXq+H9zky0VTVTqzjbMGb6D46Fp5QjFuiv7i/v491kdFflSVKSl577TVWV9fI8pTbBzu42mP297iZ5Ew7fa4xZ14kbK5uMZs27O/vUZsStI/UvOAJxmDH08jhXF/j+o1rbJw7Q6/bRYZAIiWZ0HSFovKClbU1bt29e89u//7xfvrgwvhTrfHW4hpD8A5rDGHhcwag3SisMSgpsabG2lgQ7mwLTEhYXV3h4Ogwuo9SkCUJqY5pJikkKsg2/mtjYxFwSC5snUeRcuPKXe7c2qbb6/D8p5+kyDUH73yHRCZLoCXTCXPpSdKUzEVSR5omBG+jV+JivjnYmPvTWmOtayl9bWF2mi6FtH5ojpY/j4vLjz3WuN1FQ4XSOl56+x3SJGG0u0uWtiJcIrrRMgSU8aQhkiWED1jnWnLLifdsb5oLgfF4TBLg4WeeZXVj877s7MMZ5eGUL/zxlznYP+J//4//ETuHB/zz3/43fPmr3+Lhz/8CJthlamgkA1Pl6fi4Oy0DcCXaCu1ABaj5hGKwQmMdd6qSx7xAi3Z3ExobJB5HkBorLNvVlLmRBAlVcxyn7W7vMGvpUbvbO3TShNHogGFbpeK9b13QE3F/OA7AFwu7qStQijTRmKYmUYpXvv893njjdbrdDgfTEcELlPfo2mBTyV4dCJlmOOzjzYQr771LkAFdaPJORvCORErCvCRF8vBjj5CkGUEqRJoukdbo1seF6Ft3McZELarKcT5MypjnXEgqOmMJziG8p5/l0NS4qsRUNc7aaJTECxdtKii0G5Ug5tXqummBikg+GQ57KAEEhwwe4UF5gfItIuplrKZv3T7vHOfXz/GHv/cVbt28fc/a+c43XqLT7fBPfuNvMH336wTv8a6VbExS0jQlJ7qkIUQGkRQKLwRaK4yNOEEs9zpZgheBJussx4JlC/9igbT+MP3tZHi5MNBFzhpigX1Te9IsOVYMaIn0pVJRj7d9gcXmDuIY+JEylqERSHUs5Sub+r7s7EMZ5fb1W7zz5rtcvnSRsLNN3zQ8cP4c3/jO9/iZTz3PSq/Lhlf0ZMKhMIwF5O2ht8ixeSmQROlBLyWaKAYBcAhMvURKsAImKOY+YCOHDOlA5xq8ZbPXYTfPlxOzvrLCzuE+/VYKUgqJMXbpni7YGwuKlQ9xglMZ3QylZbsbx4oJlSrwHi0lZd1gnaWcT5fv13hPLRRWBaxSeGMwZUmaJFw4f5aHHn2EzbObnLt4jls3byCCR8xrvvbnX+b1N96kbmouynjKxPspsLSumggtwhd3ELFIeRBdpbquIxLZ5vGii+Wo5nNUCKx2uxwejhDGoggQHIuyI9qcmjUmFu+ecOV8INZJCk9o5syOxnhnUDLgnaeczti9vc3K6hApFEFKlJIgY7zbHwz5j7/75+zu7vHYow/y+KOX6XcLnHW89ua7vHvlJv/q9/+Ev//gQxzeuBbrYZ0hBEVZllQIHn7oMuPpLhDTS1oVCCmwtiFtSwejhxCpmHFTiuksQsvoWUKu4YTRHSOlMb1xrGJ3XGx9bLzOOvYP9xmuDEjThFQKTG2hnBPqwCBNMM5QeYsPrr2PLbMnunXsHuzTWEM/TRFKRhrifYwPZZRf/8o3Afjcpz/F7PAAZxv+5s9/hv/6X/8b/v0ff5lf+vxnGPTWMFLhg1yGMDVgvEdJiQwR4IiZnMj8yFr6UQlcx1PXlipYvnr1Ng0BS5RSyIJnXiSMTM0t4N2rsUxHSsH6+gbF9m3SNFaPLISz4u9bfOw4/xBFkZwjSiVFl3Y6jQW1eafHdG/Ol7/8ZQbD1UjVOwn2Blo20OLl4kK5ffsWPiQ8dPlhVldXaRrDzs4OWZ5TTae4Nk6dbN+J9KwTDJSw2OdbVFacQJcFtC5SwHlHVUVmS1jMqZTgPPVsxoUzZ/DOUpVzvIsEb/8BsahzfhmLLjYs5z1lPSPPV9jq9Wl2RlHPt63MKWdzynLG7s4OQigSHVMGtWlQWnHx4gNsb+/S63X4/M+8sCy6VsDWpz9OYwyvv3kF+/FPMHvvrXhSB4cPMfY2Nqo3GGOQIlaN6Dyn1+symRwtBbZjNUxU0tM6qk04a8mLLgDnNzdOyIHRIrnHnkI74bxvWtivKqyznD19mul0ymQyYTafRH0lBB0PWyLHusDcBLzwka+7IE8sXz5QNzWT2ZQADIaDtqjh/vIyH8oojw5HfOZnP830zh1UEyfO3bzJL/38z/FHX/4L3nz9bYb9PoKWfgSLWlwODkc899BDqJs3MB4IDusFOMuvPnmaL778Gn/wB3/G7Y8/zSsvv8ZkMuPocPSXsi8Azp45w1q3z+hoxKA/wDY1s/mMxhg2NrdorImLtj0hjrfLKAUog0C0tMGqqsjSHG8d0/GEqmlI0pyg1BIQCC3asqBqxZ8xJWCtRYjjhW6NYzqZx83BRwFDoZOY4xMiVtKLuL8uLzNEmUPJoqypvc3tCorlVTHFsTBWiBtPJ025eOEC5WwepTXzHC015p60BktBKAhxw2mr4l3TUM5mlNMpKs84t75KpjRlkASibEme5Sglo1G2qobeOhSSejLl2aee4OVXX+c733uNZx5/mE6exk0Av0xBWefwwS+yTC2rL57iR6MjLlw8w507O1FMG8fq6oCDg23SLG0NM1aJFHkRebiVwbqAbcsEDyYTvAixeoeIcS3ZUC2DaBHTnpQDeWt7j7oxnDt9hndffR3RUjqRreSHA5HGe2OdI8k1+OhFsLw/7Uy36UEpJd1uFxHCDxcU/Ihx30b5sWef4dL582zfvsmV/QMeXd0AZ3FJgnOW3/i1X+XFH/yAq9dvfODfnz97hr/3zDPkd25TCk1wFSooVNB0Xnudf/Krv8y/+IMv8Pv/4YsIIegWBT/z3MdwMpIMjlOKcaEKIcnSnPNnL3LlrTc4PRxy+cx5rt+5SafbJUjJ1umz7O7uIOWME6B4XMytnyGCwBmPEppup0eWZqwOV3AO1k5t4oSktu44Wom+z/GNDWCNR8qE4FtysotykEKp6BG4+F5eKkizmBsMLtZWiuMFshShCnFBeWOQSXpCb0lGI3SRUZOlSVxwPi6AUxvrDPtdDrf3sE2NyguUTltlebekFC6S3EmSYHzLHAgC31h87RjvHtEUGZ3ugDMrG4xHt/FSoJVm0O2jEx11aJ2laZrIUjWWvbt3ePTRx5FPP8W3v/cKV6/f5m/+4mfIU30c03KcYBchClUJJUArEg+z6ZhO5xKCiIYL6SjLCXmRkmVpdBGdJdIUA9Z6nBM4F8W6AcqqboGnZQjZbn7H7uzxNuVP/HuR/Ix85m5ekGVx45EBMuvRtUUJh1SKouhQziY455cFziDAB9IkwfiAEo5Op0MiFMlPWjhrrdOhmkwYdLtsDFe4MFxlPDriqCppDkuuv/UOT124yF//9E8jtcD46Gc7FVXKmJU0dw/o9leYTfdxdQAfVd983XB5+13+q3/0n7F9OOKXHtwiVQG/N+Ire4d88+iIWdCAQKsU4RPybMCTTzyL7uX0V4eM7lxjKBy9Xi/mKoGj0Yj19XUODg7uuZbFqSd8IGnFtgRRQcEaRzkvwXuOjkZkvR6eY2GwOGQ0ylbBjfZs8/6YnOyci1o9ixsdACmjyLKM7nPTNPi2YPGEgsTyfXxYiAOL9hPHX0RFQBPfVbTJd6U4tblFOZ1hTYO1hq5ui8N9u4iBRWHuPa0nWqU/GQAHB3v7uFMr6FQw6PVaEoBvjUmhgsJYgzMGWsVB2YpL3755g0tnz/Oxv/u3+KOvfov/8MWv8Ot//dN0utny+lKlSVu+cAhQB0GaZQxTRWnmTKeTVtpRkSSKspqzuhrBQGejhpLWUf4kEQnOxsZC92Kgx1O/DDEXtyKcfO4HuZRiSSZxbdE17f1eFi4IwXw2wwVP2VSYFuEMIWYVRCvPImX0KBKlIhf4PsaH6CVSMJ1OGY8O2fGGvWqMFIE7d3aYzww2wHg6YX9/l4tnTtERmswHusGS5JqhU5zSGVp1UConiBLnS0LQBAJdX7Exvs6l4Nl784DbCIxPuV4bGq9YVF3UdQUu6vd8+9tfwymB8g3rnZSbV69x/vw5XNPgTIMzJhYNsyhoDSAFGoXzcunJxpNDxhhGGY5GY5wPNHXFqV6vvUEQWvI1iLYAN97syLk8ljZcENt1umDELIwqNqSRbR42Eq1dq/nyw7voj0yFLL7ahLUQgiyNOdVyMsaFCNVHDViiYFU4Lg4OC9GKEPOmwYVYttW6wmVZ0+v30Gmr/dP+hTGWqqrodbptnHmclqFNLVlr2bl9m/neLr/wqRf4f/3Of+DVt6/yuU9+bHk9iZB0dbwv3oE3jtl8xsRJskIzHo+RKiK7sfzO0+l2YV4za+YopSiKIhZEiGOq4kJKJU/SY0P8MWPxFB8CV3Z2AegXBZLICXY+EEI0yljdEwWWuzphjmVSz2K82CK8wfvIzpISbwJJoki0bimTP2GjnM9r9vYOmM2meN8wKacMB3366+t0+nDnzjZNbTjcPeCUznjh3CU2bGCttGQeVgyUWjNtGnSqcfNwwp0STMvAG9s1O2RYoahwuGAxgJc5wTVUZcV8XuKtb0+amFO7fOE8Kihu3bzJIM/BWlxdU2QZ+zt7KClJlDpmQClB8PEUkyqCEbhI0WuMwXlASBpnUUIhVIILUe6iNeGWj9kmy6WOQlytWrcPDusMOiTLFNHCcYoxUdytTUtcP8nXPBZvltzLR/lgEw3t5+jmBc5ayqamMg2H0ymbF9KWj3qvUR6XIgVUyykV/kTtZ5BkaUqCxweDkxCQ2KZhPpvTzTtLBBsp8a3Cu2xzltY5vNOIuqRTFLx77Saf++THlhaglCJT0ShnIfKZvfOYEFAeDg8PUSrFOUuaapTWmMbSHwyYzSuEVMsNIirZxddt2pPolz/2DIlYkN/ub/gQeOW9awghmI4PSbQkyyMtToi2cVKQiKYhScQyrx0WBFjC4j9oifiJ1nT6fap5ic4qgjT39Vnu2yjv3t1lOp0jgDwt+Knnn+WRhx/CGMd7V29x89Y2LoB0ims39tlSHaq1Va5noLzldFeTOEfh4g6kCEjhQHpEUFgv2UMxyRI8FhtUlFFwHm8d8+mc0WjUupbHTB8hPFI5HJbgLePDQ7JEI7zDVjWj8RglJUWeM55MWVTRO+9orEXpJMr1Y8l9QVWbqJinEurSYY1FChU1S1tgJ1YuROMSEqT0rThXgOBxzrZ8WVgEN2LJ1wztIlrkxcQy10h8GDiujvigcZJQEIiV78Nen6ZuqE1DZS0yTRmurWGcaYGkY6JBNMrozroo8X0i1SAIIaY6pK0x3kSSBxKFopPlS42d1rQxNoo+64XeURBY67h77QpPPvIQL77yKnd3D49PipPF27BUgA0ilpw1TUOiY5VQICLFd+5s8+BDD2PbfLPzvt3wjsMDa+MmnyjVxubHE3W/xgnRxpSEPM/ajSqgbUDaQKIkWrbpjcCyKmeRSVik3ZI0RTrHfDbn1R/8AJ9kND/mfRfjvo3y6PCoPR0CSmWMRxO+973vM5/X7Owd4XzkRFoBExn45uQuO1s5RdoldZJ5mqHKGY86wUqWM2lZEl4sYiVNIEeQtvVofqmVWc7L2Huy7a2Bb2X+WoOo6pJ+ntLtdYBAnqb4EEuA8pYyNpvO2p3z3rjPeYexBq1TtPIIYXEukKQqSla0k7yoVICoSXOc+2x7d7bu64KEsBDmiieUQIoW4FALI2wj2yUqGB8SrYu8qIgIbR3f8Whd4WXlQtyg1lZXaZoGYy3jyQSEQki5pIktFxwnECpYItGLYY1FyWikdV1F6Q0ZEeZEJ3Q6nQjQyMgGtdYsXfcAmKYhKzqxasQ5UPH0t95xZmuT19+5xm5dkbWbkm3d6AUQtLg3SZpQFDlyQe5wnqZe9Kd0S7qdUqo10BNA0snZCnwwUf3eab8H/BGpImiJc3Zp9EKwbFq72NysXwhohdYLi+wiY030uuqaYtjj/MOP0F3foPlJty2I0HAEb8aTKd99+WWCd0gZeYwsFqU0dIY5Tzx1ESkTKuExqWafQF4k+EaimiRW8AsZDTIIEl+TiDmIJJIN2oYuTROT3NYYkkTTKQrms6pldkTXd0E0f+DSg5i6XoooFXlB05gIapwMsk/ki9I0pZzNI1cxHC8KpRQyRKaMzqOs/sIogbb28nghLRrphsBSakRK2cpiLBQIImp8Tw5StKKry1MknhhBLiQfT7i2y2cdn5USiZaCvCg4OJhRlQ113TBYWYs6twsGzOIVApxodHJiAcc407qaDE9TOY7GJdPpDC0kNsRyOKViYXOQ4BsHzpMnSdQeahX7tNZITvJr4ttePHsKrRRff/stPpukUVitBctUO7/nzp2i002pK0+SVvQGffr9PtbHOTbGYIxnsTl2u13qqv7RR+H77SAcF58v6HWLe7NcEzqNaayTf9tOvvOOWTMjEKglkfxw4n2EkKgkxThPbR2bK6ucOnOOpN+nuc885X1XiSgkWvp24SqckDilsUK09LC4222eWuPSpTP0ZcaaTMl8wEvPnraMlMA6TXAiVisQBal0kBQukPooxy9CJIhHKudisQaEhLyT0et3yPO0le9IaWpHOa+5fu0GV69cxxjDjes3ODw44O7tO5i6RTlPoHFewLQqY5lTnscqABm1YZSKgbtoDUyEe+/Okmsaonsduz0lS5fzh/ViwvKngPZUjbm+WF3fAkgizmGQniA8vv06WdPokThkjGU8yBDo5x2qpqFqLNN5SQiCLO/Eqv62tCpeu0eKtplOiOT62FgnNtcROIQ0PPjABbTocOegoqodMliUb1qPJrq/SgQUsaQqUbGriZZtr9Lg4nWIE1ceIpL76OVLvHXjBt2HH6UJYHxENXXblOmTn3mMT//spyjrhslszqScMavnmGCYllO896RJTqfo0+1GpD1W4hznbBdc1JP1tssq8cByvmPjJNEq7x/fY1MbEqkjs2qhEBE8hIhzVMFSBUcdfCzSbnPyHqidQWYZcx+og6S7sgJKg9S4+zS3+2+vruH02Q2OjmZM54YgIpq0EG+PiyqQdhJW19egMm29oV/sSVipol/tPMqzhMQFUbRXsUikh3vczKVWTetCihP/VlK2NXntTmoNK9lgeVIlSRJlI7MU2QoZLcp3qqpCCCjynLKax2sJYcl1XOSnZNsr5djtPeagntyiF59p0bJtcWK7INp8YrzYoigiT3V5Pfe+ToClBoxYXPvxWbfc4X0IyKA4c/oUxtTMqjmlaRBS0l9dadXLHWrRkqEt0oz3I+b5RCvpGNk/8MLzz/H8I49SHY4ZVxW2XW5S+DanunAdWyU9WoFswhL8Wp5CJ06g6C1Ifv6Tz3Przjb/8jvf4H/20KOM3367LViO4cTv/s4fEbzCuzSmG6oKnWiMNTSmAhFVI8bTMQFLr9dpUw9t8qitH/1xZ5Jggc8s2Dji5J2M3o6ULfdXRKPE4XFLuUgbRIxxF/ctRO0gBDTeEZSkOxzE9GBwFN3BjzMz4EOclGkaeOThs2ysF0gVQYx7qrxFLN9RWUZIVDwFIzsLhEAKiVOCmWtIpaKv0nuoUDIEVPCxU5EUrcRCi/CdxLdP2MLilosQk7WJbr+SFGsdC35xlmUURbEUfdJtEfOCWqZaOfzFKSZawGEpOdk+L56QxxuFYKF7uqgmEGxsbJDnObLlqEYltJqyKinnc2azOcOVFS5cuHDCID9gLJLdP8RoWpplnDel2NjYYF6VHEzHGAEyT9k8vUUg9joRop1fWt3uEOdMBBd1eETAOEu/22NzsMad67fZOTqi0RrfuuQnAanjqpQQtW1bxYflbWpj7ZOfPYQYjigp+JWf/zSTcs67EjrDYQvmuIgl2A74WLoFsSTvWF9WEbxvmzOJpZh2CHDu7DleeeMtulnGJ86diVP4Y9b0yRm9Z+qJMp0LN3d54IZ7n3UsVr285EhFEBGBlir2mXHOoWWMMe9n3H/TWBfoqsAgjzWPuOML8mLhBoW2QUtE60KEJkHJVg1O43KBnXiydodaeBUqeApj0SFQhUhnW6qFibCMwxYlOpLFTV9oc0bQp1NE5LWuoySgEKItw4rdm1xzDBIsio8bE1vARz2gSGQXUqJri6miQJhf5iGP48pFcB8XfiBJNGfPnuHOnTu8++47iOtRvVuEqDAe1ess3hhWV1aibqqQcacXJz0Oll/xGqPA1r1usERJwXA4YDgccv3Gjch6khKdpm3rtdiNOrpqDt1unM67JYC1QFHLusGXNXvbu4Ta4BNJbVys1CCSBpIkIfKG3fKLEHBtSoQAWZpCCG17iXs3FdFKe5zaWuOFpx/ni9/5Nv/55z6P+M4R1RLNjA1gtYootWr1eZTUy/h6ESrEouu4tSdJSllVpEqR6uOz5i9FXUP8FlfvyWcKrLMUIm9pIbHoOVEaZcyyhlK0m3RUXmhNIoCWCm9qUp2gWiJLpPz9hN1XDGhr2Fzp8Y4+onT2xFbkl07R6HBEOH+egMIJATLiy0VWsNLrs5IGsukE5ovLj0PhSZsa7UPb9i3uPosi9oXbuoj1aA1aK4lKYsVCnmpUZVHeoIj9HrSKLdYF8OCDD/LOlfeYzWZx4lysIlFCYJpmeYJ4Hxk+XRsQzoMUJxTIRZs2CEtCt9Iy8jK15OjoEGsN65ubnL54gZXVFVYGA/Cxrdzh/h5f/cpf8N6VK8QuUza6SMTGRks1NZZOBseP3DsCgYceuoxScpn7BEk5rxiNjrh04Ry3b99mcnS0rGDJ8wzVVnfINhZyAeqyInUwOpgAUCuorGspgQKhJFlesLGxwejwkOl4grd2Ob9Jkiw7ZwHL8EG8D3GUItbyP/f4o1y9dZf/6Rtf4+++8Cl2Xv3+MlVE8DRNjVSyJZ4HVBs7Ou+YzWakaUrd9kCJ4I28Z2aWp9pfelwuoNljRbr4cETOF2UTkkgG6EmNcB6RBBASYyRQteuyXadSRE9pXi49pigoFfDN/eUp79t99T4wGY8Z9HukbcerezzK9uLLsmQ2nR3v/CK2AlgZDlFpwrSpkGmCzrN75isJntQ25N6SecdGntNRGiEThNRI5PKGL5PgBPKsw/qpR9Dd8xTFOt3BGknR49Enn2VlLbqSgbhLL9otQIwTpRBtTixZGpmUiiRNKYJkw6f0rVpqvcaY6d784bGmbJQhuXXrFqPRiG6vy8b6enz/Fp31LpaLBX8MFi3aox1jEuKe/zvxRidynXHkec7q6ip37tyhrKolQqh1wqDfI0kSut0Oq6srpGnCbDpmPp3QyVPOnT3FmTOnWel20MaRGM8gychVQppkzKuKujFL9ftnnnmW3/qt3+I3f/M3efzxxymKgjzPlzo2y9BAqWXlhpSShy6eB2D/aBTv3QKMSSQvPPM4s7LkejlHx7wLSojlxrFMtbQGflwh4pbVQEmSEHxAneji/JcEBT80Fs8c1Q3zqmZjbT1uUOlCuUCAECRIci8pgqSnM1ZXV5feQRxhuR6SRUe4JFl6B3Hz/wmflAbL7t4hm1tbdFKNCiybvEY/K5I3Te042NvnzLkOQXp0qhFJSlXXMXZIFVVwsdNTkIjgls5Z4gNZEFzaWuf5557hD7/yNWZHDiMMTggWGFksm4pK2dYrxmUGc0lvrUeTWLzKqJMMJQNIE/9KRqWVlcEq09mUeTWLKtdti3PZsjCaskQpTeFhqDJmqmAmjkGAmHc8dn3j/Th2fayzCAST6TQm5m0guDo6nz46Moi4aBfF1SfTHgvjkzKJdEQflhuSAJCtsrtUIDV3bt1mPp4wmVYYVJuikmRpgjMlRZYgXcLK+XMEt0WnU7RxWhQbk8GTCk83VQw7Bd4FyFLuzo7wIbYN/NQzH+N/+U/+CavDLns7d3j8sSeZTubsbN+Jxqc18/kcbwy9NEGnGYmKm9eZ1SFpkvD21es8fvmBiDy34NXa6gq9TsEb167wxJkzXN2+jdKLHHAbKAhBN8/p9npMJvEUt9aS5ukytnQnRLOWM3kiy3TvuLfGcvH/d0YTRtMpT52/wHh0RN6qDiCi65kEgfKxEMCFwOxoxGw+i1IoPrQ1B8corHGRVx1EXBNHR0cMBuv3ZWv3bZS1inmrXAvWuwn7+4J5cAQkCEUIclmMa+tInbLCIXQC1iGUpjPooc92cfWc7mTK5OggIqGtCyJdQNaG833N5z55gXdvnuL2dw4R3uN8JGcr7wGL9wbnLLUxHJWGrOhhE8us7oPImQSNFh6tLEEprK+pjUH5hOFwjVJYMpVxND6k3ylIWgmKajzhcv8U6zOPHHQQW6cIyrfNZ2TkQtK6KgFEcNCmExZqMEEIbNsPxbuA0qrt8+FROkeoFGP9cgddGGV092K1vUpy8mIF10QAJaKXMRqQMiLEVgSayYxe0GjdpQkOHRKMaVDSMehnSGHIRIIvG4pOjnOWvbu3mZdl5JDmGZkWqI5m0E/pFD2qEPB3HCEI0iTjF3/xl1EqYXdnH7zg7NnzPPLIhCRLuXn7FqZp8DKmsUaTCd2OY9AraOqKndtX+ZlP/RR//tWvczAec2p1rU1zRZbV6c0N3rl2g08//TTJ3Vt0uh1G0wkI2tK6yI3VQoKLMbJzkTPc6/UBGdvBn1ANWFSD/OXn5XF8Hk66rkIglEBIiSf+DCFSW5T3yERj2mbFARBtCsiFEBVspMIIQX9tDSMl12/eZOdgn527uzzw4KP3ZWv3bZReQl1b1lZWOHem5N0bB7Fp5snkdgscVGUJIuBkFBxKdMLqRuzKHHmBOoIpi8yXAO0FuYVMaF67PeLruxb97CcIt3bxdx1mbmJeTwnQNa62OBxSOgQWqRMqY6mNRyrRdshKkSIqblfNmN2jKakIPLF5lr4OpLmKkh9tF5gcxSMrW5y2OS44bnXXeG8+53QWO1X5RZnTPbc2utKijXsX9FHnXEQnRVi6vR5A6iUlbwGyLE7BJWuofX7spdICYgIWPIPYA1dgguPOZEY371CJBLfI19nYT7LINUp0sInCKcXo4JDZbBZTJr0OnaKgqWoIjjRLML7mxVffogxQGolXGb1ej263y+HhIamGVAp6vR6XL18m7+WgJa+88gouLEC+BQhkUEqwu7fDL/363+HLX/06b7xzhY1PrMRYTUqCDzz24CXeuXaDo7q+l60TQCca7xxVWVLOsuOibGKYtHXqQiRoeB/XBbHtwfKQ/ACr/CCkFQFfff1tAM6fOsuNK28cA5gthiFdwFvb5ssFtuUtL1MprWErKfEhMCvnyKJL0e3Qayp6D/V57mMfuy9bu3/0VUSUcvvuNmvr63Q7BfNprBoXiHaROfCW0eER8+kMOdRRvVoIQqIQiQIb8ySu1fNZJG+VE+RNoKks23mHr20n9B5/hAc+tsP2H3+R7oL25AVWa/KiwIfAsJMjtKL2AhESzq8rTJBQe/qZJi86kdp2IKi9JGSCtW6Xh/o5lZ/j0yGTsqbxhswLHu6swJHhcHWdt03KjfER6/2CRKfL0+qeLMXxBnsc84XjmPH9Uq1Sili9QYustvESJ3Kyy65NIWLay5f14MNxbCmE4LpvkJUHWyAk+OAimti24QMYDocYHd3Lw8MDsiKnPxy0rfrmCB81bg+qOXerCVYnBFUgRCDNO0iV0FiDNQ6Rx1Z9vcGAVVNhbWxvHohVNbJNFZRlidaRhjc/2mU4HPDWe9f55HPPkC8Ejj2sDQdorbm7t8eZU6e4s7PDieLZqBBxkrvbTn7wnvl8RpIMCMExWF+hMYZf+8TzdFvFiQ8Ce37IqxURWNkfj9v3i0GZI9bwKjwi9muKa7xVQVys3QUN0LU4h5QS01hmsxkXz56n1+vSG/TpdHqkacb9jPs2yocvP4CsJlzf26Y/dKyudBgfzbBJFPNdaKb4EIPuyd091tCcPnWGrNfhcH/CeDJjZgx7Zc1zzz5N8Yqh3r6D7A6Rwy2KJOHihVM01mO/+YeMXpT0bUNva5OwtsZqkdKp5ninONrdYVbO0EXGKCu5IW2k281LBt2csYKyrmlcRZ5LkA4XcmbVjLevX+fJQRdlptTKo1VOkAl9bxGTKbOiz9U0Z/uoImllQxZAQwgx2X4ssHxMy1NKsfCbjnOZ945YZhXFhk9KQy6et1x4YVEuJnELyEHE2H3RFIi22sVZT6Yj4d8JQ/ASWzZ476iqElNVzA6P2N3Z5u7BDltbpzg8Ooj3q7FkWqOynHJumXUepPQKZSUpgt7KaXSaU5Vj9nbuEqyh1+nQ6XaYzEru7uzS7fbwwdOkaWxQG6BuSoxxJInm9rWrfP7nf5bf+b0vsHd4xJnNjRiTA91uQaIV71y7xrlnnsY0USBLtrnJQOyNeVxEHOfUOsN4ckSvV+CDW/YY7aSRJLKISYGlN7JIgbR3AvFD52ac79osQoqYpnEo/GLOiXW3yDYkWSizL0gtMqbUlIz5Y60Tuv0eic7ucbH/snHfRvmt773BxtoqP/exn+Hg1lVMNUWHKOS7OBmEECRpTpIpaCxr5y7yX/23/0NsJ+f8PT3flRB88qEHeeDcA9w4GvHNF78NgP96+JFdjBc3CuCnHnuMzz74EJOdPcY729hTWzReEJIBe0cjKpljTcOKymlMSV4UIOf4oLg5mjKc11xKPLly0d1VDb0kpmMmWnBjPKWygVS6FpWVS/d1eSoS3cwgA3lekGUZMGWRWDbGxKah7hhJBJZSHsBxzpTFa8ICFJcqiWmbxeMiqt0tpC10EhXgi7bZTqIk5A0dG5B5B60UaZpg64bVtSHSG0a7u1GsLDhAotKERKeQpFhSarVGGSTSWxpv6A23UEmOryY0xnDz+nU6ecHK6oB33n2bnZ1d0izFOQNS0u90yZKU0URgTI33nulkzJlHHsR7z+F4wunNdayLlEpPROgJntrGxrRSR1RTq1gP2piYczbWtBq88ZRVMiGmqE6gukCrWP1DZHRxzzEZ2hOvTWcsNz5F6T2iEai2zKSRknnLFEIEKlczqWvm1tD4yNgKUoOIXuN8PseHwGDQb9s7xJJA9SOqft4/7tsorXPsjab8H/717/G//jt/k+LOIaWscYBaQNYerJUcYhg8dJH/9k++RFk3pL0BDz75AmnebbHawGjvDt956/t8/Z330GlK2hmAgO7qJqcefGLpoxNoebCB+fiQ3SuvEoBvvfU2X3/tNc6sr/PXXvg0RdFB13POX7rIlStv4QxUVY0aZCA0qc4QssIRKMm4axxbWrHuLNbPSFwCKqccrnKldBzYBiVTnIj6PMfdoE8MEfdbIeTStfUhIEV0g4wxJG1vkpM7dEx8t/mxxU67+JISQUKWSoaDIXJeYhe5PyHxUiPaVn5JopfpAqUSECkumWPmDV4lJEmCtZaQaIJ3rCcFD9ocWwfKTkDr2DSnyDtkeUFgxiJGst4hCaxvbjCdzSjLchnzllWF2Wu4fv06dR01kfIio1PEjWnQ7RGEx9om5lC9R7cNU01LWl8AMVopnnjkQb77yusMNzfZvn07nnRENpJSKgpAax0NRUaRbaVSet1VQkgRZPdsegsT+yAANh6W4fjfgAkC46K3Q5LjVIEJCcIGau8xwTMNDumb6BF6S9723/Q+lrohW+MOEU/QSpGlGaZt1NLrdqgqe1+29qGEs57+xb/L21//I/7lF7/E3/70J3jj9kstMdmz3u+yNxrjg8RbiUtSrty5w8rpi/zC3/kvyBK97LmQtJO2+/ynORod0u8O2BquREaEinzV0FLtFjO34Kyaz/4CQUi29/d44zt/weGda/zrP/w91lbXyJKEr7wk+flPfZqzvR51r8OwU5DKLt15wYPnp8yDRwlFWlfc3rlFL/EUUpHrAt9d50a6wtu721RCIIXHiwTfNq09jh+P3UnRkgmstfcsgEUudaE/uojvIvOo5YwGRV1ZmsbF0i4i48a7GusURVpgbMCGlm8iBBaJCQ7TVFgT1RJiTlChQopLSpJ5Q1OuLg0+STSqsXSt58E0Z6JSrhOh/izR5FkkXmghQPi2vtHivOXrX/8qo/1rrHQUuYRcQWUsxghmsxnGxBRNXdVI71nv9ghh0U+yZHN9DRngdC9BKcVrb77Dkw8/uMz7IkQUXw6B4WDATz33LNdu3eT67bskaUaeSPIkI1UK5wK9fp+1tVNUlcMLSWUcKuvhXQTUBnm+8DqPRzhBwrjnd3E93p3NefvmDU5tneLt925SmQDWYFxYNh0OIpK1g4ix/ZoXJF6iPai29UMMaAR4T1F0SHWsDTbeQlMT7s8mP5xRDgZD1i4+xI3vfY2032/J5g2plFxa7zMvj5g2Hu0iMgitylqiWtZK5P2oELmwZ9c2OLOyxtu3b/JnX/8Tiu6AFz7200gkjrYYuM0Rxk4VAk3MB106c4oLf/M3mJQl77z2Cu9+58scjo4IwH//739nGavJRQxHC5W3d6RT5Hzyqafxwz6nvaVIPM3mRd4dBy7lGcZ7rt86xPtAqQJNq3sTSWvH9YMesM7j2/4kSZLQ7w+wxmCbCujgXIyBRHv6J0k8uYN1jA7HlPM6uuxRMJRgPY0JBJ/hETQ27tCxZTkEFznCizKMFtbACInPa3InsPWcGzevsba2RqIFSbCsNDWrxrO9P+WwM8QkcYN0ZoxPUrqdAh9m2GAgNJi6YbwzQ53PSJzFkzKrGqZOIJKMsqxwLnKAXW1xUqCTlCAE83kV525WslrkhLpsyfou5kIBqVVbnRPnU1QV/e1DkrLEhEDTGLL5nGEnZV4blMpoGosPM0SSAZLGBvKVNb736veRQvCZBx5oSTonPBNaGaLlI3ElCinwLtAEF7mqMopveRcf9wRCixLHFE2cc4Fkpj0950m8aUkbEieiK2utpZCylVSVGBFz67r6CceUAFJJLjzyNDe+9zVeefcaWsCirKirYLPbZV7GVEc5mXBqdYVpOaWxhm6et3So+CfRexO8eesGX/39/w5TVwhgNhnxc5/9FdI04Udkf5cTKxEMiw4f/8SneOyp5zEuxrW3blxhcrgXd/Byxvab3ztBQ4tjWjv+6Otffx+UevyO/V6PJx55lMsXH2QqTUziLyUvjtlFwkfKXVEUsVVCgE6ny9HoiKtXr5DcjUrhSZLETljeU5ZzHnjgAY72D1hbW2N1bR1jW3HhVg19NJpx88YuAYExDcew0nFOTcoTwlzEipbgHRqNCJ7hcNh2zvIkAgrvyYIlt4HchVbyMYATHB0dMS8tRTWlawPaxYK81BkYHZFtdJDSobs5hzv74C3dTgEIlBRsrq+yt3c3urdlyXBlhbXVVXxVk6qE0fZtfu5Tn+DL3/gOB6MxG2srce5P0PCcs5jZFNfUBCHIspzNJGXVC677gA2BxgUq25BmkrQosMG1JWpxHUoi6vpDqY+w+NaqLIgI8gYBO5PI+Tx95gJXbh4u48uYjw5LNUG3eFQIghUgFVLYqDwYojas9LEGN01jpzeVSIRSJCKhnh39yPV8cny4prEIhsM1sk6fOzt7PHDhAq/cvobD04znPHfhMju7b2ME3Lp2lQdPn+cbr7/J4WRML8tPBNWxv/3b16/y1f/42/z6C8/w7IUtqgD//Pe+xJ+LwGc++ytkrWEuJ2lBcF52UF0E8lGSEiLXcvjE0zEl4WItXP0zn48OWZsDixup5/atG0yPDrn71veX17f44azl2y99l+++/H3+i3/w99mZjvFStWLS0e2KnYNVXKxaoxNN0zR0Ol0Esb9hVhQYY6Kw72xG0zTgPMO8oChyiiKn2+1gW0U5EYjyjTa0oIaKuTFakKl1lxeaO2JRfN1ueDIEiizj4vkLdAu/rMxIfCB1gcR7chvomNjPxWtFLx0gs4SRPyLJDFp7BIZEQUZD00zxoiDVktVBj9pbtkdznn76aZyHcj4nSyUrKz0wjjzL0GmCIFDkOaZpqMqaTz//FF/66je5cecu62srrfID3NnZRWvNIMsY9VImdQT7YgmWj/EygoZA5QXVPKDqmqFoqOqaNOsurVD+6H18eY8XCHdA4AK8+N5VAFZWt2iu7JwA3E4i46LFhk68QQhYY6M3owRGxVJCpCLNssiIEprgIPGW+WR6X1b2oYyyrmt6RZfuxhmu3HibF556HG5diTtVY3l4pccPOpL3KkntEh5cWwOgnM/a1NPS66axjm996XfA1HzyVIebb3yXRAj+N//J5/kv//vf5+s65ec+94vItjoiLMjachHCs6Q1LRQB5CKh18rQxBhWUegI1jjp2jgv/s1jDz8OgP/ETy+O3mX+zxjHlXff4ZUv/ju++o1v8rFP/hST2ZzlORUWyGFbIhzaSoWyoq63KYqCixcvcu7ihdjxq2mo65qqqrhz8wavvvRd6nLOYKXLGqttGqXNP0oQMp4Mqv1Y2guUh1LH6z6uWQkLILHNZUYEuZrNEYOMLNEQHEFC6j0yeAIN2sUTJpMSnWryLKXf7xJWOoxtTXA1SW1IlUc2JZshkAYPwXB2bYWD0YzBYMDh0RjnHGUZhaWVVjgLnSLDW8ew2+dge5uqnHOpH/N0t+5s8/xTT0RUsmm4fXcXrRQ+T9jPNK5TIKYleVv9YxTgJS4orBcEnWBwGOtJmkCSLoAzECKqA8bd/96E1JIV2f6/cw57j+C1B6VxssH4SOoMDmJHShHnMcRWfEqAxKO0wouotpBLTUg0Rb8LieJoPAYpqF2DHU1gZ3xfdvbhGvy0vdy3Hn6aw+tvMa0ahDGENMFYR3Wwy6mO5GrpmVaCp7bW+B3gnR98l0vnLi5fRwrBjb1t6umIzz33NAd372JczAW521d55vIlXn/12+w89wJbq6ssdinfnooCqIxhd3eX937wIlsXH2K4tsWpzS3SNle4QN5O0kqVXCicH49FoXSLtCxvkM4SHn/yOa5+7xu8/tZbfPYXf4nJtCYIt8xFLggCxjqMtW03qLYcrGmYTKfUdc1oNKLX61EUBdbGdgrzMrpp1tbtQpJLiN6jsCpBJjlORDqdU5GG6MRCXgR0ALVwHNrr9QGq2Yy7N2+xtXaBIAW0oE3iHFp4EAZhG6x1EUUUDoJlPJ5QWk/pQUmN04GQaUJ/SOU0PSVxdUPe1az0esxmc9bW1hiPRhAcVTmjk2bMphM2NtYI1tBUJSE4fLBkMrC2MqSqmyh76QW7h0c0jeHjH3uOu5MpTZIwbwzWW0gFQkuMl9QqVoMaDLUIICRWJpTatbny5Q1d3sMfPY6BtyRZkEIEmW1YNw0ui9UvmkDlDMY3WB/Xn5AOKT3KOYpUUyQiNvGJCB77bo5KE27euc3V7Z3Y40QJekJwPu3el519SPc17jbd4TpSJeztHXB6uMrudMLUGkaTMZfXVnnr8IADp9jZ32fQKRgf7LB9NCZpETetNQdHhzhrObWywuTwKpUHaQN7e7v87U++wKtXrvP6d7/Oxud/jfdV/zA3DV/7wu/GWBG48fI3EEIwPPsAD338Zzh3/gGGne7y707GGG3+9xhJ5fjnsUI2senPCUBHiJPP++Bx7FK2ecpWFsQ5t2xRIETsfaiUwkuBc3bpkotWoUB4wQOba8zP3WKlv0KRd3EL0KstG9u9c8h8VjKblpi2JGiRG3fWMRmPEUBd1SQJlIcjKGtyL0k9JNYjKkMzndOkCuk9o9EI5YHSxEZMnYLuxjqqV3DQWPo6wdSOohtIM6hCIMtSut0utimj4JZ1rG9ssL6+ytlTm/zFF/+Uej7j7Nkhfj7i8qULfOf7P2A6K+l3O9y4cxfvPWvraxxOJ6g0oXQWIzxz6ZgUfUZNYK4D3VDTCTWFEgit8dIiaeh6w/SEqxne537eu35jUbaUEqkS9ivDi2+9xaDT5aF6zkq/wyyv8QZE8Oz7kp1qjpGSxjmkih238yRBeI/FxlBmAUx6z2w+Z33zFBcefpzVwRpBKYwtefs73/vRhnVifCijbJUuGQ5WSPtDXn77HX79k59g77svMg6Gg/mcc6sZq5lib+558633ePDMGV5+7ypHsykrvQHeWnxjuPryNwB4eq3HtYOAlAqHZW4t5uZ7PHv5AV5+7UV2n/skpzdPxQUtBfO65mt/+LvUd97lk88+xRPnTrE7mbG9f8TrV6/z4n/4V7x9+gJ/7W/9Q4a97lJmMLp2bb7wHgtt3dwFCCXiI7HFmjrec0NoMeFjVHgRzy3YPAtFu0WJ0SKh7f0iH9kq1ekE2eb8bAu5RzA1Jrw3uprvv/49Xnrl5R95L4b9AUprnnjkSbrdXnTNvEAmgndefBMRBP3+kMl8xvxwH3ftNnkYxNbgQZPY2BuyMSbGr9oTnKeTaiYTS3cwICsKkm6PuTUkjWWGoVeIVrRaMts/YjDo44KhMjVay1jWFwIHh4cUaWzlIERgdWUFrVKWriIwbxpeffMdLlw4z7Vr1+gNB+R5GkWMdYYXkqbb4dBN8d5R+DkDYXggLbDCceAmnM8UpzLNrZY/HFjo6C7Eyo5HtJlYnieUjIi6C8zqhn6ek1dzCuFovGViGqomoqlaaEKIyLJKYlG7kitI70FYnAzMPQipqVxNU004e/YCqysr9Do9RJIyrhLOPPrMfdnZhzLK8eEeUkiSToe1y09z+7t/xnBlQKFSJiZwa3zExc0ul7YGvHP1kNvjKf/pT3+KH1y5ytXXX+Tpn/prkTbmLd62qgDOIlvdUSfAIJjs7fMPn3iS/2tV8af/+p9z7qkXePITP8tgMOC1l7/Lzpvf5zd//Rf53kvf4M9uvQPesZoW/OYvfI6pKfnqy2/wZ7/7L/nc3/oHrPR6x4ap2s7KIcobxvixbRgrWt1OFowd7qVFhYAUFrfIr7HgwcqlYJZsy5UWEiJRe+aYxxoXY6w59D72G2mqqAa6WD9BQGd1yA/eeIPB5lkuPvE8h3t3jz8GsZj84NpbmPGIr337q8clZMSK+L//+V9jPTEcjsZMqpLJ7T2eHlm0nKK8JBcZ2kQqmwmW/aPD2ItSCUQSSDcHkKaQpkyaGmkdK2kPL1KqqiQpDZ2igw57XL/yNrvjEXmRYyuDCJDphF4ayQTnz2zy4KVznNncxKU93rlylfW1VfJuh++98hp13fCx557nW1/9OoP1TTZPnebGW1fQxNxfKUD3CqbjKU2aEHpdbikVGUeuYjOUrBEBrjh/AtkKYUUPZ0FUiL+Pcx8wxqK1JnFhebpuF+vcHHSYNoaRrAipIOkmhJ7DW0Oap61sKDQqp9EnzCd4tKuY793Fy5T+YNiKLIEXFicU2+X92dmHMsq3/vTfAZANVgnO0skzzuaCrV6H24czdqZz5say3u9TJJK5S5hcf4efeuwRvvn6i3x3OubU489TTyeUB9s8//Bl7N3bMUAOslUOk6wGxfytN/jfPv0o/2etee3lb3Dr1RfJBitUh7v85i9/nsm1NyitQ6jYSGWnLPmTr/wZa2Xgb/z1z/Iv/vCPefWlb/AzP/t5pFLvS30cB2JSxmpO0VrE0k09Bnjb54GSgSCPT0iI1MeTpVeLYueTBbmLx46HWLZ1s4vSreVOH5jM51RNw0OPPM3PPf9JApEc7YmV9y44puVnsd6zs7fD6GifRbXpzTe+x//7q3/Cf/2/+p+zYydMRxPmhxNODYb0TCCUTfQAXFTik5nEB8GsnGNxuCwBmZB0u2iVMts5ZKXoc/bcA2x4OHzvB6jE0k1zVjsFbjLj1MY6TgQGwyE6SehmGatFTuIaHjl/ioc2N5ABXtmfcDSe8PyzT7J/cMTrb77NZz73Oa5fuU4Igu7aKrooUFojjcF7mEwjoOQCiJAwSwp8kaNdwFZTRNCkHDcQOtmSboHMnxzeRSJGbMkelhxcj+Bud4XDJiXkimJF01i3pDSmPrbms9bEsMQ2KGeAyM8V3qJczdw6hM7o9PqRI9tq3ngfODz8CaOvjz/04BJA2Ts6Iity/sHP/Ty7777K5rBgbzpjXkmu7s84f3aDQjXsB8m7d67zD578BM57vv3mmxxdexOAi1ub/L1HL6H2d0iKPlMEuWrIjeLJvMsFVZLs3+L/9NBpvv/CM/w/vvMyN/cO+M8+/xkGd97h7v4e67rAe8XcS6ahwTrY1xlf/drX+dgjD/Hid77MpUee5tLpM4vbtEg+xTIwcSyLtGjZJxY3dpF+WZoRMT2BeJ+BHffgUFKhtY69I09UigBLMGGxOSyM0rkfpnksXs9bhy+b5QdIEk2mEiCh388JInB2ZUgIDwOxqvNLkxHvfv9rHDaWydEhh3d3WFUJBYosVZQdoGnA20gFtAYXDLnXDErPA+sD/NpGjIuDYHAqpcgLpJSsndri+psvkkxq0qzD2ZU1vIVKK0KeYAPMZnPGR/vMMslDa6s8sLWKsjO2Dfzf//2XWR32OXPuNF/80l+wsrZOdzhg+63ryCQhFCmjpqS2Bo1ABdE289EIwEmPU56gIhllJgQTHThws6VYigxLHO4Y7ON4f5VRwRtjo5yNazfQvNtjJ2jGIbasM7WlslGPZyGS5q2Lgmyta2xcq3DnA94ZtG8wwdPvFGR5zryct4SRtnmU/QnT7B47v7HMg60+9yjONLx57V2CSqEb6A5Sxl4y8YGZqel0BQfzCfPas3vzOn936xS//tSv8o2bOzjv+dWtAR/f2SF0+vzAGZwUBCXYqA2XnGDDSaqmop7fonfrKv/k9ArqqY8xu3GDUXBsdnoEr7FWkISAQlKahkbUHDjJ5y+c51uvv8XVt17l4uYphJJRjkGKY+6lFMf562VMKVpAJSbzl5ozElAK3IJEfjIwbaUbZYjk9vbEX6jRnawGWYBGyzYBH9CJ6WQcS7sIQht/LogLQgiklpFT2vYd0Sc2GZUkoBTdoot2c2bTObv9Lt+6dJGnZlM6e3v0ez3G7gglBKsi42Pr5/jt7W3+9I++svwsv/LTn+bpS6v0Ll6i3+2Sbqxx+/YVfJpwsdNhrcj5j994kT1TgxaoYOgnikfPnmPz0jmChDtNj//LF/6c3YNDfumv/yxXb21TVzWf/PzPc/fODkWnoMQSMkVTVxjboJEoHSuQ9g8OMMGh8wSpBNgS66K4Vd04uv1VPEetAYofnsxwPJ9eBJy3iFZc6xvX3sFYy3PPfpKXb2zjhUeHWLTfhFa7x0c5TvyJ0CeEZSPf47xnXAm9YR+lW30iQWvQtDKVP37cf4OfpmFRjDu/eweCRyykGnGsbQ3JO5r53HBnPCYrEuS4ZO4U16sZvds3kLtXeMp5Vrzmk6LishfcKqfk/SKKCoUGKTzBNBwGmBjHvq3ZSSThaMJgf4xINIWClUwxDpKyFuRO43zAOk8ZLMJDZ96w0u2yc+VNDp56gTzRJFqRJDoSuQkg2n5SrVr74mBcoOoLtbz4mFhWorO4ScCigWls5yBJEo2UkYpVldUx4eF9K+VH9QlZvNfJ5y7Sr/c0rBUe31jM8kMDLZoLxBNQSox3WNswmc74/a2z/Je/8+/5uUcf4Z9evECWpAQZa1xTBF+cjPndr38NnbZt6wn82z/9E/Qv/DJ/8+Of4s54jB6usXvlbfzhiDwtOLd5liceeZyXb1zFhQZtA889eplfeeZjODPjbqX553/yZa7eusmv/sLPgda88sobnDp7lqn1zOqKqZ0xV5ZKOfoqipAJG0jylMbZeKpJgUoiyf7uzi5JXuCloHKSimQZlC+F1ha3rp1K76OwsiSipy7A3Bqu7e+jlSIvVgh+gpMa4dtyRBEL6f2iGaKIxieER+I5FsmOBurbNvdpni5VGBeourM/XMb3o8Z9G+VoNIqVCVqTahVjIRYbkWd9Y53VlVWm+0c4D100F1dPIZ3jVqpRMtAJgsxrRNPQKSuO7JhRUZB7QWoqyumEo+DZFUO6XjIyMPaSXSFwSY+UwIavWJOSjSTFGcuOd5Qu4LzE2cA5qXlAeh6+e5tza2u8duMm87qiSAdUTWyAE1W2dQz0kwRPQCqWJ9DitFTtqQqgtUYpTVgAAyxudkvvOtEla2HM9ke4plIKdJIs9WJP1l2K939ffnvfKmufIdpTPrQu98lhnV3qsuanz/AvvvltAvDlt97mf/Hss+jERFqfhWLrLL/93/5PdIeb/Op/8o/RUlPbhj/4nX/Gv/3SH/Mrv/F3efH1N3nztTcIlSdVkv1pSa5HnF4fUNlN+p2MQSp47PJ5puUut+/U/MF7d3j5zTf427/8efqdDrd29ijLkmcuX+TsqVU2cs18OGC/GnF+ZUizMyJRCp1p8n6XQZJinePg6JD5vCRUVezyFQJpkjKXFY28d/OM+ED8FhaNeIVAIrEI5jYwd4FvXr/Dn7z0Mp/51Gd45d1tkMebnyAgg0d6FxU24qst9r5j7yqENioKCOeQ+BgDL2Ve4lfTNMcB748Z922UWZ6zMlxhPB4xmdZ08jxqmQbYOrXFI488xGuvvoYVC7q24MnHnmTQ7/He3h32Dw+orYBUYZXkpbLkHDNKKenMDD3TMK0NR6bhWlBc1gOqOqM0kqkKHOQJ0lW8sD7kARnYlpp5PWVma2a1AetY14G/t7bBUx2Nz1PeHV7itRs3uHb1bdKHnyZLFBCioJUJVHWDELFNfJZqtNIoHVsJIEHK4+nxzuGsxS/sTIh7+pMsSAgLTdI8K1pu6r1jQY3L0izWX37g9vmXuznHi+7ex04W9sacadunUmlEkjCeH8N/P5jNuJjnpCG2fZdI5nVNv6foZjlaKlyIshyr/QH/7gtf4LWrNxBVjXKB7aMJmYhlAuunNnj0gfNsX7sFVnH16g12D8fM5CpffelFVlcGbKyuAmDqGCN/7xvf4btf/3bs46kUvX6Pt156k0G/z6MPPwZaodvGsc57jPccjEaMpzM6RUGCQhpP4sFXNc899jh//NWv8pUr1/nEpQsIARt5RiIkMgQcggrBzXnFD+7s8PK1a7z4+ps8+ehjqOIU1Xi8dJGCbL0RJ8DLFkTztMxkFl2kgzcn8tdReSNLU7qdDqZpkCL2LfVAXZfUzewvva+Lcd9Gubq2yXw2o6oM5bykqgxFnqOUYjoveenlVzjaP4qpAx938Ou37jLs91AIcqsheIyqKVPJO0kPvxcYzDzSTxkqycgFjjy8ZGe8WyZM3RrGdzmwnv0jh9RzTD6j0hWbVc6zKuMdAbeNpeMDHxvkXGaMLRVHrk8hJE9dfphXv/GHbF95ncd/+hdZ7Q/JkyT2ddSLE0rifCsyXNtlugQROy5DTMgH6yPcLpd4USuyGxXVFqmRPI8Uu9m8Ym9vb6nkvVAvmE/GDAZ9ep2cvf09tNbHVQwnLW7hPotWxy/8KBeoTdGcYCsJIVs9WE+a/X+4+/Mgy7L7vhP7nHPu9vbcKytrX7qqF3SjG+gFO0GAC0BSImeRhjOWZhQazzgclj1eJjwRVnjC/sMxdtj/zNgRXuTQyCNaoiyKQ44okABBYiPQABrofa19zz3z7e9u5xz/ce6972VWVaMaksKyTkdXZr5337v3nnt+57d/vwHSP/io15o1pIKWF5Dj48/ilhTXcHfnDsm4x4vPfoErV28htCHVFqEVWZJxM9nBmBztaephwGB/j41+gq61eW9/n2On6q6tTAg8oUiE4Z0PrgCur/LI+Y/hRQ2yZMLOtXfBWnq9ATdu3pq5D0Hg+zz/wvM8//QnmFiDMAaSjDRLQErmG02WJhmXV1f5L7/+pwXthODJc2foRBG+EGQWxlnOO9evkSTOFXvuqadorzzFze1eQUXgmMQMrsBdWIEsYgOyIk93uMDaJOQ6JvC8Ij+tMcJwbG2N42trxPEEz/cB6YrrGx4ra3OPJGuPLJRvvvWm86u0K/Q2uebIkSPUahHrWzukyQRfeq4KJjc06w2Mzhn1h0gl8HGphEgGzEU+gzTnkjWctILFSUzL9ziWwVjDbjziklFMshpeComMyY1kI4+5OcqYb+Q0MByt1TgmAt7OelwMIj6v6gTWkAvFdmJ5/eZtnv3YEzx9/jRf+8HL/OgP/p8snXmST372q9RDv1zKOFPTFCxgLjKLsGirp5HQAp5eiSJ1UyzeWSh/gfs7DAN832cw2Ib1dVqtFlEUkSSJi7imCSZJ8IQziw+PsgvEGEOSpo7vQzq2qwpB/QGjNJaAom/TpV4atYi0OUc+EzVuSUEqBb70sDYnmNHqUjlTfH93AwucWF3j6vAO2iQYC1IorDAILyTOYa/fxzbqnDh9its3tri0vkmiNZ7nT69MuG6V0sRuLqzwmS/8GrXARxvL6HO/jLWQ6YybN6644IkQxJMJW++/yssv/5Dvf/8HD7xvz/N46tw5eqMRxtqqNezNS1cOzo8QdDodPvnxZzk2P8dyEPK9OwN3v9rR9dmiUF0IBwJtTQGWRQ7CbdhG5PiBQGiJlOAJifJ8Eq0ctGjB5B3V6sXT1HiB5fip5Qc/uMP380hHAaNJXE4vwrrFMRpPHIOxsSjlagittnhC0YgamDxlrtlAKYf+1YhqCKsRWUw/77NVC6nFOcvaEFnDspIYfIjqDGNLZmNyAYmYkEufPSw3JilPNjyaytJI+5yQEQuZ5NNz8xy3E8YiJ5eKEYLYl2Smy3PH53n2v/dr/OH33uS9W7f47n/3dzn25AusHjvD4twcnnD07a7AHKb+GzMCUOQSXYy7SHXOepeF3yIlg8GAa1evofyAj3/843Q6HZaXl8myjCRJmAwHvP3qj7l25XIBpaEd5gsuUlcSDHmeRxgGrmtE56TGFkhwqrrGKUh04csW2jIIQ8IkQAio1SKuxCnJTEhea814lGCVxma5A0Ou7kMhlWDz5vsAWCPIjQAjCiBpF08YjFLS8Zj5jk86yQlsxOqxNe70B8h+30VKi6kzoog6FxPaWjpK3XfWkycsq3NtZ2YjOL28UqQsHMfJ5BMvsb61yZ0bl+iuT7Vo6UZbq3nr8uX7kSEODd/3+eTzL9BuNMh2dghX2ywu+DSFwB+PuLu9hbGaIAzwPYVCI4VrtRsOB7RbDU4cP44QjlRqMplgdAZGEPkhm7dHDPq9ApGvSIEJg7Y5V699QNCq/ywxc8/9kY4CxwvCbA6oQDq1btalLGDepSDwAxLtCrdHSUI8maCkJM+NK9w1mthC7Am2lOVx62OloucbEi1ZC5p0w4B0f8LGzoQ802AVsQc3MkOinUbK8pwlIXk2bHBivkFsDLm2CCPAhnRqGcu1jN072+xt7XC+P+KrX/4y/+W3vsXVH36D68pj6fzHePKFL7JYa7n7q4IlJYBV8adwaRG3CGyV15wdUko8qRAWhsMBUaOJFJIsy+h2u1VU1VH4+Uwmzsdz8BEFpVt5XkAqQaNed4valCRDRV7MmqLFKyseQhFkKi440RmDYZejJ9eo5zDeOcgjvJemHDnSobt/D5tovHy6oLW27A37DPa3ePzEKa7sbqGLe7ZF+aDTe5Y412xuj4jHIbWgRtBocfT4Kns3E6dlikVjsKTJhL1er5pPyTSNkE4SJGlhditqge+oFZS7t6OdFs+cPUtmHBW71sZdEw5Jcau7j8By9dJbTArc2PGgR+/ezWpe0jTlz775pygpZxrf3f/Hj5/ksxefREQ18BU5hjv7u4Bk8ME+cjgmngzY9yz19hyjJHW7jNZIY8l1RhK7vKQfhkyS1LlIwtERxmnC+s3tR5K1R8d9LapYpnyjlkw7BG0pA6SwBRGsM1NzKwDFMM0BhRWSUZYwEa48TSvJREgyFTBQNXZqiisqpZtLJuMxNlAsdRo0+hl7OiapKXIZMeqP6U5ijkQBiZQ09ISnWoYafSQZPgqjBan0WHriGTb6Gr0d460+TVwfczv3+I9/7VcZhQE/euMtfvr2W7yyu8lLv/zvMtdozmjKw/kuxzqdFRTehwWyYnUuCGeEcEBbg8GAIAwqZmegoOjzCnBnl1T2g7DwHe003eJOS1lv63nO55lmxZ3vo/U0NC8Lwc/ThPmVRVIhGNxax/ebB673u3fX+UpdkmrDanuOYJbMUUjWt+6SxiOevfBZ3t/tgVHkOqu68K0Eq6TDR9aWvf6YVmvIOLnO6vHjPPX4BbaL5mG38A37e/uMY8c8de7is1XBv7YGkblN3FoHapxhEUq40sWitlh5HpHyHMZrlcJyaaDOag1rNeeXl1wQBsiMoR/HGGsYxTHXrl3BAPFkxMal12Fmz71+6wZXrlyqNs7A93nyyScAyZl2yNr5T5LlmnGe0R1PCGRAd9hDKouSgjRNSNKYZqPpFJR0HCwWWawF69yiRxiPLJT1egOtc/Isd5RlFlempTx83zFAKeHYjNMkReNC/1p6CN9p1dgapHIMvBaL1Zq0plgPImxTsTncZd9CrDRqMmbOCp5aqOP7DbaUZGgNC8uCeLhBIiETGs8kLHsZJtZY5RXchhJtNYNwjo1GnSQbgNcgsT6XdnY50+5w7NQ8zz72eX71K5/nH//jr/Gjb/wuL/7Kv8NCs0lZ8jYlW3XDGOtapWZec/CaUwar2dSI1pokTaoCgpIhCpgyWJWFBWIayFGm/G5Lao0Lv5ecmeWJS8tQSoceXpC/Hjtxiqtv/5Dr1+/RCmI2xj2emQR4a+0Dz9NXCoNiYj36W7vYhqOP80KHJnD72tsALHbmye7tInNNalIETlM6enHjIDWEJNOae5tbLHYa+EHAsWOnqdWn5xTAjVt3q7+jWs2VLNoypmlnUkCFmWsFRrsgWpYZCgxyp10taOvK1yzGmfqBT+R7LnEP+ELQqNewNkfYNo8tL7u6V2sZfurzBd2iQBtLbzTh3r1b3HrvFZdvNIbX33yrQjR4ndcAaNTrrCwu8fhjFwmWTmE9BUpx9cZNdrWh02wXsQVV3kWBozTdlH/WeGShXFyed37kaMhkNCGdOPjAWrPOXKdNPI4RQjLoDdC5hwwijKdczagn8ZSPUQEqqBGEDlnbhpI9MvzhgE48xvNCbDpmHE9QgDCWLRVTD+rERrCap5wKM+babVfNY1xKxgD9FFdYLnMwPpHx6V5+l3Wv7hL8V2PyPCNYrHP84jPEdswIycif8Jf/7V/iD//h1/nRN36XT3/lt5lv1KeLZGaUiNiHc4XWquI9hRAeJW3dtBhBcLCAQKBUANKF+3UBt+hyjtOalFwbJlnutK90heyB7083hdJqMa6CCJNz9MgqAD967zL/3nNPYCOfM0HIP7x2ByEkL/zSb/L2y3/OWzdv8+L5s6z3NG0d8O3tHQDOPPGiC7gkE0LfZ6hzsizHagslgLZ1aSVtjasalh4WQyokuYH9rX3MSHP22eeqC81zzfrWHgCN+SXmGu0ZF6Aw8wTIEi2tcN0rukTcpmeKeTXFNZTN83Eak8UJqa9QnjOBPeUhi59CgPAAA74UzIe1YrN039MO6xybW+DZJ57BWENmYHNvC13QT1x/7yekSUw6GXLj9i1u3L5VaVklJb/1lV/n3pUbNFotMq0Rniqa8i0yjzm/ukqm/gXnKW/dvUEURbSaLY6srZDGKd39Lu9+8J6jQ7fOjBE25NipT7J68fNkNZ8aFs8T+EEAYUCuBHGakmYpidAgJixzl6x3h5CIUDggrixNyT3JppdwPAh5YmQ4qy25L1FGkAnIhHtguYGRdeHxAIvEo0POc3qHI8pD6JimydGBhI9/mpHt0e/3mK8vEXoN7tkeX/jMs/zXv/c13nn1u3zqM7+EEi7XN2sSFtEdnPDJwjwpdZQrs1N+6DBA0ZUZWpXUlfWvQoDyQXhkJiXVjoekWJ/VyLShN57gF5aF50miwAdhHT6qkAVYgvuQEszwLFqu7mX8+G6flSOG127cRkrJqWMnuFSrc3Nrg55u834vZUnvEdScwEmp2J+M2Ln9PmtLy7x18zaJNgXYcSEYhoqXMQesUBgZkGYZR1TEfNR0/Y6FWb0wN4/WOXs9R9ATRg3qM9i3JbuvmKmgcpmgiuFjmoMq5qjsAqmGVGgsqTF4ueNoyYUp2MJNZfKXrFhl1Fx6Cl8qCqhZgqIQwALt2vHKnXjs+JrT2HlOfzxmc2ud3a07WGO498HrfOv73+HcyQuYsMYkyyplIUzO02bCL33scb7+7luPJGuPTltgIB0n7I4TumqfTqfDwtICIBj0B8RxQpakDPOMfWE5tbAIWjMe9Zn0h0xGQ3QeI0jJsxStU6IkIZAZeSNksT2H6qUkOiULQwYmQTPBCM1a7nGhnzLfarIeeFxSIPFQ1mfe+kgzxmYCzwi0tnjC0pCWo/GAU34dT2RELUV9ocFwAb52b4v3r9yk0drg+PHjzLVCbr73Bv/Jr3yZ//M3v8U3d9ad+WENw70tXnrqCXrdnjM/raMJd0+5SKHgOvWtAt8LnKYsEM6Tgr23MmELE8bzPVCykN0ynFvMdfFTSoUfOsAxk+ckaUacpq6kT7iOFE8qfM+V9iHASIlUHmlu6IarTFpzDI/63Pn+6xw5fZHFRoOLz7zEj//8D9mMB6yurDHqpZVWN8BebxtrLRdPn+PeYFKRzM7ehymqWZz57TYmKyV7owFry0dYbLa4unEPIQTnT5/iIC5rOYpqGMsBy0RgH9jhUYGHTf+5/xsLLVr6lZU0zmjbtChyt9aSTybOXZEl29kU+lJIWeU8pVQEyqMRRsw1mhxfWkY//hRJlvOH926wv7dF7XSIDiKMcczixmjEKGNxfom//ff+a3b/RWP0+NovpxFrLPu7XXr7fer1Gq1mnWYzYNDroQcJ482rvPX1P8BiiESMUo4Yta4z6nmOEBCKnOV8wmInYq2zxv72BvkkxUcQWNDZBOXlZHnMbjcmqS1xZ3WR95ciRjsxWWrpkrAQCXwhaYw181aykg4wGHKb0M5iWjognhMcO7PKgDHRe68zv62pjQ2D3QHX13dZnG9ge33izVf427/+Zf53/+ybxEU3/xMnjvE3XvgY3xwlCBRSTlHTSsjKar0ZXJ2kcPrTWkGcpFirKiEtTTJP+UWgo7DTisUT+D5XbtxECMHy6olKYKWSIOQBfzbNcxKToYQLJkghiGTE3NFTfHDnOr/yaye4lO4xYUiqNa32Ir6oc/7Mk7wWfoN/+q2v829/9a8zSuqsj7cRQhIEEVv3rmGt5cSxNa6+8TYz2c8iLeR8QIr7pMI9gl6a8Nrl93nu45/gWz9+mflOh9XVI5j8YPS3bPJ2RdumEE5TxbDui7UVpn1ZAG6n8TD3s2pItZUMFh9BTL+1GqZyG9xnrC4jwboy0d1jKVJUZROAkEXe2DFOh35QWSpnTp7ivZ0d7t25Uwg3LEjF3/vptUcWSPgomtLKaY2mdBdrtGHQGzAaDJhv1Tk1vwCNlKS/z/nGPVqeoCU1ITmeccSwigw/cLmpLEsJGbE21KR+g6t+g2u7A3Su8a3gcdXhYnuNvL9HvNLAPvcEN0aCtb1rfNpOWE8nJLnHvobNmsfNwKNu5mjlkkYGoRyxF3hsSMHWtXVWg4TEy2jXIlazkK1RTtbbZ3dri2DQZ5B7rL33Mr/3Nz9Pey7E8yQ1M+by1h1CdRJjFNaOHfQDUzYt4WSO3BiM0HjSmUEJkFo3zaJozHNsxK4IXlgB0mKEIS9IUludJb75J98maLRZnptzpl3pfJUmUVFAoAqy27IlTGuLMZmLfmvDWAa0GwF//sYbCCE4cfHjjKREBCFnn/sCV175JsflLkdOtfmf/8M/orl8jGMrx9nevIUAsgJrtrQchXG/aF8Ras3pdpu9UZ/NeIwVLriihWQiFftWMxqP+dQXPofvB6T5DItxVV/s5sOaGeZluD+0XfrxgplOjZn3xOznxX1e//TVYljXVzn72n2nF1SCbwooTqeQMvdtxS5kzDReoLUhyxI6i3MsrywRRSEXPct/9ZNvP1CmHjY+QpPzzGUXoJmigM3wfEmbkHCzhx8qltohc6ZHJzHUspggS/FzixIpC0shJ890yMSY9+9JVsY+F43zE3MFb+cjxmbCRb/DJ4IFas0AfWSJa8Mtrq7f5IOuj+jtc8zmLA02yHWDbq645cMOAfdqEfu+Ig01XiaRnsVQ41htntNRDisKGydsTGJ2bU6apWgd0/A9cmEZmgG1/nu0bYrnCZA+wh4jALKiBUFYgxGFL1nkLo02CK3xjMWTgkQYrJKMydjPU5pCUlcuIGSMIZMGlEWQ0dIJTywu891XXuWtH/2UvV6PC5/7Ks0wqGjWoUy+F8/CTnOSFUmQEnhCcu5jL7J75wpv/+RbPHX2MX7nxmWay8dRSrHT7wJw4eIzaGv43/6jf4Q1hvbKMb70l/8GnlJsXHuDKAxdMG/mPCDQBjAZy9bw2cdO8e233mGzlFghQCjOnH+MH7/yCvNzHU4cP1Z8cioAld4yFlP0GdrMFSQooYpqJDl7w24zsw57dVZLTpemKDyAmTzHARP4AUEWe0h4xexRruLVzsyvewZO5K110XmHoG5QUnJna5vVo6uoVp2wFoGAIPSJCxfmUcdHQh6oLASmkyxwZVmNRoO6lAx7e8jMJ/YUtUAhhcZKCz6ErQZz544SLwUkvuDImXmeugWdtzdQJiFsGmw+4PGh5vP1RfIjbd557igmjem/b7hybZ9MSPpWclmnrDZajPOA3WFMXxtGE43KQPkh2jP0hULaCG1CfphrrnUNMu5jahGnn3qWI7LGzt6+21n3d3nay/CSe9zaSLi+McLzIazV2a1bJmFOFko86yMyjYwzlM5o6KKTINfYNGfiQV4XdD2P1eU1duM+WdonFj5GS0c5YQ0yn/D8+VPsblznpeUj/F9/9x+z1e0hpOTsS1/m6QtPYlGHURLvGwcCIYVpd3L1BBvPfZEf/PjbfP9H3yFqz/Ps57+KrxQIh0qY5Rmnzz9JpjXdezd4/gt/Cd9zGDPJeIgvBIPEAo58x/UQuihxI53wqaU5TpJDCjkBkqwQJkW73WEwHPD4hfNVg/Jh1SWEI8wRniKMAqSxmEy7aKdxZY15nlXmKkhyUYbDnD//AJU6u0Cngvsz5rA85LDY2g97t/jOje4uk94eT194jKub67x49gRCeqgCGHw4HDMoquEedTx6Rc/hv61ECOuAiHVOd9IjaihkkhFYS557TEyOaQf4802azZDO8jzm5HG2gxrrwx6h77GQ9qgpDSpn6FsudhZ4gZA55fF2nhPf7WKsJaDNMePRDzSxFrwsLW3ZwHgePTNiR2dkvo8yDit1sTbH/FzNwRBqg6optrImQS0mz0YkY80k3qM/GLHX3Wenv87JT19kRR3nzs0Ndvb6xGmG50Oyus/43CmWz5xgLmwwvLfB4PZd5vqaE90ekZ7gGeFo1JQl8CW7fp3Ta6f5o9d+zHujnxKGdQLlSup8YfF7+zx34gRHOkd59dYG290eH//F32JubpHV+QW8qgTazb6wgmna9JDWqXZ8txo9JXj+45/E8wQ6yzl/8RmaUc29K6TjxPA8pFQ8/bHnyZ78BJacfjxge28HnSW89PGPs73Xc+ewrgNCkCNtzlrD4/PnTuJ5PqHnuU1KyCJpLguEhoNrxxz6G2aDqY4USfoK31eFEPqUoRxdQHhaY9BZ7jSrhWnDt/O3S9mRxUmmNO1TjXtQxX74KNvAZgu7ZucdHDyLMRohJRpD3Q9IXbQJ3/d46703EcDZJ5/n6rs/eaTzPrJQ6hIDRYjCfPVAGGqhZUEpIgxHQ4/51Tb7+310LjBakU40w3rCUj2l3jiCbHTYWe8yGBu6eyMYDAjaGSu5YqW15KjxfvIu7+92GfYt3t0e+zWPXijJpSJKoT/os720BCsrpCZnt9ul1+vRarcYTEaOz7AZkIwnGD1ib2/f8dRnKZM0KchNrauEKUB3TRjz5t49Pj83jxCSREpGqkYumvTqDVSWcntzE7VwhLlajb7MSPs7xPk+7UBjvJDMD9BKEvcVt+7uspO+Q80POXXxPEtHTzDXXsAYUGlCtrPFu6/+iP6922RzS4BgZXmVxVYbrQ2X793i5uU3CYKIx558jqXOggOFKhZDWc1ywDwTFiWKgJHyePFjLwCupjc1jvq9dE9VYZ5JIfG8QpiE5M5oiNE5y3PzvH9rBxBF34RGKYOKh1xodsi37jJqtlECFBZfKZT0ptHLmdVrhUs9zLUaRVrEFo3D7lqlEeR2RvdVickS/U8ivYBASKxwvpvWBl2UBma5Js01uTWk2qAyZ8Z7nj/NFcqpMB1UnAd9zemf93ucBwVzGtsFsFbQqtVQvo9nDMJKPBSXblwHBAuLK1z9MAGbGY8slCXi3PSSnLPuB5KjShFIwfGGz2rosRFYbu7lJDqk5UWkqWB3xxK1oZ/c5dX3bqAaLVCwORkgah7H2/PcOXqELGjx0/mAG9sjtLFMkpx0BJmyVfI4zQ3vbm4SXrlSVBblFaelEY7q3N64VZQ2TSfZweRrlBB4ShZh/eLBW0E7EfhDzd7uGBMLMhmShTV0veMwTXsbXL99maXuCN/G9M2I4Xyb0fHjTJKUveGYWEvW6xkbehu9cZe1EydYmZ9HWEsYRjSaLbY2NsjmO1ybjBnGI377sRd579Zt3njlO1itiYc9hvtblS+zfvktavNLCATLJx9jMuwy2Lu/jjKsNTl58RlOrJ2g7k278QUu2mnsjH90IKA6jaQanTmhDTwyneMWpxMem2csmJzT9ZBR3Gdr0CNJRdEsDoKCDv5gyRMWi/I9jh9ZZq83wAKZzdHGbTKOuMk5dEocFJmDiz8Ha/EkjivS94p3fMcRiauiytIcbbQzu40hTR17uCyi16posSsDNgev19531ml09+Fa1lhoLXRITFb04Tpul5m06yOPRxbKlh/RbncYT8b0RiNn6xtLnqZ0wowQQVvDgvLwlxpsotlLAsSxU9QW5hhMMta1YbQ+Io199rv7zK/MsXz0FOlezPr+iHfsVYbePlf9MYO6D1IxSGNyW4TdtUHmllQorAwZpwaba9dsXG2us6uNaQhfCozUSHIsrtRKFkUAQkr8TOBvJ6R9GI9zulrSuHiO5qmj7E16LIsJCyKhHYw5uWDwmz6pnOf7aZOJH6E8D90fMkwtCRmpysgFWKUQ2kKm6XX3GQyHGGNJtEAELWIb0I5jzhxZ5tr19wBoRiF/7Rc/xSfPnWCoFP/05Td45c33MNbS3777wOcDMAB2b33A7dMX+fQXfo2GX9J5zyIU2IN+qnVzJqyj3Lv97k8QQtCs19EmRxqXVTdW4BvDufYcR6VEhIJ2vUU4TJHa4PkKTzoIxsAPDl2ZBSs4d/wYb166VjybwAFeS2dumzQrScQeEDmdvi6sqPSWOHBMgVKnIKo5cDElZVESaB3oVdmoXnTd6NxtOkp5B3KTs7GT+wVz5p6wpKnzF+uNOn67SY4hUrJIL4WkWYofBHj3zcnDxyML5b/zWMBT5+YZJD6vb2Zc3c+4sznBxJKwXmelmdEKBQQST+Ys1EJuB/Mk584SNJsEQqCSAcOrt+kNBtjJHl883eCpBajvjKhNMgI74lUTQ+IQ1pQQKAl5rstHQi6FC/RZkMYhrlUh+6JUqxLI6okVE+5+FADBpXkiXR2lhhvjIWFLkq80Wb3wBObUKUZbd/jlRgb9bdLuHiJJGeQptZ7k6LFVnvJHRFmPE6rGeDlhG/iRJ7hzxVGgaSERwnNlYdqhaQscyFU7rLGtJVd+8gb/+1/5PH/aH/LF4x1qZIz279Dd6GIl/OYnl/ntL/426f6IySDnaC3lZDt3ARIpHZ16Zklkna9d3eUPfvg6P/j2P+OzX/x16n5QnXOaUHfDGINQJYOmZJKnZJMRC50Ow7HBqgClMxf2B3wLa7Um4txjbJMT3rjhVISQKM9z5qsQZEX6Y67dLgTK2bD1tquFHexucnV7h/lWx7GrGY3veTTqdQKb4ePqf63OXR9rlZsoU0MO5oPSl3R3wywUvqBoVEY4E9uX+L4CZmgRjUsjWevqU7M8dwiCRdeNZQZLSRYtc8KZ/eUpr196DYBOo0Pm+ZjcQAAWRS0IuHb3LkdOPsby4uKjitqjC+Wnztc4NtclV5qPnZ4jxuOVy4bv/fQOzSjmcy+co+NZknFMrHNSavSby1ytNTFBnRSBNZLxXIZYvMMXj9R56XyDiG1kOMDbGPFYIhCyxng85i8yx8yligWcW9DSBQxMkYJwjbAzpoHAtZjNmFBVtLwKr9si9O0EukRYij3JtTSj1Wpx4YkLpO1F3r92k6XRgG6yS5LGCEIiAanSTHIJexNO1CTLDY+WnECoWSHjncEuQZZgTB1rFaaAhFBYZEELJaUlUgohPQZSMbh1my+mW7SEh2r7xAhqWUAoLfruTXQwZD+FdKdP46imrhLkRKCNYDy2jMea0STnJaP4wm98iv/0az/mz/7o/81Tn/4Vjq+szXhwUxazElQaY4izjCvvv0k86PKFT3+Km3e6+H6NPLMu6motNTxOPvNx/ldf+2MGk5j/7C9/hWb/FoxGaFyALQgC3v/gXQBOnjjuxKN4CLoQoDyZMIonSBWgh2NKHN1gOCGUEEhJIwiJfIXvyaKSyoDOnUYs6lVNiSLo8ituoxZl0X+p5x5sOAohkEqglDt3re5Pv9dorIE0M67GVxtybciMpmwcQDiiX1OUCGqjnbmqHci1tSC1di5SYSk86nhkoVxph9TkiEzk1HRONMlYSj2enA9YbGREdkBDSGoCrCeprzTYVzmXdQ7WGRf+MCW5uU2SJ7zb3eFj+/uEniRNFTbNCPspZwKPOAz4icoZZlnVtqPzmVKvMn906BrtNAxZTfz0TacNnKUrik1V4JLzropjZHw2TJ165rNAnabuMOh1ud5cwr9wBiPnCHp3iSZ3aA6GMBqxbCW5TBjWDLUg5O6tDQa9DKuDYhcX1f9lk68z21yhtKc81udrXD6zwMXhmKCTEdQNnvapp5ZxnBNnGVm8zUoQYY5L5ucUAovGoxtn3NjZY5xachTSaprXX+H/9Fc+w3/6ez/gp9/4//BmvUUQNVg9//Q0d1dFPmFv8za9u9dJR32eOHWC58+c449e38AYRVaY/l4Kj586wT977316iYt+/t3vvsxvPP8Zfvru+1URg+/7iKQU+uk5OPS8pFL4QVDgtCqMtUwyzcQajMmQIkEK167meQpfeYSewJeSUHp4ymlAD4u01vVmGl0I6P25kNlrsLiIcvmihYqr06ESAkoUyAmiir66QgJDnuWkuSDJ0upMtVqN/UmMZyXJcMJAWxqLzeoEJYL7o4xHFsqmrOFrjbY5uxlcub7NjbtDIlOnpgPibort1IiUh9E542xMmBoSPUR5LaxO6O3eJe7d5ol6i+WmYTzcY2R99vcUQxvi+yFrmWLgSTy/8DMQB+AfYRqifqBwCqoC8nIXO/y50nmpdrDSDMoVZqK49OYNnn66zRc/8wv88EffZjPtYZsL3NrS2M2cF5ZWOH+0TW1/h814j3E8ZtGvMehOuLc/IqwfxaoY32QkiUMkt8J1k4B0kTkh8LwAT/js+XCvbXis0QTdBa3xyfBDTaRC9shZbkoW6x6mJdDjPlb7ZMajm0zoWYiVj0AgjSKzgsnln/K//rWn+M6tnH/0nR+R9Pfob966byMDt3ktzc3x/LOf5fkjS7x3457jHM1icmEJhaWpYO30KX7vn/weq0++QKOzyOUf/DGxLwvKOkkQBCwsLLC9c5cgCFDKc/JfOouz56xaQC2gEdZBdCIUsvB7c2sYJSk2Tl26RQgwBs86P9T3oO57NKOAtvLwle/ckjIGUVoEpjB/Zy7CFucWqIPBmJLjonjFFoJa1eYqCJRHnRBtHMAYQFCrsbNxEzO3wMrCMkeXF5ivO8ug1my7ZvRHHI+ep0zHWAmJFmxvWva2aq4iw1q6I83NbUs3j/E8TafWIM4zxHAEepPUX0GYEZMb66wMBnxqRXH2SEZQXyTNGhhhuLlu2R1KrmvNMEtda5d1sPKmyEuVnRYO9cTcpxmrSKK002MP7FCyeBAuMlbBeViBlQppJS2/Rp7npHsjPnjrXXobPQI15sY3X4HaHPV4TN2MGXkDMjRYyUoYUm/52FDw/Mopjg06/PkH1xmNYDJKMJXvI3CxRhc88YManvSpxYbjowyyIcLTSN/lf5UnCf2cuoJ2B4IwI0lyhrkhQTPJx+xnIxIESiukzdGiwW3ZJp1boR4scuHZBf6LT7xEMki5urlVFJcLjPQwXgjSY/XIeWwWsrPT5+2sx7q+jFU9PN9AapE25excwGuXP8AKwfGLHyeZOLr0re0t5hAMrMMDWlha4OY3b7K2eoR6vQ44P/8w6PTmzQ9oz32astvDFikaa8tAp+tdDaREKR8hHRZrmmkmWjvfLTeoWONPHCOYQhNKCD3X9REFAZHv4yuJNBqMw4+1wmlXt1nMwoCKwqIqhzm46Yvp6wC74yH7G7c4dmSFd2/eYG5hgTPnztH0a2jl8f3XHKj1xQtPPRCL6WHjkY/8xms3OHk0QhufO9uWQZaRSshtTk9nDPsCBpY8GbPaGPDk6eMse4bT401ubYbkcx6jyYhIGkKdEQQtBr2Mexs7pCKkaTukuWUioev7JMORwzqxeZElE5U9ZGzRCVCGsw9EtEuGq8NjiunqUldihvVXYIUhizPefuMtPOVz7YNrLqBgDCIZEvg+v/WLL3Fza599z2e4chI1GlJLevT1kKw/YGIyjIXddEKqxkAEuASzA6OaGRaEVEihaGcZje4eA7vPdcYs10I6zTp1JRFCo+qCOEsZpzkm99A2QEifQS7YyWEofZSKwPMYRXNs0mSQLBDFa3RpQqrJRjlGzGFEAS0sfKSuIY3i6rpFSIPnz2GVJhcCY3WFuO4JOH3hcf7vX/sT2kfPsDy/RNrMCepNvv/Wm3z22RcYbu5U7GOHR7UxzmyQ6bBHiVRfmvaVczKzAR/A4gU836Hc50W6RlqLNtDPNcIYlMkJPUXgKVQc44mEQAp8KQiUKJjBXLuWwgFrF3sAYsbjtoV0PiwRYrGkOiNPJgTBIoPBkBOnTru0DBJpS5YR8EIP/19G9PXKKGHvpiFAIYxgsVVHNZoQePSzEd1+Qncvp+FHHD1ynOEwJdE5H6PP4qTL24FGRgJ/bOn4iizxuX01Zb/vM9QxmQ1RwnWja2kIgogwdEnizBb9g8qlMNI8xxcBaZpW/Ayz/uMUTOqwc10i0rqZnjbQCoy0QOHYF0XHgENZMB41k7A0uY45v8zOmSf55r0xC/VFVrjNSFsWhoI0EYzHY3azIVbVkEKQ5znj8ZhmpzN9oNa6BSQswmp8EppiRKcWkGQ5G5MRcShYUCHYCGmbQMQ4FlzP6oioCarGXhhwZ0kx0jW8rIaQdYZRgJY+bev6+ZNUkqc5qdFu3xdloEtjRYIBMuta3oQGFXdJk4kDD85zpJWEKDzpkeU5kdEMJzH93h55mvCxc2cZDEZIWdABPgD5vVrY9z0PHpwDmX1iMyxnpWNnMQfyz55UDmfXGtAZWEual6zdUwBlhSXwJKHvEygfX0o8aQk8D195jp3ZWsqyQitslUY6aPoedJaNtdSbTZqNFhiJwcMz003fSFyp6SOORxbKX3nsLBOTMxyOaNd9zp46ChIG4yExluFkiffYYnVtmTidEKeZ41UwY06MrpI1VvHnIuZkQGOlyW6m+NN7Ccr4tLw2Ya2O9RUoST0VNBsRjeYcuTb0hyNya/H9ACEEcZaTmxxH0lPCbVQuPBS4KAeF0mLNTCzugB8hi9jhTEqlqgGzICG1ln5tjcnCKnuZoq8kAyu4HcyzPoHH8Vn0hgQ2JZQBrZpgs+dqOYfDIc1OZ6rFjSZLx0RhzudfuMjmB68TN44ysZodGZA0mlhRQ0zapLaOETUQPkYrRtTw8ggPHy19RqEksRYTCSyKXDiui9wl9TBYEmHRoSA1hqxsKC7h5aCoMdVYm6FGe5g4RhSZCIklEI7eb67Vortxk+/97n9VdAxZnj//GD989xoycGiGWeYi2EmaoPMc5QeFxjnQp0FtbvGhAimqf2c1bBEs45B/KJx+k1qjhOM5FQJQspDhgufDWlKdE6camWmUyFBSEEhXSOJ5kkBIAula4AJf4SkH66mKiKstoVtsGRQqc5iWZqOD74cOO1aUCGuGCmnww3aeQ+ORhTIJYsLxmNMn5qi1Q6Q3Js9zan5CYHKkn3L2SEgW75OlFmMFRlhykxNlOcf3B7SjGidPdei0aty+vk2CT2+ScI+EvLePF/oEQYDwQ+JUMck04/HYpUMsWMbuwRuXCC7Zj8qd1BaRt9J8ne34r/yFh2xYQpSho2JDnolNaCXQUnE76tDXPuNRhu8HGF8hGzX2TJOtSZeF0QZHsh6NMKGxL1k2q6RYut1eoSkFSZJg8pR0PGT37g2eOXuSUWONV5IniNoLDGoNun6LzEq0cIQ2qliS0pco46Es+FagVEQGTHRCSu56BAvBV8or8JISUm3IpCYlw3puswo95RagtshJhk0nqHiIGfeQ1uJJ6eqbZcaZp57g7/zpN5jEcbEIXR/ib33mM3ibe9gCnc9ay90791g7eowPLr3PaDwm6ExR42bH4rFzLnVl73/PneP+V8Whn+X32kLzm9LcnYnACuEQGUCA8g8FDC2x0VidO98Zh3If+B4qEyjpQLGklITKI5QeQiiUBGk0u/sO3uTE6hq21nDzhVtzC3MNfvz22zTnFjm+ssxWUUf8KOORhfLm+Y9xtL+PxwSjJwzHY8IwRCEJbMRu2OaONphkSCQsPi7ClgcBnoioTcYcqRuWog5X7va4vTVB+wFDqckLlDaBhnSMSSZoq0gSTZq5CKwRzhARAqwUmGIXKlHHZ8esXzl9T1BWjs4eV/3OIaFk+sANkiGCa9YnUC3IpesBxCC1JYl8NvAI8oi4uYJXG+M11qnnNbLxhPX1e/RHQ1qtNu12GyUEjcY8/nGP777+U3pmjjw6jV9bJTeGvCCy9dAoIVFuNp3Sto52LZASZRImJmNiYxKduQCOgDRJiYKAZtAgEQlz7YgjDUna3cAagzIZdz94gzs3rmCxPPXsi6zvTZj092l4PtrkxS4PR48t8/r77+B7OcdONcDCaKJZ3475yfXrfOHp50j3BwTWYLR7XiVEpqAs6HiAgImyyqg8svTpZjfOMic4+0Hu+8N9pmxyE8V/VWPbgXRIeSaXp1QI4c88+QIA2yXCsTZ3pjIOhNsvTHQPQag8bt68igVazTZJGLnUBwJpcjxyhqMRnXqL4BEBs8rxyEL549oqx5sL9Ec7rHV3acUZGo88qtNrdrjRWGXv9DJi/y7x9hVau3tEwwm5MHRJyHRC1o+5tbnDlc2Y/SygG4aYQFaMt4430lG4GjyMo94pwtduF3LB0mm425gpKs106menf/adg4+pdPDd6pHTAEP5YIUAI1AiIPc8bm+OuXC0Q+iFgEChCEQT33hYM+FeMOKuEHjZiJ3Jy3S7m8go4tjRY5y78BjtdotareaES1s21+/x+qs/IbUDkmwXJVp4JBg6DnAMg6rKAZULLkhFjHGaEkEqoNaoc6yuyHPtNi2dYdc/wG5OyLOUt77+PX7U3S3KytyQVZMxfOfrf8iv/upvcGOYFxUuzkyTEvzI5+q1a/wH/+YJXnhyESsgzTV/8dNtfv/r69w8ddrh4WR5UdhhqRiwRVltJSpxKUfBd1ZEZilM6VJKTYHXM9WilfzamZ+zwm6L77JMXZDirPbAWigoD3EPv4yHU7g7tgK6Bit8t2qsw9lNtEZYjck1wqYO2xjIpQsc2Twn1ZbETthnPL2u4iyPOh5ZKNevbSGOrTKYO8eWnOfpxCFI35k7x52VJxlGkrEXopZPcuT0KVbuvol5/zJJf4QfKDLrsZdLJjZEdtrEgwnNwCNPLClUms/t9q6zwSqJ1dIhqRUT5/rrpruvKYSojJQ5YTKVAJbrwKKoYDmK70fYqllZSIeZI4RAKIUqWLmkCpnMtamHNcLGCp7uMN9aRCDJE4vOJbmWGFNHiw5JmIO3iolu0Bu8D5OAo6fPopRPnmuyLHNVJ8Y6vB6twITYPMSXTbQNCYpSLk8GtOqNIg8XY43zm4RQjCdjpMm4/Pp32NvZ5JX3D4IyVY3PAmqRx3NPtVg7ElUL5YnzbebaIe9c6vI7/+0tet1dPOEsEFtQBLbaTV59/TU8T/DE2TZIt7xCX3LsiEP71sZihcRoiyGvNs7iNEWU3Pmv/cGgur7Lf/HP8GoNADqnnqCzdIxms+1gQirxsVVQDlHCdbhXp8AhJWwHM58rx/1+3AGBnCkyL5uj5cxnrJ1+QkqFJ32wllxp4jyne/sSzXodZTzu3r7FXaBWq9Oea3N8brV6DlqDflBC4CHjkYWy2x2RZ3c5fvIIQXOet1ZTloYj1mOP3tY23lyDTs1jTmecHK9z3u7DkQ7rQUg/M7QWQkxniXFjHtVLGV65Q9wdY9KM7iRD4+MYigrf0Lqpt8JFwQpFiuN1MAVhZyFsRdOPWwQgRQRCoAXo4ikI6yNsDSkDhKcQvsJ6jnnZC0JUECKVh1CKzBfoyEMGPoEKaIgQX/qEtQb9PmSTIb7nE/hhEQ10zb/GGsdUpctWN2cCKqUKf3YauNAFvRrWMXwJmdLpBIRW0jT7oDXWat787j+gu7vN+p0bD302tZpibTWq/vY8yRc+tUzou+Lqx061iEIPTx6MGgLMd1zRusOfEQV/isFazdG1FX762st84qkWjZrTGuU4UEVbaEJTaI5Ku1mKyhn3/tVbU8qByc696vfB7cvc80PCuRUWLzxH1GzTnlt2pnuBn1oGbWYjoVWo4MOqZWZt19kXC2mv3raFqV35osVGX2l5d88WCpcJssmIWi1iNBrRabdZmF+gM79AWAtYnqsBoIKI8Tgly/TDr/HQeHSMHiJGk5RbN+8xWponawYY22Wue4WlsSI6Mo+/dITlOGOuf5c4GzPKBc35BowSdveHpKMEEfboiDorkeLyqMvR1QWCgaA/hkmWOUJWXXoGDrzRoXA4LBsByCLUXe6YRnhYIdDCIw8i/FrTlbBJ193u+T7Sq2NUC1RQgR4hXcmbFRIrPaxy2jHwnECGYUjoBygkSnjUaiGBUmijybKcUTIuFoUDfpKFaV0jIgijKt3i0LIPFjI481ARhAEkKfM1zfi9b/DyD/6c0aA/1XRAre7xzJPzM0/DLaZ6zeOzLyzRbgbMdaLCWigqUAoUtjLtY2fbjKfWPbOrVUqJ0Sl5miOEYH9/D2MMzz+z4BATENXCHI2dKdxsNNnaGxcpBKCgrYdiEy1SGlU1VTHOHK/TanpkmebSjTE6S5hs3+bO9m2Xv/VD6kdO0D72GItrZ4mimstrmENSNmPOzm42duaXD4t7lgYu1YqaRlTLn/e5R/agKT4ej1k9ctSxmxUxjktXLgNw4WPPE3kh9l+GppTGJ5MZwzgnvHuHZhizqLvMCcNSe4luw+M2ivXc0NULTMQKUvrM2R3WTJdanhJYjU22CFVAP5aI0S5n59q8dKJFFmsGieZu33J7Z8J+Umdfj8kQLpktPayUaKnQvo8MAvwwwgQtRNhGeZ6z632F8JzQVZa8tRjrYwgxhZ/gWk0MUgk85THXatGo1wn9kDCoEaoAtEtMWyEdVZ01pFmOsCV4skB6wvEQUuTCRICfaALPx0rnMDmwLI0xRZWSi4CgPCeURyKf9Vf/nJs3rtNoePzCZ5aLML3ghecWqUcezUZQNSgfXmRTE29qjLm1Mw1f3bcwrTMFf/KWiyCeOXWed959nzTJyLOM5ZVlrl27QrOuOHms4YTcTk3S7/1kF3DI+aUZaQRovIp3xvN8lJDkZQph5vT/7m8eZ2WhhrGG/iBlv5/y+js9fvp2jyS1ZMmYwa0PGNy+xD0haRx/jKA1z/zpp4jqraLBoESyP+w5HpLQ+2bLFj7oLM5dWVM0M6ezk1X+VqjnOJmAtawuL7to6/wC4/HYwW8KQZbHhVYVFXv4o45HT4koNwmtNOeCl/ExqalrD50ZtrKceyPNq3HG9ignzSNIDcbmNITHaixY3Olzul6nUWuyn1o2+xNGtNjJF6k1TkEzwzMTlhc8xKImTk4zGsWoOEYYgycV0guwnk/ue1ip3I4qFVaoAqOzoFvDgTiV7FVFtAElnEMupazYeKWUBErRbtWpRyF56vg3c5EhbaFtCmlQSlGrBUReVDwcQ+RZ6raPMZr9e1e58vZrKCm4+MTzvEcEOieOY7I0IwgKEp8iyCKUQnkKXxg2tncIfMl/9j96isX5yJ2zEKxKFYiDi6WKc1RK4/CuXh7IfUHM8nNbuw76UXoe3f0uWZahkBxbW+XVN17m6YstmvVpKmGWTwYgtE5IpRDk1c7gDqgHEaGS6Nwl9PUMiVC5iQkhme9EzLVDTh9r8utfPMI4zrl0Y8TNOxPevTJgv58zvOUYwPbe+SHBwhHqxx4jWjqKHzZotuZI8xhfukICITxKI9cJXRF3F7Mb2NT/PBidvV+gZ33c8tp3N25gdM65Yye4fHPLNU1o7W5fgM4cB6byPKzRFf3Bo4xHFsrlpQXIIjq9DR43E5r7PRINRuWkeZ+5/oTn6l3eSSOumzrKD0iBfdnGBm36aAajlFPnPk6vNY+SgvM0GFHnVSshCJgkMDCGYWgZRyFJx1VDSK0x4JgkBI40tEzmFn6bLCZVFVunlFNtWU1umUYREs8IPCuRQhFIIDW06pLlhYh07zZgK1hTiXGVPZnl3tUPeP3tVyklQecZ3f29+/ya/Z0N1lYXubu+UYEZz5qwU+bnAKOT4jWo1/yCNqQIZn2IuwRMBfZnDDG78ooxmmTs7iccPXqUjfVNLOApjygI2di+h1KCX/rckYJKfLpUx3HGzl7K2WPHORNE/NgYjBe6lEg+wS/IULI0gXoN5QWMh0Nu3LoNwMpiSLt5sOyszDdHUUAU+Xzq2RovfhziNOf2+oSXX91jr5ty8+6EdG+DdG/Dfc7zUWG9urb64hEWTzzO0topEIIoCIs1MUVQqDTsrG4Us1BwD53F++baGEMYRgV+rXttvtXi//W9H+CHdc6unfiZz+bwePQuESDONGE2ZK6mIXO1h57OyK1PYxQz118nbxxhtxbRjwKkjfCjJnP1I9RbF9mfDNlvrWKDOXJrMHhYIrQ1ZFlOZgWjKCEmR+dAZpwgFbuvlCWCtUMvR7mFa8vidCAQQdElIjBSVEgEFkM9lJyacxE03wii4Tr9rRuFH6Z577s/4c/v3HA7+0OGlOJAtVi95vGZFxaRCC6eb3H8WJ3bd0f83X94g1MnTrCxJQ/skhX7lnV+n/QV2ty/EMpo4OFl8ICU30cYhbYtQLjubk7o9jKeeeYid+7crQCmz547xTe+9cdcONPi1LEW7kOi0pbDkabbzzi+WuOVS+8iAAUoa2m0G+zv7BKGAcKTBM0mOjWocVJBtsy1PcKg3EYPX+H0mSEsUc3jsTMtzp9uYjTsdWNee6fHu1cG3F6PsSYnH/Wqz/dGPXq3L3NDKhCSudOPE7YWWDv9BK1Gqwh2lTvMwU1PVP/M/H0golt61dNLtwhU6JNrB54FrgoqSV13kCoQBD9U1g+NRxbKyb179EcjzsocEShGqsXYazAWdXpinjQMyfDZCZvE7TkmUZtaVicQNQZ5xK6fISKwqqjQx02atVkBfS8IPEXgNUmkJs0hyXJyo8mtZpIl5DpHVbctC9/MBX0QgkApIt/h7Zydk0iTVakT3d/g6k+/w/fefnWaRzs0ajWPC+eaPPFYZ7qDWhBievyZE01WlmrV30pK6vViGosHbYzTiDs724AgzQ4KuS2xg4RFBR65Fhw7fowrVz6g349pRo3qOdrqe/mZCvGhz17AtDRNgLDk2vLHf75OrVZj7egxtrf2CQIfYSw7+5tgDV/5haN4yqM03Gxhmm3tOc2+evIUN2/dRkkfaTSesJw8tsK7b7zM2tFVlo4ccWmOyQQmU8342ecXXZDOTi9wutHZKkc5e88C15S8sljnK1+o8+XPHCFNNYNRxntXB1y5NeLGnQlYV9xgtAtE7V15E4D1179DY/k4yg+reTg8V/PHzjC3dBQhBIvzSw4Cs9yQsPSGA0aTIfcuv8Fg4xZREJBkGX69RmZyNz/Souz0gU3BSx59PDqanV1EtU+yWWvwXSXRzYCJFxILn4Ftoot9NpM5EwE2DUitT2w0ZBMEgkAEhH5UQMY7KH5rDUmckaYuca1zQ54bciPQxUIy0mJsXgRtpkQ4C43QYSdhWQsnDG+9ybU3v4+w8M2NO858mhm+Jzm+Vqv2vueeXmR1OXKLWRhOn2jSbPgoT07DBoVUPFRDVU4KxbeKg7uvEOSFUJa020IIfOXAlY4eW2PY61KPfN5//32u3RxybKVx4OurRzx11w6d/2fFF6e/GeMixe9d6XP11ohf/qWvsL/fL/JpmiefuMjX/+yPuXC2xalj7YNLV0CWGf742xs0m01OnjhHlnqOZTqeMBqOKFBei3RGxF63R0PAztYm1lrqNcXJtfpDQyofNmaP9D1J4EmadZ+jy3W+8NJ0M7x+Z0iWGnb2U/7pn22S5ZbVxUX2u5uM0vSh39+7W9CxC0HYmj9AawiQjQfk6RTD9fjqKmGzRRA2XGNEsYs6OJTppv5Rx6MHeo68ROIpbqmQm1qAKHaRwkwEi2dSlIGaFgjlgSdRkV9Qa0uUlYzHCXluSNOEPE8wNncBAOO+y9qyIMDlLI8vRvjS0jYjJnt3HcFOUTXywZ9/m96eo3B7bzLGFMzBAsGF823qURkZhPNnWlw832FlIarmqQz2HA6gVIx3TGOG1RI6JASllmbmqDIlIKXk/Plz7E9yV6BtMobDgeteTzP293bp7u1y8tgaB/v6/sUPYy2vvr3La+/0yHPDu5cHrKysUgtX2Nq+TVCLiAKfrb1NkjThq188g++pqb1c/Hj/apc762O+9Atf5tqVDfLcwa+Eno+0knRrn2eeeppr16/y7T/9E9689AEWyDIH1vxrX1xhrvXhbUyldhIzG54zGafGfPlWOfNe9TDh7PEm3X7KrfWYMHApsS99+gV8P0R5HkHoWLeMsfzO7/8hw9Ho4AVYS9Lfe9jFVee8s7HBxs4Oc3PzfPL5l2jPL3H33h0843gw650OHgKlS4q/RxuPLJSx33T5QlcKg7Cuml4piRauEl9LhS4K5LM0IZsYdE9URdI6d1EooRzWSq2gPPADxUo7ou07YlWTawKbcvet7/D+N3/AsN8FDjcsQxioCoP3pU8s8NQTc5xcc6ZfqxEU0PdUocdyMmcjbKZ43VQCVQYAqI6ZktlQ9WOW4yD0ykEPUAhBGIaMtntcvXKVMPIJAp8wCKnXahw/fgwl4M033+SJi+dnv5X7ttgiFC8epC1/xtAGvvujTX7va/cqwOSXXvos82c/wY+v7OBllrrNOba6yhuv/Zj5dsDqcmPmG9wk5Znmj7+1ju8HnDlylpc/uMxENzDK0Ih7BHkKXgewDMdjfvTmm9U3BL7kL/3yUT77/PJ0/qrHcPCGqhzrzAboZnYaXS4Z5bu9hEmsiRPND366h7WwvhNzdyOu5qnZiPjg9j1ee/N+KrrZ3lvlS6RXWjrTczWORKycb5OmGUsXmng1Ra4t3csTxjsp2+/v8fWv/xGe8vhr//7fJDSGJE05d/ZJAk8V+ImP/tAenV7dXWdh6jmksDTX6Nj5fLkx5FqTGUMOLkVRkNh4UtKMfKwNaEaSFbmHsobRnXe4c8k9uPf3ttnb3rjvvAvzIctLAR9/ap6VpagQGueTXTzXIQgUWEEYFHARB+zMw5yP4r73xCHBKyNyws4KmJ0KaymUovrU/dNdaEpjDRsbGwihOP/YeTqdFp1Om0a9TpZm5FlKd2+v6gm972sOf7d9YMbxQ4dFcOV6l9//2j0+/tTHefoTX6bVaDFIJH96+S593WE+T8hMQqPdZmd3h5eeXaAe+ZQoD8UXkWvY76VI6bM+iTGe4smozWaeg1J0VhfZHOxy5dp7rCyF1TU8frbFL3xqmcX5sACVstVG+UBrnCmeUXlyYx1f58ZOTLeX8hev7DIpCuPj5MPV0HA04o1336axHFb3YrGoQHLyxUVXmGItrSM1ZM2xa1NYd0IKao06tXqERRBFEVEUEQQ+/md9jDZsbeywe7XP5W/f5nf+m79Lq9kqfHBDanNXqfYRInSPLJTD4ZTKy0GgVB44FoenstoJ8aRh0Ruh+9sgHIjzZLDH29/4BhbLdp7zZu9+02B5KeKJx9rFdwraTY/PvnCEY2tNPE8UOUX3dgXzOhNEmz7gD1u04sDvQhzUdNUiKEqrqrhI8Vpp687owun7xYM+2Dco6Ha7ELaoRTXnPycJnvJQhXn2qJTbP/ew8OM39siN5flPfpmX78bUGZHHGckkJswlTwWai/NH+d6V9/F9yZc+s8ps3aktJkJ5gpc+ucS3f7BNmo84mvX5tVbESOZsPPY4f/L6q9y7e4X/2d+8wNJCyMx0zhDvFuZ9IZziAWrfWIjjvDIJLIJvvbzFj17fYzTOyfKfvcCDmmL+dAssHHlqjoXTLWpzAcZa4iQhTRO3fpQr6PACn2azzWgS4/s+vu9Tq9cJw4BavcZkMkF5ilq9VhgybsOSnsfC6iKN+RZzxzt87T//LvvdfcAh6/mB74hpA/+RH9kjC2VWJH6VcIC3pxcDpIAg67J/483Cx/s+w/4+Rjt+hXIIISjXXqvp84VPrSCBJy+2WV2uFa8H1KKAWSOzKD/kQIkYU7iG2Xad6ecetmvOHkPVlDB9xRY9laI6x1QgS7N2Nq5y0Bi+/1xOyH3fR3iSPIkxuWv/SQsCUlHQDEzDSo86HnXXdRf9b/zqCd691OcP/ujvc+HxpwDD0eU15nKHfHBcWt68fZ3X33qDf+srxzi63Ki0sp3eJkoJfv1Lx8Fa/vxP/oDHzp3nv6t7CCzf/cPfx/My/ta/f54jy3V+Zl1ZWXdX0PbtdRNefbvLcJQxHGve+qA3vQsLubEHzHblCcJWwLFnFzn36aNYa7ny8jqtIxFLZ9qOFsF30JDaWLTUDCcTFhYXyIx20CBlWWUYUqvVSbKMhaVlavW6s4ikrBolIgSj0YhavajKsu75lrSGkyS5Tx8k4yFeoJzgfwSn8pGF8rnFBJMMuPbqt8jThO988NYBwQNoNXwaNXj6qUVWl2qUemW+4/PYmU4hnIIodNTaVhy2tB/01wxmSjGclSoKhLhS202jeQ9e4IKSrWIqkFPz9PBnxX2fnRHqMk9RCmdZHG+rTbS60Gaz5fRnlhF4EUqDjlOGZowfKNfZr2RVLC4q9S+r+5+2nBX/PlQmZ9+Y+mL1us9f+7dO8Xf+wTW+/xffetiHeebxDi8+u3TwXqEKXAF4SvDrXz6OkvCdH17h/cuXEAI++fQ8X/niKRbnXbXT7Ewaa9ntxvSHLgotrKU/TPnBq06jJKnlxu3hQ33lsOVTU4IjTy7QOd5AKjj+9JIrnpcak2fkueXYZ+YccW4rot8fYvKiWMT38XwP3/cxFprtNgsLCwRhWBXiIwRpmjOZxA7t3miM1QUrtAAhSbOcLNNoUzKDGbTOybOUYW/E5hsu6Pgbv/hlhrsbfPftV/idnQ2kUqST8UPn/fB4ZKH82v/tb08/5AlOrLnd5PyZFufPtBFCcOZkB78A0FVF+5GoOuceLC73v3L/k3mgk1z6HIKpNHzYmNV6B85+v9H7aFrLPSxb/JdlDgz5/Uv73NlwD+Do6lEajRZKSd55+6eMJyNAUKvV+OznPo/VAcvLi1y8cGHKKnz/WQ78rPYBuD/iM1vVMPOWFPDE+QX+F/9xQHeQgoV3L/e4ecddZ7vp8+lPLHDuZJsw8A58jTvN1FUBJ5hf/dIJXnxuiZ29GKUE5061Hf1AkZbQuPTJ9dsD3vmgxytv7H+o7xc0fNpFO1h56atPLLBwus3csUbBsKxJ0gSw5CJnMBxUUVSnsBypj0FSbzbpdOYIwgAvCFCeQiqHW7Tf3afWaFbdSKZ4lsrziLOUWu6E0aHvOzM7yzSTcU6e9h18ioFkNGH70g7ZJOXODzaZ7MQcP3GKZ174FY7QwoT/Dd995YcPveeHDWE/tO9lOlqtFp9/aZnPvbSK70mWF+pOY8mSDmD2SRYL3T40FOKOEg/a2x8kJjNHTYswD/xd1YiK+z8yPf5At9zBs4npWQ8IQPHZWSS82W/IteXHr27y5rtd3v6gR5qZ6hJ930cKSZImD1jo5VcLgiAgz3O01vylXz7Kr33pxIFev0pH2oNmbrmoZufj4IZz/92WnyuxaxzcZdkhMf2crSKQs8/PTun4Zm7IWstgmKKtpd9PefuDHnGieeX1feKkpAGgcAOmn2su11h9coHHPn+SsBlQa4ekaeYA0bKcJEkdKZM2mIJyzlpLEAZ02m1GozFBGBAEAVEU4QcBvu87EDAhabVarj8UO22IFpLRaIQQijAKMXrqAhkLuzs7tDsdstwwGSbEw5i7r99hvDdh/2qX4caMxjOgi5asdmeejz37Ao8//2Xe3mkhwiUePz6Pn65TtzlLekBTj/mP/vO/xc8aH4k09oufOcraSnMmugJVdX4pHAcCJ/f/Njs+PEx8WPsdOvbQXlJpzQ895dRnvP87xX1/VzJe+A/TxegqYu6uD/hnf3aP19/pYoxFeoKlp5rU5n1Mbtl6a4BXFxx5Yo6li+2iRM/tvNsfDLC5YzLefnuIowgX/Mm3NphrBzx2rs3SfFTVwTqf9/BNze5CPOD+Z7aXIppcVhOVLkA5ldPDnVBW/nwJq4IT4iw3bO/GlE3Cg1HOD17Z4f0rfdJigR7e5lWgOP6JJY49s8zqhUWsKeqWhUVLS5pmxJOY3UGG1q6WeWlpmdFkQpKmSCnxg4BaLUIVPbBGa5ZWlllcXKKEhQEKDQfD4QipPLIsQchCAVjjisOFdXhDUmGMu6c8z8iSnM1re+zIPrd/dIe9y10mO+PqfsKoTuhPU0ULK2ucffrTyCCiXz/JvcQjTVaxnQW09Xh922BYAjS+6aBMzn/Ezx4fSShlAS5VPMricR8ySosbeCTqhENr6r73HvzHP8c4LIwHzbIDm8iMxj1sdo/GOX//967wxrtdstwSdjzWnm/RORlRW4iq7pTjL86BsBXmayUEwrL2iWbhjlrWnncPeu/KhFvf6fH3/8lNolDywrMLfPmzR1hZqqFkxUz54FurXLiHOQT2wNulJpx9sbI5LOS5y9zudids78YI4PrtEW++t8/mVnxw+xKCxkqNUB3cFU69uEJjqUbnaJPaQkCapfTGXbI8x/d9kiQhyzRCqYJ0ViI9hVSKSRJTa9ZZOrJMvVZ3eFCecqjruM2s3+/jh0Hl4011umASJ0SJq7d1fUMGY3KyLGcyjBn2Jly/dQdtDNpo1l/ZIN6JGW9PqsxCZ2GZuZPHePLFryDDBiN/gY2JdtVrQpLm8PIgQdqQucYSndV5BkbgaYsoikG01GhhSJQC79Ei7R9JKA+Ph4VU3Hv/fzI+4oWOxhl/5x9c4u33e0TzHidfaLN0sY4KVKVFy51V+tPAUAUuTGE+iinwr/RdGd/y4w3mT9V4559sM97K+N6Pdvjxa3v88udX+OqXjuOpsuxrRiQOXP9Hu5lqa7KuY+SdS/sMhhmjkeZHr+1igSQxJOmD/V0v8jj72TXOfvoY88fmEEqQJqnTOmlGlqckScIg7zPYKozhorFgrjOPkh6pn1OrN4iiiEajgac8x7WiFOPxmHa74za1oniiiKshpCTJUiZJgpLKVYIhsNpgrHMr0iwnzTWptmRZzs7NTa59/Sp71/rY3JBPDuaHgzDi4tOfQgYhq09/iR0zx739jJeHOXbgECac/1k8O6mohfMsLSzTqDcRuYvMGmPR5exqUaW/7rd0Hjw+klBWXootyVjLvfXgyQ5swg/9tukCrY4rNdYjxG3+ZQw7+9sDVL0TyMu8c6nH6V+Y4+jH20hfPuBa7aEftrDGi/YtYcFWNUTFnLqfQU3x9F9dYefSmDs/HJAMcv7Zn29wdzPmr/7GKebnopnziIO2YmlzFm/NHIW1Dn8nSTW9fsJonPHDV/cQQhAnhtfe2Udrc+DrpJIIJWgdqbP29HJ1Q51jLdaeWAYlCJsBaZqw39tjPJmQZ67BoFaLqEU1+oMBQkiXfvD9wvfzUFIR1SWnj64RBmE1Xe4MBuV5JGmK53tYXE20M6cd7Iq1FqQkyTKktBgjHHB3mpEmOTt39ultjeje7bH53g7ZIGX3vV2kUCjP48jqSc48/kky6VZiePxphsbj0k5CbiRXNgXSjKj8TWkxQiCMQ8FTQYgfRLSaTcIwoGxmvw+xH4GR6lCA8cPHR9OUdlr1fiD28iHVCj+rvEgevIODXy1mfvmotWWPMKp9RTzg9QOrWxCnmv/HP7jEpdsjLv7lZZbPN+4LYd13ieX9FIX11k4pzisaE2bTB+5Y6QmOPNlk8bE6+zcmJH3NGy/32Nj+gL/1H1xgfq5GVUFYXOIUVLFgNM4MmTbcvOPAqi5dH3Dl+pDBKGN9M+ZBw488Gis1zn/+OFIJ5o93WDg2h1QKL1AkScJ4PCbLMsZ6TDyOybv6vq4bVdC153nG/Pw87fYcjWYT3w+mrUzA7t6ug0SJInTuitG0NiCcr2eFYGdvn3a7PQ34QBXhjdMcbSboHPLU0r21z2BjwN1X7tG92TvQMucHIU9+8osceeZX2Yo9Jrnl9X5SmKICe8eCMFjhSIIkTugrWBAhMQLCMKBZb9GoN5FS4ikHf+IwiJ0/a8V0VQvsAUbnRxn/XOZrNT7MN/zXYBhr+ekb27x7ecCZL86xdL7uGL0sFXwiPGDeq03GVCZPmdOcDSQ5IM2ZjxXCqnxYvlBHIKkvBlz6ox3+i//Lu/zmr67x2RdWK5hIJ9yGLDP0hynvXurxF6/sMBjl7Pce3hUBID3Jwqk2naMNPvbr55k/0gYlyFIH9jSejJjEMVmWuS4X7eqXl5aXQDqaBqV8oigkjELCoPzpE8cJQRDQbLZLQ32qzAU0Gi0mcUy92STNc2f66RLRHLQWJKlmHOdkmWMwm4xirBEMt/r07nTZemOH8e4EmxvG+y4AFYQRjz/5CYRQnLzwHGr1HIPU8pMrO7z5zgZho0UQhtVeL4vIegGFMPMcykCYRUhHjDs3N0er0SJQoUtjFdqxtCJt1c3w8wvEvxih/FdkfJhWnq2jfMAHy4Me+NZ7l/f4nd+/werHGxx9tu00XmFiP0qKtNSIhw8Us++X9rud3oW1uK4YaVg4W+PCbyxx6Y92+N0/vM312yOade9AuubazSE3bo+qKOiDhvIlx55d5tynj9NZbWKxNBZrxGlCksTc3biH1o7p2mhLXjAbO5fOBa38KCRJUpIs5cTJkzSbTacxyoCWcAzcQRSxu7vP6toxkjQnTVzapBQ6Y6HbH+IFAbpg69YatLbkWrO3u086ztga7bL+5gY6Ntz7ybqb81yj84I+D0Gj2eYLX/oqayefoLFwnuvrCaMcrscp23dztDWYsIPMRwy7Q6QY4/s+YbNBUC9Q3A+ll2xBc2cBFQQ0221qUQ0p1EwheymAJVXBfVHDjzz+tRJK4KEScl8pt3jAaw/IqQyGKb//x3cwAtaeb7viZVOao/fbvQeikpWQPWQjEPf/XdYvzb5sravvWThT58JfWuLSP93hBwVw1YcNqSRBXWGBqBlw+jNrnPrkURoLNbLMBWGGoxHbt7eLRVZoDAtRFGGFwA8DolqNRr1BGIUF76SLlu7s7CClotFoFOVm7q6tdTDaSnloren2+k4IDQUDszNTtTHk2jIcJaRxzqg/ZrgzQiC488oddi/tMdwo26osSima7Tmw8OQzL7J24iILq0+R5D77WnBtc8TtXkba2yUxOXkR/NFausocqag36zTbNawxTCYJcTwhy3KiKMIrorvOHHVldtJzlUBRo4EXRigpXBTdzOQdCiSHCsnf/vMZjh9NKB8xevSv7LAzv0wDow+YQPeKsa7l6fa9MavPNQnaXtHrWX720KcPyd5sh8X9BxyU4EpTPtB9doltISwLZxtc/A3Be3+wNX1XQGu14dqOinH0yUXWnl5i4USbNMsYTSbk2rA/2We4OaBWq9Pt9hz+rHAax/MDZ34GIVJKJnHMqTOnCQLXrS8ogj/CLcj5hQW2trZZWl52C9IWfnOBoSSEm8NJnKKUR55rJpOEJMnJtWGw22X3yi53v7+O0ZZslDHZn1T3sLi8yvJjpzh64jynH/8U0o/Yz1tobZnEmhujlCvXBiTaMEESW0siIEdiCKhQySur1CCFj+9JBJYgdAXreZ6T5znxJMZTisAPEMqn0WhRbxV5eaUKlD5RacODRZmlGyOrQpSfd/zrpyl/7nG/aGpteP3tLgCrz7kOlinFezHuK3Wb+f2Bwvjw808DXDM7RvGzJF41RtM6GdFcDRluOGSFtWeX+ezffAaDcSkJnRc+YMbW7lZhDhqHcWsdtblQkma7je971OoRjVaDKKq5lEShMbe2t8mznHa7U0QWS2xYTZpmLteYJkziSbFZlb6gAQO51kxijdkZcO/ddfr3+gzujdj5YA9BYabGeaWdjx4/zRNPnAcEjz3/q4zlPPe6CRNreb3rCjayfFzkFil+FvQHKkdLQS4dcp1nCvIgYbHCQYIiXUOFLPLDQkjAgZf5fgDWOkoC4dq34jgGJYlqNYRwUXNbOsQza0GUxdTVJnwo9P0Rx784ofyom8OHXuz9Ed6D7/48O9GHRYjvK4EAYGtnzJ31MY0jAVHbp8T8vE9DMuOPzIwHfaedEdSp4VEm36YBA3e5MxvAjIBKKQia09CQbBjWtzeKShnL3FwHY12lDLgyvrof4Pk+9XqdKKqRJgm1xTrz83NFvbU4sPMLKel05tjZ22V+cZEsc1AmVYmeccl4ayzjSYIxhizLyLXBaMNga4jRhjs/ucfuB10XDbUWrxQA4NTZx7jw3OcQa0+RZZL+BLYGBqMF37+bk+vejEUjnSlqwZiiJlVIrHKhMqF0cR8SZQVSlVFtiSk0prWGgnKy2AIlVsz4jZ4irLu2rajWQFsYxxM2t3fJs4woDGm1HB+MEj4Wx5sqZjrPp/izU9ejfMSPOj5ynvLw+Nni8ZCr+RkR2wNvzZp5P5dAFp+drvbq/GV5Xjmls+PlV3exFoKWQkhRBSju8/vsDCrCzOUJqEra3HHFHZSJ8OJ8sx32sirkpxKA6iE7ueVwZlRbQ5bnrk/T87AIPC+gc2SeWr1Gu9XG87wCG9eF8JMkZb+7T7PddlUv1pCleSF4GptrXJ3omH5/4ICkzfSa8jxlNB4wGsRcunkVnVpufu+2432xsH+z5yjQgc7cAr/+V/5D6gvHkM1VttI6uVAMcs2bgxR9x5DnqfMzMU7g75tPFwhyJDwFbV05sUKA9KqA1+GAjayeEYfSz6XACqSSeGGEDENE4GO8ACkkzahGvdUhG09IBgO21zewCELfp91u0Wg08YOgEkVhD66kEuf/o4x/9c3Xfz7z/P4ve8T5SdKcd4uevtVnW5T9m9ocuqBZgaQ0ZagirqUguc3UHDB5ptD4VP2aiJLxywmuE87iMxKEUO5Bp9McXOAHrK4dpVFrUAtreL5Ht9vj+PHjU0jL4nzGWnSuEUqS55put4/FdaFaYwpKe1MInibXMJnkGCPc33lOOklIJgk3f3yDO99dJ+66zo1yeJ7PxadeQCmPj336q5jaEW7uaQZjRTKSTNKYcZaSl/i81pXN2YJBuax+Kc3CctOabZRWQh74u2xueKT+inITFi7CqpRPEIQEYYTvB454afZwpQhaDYJmnY5ZwaYZvZ1N9jbvsZEkNNtztBaXabU7VXrkEfs8Hjg+klAePo09EGb6+YJAH0Xz/fNoSTdKM/Hw97p/hqOUJHEo12++s8e9zQnSE/hVY6s9kLJwHz54TQcEtPj3MDHN4ePu+/yMAqgWJoAVjHoZt3/UZ7xhOXH8OLfv3KHeqHP82AmUdPTzyvMYTSaM45hOp0O9VmM8iZnECXmWo40z7XJjidMMIR26tzGGTDttqXNNv9ujvzPCxttsvLFJ0k+RQrL+5gbj3TEmt6wcPc6Ln/o0QdRi6cxnEdIjMXBl3zDRmh/sZOg8ITeQCofnpBHkwsMIhzwgy1yfUAXtX2HKF6zKiJKq3DLNCxYBF3Fo7oo5PxyTrBiVrZkamEKBFyKCEDwfFUYgFKYK5BTPrEyRCMgCgecHLNfPoIwhyzU7OzvcuXMHz9tgeXGRTqeD582SOkkekBF76PjIFT0Hb56faYb+jC/82YcUluKBSObDznf42OplcfAg66KC2jjD4u76kD/97gZXbgzpDw5itIZNj2jOr8wf9w2z2tEe/O6Zc1lmTNOfcauVtWZNtQicqVqgBlnY+GDIpW/s40uP3/43fwupFH/vH/wuvuczv7CAtThQ6zwnjGrsd7tIpegPhq7AvDiHw9l19aGjkQvSJEnq0gSDCZNuwmh7xKWvXXGtSrP2M4JWZ46llRM8/6t/nf3649zqZmjgtY2MXCeuqsUaHGW7rTYaQ+yehhWFmV6a+Moxj5XCNGM1mFLzCApg7pk5m/nDlL6CfQAKXtU65qp3XIQ1QgU1rB9AQX+B9CpArqnQH3xw0giMlCRSIgMPT0kW63UWj66wt36X61c/oN5ssLC4SLPZwvNCvMIUftTx/0Pz1X50gf5ZMny/ZUmaakbjjGu3HMZQKSQ3bg15/+oAa2FnN6ngTh70pfZAhYCt/rflSR54EeJAQO7DbnNaalfmPqdAXWDJE8N7f7JH/3bK048/wSefeoLtOzdYPXsOcJtLr9d3sBeFP5ZpzXA0Imo0XNRWC7S2xOMJ8Thm64NNsiQjDCO2P9hh54qrg00GKXHfRXXnF1c4//h5EIJPfOnfQPh1tLHsy1W2Y3h5b0LSd2V8VjjNqymJCQstL+XsjSIEqIIwXsABbegm6tBzKKbe4FDYETOclcWslsto5qVqOC/ABcCkdHWrQRQRBA1UEGGEKhDZRQU2XX5utgRSCFttGFgXBc/ynP5kzHDQB52Q9/fB5AwGPUbjIbUootFq02g0adQbBMGHQ2uW4199n3J2PGBlW1wt5HCUVvJx+XqPrZ2ENDX86LU90tQQJ4/IDyiqeZ+eowijzfqAs788yBKdpVdz13nQfD3Y/1mqePfTGFfWJQRYDe98bYfezYzf/JVfZrS1zs1L7xPWpvi1OssZTyYYO60LzXLDJE659c5t7rx6r5q8ez91ZmgW51WLkpCyurST5y5y5BNnWFp7DLnyPHe6mlQIftDPSPOMVOfEduzItwsuS8d47c5QgjFLSt9wxs/G/a6YMcnFwXk5gO1TCQGVoE8PPWiVzFiZB4Ytzun5Lg/r+QHKC1BehBCeU4YzpZLYAjLGgsA4Rm2lUMqS5jGTyZhBf0CeabAQpy7yLKzGpo7UJwh98txh/TLsEcdDej2fIHw08KyfSygPRLiqCXoUY/TRAaIOfFeh3SwUXQKQ55rtnQlpbvnT767z1nu9A+mGn8fP7qw1eOY3zzN3tMk3/o8/JhlkVbQRM736GffmAWNm9/6Qi6gsI3EIzcC6Xd0Kg7GSrUtjujdTfvOXf5ne7VtkJscLAoxx7MnNZpPbr22x/etdpK9IJjG9jT79mz023txh570us3Tn9XqDufYKL/3GVyqMo8aZFxiJDtpotuOcG92Yq0ZitzLQAiMgExJjPTSSXCisNChbBJ7M7L2WfBqmwOQVB6TFCeiU5Pe+VXOfZLn3DVPBdNvddFNzrx0yD0thlgI/cGkOVZACC+G7jUhYlHR0CO5UCil8lPTIk4Q8S8n0hP5kRJ5lDo8HTRIn2NxpTutZhHQsW5gYYVM848oMrQSMxmSGROek5sPrkMvxc1f0VMSg1QzMTMaBYR/4a3VwZe2VJmFpjDgQ57wwK7d3J+zuJ/zglR0Gw5w40axvTg5/4SOPsOUTNn1OfeooQct1ss+fbRM2PCbpiJVnO9z+3g5gp1U81lYJeKc9f8YWc2CBHbTVpwJ5f11I1ZMXG258t8fRlRXMoEeaJgjlUh45gu29Ic8+9zzf/4vv8K3/w/fxAoWONb31IVhLGEZ87he/yvmPfZpECzSSuH6GnYnhvX5OrjW5geEtS27GWBzHZI4qwKk1jjXbwSUiACnwigJ7YYvrl1P03NLslmJm17pP0GboAB4QKBMPfuugYjwY40HYGaEsGNeklHieV3WtOOrBAPABB+Lm+RIrHKsaJice98jTjCyO0XmKNpnLx1qJtAKpIAx8tNVocqyM8cjJ4z3s7l3yzV1kq02tPY8J2ygirFJooTDy0TTFvxrma/EgJ3HGXi/hg6suTN8f5Pzw1V0EMJ7ohzbbAiyeaVObj7jwiydRZYd38b0Wp3200ejcdZ8HHQ8VSYxxYX6sRIsU368jpWTxQoM7f7FLPjGkwxxZL3ygQ4L4sGmuTK0Hym2ZKjkcgCqEX7j+wHtvjiBVfOGF57n17jsV5EUZ1RtOMh5/5vNEtTm++Y0/AKDdWeC55z/PY0+9SP3Yk1zaVfxkDIMsJzYw2R+SalOZdWVwpKynNoVVUoImi5nrrHCKigqcUjuW11UdZwv6wJmo5ew8WTMzLYcE9gBq7uG93k73Qcc8N/XfxUwgRSiFLOAjPc8DRdFm5eHJAE86KNM0TciyHpPJmDzPMTp1+dnClxTCCSECtHUepi/A2gwTJlg9Rk12sKMuy3nCcjMjTjM29i8z6ipU4zheewW/3sLUA/JHtBN/bqE8nKB94DHuQMof1hr2uwnGWDa2Jrx7uUfZGCqk4Mr1Ieubk/tzgZSnEvh1jxOfXEF67iEceWKRpZNztJeaeJ7zEfI8J01TtHYCmGUZWZZh0oy8sPtzkZEX1kQZlLBArnM8pVg42WHp8Q7b73XZeXPC0c+00AWk5gHD/YEO5dSjnI37TOeu9FsLQ6xwYisZtjDcybj7oxEvPPtx7l76oPKgJM4uMki0CLixOaJ18S/z28/9NnkoiTVc3Rrz8iQluwFjI8gF5Bgyq0mtqDSfJ7wCd7YAjypktKQSpKBpnxXK2ahKeU2zSXtbBlZmNdesoDErTA8Z9wnqzHmK16Q42IcqOHg+pRRBELiiCeX8XpPnTMZDdJZgtUbrHIGrBJK2LExgeo9FM7pAOwa3LEGmCSIeE5lN5kJYrAk6izU6c8t4XoqSJxjupKxvdbl+b5OtrbcxNkK16phHlLZ/KZrSFHWJxhjurA/Icssrr+6wtZty7dZwim72kOHXPIK6N/O3z7nPH6NztMnqhWXCelgtDGOcjT8YDgrk65Q0yxxRaxFxW1hcdBUr4wyUa0BVSuH7PghBFIb4nkOyDoOAeBLz5FNPsfI/OMof/m++w867IzrnagTLM17Nh91CIXUHFOV9TnJpqpuZGJ87SGeWK1/rMdfpsBwF7O7FRU2qAiux+BjbYEKdbVmjm2oGozFZ6qKsLthTdGvYtFjQriQskgLriUIAtVvMVlZVQqXPVy3+UvrKK6+qHNx9HmjQFiXkZplXnJmS2Xv/EGDiB23xpQ9Z5idLwZ4Vbmndxi6Fw/mJohCpFEk6JssTtM3RWYbNYhQGKUAJhbAeGBd5dX0yRWOzsUiTIie7eOMt/GyHVpSxMNdm9XSHY8vHmW+GLHRatJoNMILeIKbfmzBqpBxfPcLHnjjDoD9ka3uHje1Nbt29+9D7nh0/t1DOml4WxyW53024fmvAcJzzF69so7Vlr5v+TCGUSrJ4usMTXzzF8sl5wjmP1lLLhfiLjnPPd21AcRzT604q7TceT9AFF2Fp2kwp4ywIidYa5Xn4YUCj3qBWr9NqNomiqNAEsiCjdYtia3OLIIw4cmqFJ3/1LD/9R+9y7/s9zvzmwkE3mAdYqPf5kfcrSzH7x8wxAreh3X55iKdDvvKFT3PjnbcdrZwQIGQRwvfJhE9CQC9V7I80qcbZnrbUK8qlH4rzKCVRqkR9c8BPQkjcXxZZBYPkAUGbRZw/UE544M7F9LVSq6pZv3HGLBXWaftD0egPG+UdHZh8DprVVckdrghiPMkL1yTDsdsYpAUpFMLKwg2RaBxigLQaledInSEme9i4RzMYstySrC5LVpdXmJ+v0WrVmZ9r0IoUzboPWGyeEsgaxzvLmGMewzhna2eX/mBIvNji7ImjxMlFdnZ3Hul+P1pFT6EgjLH0BylvXdpjd8+Zg+9e7rG+EZPmD/f7/JrHZ/7Dp+kcbRa7rHuGvuexdvYIYeQjBOTaMJ5oev0ukzgubP+MNE3QWiOlw/SUSlUlYdZahJIo5RFEIWEQ4Hk+Qej6/5I45onHn8Dz/CLaNvXhSsr18rn6vk+v16PVbPGxX3qMd/7kCqPNhNG9lPqxRwtrTxfSoYBEtWEceh3IY8u9Hw0ZXRP8+pd/getvv42STiBLrsRcCjIlyJQk8UISE2AShS/DA/GTAyank2dU1VlfahuBpIC+mL3aB3U5WICyudsJ3/3bjyhgNF1QZCqUM78LMzWXD4yHuCzVT1HRIJaxApjCZRqbF2V6uoCnceeQSiBwjdouRypdKtQYTJYS5Tvo0T4q2SeUGfPNgMW24sT5DoudReZbAYsLLer1kCgK8QPpYCqNxtPWbXQekI9R1hB4EV5LUW/Oo3WHOMnY2euxv58S1aIH3uPh8ZGE8nf+2+t0Wj5Zbnn3Ug+tD06k8iVB4/5F21iqcerFVS587hTzKx1kGcE0uurgTvOM4d6QXq/PcDRmEmdkWcE3WS4scA69cMXhURgSBCFhzQEYNZstvMCn3nBcGGlBEGqNYX19g6hWJwwjJpPJgewhtjAii01HKp9ub0Ct3qS50OHCl8/w5u9/wMaPBpz5rYVpPrxYy7OaUNgSn9UWJpbA5JAOdFVq59Ukqlb4nRbifk7vesrG62MiUeM3vvR5brz7Jr6UeKIsQWNG8SiMCEDV8VRETUmMkugDbtW0VrTMeR4IawoDwmCtxDCt9bR25rjZIYo7ktPKIDlVhDPHFZg3YhqUkrNbVHUjs6j5dub/mQ2l+PzUn7QgnZ9X/l+mq0oTXQgJ0sF0lNaSFRZFjqc1MotJR13MZICnY1bqA1bmQtYWG6ws1FhaatGo12jV64SeRxQEBdqgcZwvxiKEjxUeHhJhLBiNzjOM1QibYY3n2sOEoR7ByWM1jh/xSfL2/fP6gPGRhPLqjeGBv4VwzbVnXjzGwsk29cWI5ZOL02bX8uFJgRd4GKMZjsYO/yXPGY/HDiJCOxzQZrPJ/v4+ee4A+oo4CFLIgtcxcKSfgUNFG41GnDpzpuh3ExXnfJZrBK4wutzPPS+g2xvSbHIwkFTmN4QTXofHokhzS5y5AEFQkJzG+xn5yLiuEcr+QVvNRbmSSmR4k2tu/2DE4E5G0p9aEF5dVq1X1kC8r7HacmRlmV948Xluv/cWoSihCS1CGLCysi6s8LFEGFHH92t4oWI0WxVTPR9RXZu1ckZ6hPNNLVU1SzEZcPjvsu2pDF2VwR54aPeDZWoCu7qCqXZ2N1D2MpYfKLVeIZhi9hvsNFcsCrRzqxFGF8RIzkUpRMZpTitQFrxck096mHQdGQ+p25y6zFjpBJxYC1hb7LDQnqfZrNNuN6nXQuq1oJgv55eLosJIyuK1Ip4gpCArCum1NoCL6Mri3FOT3fnCnnQF748yPmKe0nW0f+zXzqF8x913+okTqNDHWMdPaYqFneucNM3IkpQkTYnjmCxL0bkjTgFRdAa4heCHEbVGkyTNGAyH1KIa7XabTqdDo+nAipV05qoonrbZ2sIPXJ+gNrYgGy2ffGFqW9f7p3yfwWCI8nymTakFZL8t+E6K/GCWCyZpTm8wYbw/4Par6wCYzLL75pi1z7QOTEvlvhZmlZBgU8ut7w7Zu5ywtLDI40+tFi1Jhv1uj3sbjotTKcWFM+e4ePY0yX6X2++9iy8EnqQCdS4frDMPJa5W1EN5DiVAexIPVQnl/cXuRTH2Q4WoeO9DIukHPOhKZg/6eEyPKJMK7m1BJWQOKc4l7quMTLVJFo1ORSmdKO/FlvCShYAINzeyahCwGAw2T/D0iHwyIR0PibJdOmrC8Vqf1eMdji636cw3qdUj5poh7Uaduh8QBn5BMGwxJq/WsNuQTHUfJW0CON+/uueZjbmkqb9vjqU8lAJ7+PhIQvml/+STnPvkKaRyyVilFHEck4xzEILBYMBoPCIp0g5KyaIXz0xNkFl3RUo8qRBSEkURw+GQZqvF0bVjhFHkEr9KzRQ1C6RQlI++FtUYDEdEtQbW5OgqHF/4PkUEGMALAobjPgZc65JVlKVzWZ6TZBnWGvIko3t3n6vfvYq0gq23d8jHOf/eX/8f8s7bP+Wdd3/C8scbqDqlW1r4WGCs49HECG5+Z0C27vM3fuurTPpd7t26xXAwJM1Szh9Z5ZOPnXVax1jWb95g/d13CDyfwJN4wlWESDHFfnG4sBJPKLwi5WIUGOmWjUQ5k+kBvpm7RvEhQil58FtTM9P9OXNQGZSdEdCqfYppD2O1EAWFfyzxpDM93eLXDtTKarf0bRm/nW6twilP5y8WBfsC55taa0hGfeToHna8S0Sfo80GR1fmWVroMN9e5GinRqsVUG/6NOsRUaBQylUiWWNA5xhdCjdVGsgRB5nq1kuhLDfIg6WYtkoLPXAmy/zuI4yPJJTzax0ynZOOJxhtiJOEXq9Ppl05mrFOE4CgM9chDCPqdcNoNHQq3HMgS1EtIghCojBycPTKTdJwMCDXmvmFefJcO9+kePruhg9OghcE7O53abXnKqGFslDAFQ07M9g1AcdpyniSYC1keYrOLFmSkY5ibvzFNfav7JONMgbrrshaSMnpMxf463/jf8rZxz7FJz99hf/l/+S32Xs7ZumlWrFkimU4Zb6hdzNm73LMV37xi2xcv4opYBm1dkSog71densO+EoAnpD4nueE0VJhupaat1yiJR6pZw3S5kibYmxCbgKslDiuqwetiCLiev8bPEgaDy6rIlJ66LBZm8RSmsEzeKfWId+V/Cmq6tA3YFO0zhy5jrUIY1BGI6xF4aYyl27DkYVQSlN8Lo0RSYYd7SNGO0Rpj+N1wZFlw/KJNosLJ2k1a7QaDVrtOo1GQC1QRIGPVAaFQRgwmYO0FIZq0zcugYtAOqumaNg+cN9CzgCnlVqzFFxR/byv4Xrm/Z81PpJQbmxu0k16pGlOnuWO1EYWCdfiEQlRdOkbx5hbq9eYm+9Qq9Wp1SJHoloFbmRhorkbqDUabG5uFibP1ASdtk3Z6vdc6+Kn2xzKompXouZwYvLcmdTpOGbjnXUG3RHb4Z6LxCkPqTzuvXKb/u0uycB1Riwur/K5L32Bz/3yXyEMa8wtnWGx2aHWikiaFzl99jGuv/UB8881kOH9D81oy71XhjQbDdq+omdzBsM+w+GQOI6LhLakaoDGdT8oUeLHFD2GQFmCMG32FUhpUcKgRIq0E3I9IhE1J3hWVxtYOaZr4gHmaeFT2gP+3UFdW/l55XfM/iZM4T8DQlZVSp6UeMqVsVkA44h18izD6Ixcpwh01StitXbGrpLkuFpbIwyCDLIUbxyT9fqkehtphjT9lKVmzqlTPqeX5lls1GnXm9SjEM9X+L5HvRERRj6+FChhkCQOCUEbJ/zWWRimYBwzFBu5dl021qEqHxAwKUtagqkFNp02e59QyhmT9WA66cPHRxJKY0xBTza9ICEdhXS90Si44IOCGbfGcDRCSlhaWsIYfSjwMH3I5QVL5ZGkGd1en6hWd6S0xcGlJrZFL2Bpuzu0tARrLIPdIZmRaO1MycHdHptv3GXrtQ1Mqh8wKa6V59S5J/il//F/n87KMZpzy+RRh1hbJlnGW7c3GY7X6cYp2+MuJz/xJa5eeo/B7ZTOuUOtOBYGtxPi3Zxf/PxnWL91E09YV01kjCOwkbIi/ClnQFpxSF4KYSwmyzKzMJRGqgyUwWOMMUMGdDAP2YWLGa9SFoffnJqgpZkpZiW5YJQ/FEAq/eeiLzIIfHzPcxFIrZ3pbTU6zSrwZqM1RpsiQOZM1apNSpbwJxqRa0SeIPIBpn8X3b1NXVmO1APWTrY4vjrPYlPRjDwaoYevFJ6QNGoNwjAo2rPADxSecka7NYJcu+CWsAchIF0KhWpNVVAkpQFUVpzNaL1ZgXyQyVqu59nPPqqWhI8a6JGSIAoROISvWq1GrV6n0Wg4hDRZdIsjQAqU77O7u00YRYzH4yIYUpihFkp+C2ucPZ/lGuUHjMYJ0gtnJkoX1SluJ8tzjdaWndtb3Htrne6Vt0mHGb0bPQ4vPM/z6Myv8OIv/lX8WgOLQQpZ0MRLVs+8QKoW2SZla6KZ7I/YHm6xNRgxnsQkOQxjgddsk8o6wdJL1Jp/n+2fdGmdWkCqKkyC1ZaNHw+JohoBlt54jFc0yfq+X/nIVXgfqgBRYRBVvp9FYq2s/lbSBZBkibOjAhQWQUouZdHkK6ffW5imFXQl6sDUHNR5Uy16cMcvtHdpTk/jia77oiLeAXSO1BqbO/AsYQyWzEVerUsbyMrMt4WrY1Emw8sTbDLCxH2ao7t4NqURCY4uhJy4eIyFuRqddg3fg8hXBEIS+MoxgqsAJSW+AuVRBIksHjlCU4CJlc1ibiPBFrAowhbUefagRXbITfow4TqIaMd975VelRCzgbsPHx9JKH0/5PyFCwXmi6sIUWpGRRfHGReqQhSw9nt7uyhvigbnhqh2LYcdY4oIqs8kyfCTDGMFeWZJxjF7t7cZbbum5N2rXbrX9hlvT9Cpy2U2WnOcffzZqqveYjn3sc+wcvYFdtM59hKBCEKs9FxQBpgkMa9cGpHkfbpY0rwoRJBFeENESCQqENhMowTc6XqcfupF3v/Jn5H2c6L5ouTdWoZ3UuK9nC987iVuXL9CoPPqdsMwrB5UtUAo/3HmU25dchsoeCRt9X7ZpGGFRKoAoUIQAVqEZNLHSIuaTdJXwlYGcuQBcZ39YzYLUu78Jcp5KZRSSBTOa7TaYLUmS2OyPHMbi3E5PPeVZUipqDlFgvXAGqTJkNkIHfeR2RhGu/h5j6WaYaXlc+ZkwMLCEu1Wk1rkoaSL0vqe7wJFSuL5boELJfA8i+9LfDVdi6agEygDNdbqA/flgnKmMFFdY/gUW6mIGhfC9qgm5+HjHuRCHLJ4Hzo+klAqpajX60i3JVUn19oUPl4RnC7tcgvKDxmMYhp1p0nLiKex1vUoFt3y1oLODXlimIxjRt2UdJxx77W7rP/4HkkvxmRTqHghBE89/wWeeP5XCTqnSI3ixl5G7klkGGAt7FjJZirR2hALzXgyJDGGNM9IjCYzuYu2CelKr4TAlp3tzLYlyWJ9W0ap4cjjn+P9H/8Zw1sJQT1EYBjczNj88Zh6vY7IU0yeAqKCxgjDkBJP1O3YxUOv7sgtFAzuGgqSGNeCVGhRASgP4YUov07mtcnkPP9f2v40WJYku+/EfsfdIzLz7m9f6r3au3rvanQ30AQaQDdAAARBECQhbiYO58Pww4zpg6SxEUTRaBqKo6HGRBNHYzKaKJk4IAmSoDAU9yFBEgtBorF0o9eqruqllu7a337fu1tmRoS768Nxj/DIe1/1K7ARZVkvby6REe5+/JzzP/9zDmatJ5GXGnDMDqW4r95xSOGcCIS06G3Kooua4GvSVAetcNd1nq5pyUWu8nklalw/+5dgiT7gZKGuxqIhHN2lO7jJrLvLjsx5eKfi6pObXDx7la1ZRVUZ6jWHddo4J4ZOg/bGYJ0Knqss1qlwVa6iqmqcszgz+HzESEi1b7uu692GUnC+nbBloeozc4rvPYgpulov6PfMp3RVzcHhEWvr60p6TmCFz0KoV1PY1GBNxdHhkrqepd3K472n7QK+9Rzc3mNxuOTuK3e5/cIuxhgObxyy+817/e9Op2t89/f/EXbOXyEE2HzoQyzcWa4fwHNtRHYNEUdjhaMYWRxqq/IonqbTnEvvVRN2JCEUi5FJXysG8j4jOZOpX8TWhD5DXcTwdf8+vv8P/hl+41//fW7+zmGaBNhYX+cHPv4xvv6VL1ORS1LGEUgABVpZmknp3xBi0c8wJu62EHAgjmgmUE2Reo2u2mHpTuHNGkpnaPozjYUxWSQyCFB+XYhYUTO/risqa/Ftl5r5tIRUcjJ0KpQmxIJsHpQ7igqkJVHhfAdNQ7e4S3f4FtLcZtPOubQWeeTRDS6e3ebMzhVmU0ddAaYja3YjASEQfKdtBIxT87SqqBzMZjWusskcTGUl00aTfcK8WeSwXRk7LIGX8ni7UMbqZ3IcszRdTxJUfS2nZ59s4p50vCOhrOsJt2/vYitNElUrNfZAjCq/tFPFkCBvYblYaBZ303K4v+TGS7fwLbz26VfYf+0ezcE4I3tja4eLDz3GmYuP8NR3/zjztce4cRh4vQ0EW9EcVSx9Ql5jpwKeft9Hr30tkjFfkg2iVVTTpNCCZIdeSDwCnd40hOlqUu6AiSAGI5a5r3iDJ/jBH/pRnnvmi4jAB9/3XiqJfO2ZL1KZbNKC7zptB74ykW+3a/ZASjK1MEKHxcqEIBMwjuXaJrvblzliU9u5Bd1sYhyHRWwCijJrxlkN41t0o7ACIgGJAb9YsmxbQqfFwwyRje4QxUFd2kxC2rS08oFpkxC1LWF5iFvcJh7c4pzss77mOXfecfbslIcuPsL2xhpOQEL+/aRUjQpO5rYKGtN0xlBVlqqumE5qKiM4l4j1MjCNYvAaoybFFZNpKgLOGbxXobzf2K+WKymPk4S3nMuQynLGGHHO9Yjr8DD9JmFXSlfe73iHWSKG+XxJ0+QYIgTv+2JNIWoopJkvaduGrg289fnXaBYdb9Q3ufutu9x6/ibLvaFO6KNPPc3G1ike/+AnWD//JMYIrTvF64cTGh95fulZ7AUWRNroaZeRJrZ0osWhmkxUcKlPYFwBNSQPRBxpO2GcQZQpWogQjfRopiHgCKm1vJIDbAQf4c69Pd519SIEz7WXv07bLJgY5UlmTnSGz9t2XCXPhxVEc3AwiUZZL4IhimpJw5TOzDBujWjX6CY7mI3TTKhpOsuiXRK62KvIMQNIkJT0a41R7ec7QqfmXehaMumCGJKg6rUcuVqT8kmZ9yFi8IR2Tnt0m3i4y6S5yyQcsjUVLmxVPPzuHc5un2ZzHTY2LJOpw4lL6YlR6yoH/T3JmzoRI4LN1+ms+o9OksbUEAsFWJTr6OauYP2mF1VQSxOyn+fCkgN6C2ZE4C8+N7B7xt/Pn7WJSHOSwCtKmzd1rYLwIMc7EkofPJ3XbkW5YUvbeppgObp7wOJgwVufe41bz1/nMHVLCl3oPV1jHTtnLvDx7/8R7GTK2ac+yZ12yv4y8iYWOXS0redwseSONPgodMGzDIE2C0oGRoJC7Hkyy7qgJx2SQA9jjCb4JgQxT5cvSAr0vzOUeBQUMDDdAjM3uGafOi4I7QIBNtanLE3ENxoUj8VCyUnXJiGvJKHuDWRR0IuUuBs8Kbsqm601mAli13CTHcJkmzDdIdopJnpqB0RHEzwxg2/G9r/XdR3g6ZolbQj4pkGCHwCfkGupFryf7JulRF/afWR5AAd3iIu7uOaQU+4eF3amPP74Nme2T7Nzao21ac10OkEq02sqI47oI8GnbA7RfEZ1QpP5awXnnAI2Ge4lYo3FWTtUQuj9s1WtJYWw0KOpefbz5lQKz0k+Zg53lMJ7klCuCvHoPGktqp+vaHkmyDzI8Y6E8o1n38LsVOy9ucBYy5u/8zpHt45ALPuv7bHc0w7B65vbbG2dYzJb50Of/JM4N8EEWD/zJPfCKV5fRBoLLx9G2q6h6TqariGkAPSybfFUA2KYY3XJZI4RQqchFWO0HH80GW28j1mY7X4RJJXulzj4IlYU7eyz6xM7xkTVDCY0xGZOPNpDFnPM4hq1ROoqTbapMJ1n3nnwBo9uGGpCp9KPZvAjY59TCESTeLu5DEfqspV7XYglmhrsjOC2iNPTLKt12qRxLDAxFuMcnc/ABrRtavYafDLru+RTBgweF1V7BaNE8xgiFQHrO6SZw/IQ2kNCs08z32XNHHBxO3Dl0jYPnTvLuc0rbEyr1BJB0VBxhjr/TSJ1p0wtgwqVsRZbZbZP8p2N/m2lrIKnpqoqyBTiLxq5lmZkFtISZc3htxK0ycBNNjlLTXiSe1HGKFeFsxTy3lwFTcBJOIKxFpuE8vfEp3z2F7523/cuXn2SzUfO8f7v/5P4jUe51VqaILy8MIQUb+v2OhbtQk06IywqIRghBEuXzBkAMS75emnXyvt3Mn9iQi2EwW4fdsO3d9ittT2AU75nRBu8WKMMk+gDRgSHmqu0DeHwDv7oBpP2Jltyi5m1VGmiO4FYVTSLVit/i/pfYtRU9gJDcRqhL6XYhyoERHmv+Tmi7deCtQRXE+sN/OwsbF5mz24QmpY6NdrxIdJ2LW3wurit0PkmATURbyJBNFYYxRCDUbpegv9jt6Ra7sPiLt3BHeqDXTbMktPrHQ9d3OD8+U3Onj7D5nqqDCeW2k6xCWyBYf7wymxS9FhvxwDGaO0cm8YkC19MlQAk5Xo4S69ZVNgysk8vlCIDF1UFowRTVNgH3vQgyKUbcT+tWa6XUSilOE6KX4qorywphJQFs6rU11xlAd3veGCh/MSP/nEiqPAkP+CJD/8YVBtEa9ljh7tHnhe7lsODhv2uYenBh5ouJIGKYahWHQVCRZfYHoSSOZnMjwK4LwdtlcKU7Xrdjb497CzZ/yDjQUO8VKIwMZaJm1Fby8RG1lzD7rW32D98k+WtN7j51stM60OuXtpAJhPECJ3tkABt0/W7cPY5ImjsM99eRqqTcAaAoNrNk2IQ4pKGrIi2Irgp1BMONy+A22S5CISuo4u+TznzUf1mHyK+C0AicJN6ViVf12KRLiDLe/iju7j2CH/vBpPmFqfXhMvnNnnkPae5cGaD9amwseGoJhFMTZSZWi0xI9RZW6zMT7r3vOENwZlkDkumoukGJMnIya3qBlR88BMDkdhl0GboOaK/YwZNGPU3Bk14HDEtj1U6XP53RAxIgGCpNcs5LoXS9pUsBrrdakjm7Y4HFsq75/4Uc98gswlr0zWss3y1E+ZLz712wTIc0XYdPgidGBqZarwt+t7Pk6wA8vR0LV0q5muMMMqZzpMi0u86w1vjXasc1PQJytCArL4u0mcsSPp+JWCdUDnDunPsGEdthEoWTMMR129+i2vf+ALd3dvUy302L22yLgZvDWLVR6WCbjLBd1o1DxkSjaOo39pF7T8RUzu3gHJPxRhCQoADFUgFpkZkhph1gpli3Tpz44nzQ/BLpY+Z5G+lbSz2QhLIdmMVArOuRbqG5dEhy6NdwnKXyt9iu1ry7o2ay+/d4uLZJ9nZ3mRzY8pkCpO6RuIEsUJgwWLZJWQ4aYjkO4mM43n6XtCap0mYVGumxUqpXSCXF801drKwrWqrfGShVCDIYa0+hmp/ka71PTJaKqhVfur9uKnl/eWjr0jU38d4nea1ZJD+WrJQnrRu73c8sFDu72wTQ6QLHffoOJwf0vnUkyNdFGIJeW7yBYihT+mHojtSNkVMj3jmYLeQdsqsETOkn0+5IoAyPCVnlfQgSnEtuVxi3smNsYmipUJZV4K1AWthp7Zc3TGsLfe4vd8wv/UWi71byPKA7fUJp05tEScVlQlU1uBFwxJhqgBK07aJPpjuO4InIMErN9cIAUsQAyZ1xZII4og4xFREO8XZKc6t4+sN/GwNwiKFNyYYsUTxep7ge18xhJYYG2K3wLQHKsR7R1TtPU7bfc5uGh5/4iwXzzzCqZ0taidMJspZttYSDRhnkhshCVWfILqtaHEqBCsJwDCWIAq+dd73HNgSDXVW0VTjXNKKOq8mgWqDoOpERdFcWATEGgWGYuxRTGN0I1d0W6tMZH6xNTJK2zsJlCk3kVUuKzGXqhlst5jXsKRKgM6SE7UjwzyLaImV0prLpmtVfYcrpF+7dzddQMrhKxLZ+ywDGTSUok/oXRRm6HD3GexImm51py0fEe5X+Hh19xETT3wvL4CRUCJY55B0JVYEYseZdcPtX/6/8Ztf+DQH93Z5+PF38b4P/CB3XrXEAKe3p2xurlFPDVMbqSvBh5hKNlom1YRl09A2Q8Js8IHGd3ijxHuCJZoJ0dZp/LIf6hCpEDfFVGt0ZgZrZ/HbF4nr5/F2i2WsCCEF/mNEuiVxMcce7dE1u/hwmzjfpWoO2a6FUxs1lx7Z5NGrZzm3c4l1V7FRrzOxmrETjLZXt46ePRRii2/ahGoqrW3qKsRks9FCes+HFl907AqdVgbIc5BBnMGcS0nKhRBKMnEjMbk6sReAzBuGEoBRdyibztk89N7ju9BrLf2eOWa+npSIXAJBCRhm0DFjS63UstkaMKkUSqlQ8ud/T4CetkBzxx7E+I+S6KUhpZjf0Ilk0F6mt73HVCYZ/y99eeX98helfL6SQtO/NexgeVfuOz+JXmwIke86c8gz//Cv8cIXP8va2mmuPPQRXnv5i6zP1rh4ZovFvSVntmasVcKsdkwrJUeHAMZ2GFezdK1qgCC0nYZI+kmMgDEEOyOaGVRrWDdJYygKDBkDpgIzwU82iacvcrRxlq5aZ9pZJqGjaw+hOUSOdjFHt4gHd1if38bKgosXN7j4+BmunL/Mhe01NtenVLMKUxta8UgwxOhoSf1KJNIJmJCEKZKImtqdyuUYsHREurTJeILXcI/3ijWHDNYlzGGVDZO1Zm/FFJZPUpgY6Isorya5j4P1oQB6eg+pWCGxF9JsDh8zT0ebtmrGTFc0yceV/r2xIJYC13mfLC9z7Nz5uh80HALvQCiDFMWViv8nHVR8Ugdd0mrPvQb7iy3aeEtZfo20+5VnknzGQdv2Ml7arOUJsuWfhXr0OQPRpthzek88mMipNXi4fYl/+Vd+htAZvv/H/3ecvvIw51vLP////V/56nNf4vf/oT/GC1/ZpzYTJBgcTqtuW0c0WlDJSIfBQgg0y4628LtUKDV0YM0a4s7TTbfoqokWYorK9QwmpRiJQaYb+GqGbyuaxYKt5as0+7fxh7dx3T1mMuf8uuPKYzs8fPExLp49y9r6BlLVGGeYOc3m0PAKLPEE6zVQmknZkkj8fVjGJCTaUblc5S/0RAitJu7T81z8LMc6dY4V1cozF1EnJ2dkKLKMWKyzVJVNBAELKcUvaz4tqu17ps6g8VamN+fmikFLu2QXKVPuVoQwK4VykSft2KOnadWchLLmNSYi1K7uE5/HcqD/ZmK8xou//fEOhLLY9YCcAKqO7YqmyxeeShqWxbJXNWl5H7F8WWSwWEsfsTcpht222P9Irl0vtJFseqh2iNjk4goQMMZzdsuw9qW/y//8T/82F658jHd//Kc4+/ijONOx/uYh79n6AHcO3+DNb73I5fOXaO4d0E49bRWZOBCnG5MzEK0QXcDbathy0gIJCR01xtDOtmD9YRbrZ2kmFUGmTMIBE99ReSEsW7q2JbYQbl5H5t+Cu7u07hbn1yuunlvn0oUzXLh4mu3tLdbX16krWyCeGWRKyKVoVQgTUk6j5EVbxPtC8n/Q5kI+BrpOtX6uiJd9uBBiysYYqspJyuKwVteE916LYkct/BU8OFtjncU5Q10nvm3les0nqGmZfcT8UGR88BHV3xsQzmEF5IT4rKlAN5Sxb6m+X7lp5M3S9OVAsmYfCWJahDF9NyKa97u6thlvAJmG9yDHAwvlKpgrZqAY9cGo4ob7z6+a0aVaT85zPOFjGSY/8UJiDhus/ICU5vJYg2oDmFQoC1IoxHB2o2L9i/8jn/uX/xOPPPnDvPeH/hTTnRlSeR382PKIPU1z7pN87vl/z0ee/jBndnZYzO+yrITaau1P5xwZllftaUeTpLt7SLuKcG97B7bO0szOQC1UWEwbCUd7RH9Is7zL/PAA1xyw5VoeOiVc+dBZLp9/D5fObHN6s2YyW8NMZsodDaEPxmfmS0rKwYeAF18MU968lHXi2yERuzTPjDEK8Vub7k8GHznGsV4Yxe2MVlAQDRGE0GGsMJtOWFtbYzrT+ktZEBcLLagdY0TCOFBfhhWs2EFYSuupWFPld4bXBpZOL5gkhZLb2BfADAwxUGPG6Ynl/fYLMj9Pe2B5XW8XC73f8cBC6VI+oP5YctzzbmTGu4LGroYGL31v+hHErEJVCuRov4tj0zYfmh5kTngnfU9Cf259KZnPQZQyhu9rQZ1as6x98Wf53C/+Tzz9/X+Ohz7wXVRrlRbXVceKGAPbtubJ2WXshR/ms1/+d3zk6Q/x1NZpaI5opMFEIdRaYqSLymsNyTzIe8Q41iqsr58j1Nt0cUJ3cEB3eMjR0V3q+S5VfInLa1Ouvv8hdk6d5dyZbba3t7GyzqTyTGvDREJiM2lua0fOjkhzEiJdIqeLETUNGRbH/QjaJ/leMEYo+7hkjMSiR6VuCFqmRayhriqqaoYxwmRS4aqhWWzTNMkfbZWnmtaFKcyq1fjemAIHQ2X7sa9XgixZKFdji2rFMRLG8pG1WhmXXD1WX+s3i7TOezOb4Xoe5Hhgoawms/u/ma6jn2QSbSuWIpefFtpjdffpn+QkvuOil/3B++05OdNjqGOV6n/nCgFRE4bPrlt2nv2bfPEXf4EPfd9/zqX3f5hqZjApVTRGxWS9MdQ762wuLO+pHqK+8MP8xpd+lWsXzvLHv+cHmd++QTdvwIOpBI8G70Oru74kldWnt0kEDM29lnDwEnJ0yI5/k0tbDZcunuOhS5c4d+ZTbG1uaXkLG+hiS4wGKyHlEFYYlHQhmVaXSqWQfSdBi/9EtPxiiCMhLM3C3jxMc5bBG+ccpN8rtWhILCLC4E8ao7mO04mWhJnUyYxOoYuIZzmf62YQckU6+n+Pa7eVeQ2hLykzrKvhcyGEwXLL3ylMz/z36NzF8lwVylVCwSoxvTx//n5/7ZKFMf9AAtQeTFG+A/P1fj3bY7EzhLE2iGQb6n567eTX9bsn/576i/f7nn73GMgjkEojITayUTsufP3v89l/8bf48Cf+V1z54Hfj1gRTA1ED3tnj8M4RN6eYGlzneHTtEUz9B/gPr/1r/vov/iP+0Pd/ikfMhHbRELyni5GuU5/IkLms9LmVRgwhCFP/Eqe3z/PYU+d56MwlzmzVrM+m1NWUqppgjEvWRqdV7qzgpEqtyXXcjVgdc58Sp4uwQyAc43euopirBaDy6xlc8V1HZ1pcaoaUEcSc/eCMMJlWfXerup5grUkIaUcGDYwRTa/q2n599AysYuZKITomCIW2PBHVXXkvI56r1MtSWzqjjY1Wx2VV6/5ujl4Ihf7Jg57qHfiUJ5wxQiZbxSiMWmOTrdcRRDZ+f1XwRp+Lq5thMeDDDR7zdfNryb/skdiohHNnDR9bv8F/+MW/x6Wr38Ol9z5NPRXEWVLVTxoRLEpSbyeOyakNwsIiwVN3kSe2Nzm1c5bf/ua/55/8u1/i409/mB/50HexeOs2ca4VEmwXcWITipe1fgYoOj5y6RTv+9C7OXtqk6pSVpCSGRzW1sSovhikig2ZTxt7XskwUlkDluadRHz0Jy70jGaugiR5jLPw9Vqz0/hjDlPUdU3lLNOJVgnIZmYInrZtIEaG2mCpXXwhjDl+qH7lyVqoNBuH67z/Nh6DFmy2JnVTW0EQs2lv7XC9mgDj0aawY1P+fmN0kml/vyOj7Q+oIPvjHQjlCXGWZOYhaq6etBVECfcZynEoRQWpMEcSYjqgY9lHHSaoP0rZLlAzzWJPKUricaHh8rrlKz/3l/FN4PHv/knc2gyssmkyG6iPJxJZTAyT9Vqr0vuAUfuUc9MpP7r5R3j5+jf49DP/ms8++2W+98Mf5VMf+Aj27iE3X3+TkHpCLtG8TJPK688Pj9jf3cc3GgucztawVlKZTN3getNIhjiuMpsyfyTnEw7NA8odX4lSx8MAOfaX/9Zgf6fsmRS6mVQVsXJa1iV1PQPt3FVVTtk/lYPY4buWbsUEVqHIoEyiUaYSJwNHeZxhka+/3MczvpnJB4oOS/KJlcSgmSVKAnGuSiwf368TyfMprjfrJaKVFEL2iWNezgkPyeKva1oTlUsfsV+xx1f1ik8e+xDh8ap39zt+V3HK8VVk3/A4hqrruqivJsWXUPqWpIGP5BBI2rESKkZGx/oq3oU5nH1ZQ6qip6lWpMGuwhIXGoieGDpq0/HI7ov8ygvP8ej7fpz1i5eRyhKtQMqoB0UMs1+wnFXMT81wC4tddsql9hHrOtad5T3rT7O+vs0zr36G3/zi5/mNz3+WC+fO89Of/FHO7c3x166xwNBVFjGe4Axdd8T1azc52D/kzPnTCpRlGD7bJEnLiwxMkBBSUx6GDPshBED/mX6R2fF85IWRBQMGDZPZV1lTWmt7M7Rt2yTQFpFA0yzoGjASMKbIqI8RYywudT8TEbzvsEbLfORr0I8e14xK5jheOW4wLX3fVCqjohp+ScWeUffAFJr+mM+XqI8xDPFOBY3KdaoUTN3cRaM+MRuCSbhO1kHHj976jt/5OOX9rqAHhk98f+yQRyl15qADe/+z97pjKgswxH+EgdxNKj4VSfViPJgY1OQMLaFbQvDUoaHyy1QuouOp84b/8H//y6xvXeLx7/kJ6omjqpWbG0fXVRzGcrA5VQ1RddAq66WqLK5xRO+49Oi7uPjwE1y/9TrPvfRZru1+k7/xj36e3/fhj/IDH3ya6tXXqXc2aWLgxu2b3Ds6ZH9vn9dff4NT53eYrjlmkwqxGaZX2l0ofKXe9xMtwRKSQGYrf5imtPgYTL+3Q1PFaPOkGAcaW0YedREZRCpySMd7ENHMltRMe6T9MkPrmMlXaK0sZCWtbYh56zWXSGv5b2965s+nsE1PSJGB0uYL/u39gJr7aa8YNUxU0uP6z0teucfdiHxdXdelex2u/TueusX9IN1Iyk4/6U3RGEbxZvaIpBjIvrwDqfWd0UJY+RPGoGlHAhAQq6aHhIjxEdNp/mOMLV2cE9olMQYCDS0NJkbWZ47w9d+gXS5570f/AGvbm9TTisylUrxqMGPIVy1CqGqCWFrnoG0xnadqA64OmODAB5w1XD71fs49/CQHt2/zwouf4wvP/ja//aXP84Gn3sMLn32ZZdPwniffxVPvfg9djLx5/RoX7lxk89QalVMycckk6S8mJgtdhpEzRqHVDLSWfmOM6k8Gji+CVQGtqgonSpTuku9Y+p6ZXzqKAfYzN2jd/JBkNcXok+9oU12gcTHsnjx+wqIvN5M+Rpnodl3XjXw9rQ44dmdKDVm+VgJcqyGK1dBLNvUfxOQsfyufP/dRzb05T7qm+x0PLJT+bYQyUvLkx0fPKsk3kP4//Kt+k+49Ve9XKtQSENNpoonXLrsWD3R0/kgb9bQd0gw5hVECPmpfCi1JXyMY3ru2x7//pz/HxSsf4dLT34ub2MQlSP4Zx/T66IqxhhbwJkJlsJOICwEbIjZNogkRUwkb5hwf3vz9XDz3GF954dN89YUXmVXruGqNb7z4Tb76wjdwzvG+97+fo6Mj7t69x9Q5cFF3/RKW70cqDXfv/xQ+UzneaXFlYvf9dudyUXuOa+RVLZIXVBY+vTIPDPSxkmTQf0cU+aYQsLwZlGZqD+gwfm31KInp/SNpxXw/WQuX5811kvI1loh0Fvh83gG4Om5yD4IVR8JdFtAa+faRt72fk44HFkoxJ380gyonbwKDlhy/L0VoQyA67T0fEyBAg2UBsYHQId4TmiW+WSiKFgKx61IV7khXAAQxtVLrpSt6Tm/Ay//2byFYHv/wj1FNrBIEJBdITF9mEMiRtkSIxqRrdqq9IxAjHYEufypEpNJ0MOsMlx99iktnr3DzrddYY0q3aLh1cJvrR29x7fAVnn3mGULouHDuRzg8PMCsb2BdlUIpRXWgSDrVxwAA3qFJREFU5Pfl8Sw9+JNMV5Hcbm5MnFaAxI80Qgip+h/HBbHPmCgC8TaFR5wxCIGua44JsgpjkcgsqerASqA/a678G6qdKr2/EzRLqTGbpmG5XGprRby2Tk/nyJtE/n4ZzrmfT1v+XSapr8YscwlL77t+I8gCfBJwlVfWOwmtPLhQ3vekx+MvJQj8dpUA0pSnRd5C9BA6TOwIzV26Zk4IDcSA8R0upkYwUUv6Fz/Ygz4wEAcUEGl4ZPfL/PZzX+TdH/5fcOrKI9SVVihI8BKRwbdduWlFOyWJginBprQIkRRKIUeHAL2WqY/IdML5i1cJ+3M6FpwTw9baNldPP8HNwxt87au/xa9U/57/5M/8cW1AKprVkNAHPVfhT+WxzpdxvyBByYYpzbb8Xo5HxhhSqc3BFB35bKl+TtO22hm78AetaCOf3mTuOrq21QJYk6FFQz8mhVlaaqZSmCfVsCTLTUYSHuG9biREdYQiUYkFoNUrzPEM/9IPHW0c6dy9qVl8tszqKAUyp3yVfupJbJ1Vn/r3xHw9MSQCx9ex5tLry8aov5knOJDKgURM8NjQQNcSWk8IC3y3wLetEo+jmkaZ8U/Mlm0WBJsyPSTVmgWJHRLmmO4A3+5SLe/yrtOOZ/7VP2A6O8VD7/tu3NQhzhS9FIvBK0SzN2V7Yc+CIKnkVeKyEvoCxRLVz7UhocD5+wI4g5046lgRm0CQyNm1c7z/4id4/tnf4i/+H/8v/NRP/kF+8Ps+SvBLZe1MqhEiOBpnkYKcUPjsWQj9wOLRnT30/mFeiF2q72qT3GT2TRnLs/m3bQBrmUynWm0uwZFCJCZCthVtmOScU0GJEYxBrOD7xRtHmkTDLUVZDZOrDKa4avZpQ+wrt+ffsbWwbJY0vksV8MauUp7Ptm2IQF1X/WbaA08IxhZbm2hCdkRLqmTTtzRPVfBBCSYp00Z3yOMAFwyE9e+0UIb7CWW6Ef0nZhii79YkBsQJTgTnO0K7pF0uCe2C2B1CuyCENpUeBBMTyyMVTo0IiEuEcp+uRX1HA7og/ALXHRH2bxP2bmCWt1njJufWPVdmZ3nuYI8PfvSn2bywg5tYoonaBu0EgTzx9vQDedwTCyS1VAsB6yOVj0gI0AVM08KyTSRrrTAetTiOlrCwFkcg2sjZjbN8dPbDPP/mZ/iFf/iPOTw45Cc/9QnAa6xQYrHT69VkFDP7YDDWON57utD1QE82U2GV/ZKupzDRJN2s5PlMGqpyTmOpEomx000o+eM5LarXRmjru2XT9JXXc8vD8hqAdE6j1LxJnUj0Or6hAJlMpO/4HJOfZgw4q0XL6roq7iuNSQaEUkJ1Fo404UiqTZOTkvM4+pByRNPHs4YtWVDZ9RKGurElANZbBSHHVGWkfd/ueAc+5dsRaoeeEjaK1rtBiL5FuiUsO3y7ZLmcExZHxM6nUdFiTkgWD71JKSZOsp8ICB4bWmgWhOUBrj0kHN3FLHaZ+XtsGc+FzSlXH9nhkbMf4tRjl/irf+Wvsr5+hic+/L2YSZU6H8cTcMlSQIu/YvFuDj/EQNVGKu9xPmBbj207fIy0ocMvW2g6gtfAvKR0qX7QnaU2EI2W1Fir1/jUuZ/i+u6b/Jtf+mUE+BM/8SPkumtGBrO5r49zglCWO3qIITXzzX79mNmTWTXWWuyKoGQNJalUyxCuyCwjrWBuCtdkBGaklzOYo4t4TBTXcXCjUAqo4BwrctWHFXTTL33LfB85yyVff6mVSjO+BH9KHzB/NzN5YtA+p6XrkM89WjV5bEzuXZlAxzTeRoZ6r9/5uq95Nxk5s3kCku8VPXQLJC5p2iV+uYRmTgydxhZFS0Xl+gOaSVFhQtCs9qj5eSbtqMF3aA/6lhiW+O4Qv3eH9d1rbMYjTruGi9szLj26w9WHHmW2PmFzex1XW2ZUfPmFb7B39x4f/d4/gdveohUScycPbmFOjJ5Kvs3U2ruMomqdHdcGXOuZNB5pOkzTQWLwsNQeHF0IRN/1NoaQUn3FYFLDGm9CXw386oVHub77bv7Fv/rXfPL3fZyLD52hM8MiL69Yd/SQOlYPycc931XLAxZCMI779SEMGNkIo/BEesfYVHUOzYOMMRI7P8RKRz6Mgn5lVkomBAz1dcb1cUoQSla2y9iDeEM36NUQStZCpfCVQM1gcg53msGgVSpdCfIQTQ/mrI5Pf23ltUvmORcWCrHX7A96vKMkZ2u0jQwxqNkWF7BsMG1LaNqUhjNnwbwvG68VDuPAAY3SG6E6gQ2RiigOH4DQEsOCtcN7mPk9uLcL+zep4xFbWzVndmZcfr/w8ENPcHpnh9l0Sl0pIVqCUBlLbSuqjQ3+8X/7V9jcPMfD7/84wRqtvUrBgMmgSTnQhdbIJpOJ4CJMPFSdCqNpOvCe6D2haQmLhtB5bKe1bUKTCNkCjQHrQTrN8M/+jLVOixLXVhdjCFzYfogXrz3Db3/+i/zxR36caCJdzrzPFeHzrtzltu3HtYsYSe3Nc3KyH73faylATohFGqMt3ytXms4xFY1Gzf92yOofEMosEEPIQME5EtdUk6T1ezmcoCVIcnu78ugBmUgf5llFifO5ytdX45Hl6yeN10nasyQkrIZuRmGP4hpWD20VOISfHuR4YKFci3upyK4ntg3d/JDYzpGo2qE3L2JUkCPqPquaQXMZNcxrsVHNXMIcFwN1aGmXB7SHt3CLO3B0i8lyj9NrhodObXHh8bOcPb3F6TMbTCaWtTXHZKKV0Z2ryC3dRSwGB85x884dbt24wRPv+l7c9iZLkw1I3dkVM4o9qhMLUywPnUSwUYtTTbvI+iJg2o7YNbBsiE1HbNRUZd5St57YtCybJaFVHzkmM7UzuVxFOjdoW4Fpja0tRI9vGnY2zzJxU774zDP86T/9Uyy7JYFIm0pwSPADRTjGvoZtD5RkLSJxtMCtZaQRYAgxmIRgZi2Rwx6VdTg7IOgxbaQgOGsJ0RXnKkjjoo14+vFMMcKmaaAZYqfT6VTDK6k8pAIwZXWBAsoOWvsna6F8jGKixWvZVMxkiFXEVYfvOECW309YEHVdj5hH5flWzzFiDSW/3zmnhalXTPe3Ox5YKM2925rS06mZJrHBhQ4kEK2yenRKLD2LQe8waaaIiMdEj2067LLBNq+yvHsTszxiGg64MPNc3ply5bFtzm0/xNmzG6yvT6iMSyUKk8a1U4ythjIVuRGOCN4IMq35uf/hZ6nrGU99+IfpjOCFEwytwTQcDXBUll/lU83UxjNpOqp5R2yTJpwvictWH02Ln895a+8me80eL+x9owcl1qotLm08ymSyzvraFq4aiNFWklnoUqlJgXpjAyuWV157nc4Hural9dqLhJA6JGfGiSmLUI8FLpZMKlEwJWuzsi2cgBYPrixUtV6X0RbwBqGyaaSiWhg+AUYiSgLPmSmlb5VBmNX4XWkKikhf8mM2mw0ajcHHG2nDvNEXr5WaK/+d5zELT/m50j88VlaSYSMYHkN8MmvX/ChJ9WWoCeitifxaNt9Xtfv9jgcWysXBfj+Zxkrq6htVNUdDFSM2Bnw0dLEiiscRqLsOaRtcsyAubtIcXkOOllTBc356kwtbMx5+4gznz11m59Q6s9kEK0LlprjaYCvRHRvTk5pz2/Fk/KiphGBTHZ5bt+7wzBe+yGNPfJzplSt4Ucx01arvUdUcUkmL2HWqGevOU7Uda0cd0qoAdm1Ht1zSHc6Z7x9w7ea3uLe8yzf3XmC/vXtsJwd46d5XmNg1Htt5mqunn2I6nWCcIDFlR4ogNpmIjeu1d9M0hGWKDbYdwQcqo4he5uf3nGDJWli/rPcW+41IJI7azPWhD5SwYWWIURqbEN6o2S35PKSfyVpExPSc5/FiHoCnVaCk/FzeULKGrirtQVKamv1cZd/ybY4ybLEqKOWxaqbnz43AKoAoPRk/b2b5OyfFWct77K/9AQWxPB48ThmaxL8EE5ViJXREDCFabBRMaAkETGgw83tMlvu4/VuYgzust3Nm5oCL52ecf/gsFy9c5vT2VdZnk75Fm5aPqHSAjEPMcNM+ejx5MSjDJcoQHgC05UBV8/P/489ibc0jH/kUi4nFknLnepxqbLYQE4c0Tfysi2wuAq5tMMsGc9hA0xIWLXGxpD2c84VXP8M37jxL4xfJz7M89dT7OH3mHBcvP0bEgLc0yzkvvfxldm/f4Ou3PsO1g2/ywYufZHN7E+M9NiSGjjGpUZEhkxna0BLbBkErsAdJBbGyZkxeTwyDr5c1pCQQJsur+mz6PC/A3NPDkIRWtM6PTbFCAxrvzECXDCj8yPdaAV/UZxxT1MrejTD0+YChUFbTGCbT6kTmz2D2HxfaMhSUzW/n3DH2UimgpbYs0dyM4mZfuBTEvqoejICl8RgMvGFjTIocPHjLAngnIRFIYXuBFMbQWF3DpDtA/BKOdpH5LpPFPbaWh2yZlsunJ1y6OuXi2XNsbDzCdDZlMpkymUyo6gkQU5Vt09fOFFEMroT5x0hbaaqVsKlwffc2z37pSzz8yMfYuHyFTnIHqyyAw9cGAdW42KSLTDthcwmzhUfmS+J8Tne4UCBn3nBn9yafees3eXPxKmvTNT7+9KfYPHWW4HZ47dptbh4ueetrb0EUQuM4PJzT+TNcPP84731v5NO/+T/zpTd/lQ/ZT7FdnSK2LS5WYCuESGNNr5Eqa2g1iaUoY1nsyFlL5vkZnE0VLjFayXGkYpLAiCFEr3S5nEBNyKORVGLSsuZkv20V6CgFNfuWq1kgJRpamtH6d8di7jE2U+7cwDCK9EAX0KPNq1zXrKVGKGq5jkV6fq4xpm/B3jRNf03DvQ0xyXze/Ju98hAZbTYxAVK9aY2ktfZ7wOgRsrkXlDlDS7c4oNm9wam7LzKJDWcmcGaz5qFHN7l8/gw7O5tYUzGb1VR1ZFLXKbPeaQzLVsNutmKelEK4CmeX9zZcF9jK8nN/628TQ+Rd3/VDhMrpPiXZfyx9FMlWKxIjtY+sLT1bi8B0GeBoSTw6IB4uaOdz2vmS3b1dfu3NX+Yo7vMn/uAf5/rRktev7/L63WuI3EHEElNTHYmGrm3wXUMMgTfeusatG8L3f89P8aXn/h1ffv3X+K7pj7JVWUJXY2QCxrK0w76hXapMKkk/aLkU0hv1uhAZ0FbQ6vS5vV8sBCjEQO7qbF2V6HJ5nPMj/U5UE5VcR7Wfl+PzFLO1kUr6WzumtpUxVPr7G4jfNrNovAJlXdcxmUyYzWa6VuLYV1wVyqwdy2sqBar8rfzdsgPXyM8uzNUSbS39yNJE7rVi3pRMiYI/oIAVxwML5TZL2oO7yHwXOfwWs+YaZyvLxTNbnL464/z5y2xvrjOZOCaTiulEU4IqaqqqThXVSBnoIBh8F1KANv2IDGTrVfNoOAYAIwMVlQ/4VFPnpRdfZGvnMnLhPJ1ApnKP/McccFf1iQuRjYVn86Bhbd4QFkvaowX+6Ah/OKc5nPPcnRd4ZvcLPPTQRX74Yz/OF77+LRofCeKQWGOjqOyI0yTroMyQgAcJiHgWXccXn3+RD37wu/n0p/8tb9x8kenkg6wtO4wPtNayyGZo+n+/S+f77gErZaqQhMSsNMdJedNDHFKgi+l7ouBOlTM+etYQqXRoMm1jTMQHvaZA6uwVNaxxPCRg+8TjsqRI/rcMReQ4aZndYcRASq7OfTdyXqKJ4NuiDUQYKIMwhEDKTSBfX2maZuErQafSlM6mazbDS6FevZf8+/l3e6ZPiH3oSmsyvTO/8oGFcuOFX2VqAld2ppx/eJuz566wsTNle2cNKx11Zfpq11Wl3XgtFRVTCJKK8vqkSXTBxVhCyrH4//0ZFLrMBgaRoN2sghF++d/+Knv37vHRT/1RZG0NHyVlmmt9liFBSw1xL0IVI9PGs3bYUu/N8Qf7tMsF7eGC7mDOrYM7PHP3a7x++CKXL1/hsSc+xue+9LI2SDXaPxKJfWEsj0GCJwZt6KO1bSNERZ6DD+zveTY3t3jjzvNc3nmM6eYa0nS0kmO4eoSYaYsyhBxStn8vhHlUkiCKqLBqS7kIMZeeVEqdIqsqEK6v2zt0PhPRz2XENZdnBMhtzPO8rIZiyjSm1aMPD6TwSP7MqpAipvcHc36n9x4Jka5pe423qvnyuVbN5fx8NR65+nopoPn1vDGshlBWgaRVvzIybBhiZNTw50GOBxbKn/jEQ5zfXmd7AtNqRj1dp6oETCROHNLb2MlniQHfRryPSEjoZ06pSuKRu2DFDOcxFsBV+Du9ysiPjJFoBJlM+Gf/+J+wvXWRM+/5oH4HyOkDOR9k+GrE+chmA1v7LWu7c7izR3e4RzdfsHd4wNf3X+Eru58jSOD3f+rHuX5oee6161TO9hpfOz1rh+QQRYsJ+47QRS0bQpcmqUvMJs8rL73G0x/6KJ/+rV/jrTvfZPP0aWTZIq7qSfb5Vk2aWDBaTt/EwbyUcT1XLZ+Z0NfUEZnQj0Rv4mXQxfSx0yHwP4Q/UopcIoxr+pj0Jm8plOWiXQVhVsMNZUbG8cWsG9hqNksIgdj5XsutakTvPVWl1RHyvZVFuVaP1Y2+TLg2xgz5ocYd2zzK+873VfqW+gPSr7OscU/KXrnf8cBC+eS7H2ZrbYKjw7kKFw2z1Ka8NVozIMY4ZCYAEiIk6pSarIOm0jtS8P4k/1ed5LgqgowFV83dYAyvvv4W+3t7PPH+jyKTqdZV6c29BFMJmBCJEnEB1tvAzlFgsjeHe3s0e3vMD/Z49d51Prv7GQ79HlevPMyH3vdRvvrCWxxEoxkmBrwk5Dckmnzy1zofiV5TzNThV8qb/qfP2+BxkzVE4KjZw3cdk9arEJCHRjAx90HUtmuSWkFlE7XPqBA1Y6XXbNkn0M8bIzjrRtUBjBk0Y2/Op72xJ7CnTZMI1jmMcT3yC+Ng+eqCKwW0FNxjYQcG0EYBG+nLoJSfDQl88rn2a9La1lpqZ3tUtkRcxZxAAlz53fwbpU/aA1VGVL+smMOlUGZhG21URg3+kNlLRSfpBzkeWCgf2tnAWIO1M4iB0Hk6A5oOBMF3fXqQ2uJgsnYk8yjzwin8kPsAUpnuNii2AuVLj7y528mUv/P/+VvUkzUuf/gHVCv6UAi9ah9PTCEIjUNuzj2Tu3Pk9j3CnXsc3bvDb976Ei8ffoPpbMonPvbDXNtt+cxXvqkawqlgBJPNRYFUec7HkJrFqt/kCsjcB+WhhhjxAYLA6zf3cFXFrcNX6NqPY5ukmWS4Z2sNMcOnMghIru+aW8mJJI3aCwjJpwHnKiaTyYowZIEtPO441HPNXZKziZsXq/e+NytLs/Ukgbxf1n4ZlywFelj4Y0JALwwAVvA+tVhMFebEpT6XFCYpkaZre2sCscd+K/9evrdSe/egFcc3kJMQ1Gx1ZJ/VOimElD4k8h03XyO5sUva0WMgdmX76uLC0VC9GNFq5v0EZJrWsBOetHmMdsiTzI+886bOVN/61lu8/MKLPPGeTzI9fbbfaWPapCSpACPK/J/4yNYysLHf4HYP6W7u8dqdN/jN25/ldnedD7z/A7jtMzz78jXW4wRb1drH0piioapB0m4dukDnuxHjI4jm6VlnUwpSwERDtFmjphgbWl+IpsV0gfmdazTtnE/+8CcREugwOI4phpgbrg6bQy6oMmR2WIzJWffDYshaoAw1iVhyRr0IVJWmWznnMClW17aacZJRy5NAkvIYhwnGfNHV3pClJoKBFK6V1Qeyt5ghayWbwogQfOir5/X3mH5PqyrIuCZuHECnEEJPpSs3g/utyXyU95DvLQtliMWGFZTb+3viU3bNAB/HoEnIvYWUAQeRAe2LMRW6TQIrKVsga8z+BseDoOaTfqaEvFcHRwkGFltP+Lm/+bMYsVz54PcRRHpgIyZ1OlTR0/PWnWe28NQHc9pbd3jzxmv80u1fpbNLfuiHf4KXvvEqu7deo55s6OIuMuiNFHVLCSkTfqU71AowoD6OHcwlYJJ8QWOcWhGttsX2iyO87zh9+hQhapu+XLfHSGlyxp5mp2ENwYqjJ/obyDHNWGxS2WccNlH1H9Wncn04A6J2/QpjpLEMcyyXS+q6Pmaelr9ZBtzLMSrnsjQNsymrVya9xhqYN1aFNap/rSa503pN+T6TSZ590t6kFei8760ua20PJmW/svyd1c2mvLeyAsGqgB4dzXsXw/X9Xn4PUrdiMXDELFyDSJWiJXFIj+rpUSPjXggh4xmDAGX/JmvQ3EU4DusnfT1lW2A58B2vv/Y6p848jOxsF1oy+6MD2z8CkzZw9rBh4+4B7Y2b3Ll7h1/d/Q1au+QHfvDH+MwzLyBWqOoZzlQgDsQQJJtJBouCCV3oKHsmltkOEAlRC0FLQjSNAe81xe38mXW+/tWW89tPInVNKLiaaRCJxqtgiWh8NzdWSuazzQJptMyiKYGswuQdLJVBOMvY3fBcr1sFaYgfZwdE4gDg5MXYdd0ocH+SkJWacpV6dxJI1AtGul/tDqYCpno+hX6Sv51T2EwKCnoflA0mRsc7N7E10q8pvWeLS+0D27YF3/Ua1yo+349N6X+Wm0oW+qGkZMA521sUnfE4o/58Zb/DrfAUOJXelzum5FfVfhxijopDRPVbTrDtx6cZo1k9EjicWGsyJZ/pX/7jf85iseCDn/ghYj3RRRQLnzT7fkawIaqG3F/Q3thl79Ydfnv3We52t/mhH/oxfueL30AmU+q1CZU12OiIfbOh4cit2SUeJyoXrUYpRymje13XUVWOZnEIEabTbcRaQqcwULM4AOCRqw9RG4MYPac1mqXfI69G2xz0ycORlDCeAAibGhsVQqKLyvSMqNKkyqZprlBQWjOlUJe+2UmAz2r4oXytdEVKoc2fyf9m7TuYsYM/lse59HPz2ur9btI6C6EPVUWizk2yVPK9Z4DJOddrzD69yzqqoqN0/v0yF7PcgPL4mdwm0lrt89J6ZN4OfWC+zfHgSc7pyObXffAZYIyPwjA5q6bo2wnkqg3f79D5EcG5ms9/9nPMpltML17Fx6SlV0AEjEF8pIqRjaOO6tYB81t7vLm/xysHL3LmzFneur4H1lBNprjapfboFoIUymeVyDCAH6EIsp84Jmni27Zlc3uDr7/wFYwYtrYfSvE5jXVef+M5AD7+0adZl6V2zhJ1ESDzVwdh6qu0xdgjhXkRUoxn2ZFqFUHMwpEJAWVC9BitTBpHjtdEHZmJxXitmmxZQFc1Tj6ysJXCetIjj335e73PJsP3jTFacrQAgla1etaCOVyTv9v61LQpmbilL7u60eQNV1LcOlP5HHD48ut0N+5xWBn4T++7RIYx+PYfSTdcVqUrzFcoEb00Iv3HVMvdXyuOn0vvM+UBTCiuyUWUFLmJCOIN+/OWN994g3MXn6Le3KIpficG/bwxhuADRoR6sWD97hJ/94C35gd8Yf9ZovF88Onv4YvPvkA9mak5k4pyKWiiix1RFowzNpXXh+gVhQ4+V1d7+yNP6hOPXeY3/v0X2JxeZra+iTGWYEL+GQCmlcGJSVWtEkRPLNDqZOpBD937hHKrlUBfVCubpqsmZAixt35iQqVLEGTQpkUcEU5c1Hm+S204otCtCM9JGhcGAKUUzp4pU3w/fzcPha0c9LHoVQEenKyYrDb1nCK6z8QBjENJ+CYCIeBDQFKMdGQ5hCHemsfVOc1yEaNgWQgRe7QkvHkHd3eOl+9wknO+rZgFcmSiFIKYHyOT53jJ+Hwz47/zGfJvQSwYKaRlEaLyQZ/52vMAnH34/fpO3ycCcp/50pDcPJwzvX3A7r17vHj0BreXb/CR7/44X33hm5i6wtYVlVOTkChpwnLlSPXhrEm1anzAp45UhG8vkPmw1rI42iWGwKnNh5XYLIJ3ZlTRvHIqDFFyrC3nqybjOI2n75qhBZ4BzapezVwox3VwB7LfTWI+ZW2Xa5rmZOfsqxkxRI5T3E4CebJZuLoRlInYJ5XaWD3vScDZqlmcA25idF5gXGIzgzbZ5/NBUeYudolbka8n0qWO0hZSUnnEWvXVY0x8284TunZEwqgqDT25ymGcbqRt12JNp6VjwuC6fbvjwYGeuCIsI/+gFErphbK43/seZdC1pEnl3zyuYSMhdkg94dc//etU1ZStS4/RhUAnpDKEg5ZOc4TFsHHY0e4d8MLhNb5693d49PEn+NZrNwgY6tkm1WSSyiMKPpty6aezyeacJcYhk/4kNPHt71e4eeMtANbWdtTviCqs40kLQzpW//rquXWHN6nrdck3LRdwCaCsbo4xRqJfzcYpqhIUaCuMszNWTcFyLrN5m+d1NcH5pH/L+W7bdhSYL8GW1Xsr0c/Bdx7mYuiZeUIF82LessmZ5zXESAwdIRZtE7xXUC5ZE1kgp9NpH9cNokQVMaZPEjDWYB6QA/uOfcp84+UEZhMh6h/EbMFn2z7vdtnXGdAfNf0Y9vEQfG9SjScqLf4o2BjpRHj2S19iZ+cK1ZkL2o4tRkyP2Mbe+fQx4IMnHC25eXCXL+9/ibX1GafOX+Gtr7/MxvomdT3DujqZafTlDfO9DRkY9E1hc+yODN2Xi+w+wjn2n5LrbyAmFDFGz2RS94yQfJ4IiXKvA5tLNp4E2OSxj9n5Ft04y0yIfmxDnsOMGtsehbXW9eNeUtyy6WvMsGGUSCoM8cvSf83rJl9vSTovjzKEUq6Bcv2t4hTlmly9lhJBXZ2DVSHuzVCRUSGy0qfUTWJou1Buhtp8yWsnNTIGIwlJ/j3UlPnHBi2RJ5kkcNngQ21JBBLzp/dMkkAXvwCoio/9yYbfLgc0iuV3vvgFAC49/lGitVo7KGfl5+/EiI2q9WwTqHaPePbgVe41t/jYR3+AZ772TZyrEVtrERssEfAxJ1Enfw1BrFXiuw90nadtc1u2PKEUz9OiiOMgeb7+fK9aA9bQhoCfVOzv3eTg8BYf/56PYsTjQ+K6Jhk3JJRVCsHXHSj5hMmPFCDvyhkpl2FIS38wZ5rkMdP3bEo8bnukM1tD3ufSi+M1Ufp9WSjG9DkzEsrShD3pyNeyKkzDpjBkZpTfOX4cD8WsrqvVlgbZxA5h6D+SzXljDPWsxpnh2kbaNztL+fpTmRe9n+8weSA73uk2iWFQ6YPpkwUwJl7mYPp0q3G4lUEsz7N65M/1/oizvP7mmxgxTDZPpwB+2i3j4HPFpCUA8JHl/IjXF69roSa3xqKNrE8qpJoipkaMHU1evxOaYZKCH7RkHo38b15EvcZcuQ8R4cnHH+aZL/wy02qLza1TGCLeQGdMqvQWUh/IfE76EEZiwR4DRmIWzOKas2VSjuEqa6VfrCcQH0pKnfe+95/KBb7a8u6keS3NztVrLk3TVSQ0m78nfa/UiHlcy98da8Tj/mi5eZQm8KqGzT1I8v1nze4Smwvi6N5i1E1bHPjeFSvR6GNDdeLxwEI5m02HP2LEd+3A9GAIouauv0aUitZ31k03l76eTNfQdxBOotRzGOPKDfSDJYKZTPm1X/olqsk6s8uP4JOwxJjr9iRTWUAzIALiAweLOdeXbzFbX+ObL79BDCG1466PJbDm37RFY5qu6/Bt16cenWQ9nCQQ+T1jDHVlOTo8ZGN6jrqeqmXgLF5gebgLwMc+8rSexxisGSotJD76aBGs+mMnjVlGTcv76uOrqVtzfr9k4JR+4nw+18pzRd3Wsk/M6u+v+nWr/mDpY5a/d7/6rat+cukqlM9L33EoKDZowlVzu9wcynPn75Y5n71m7JRcsYoh9Jseyr3u/GoXsweTygcWykyfjKBlJJ1ecAgBCQaMUTMy77rQl6oIydQSkV4IY2KfSDIzs0mW7zGK0ayKYifK/7712jUWiyUPP/FRqCeaiBujgk+iGezqHWUTOiIr5QmjRDDK+zTG9eGDGAq/TTLNSyHw6LWdePBdhrNWYrKxeKD3XLwj1tB1y/7TgmpHAaKJ3Ln1MgDf/dEPFLzW8dlLK+DYowhLidCbUuXiKzWNghmhAOaGkEru8QHK37UoVUxSnw8RGbG8SnO2/L28mE8Swvy8/FwuBRJDwieimtghbbJGMp1Qjzw+A5tnXDgLNLZbrp/VDaO85lUhz4BX3sgkzWteqGNGVNb4vu97kgkzEpUk/yDHg8cpS3M4YzUh9jHEwW4edizJrdElYk2C9EPmXcZEPZPRTpmBlhwAKCcXdFHeuH6DGGGycUoFLaQHEUlMltLfUqEMhHKBVyAmmWAp6JHjjT07IZcMSaX0u7bFdy0x+F4ow8jEKrS+qFctJDaqZGJ54UOlEE4gslwcsbd/nfPnznLh3CZCkyZ5EEITB1cRxmbiCFwSekHLZjAMJmn/81mo+thm7M0uw2DyarOhyTGCgE3YwXDvnCh45ZG1z6ovmC0Rg+2R6JjGNzcUymvD2KLBqycJ8HEfM19vZgStmrvl8xKZLkGfnKs58Gez9TDEYMt7ypubzeczed0Fmvv4z6vHO/ApC2ZGFIKPGqz248HVXSr7DMNXSuRK04Po1Xn2TctdKjLY4yOhtI5//s/+BUZg5+pTRO9TjE17TQYJms2Rd0ujO5wPAVdPODd9iJvzN/jAo1e4dftuz/TIftVqMDybc13Xqtm6AquvXt/JhwqpjwGCasrz208gMdIa1QBd17BY3uPChasQGrrQDtn4ZOM+PxuPaTEtJ2vDBNasBvlLk7Lc/MZdmcdsnTFYM5jCSmIfyAqr5mo5/yVgU66dEAKhG19/Xh/5HDkMkRHbnJmRyfnZbM3zpumEHSGYkQDl4yRBzUf2qVfBJRPVryy/X96Hdba49tjndbrqO8x9LYsSqeU5QN6hO747raJsx3b1FbOqPHI9UYekZq0RG4RoQKoJ+/v7rG+cg3qiSGBQAY8JHbW9Kar2f+y0DEdwjomZ6CICTNDwiiX2ZIPVhRJjJPqOkzJWEOnTwu53JLElhsikrtjfv4eIMKs2dBFawTgHqXHOxvo6+7d2qZJ7YOsKN51oAa38U2Zg2A50+5yvOQhPWROnbKSaxz3v9KUflzmg5X2uar28Frq2TYSC45/JzX3KtVD67bkgVxki6bpu1FlLW/j5Y/FX3VCytZU2j8jovvt0L9EQlrX091duEHmzWiUy5PuOMfYV73ozO4KZTRS5zrFkSTiI6GuSQ4RWy4bC0F/l2x0P7lOOkNbj8PPqTnuMClU8z4OVE1qH12Qww0QwQdsdWAQnEBBuHR5yb/cuFx96P0xmSSBTvA01F2IYHGBlX3ja2BHFcml6mVcOX+Dg3i6Vc4TgMQI+DkHufPR+U2K49DHX/D7013oiCtnft372oUvn+cJv/SKVnbG9dUHbmhtLFLj++ldADH/4hz/FS198ljNnT7G1s4Ndn2KalslMS/xHCxJDovpJj7qCVi8vY35Zq5R+WxaenGmfF2oZeii/MyzuQiOnuXZVpb+RxikZgmT5dM4mcrb+bl3XKbY7xLiztRSjprGF5M/qNSSWTTeOW+bOX6TfU7M21UmSfO3Z/RlS+cr7WOVYlz5lWVwr32/+7V54FwuMFGUwsy9sBI9aaJrsHwkuWRArMnO/44GFsmSvRDXk0yIdO9AwLj5UZlEcP46nxfTas1j6UcAmV+3ObUUoZ5tn9O2YBz4jRAzIZ4yExFvsgmc+cezMzlKZCa9/62UunX2E23cOaJcLxFZDkabC7Ioxgh+CyP1VyUBweKAjRjY3ZnRdy+b0NFJXdAI4S7tccuP688ymE+KdXd46vMHBndts7WyzvrPDbHuL9c1NpuszbK3aM4dpeo8uZjO4OyZE+f1VXyrXtREZKoHnBVgizqVFswq89UBOyJvyYGaW5nJeQ6taOD/vuo7ccCgrgGw+5s9lLbd6P6U5PszNGGjKWnHV3NRu1kMopTTry+sfjx0s25bc77Kn2DmHxaibglp4zgpuNqGJge84+tq1ne5wyWyg332O07dWB2sV0UqfQney0GfGl1rTGYONmqwbTWqT4By/9K/+LQA7V9+TIJVeHw3/ZJgyvxO1xsvRzLKzvs7l9Sd55c5zvP+DH+P69V3mR0dMZusjs2c0IWGcjdBf69v6kaNPM51OuHXtm8QID53/INE5orMEa7h343U6v+QTH/8kr33rm0yrlkVjOVos2Dg4Yn33HoutLTa2NqG21LMp09lUe3kkUEdEqCa1otCim1oGiSQhqGXsrwQmVgWlpLUNLKZuxCfN8zRoHsUZSv80fyf7mavNcVY34xCUwRSJtG1H23bl/npMOFZdn+H98VorCyfn3y2TlVctiXKMVsGjfITQ9K/nzaaua41t1lZNXLRSxGw6Y3nsDPc/HpyQHjIymbHRQQiyLT2o+QEp7Rv4jiD60oQtY1J6SoWhDZWBYASx4KIQXdULwtBmNiIEcisqRTNDb9NHNPspAI0VjmrL1c0nuTF/na8+9wWeeuQpXrt+G2vVlA3pHrNvQ762AmYpu5KMRFWGPSF/Nl/lhXOn+eoz/w5nJqxtnae1Rn1JMcxm2xhjuXHtGhfObLJ7sE8Tp0RbYU0FPtAtGhb7B0iljXXW19dZW19Xs8kYrHP4uqKeTmgNTNdmkBaGWIOrq97/CT7QdG1v6YQ4LNJIMuFWEPGspUqBHFkTCGKEtk11WnPR2TRfPviUlBwT+JLWDCQzL4NzsFxk7WXT/Dq8b4ABSc3XkGuz5pkxyd+2RRxyVSGUrlb+O2vq8rgfWqubTEpcKI6maYkRpjYl8RshBq2TBMKD1n998JCItr/UxVlODGo3g1Yay2VC9OJVaIxoAm/OgRp4gJIdMzK+GGMyX6zVjk9WiKKkglDNePEbL7K+eQ536pxeQ/r9bL5lgIC+f0OKUQLewHximK1v8fj20zx/+9NcufIwBk/TLAiiNXh6szzdexmNjBSbSz9T9B/uK0SWeBBw9tQa86NDzm4/BbMZnbNY4zAYQjMnxsi5c2cwk46ugb3FEVhDbR1T64jS4WWJLCNdDITDI/zsQGu4GoObTMAYQmVpa8Plhx9mUk8GP8f73tfrN8F8caRiz6ICYmRI08oapgRETkJNMxYgKcE3WxI5run9oNWMdUkQxn6894Hg89rSMIhPCKpgeiFU60oTTfNaU82m16l+//EMlfEmMmjWVZO49K1Xj8FFc8fOka2srg3oBmJw3iThlf7evt3xjlO3YBWazyuw1BGlKUraVYQYBxh52L30HKO/RREr59G+lkpjoes8d27dZuvUVSS1bVN1S4oHxuRSamy0YCISgIUFKoObWE5tnmdj/zRfee7LfPSjn+SrL79JNFWqAJ4W5n3GMPbX+WBjF0W1d4xRqXySUrLS95eLPWIMvOtdj/PQWmTvzm3u3r7F4mjO0dERp9bWtTZQBOd1wdnGI3HZF5Pq5ktCNDQSCBsTurML1mdriDEs24YgWkWv1B6lr1gu1IzKQuLbrvioJeiR/y6TqcuQRD5nfuSFnsn8AxPMp3VSrq3hep1zGHucbJDXU4kex1TO5MS5CMoiWwX0ThLA0r8sgaHyuvK9l+0IQ+HuhKD/ux/H96TjHWSJyKDY+tA5o4VZTpwxJuX5pXoqjE2f4bODT9gvjPR/GYBYpc+VjnLylURU83oTR8houU3oaSOdQGuFpjaYesqVnQ/w9ZufZrm4x9b6OncO53Qx7/qmZyTpz53sM6/e90nHbDrh5Re+AsD2qcdASL0+gNBx7drziAg/9iM/CId32b1+jds3rnPrxg2W9/ZYNg21q/CCEjZCILQB3/g+FBCINL7jqG0wG1POnD7L2VOnMZVjvlgQDArPr+w0pWbI4E8psDmxoTT5Sg7tampX/mz2X0sEcyhU1bJcLkcgTL+wGWeX5IdWiYv9eUpBGm00+gJF3W9ykXpgyBsVn0gSyil2xtJ63/vhAzo8NnVLBg+M/eL008RYIMWkur8xFODl2x8PLJQp6Wfwm+IwqZJLR9pcfIl+1ywnqpdgyR7p2IGOcdC6kncASSZwhK88/w0Azlx+twp88XX96PB9ZdHojESCTlLQdnJLZzATw+bmRc4ePc6Xvvw5fuj3/xF++0vf6M02XeZjfmR5L6W2XwUgVg8Rw+LoEAAjTjcZUV/XNw3L5pDt7S02tjao1is2N2acOXua9Y11rr/2GrQtc7+k8TCJRtu6x4Gt473naDGnaTvl0R4dcPqt6zz+6GMwSaMSh5WZF/bqfaxqn6irayiwvbIJZUECeoJ+ad6W72dkexXhXEVFjWiIYYT2x6GiXr7mVXJD8J7aVsiypbm3TzdfatEI0bVgKqe1f6pUULuLBAnaXzPmeLsnWEvGMvN45Y2lXM9lpCEfwwY1CHMbI6Ey2tH8hKyhk44HFsoxAiUIBScwtMToRztnuYOu2vTDjUVYKZHQL+5YAkb63We/8jyIMN0+27+XHNc+ZjcypksTUyTVbbV0TlkXrq64cuaD7C9v8Jnf+mXe8/Qn+co3XtYFY8wDm6cPdORNLF2XEUGC5/DudebLe3zqUz+K7xZU1rK2vs76dEJdO6azmsX+AV3XEruA8YHQDZUBABaHh+zPD2hDy/zeHl3bceHmbZrDowR6pdgjY78pC15d18fM17wQTRwsgvI75XnyozQBm6YZ+aKLxaI/h4hlMpmMYqCDvzlo4XITqKqq72ZVMp26riP6gA1C1XnM3SN2v/oi8zv3+kouXfTUU0WszelNzKkNXFVhnSN1nUrWRiBa7bUiScXaom3eKmA0gD6rNWOHzTrE2JM/ls13mPtapm4pWDPsVFqBOl/IEHQuBXIV/tZjSMjtz9w7a1oyMSZ011RTfuWXf4VJvcHGxUdG15YFUVZeK06qAprqmRIswXpCZbCzKVfPfIyXrv8ai/032dne5O69/QcdlhOPfjHFvOGe4JwKqS2dfkgBgoaOCkugtpatUzvUswlNs2SxmNMuG8RHupQ6VlUVR0dH2PkG9fYmB3fuEq7fxPsD9vb3eeGFl1g7d4rNs6cxs7oHYU6KNeaFlzVaOXbEQSBLQSrNXhjCJiUgtFgs+s+u/mYp4P25GOKSpXnqnFXrpVhT+Rwhglm27L9xC//WHcK1Xep500cGLBEOWpZyQLx+R0HEuoLK0tUWM60xzmK21pDNmQrvdEJ0WjEwRg35DKlqOXEiWQypTIrOdVYm+p73nmnfZ/P3gNEzrKeSiKwmRzYBfOyI0Q+7bWbaUIAjwmDmZnu4f119OfEGmyzyTqATYe/eHq5eR1JeW4HwIFF9g375RzCZUJ58xN7RMBFvDVjtFLa+eZad/Uf46le+xCd+5I/y2S99XYM+D6Aps9ksJL+3TLJOn1kulzz1+Ht4441XmR/dZsNc1o0iBPbvvgnAp37we7EStZ25AM4wmcyYbawBkbZr8K3HNwHvtdW6iLBYLmjblna+4PD2Pap6xhuvvcb+0YKXX/wmlzvP2myDajYlmJOry62a4SMAiITEpvqrvfUhkrD0hIAai08J4M1ySWTQuM45Rdx7k3MwO8WYwaqJ45SubKb2IRexkNhMWqdam/y66Fjs7nHv1Wt01+/imhR3jXl9mn5zYakMrcCSkHCGmHt/TCvMxpS5c6xtbuA21/DrU2R9iplNsZPUhcsK0ZqUDB/Bh96X9SEmSqTBRWh8S1sb/M4a4e532HxddebzJK4+Qsw80lQtrYzNKFqT/NCcVpXOXcQgDILNi8VrMHzetEQik9lOn7KiLQnS9ZEWiF5Ylj0g+cMp00CzoFUgOyuYYJC6YmvjIe4cvszR3i2qutLAdQa27oPCjgUyTXr+cBwCKW3bsbaxDcDR/NagARAODq4B8MRjV9hY18Vr83gnylaMStuSymEMmJiqkhthJlsQoTmasz7b1Ca5Vc29m7cxxuHnDcuDObOz2yOEMM8f3D+jAxKJnsLHTMhbBi4ykhlC6MnhJU9YK7ylfijG9O3Z9ZwDR1mMcnu1cPKwvka+eu8Wi5rx+3O6e0c0i5a9azdpb+9jlh2JB5qmQ1KH66ylDSFVjncRrA+ELllx3sP8EB8jc3MPKkesHe3UMt3eYLq+hnMVUjv81EHtmEyndNYowcVp2mC1NtH78RFjLd3UsfnEQ7i3bt93nMvjd1k4a5jM0jzVcRteMylYXH63TKEpzxfRgL2kCZcAMUHlHs/vfP7L+M5z+vJ7EFcNaNrqhRZOZW/Wij5TonuKazpLCB0+ChbL+sYF5IbhG89/mTOXP8T13TvHzv3tAJ13ckRiQnf1fFXlmEwmxKDlDUPQVLEhvgtgFBW240wLI4aqrjl1+jSVq5hMplyvJoTFgrZpWC4Wan5SVnWLPQC0ynnt56QwIVdBnvy+lkYZN2MtfcwS7IFx2ZBVVLMXyuJYzTYZBjDim5b9azc5fOsW1bylbj0hMgTpJSvIYc56xFdMtgHGSG4A4yPed5gOpAnUC0EOOlp2aZMr1BqQ2tHOZoSpg2nNdG2GqRxma4bUjlA5qlnFkkB14RQbm2sPtDZ+1zV6MiJX3qyOr/ptIQRlVYzkLyOG9/mNEPF4ICW5Bk8XAi0hs/p6LTiccTgEhmp22eYvzJgc6kA0cdZYqxMYGbK4gSFZakAtT/QL/yOOzLTJ4+FjYLlcqgme4H9IvSiTVjTGUYbfenBGYl9J7dRkglhD2zVce+U1Do+OWC6XWh2uBUn8Uilq+ogdOh2X5y6FZtX3U07qOM6Zfc6sIUuAr0RK8/lCGCqd69wo0JP/zp85yQ9uYmCytc7W2dMsb9/D7M4REVokuSvpRpKbIMFoXmO+lgQOjsCbmMNsBlc7urSYxIOErgfMiBHnA9AirlHOsYG9GGlih12fYNenbJ0/zcZjDyHrFW6tJswmD7Q23pFQDv5Gvt+clJwlRoP2+MzyefvITIaOewFI9ngUbVsXJNKZiFQ1v/Vbv4Oxju1Lj/SYLNAjbPkwaGbJQItL2qgPt9B/T9LL0aiA9IcdeKMhxBTnOh6reieHrIyEyPCbIpIqcac7ydUPRJJ5LuAh+CL9CsH1l6wYq09rcWNnm4tXrnD75m3md+5xeHBIM1+wtlb3925idg2ldztOOkpiQAihJ6jre2PtWaa2DRkdYSCbi/Q+5mqFgK7rEqafU9SOVyIv45qByFIgbE2JF7cJXcC0HjlcYL3pi5+pO6ycWpFB8/ZlY2SYmxA1ixcjGtct5ixXpMgZJyGNdW5D74IykupoiPsdHBwQ73V0UjH9wMNY65hV32GgZ8xoGIMgOak4XT4i0HXZ1xhTmcpDgYEunX8QGmMSTE0OHzi+9vzXEBGmG9tJF+f3Y+9L5l8wvaBmgIAkgbH4pr6df8NOZ2xvXGXv6DWuXj3Pm7fvjHyb/l5H9/Hggnlvv2E2W2Pv4A1Cu6Ry67TzQ/YObvDY44+xuTEhhqUKv9pUg3lJHHznYmcfxYEzITyBMtPNDTZP7TDf3WN/b4/Du/dY31pP/NPsAxclQUSJ26vpa3kRl+Uphw2aXiuWsclVq6JEaUtTtMzR7bsnRzt6D+iJ7PlaKuswISKdWmOnzp+DnVOwbImHS+LBgnA4p122Wix70ejvG0PnvdJBUWHMyGl/b6B5kjLexDNkEEevFSSLkvCehN8gzO/tsxmEJkaov8NJziVIMJTQyGaN7+ukllB1DJEo45Sa8ih31pi2texfZp9QEFwq/Qj0DIxcOTwPVC9qSTr7MZWCiHAfCzQC0Rqsm+niS81U34kufHt/M7K3f4h1juXyqAc2ou9ouzlr62ta92f16/3YjP271d+RpPJFlEECagaePnuG/bduslzMuXfrDqfPnGJibZ+Eq1KVzcLBPB3HlEW5p2L6fU37WOaGwMOGncsxllknpfmbtWS+l1JjjlLO4iCI5Weyv7qMy1TVD3DQrTn8dg0xsoZlGgzOR5bzJbQd5s4B3dECv2xo9o4Ii6W2xPOh9ylLS/DbzXM57uV3FHzTcTLW4qqKRdPhFw1xMqN9MEX5zjWl/jhkNSNF5+GcYZEfQhy6HvWTVN5c6WMWQFKIYBXy1moxqcxfNSNmn2j8Uz3aloXVEPGDnY0ye04GhpSEHtncvMyt3a+yt3uDqq7omiGZ9qSA9uqx+pniHUqShBgtNNaPJ6Bsj1RnKA+vSO8ASAIY+l08hSj6bBiJ/b0jkWAiG9ubTDfXOTjc42Bvn8XBHDudUtVVQiRJSKrOU9s26R5SonDQkQwp9qbV4QEMzVLjmcZqhT5SEWxnKwRT0OLSoJsU0sCQY9pdp8kLIdXPTXkExUY97lGatXXbtH19W2MtOA1RiBG8cRzFSGUdcbPWquTnNjFtR2xathYec7CgWzTM9/YJu0cs5nO6toUQsRFMiFRilAGGlmwxCJJ6x4g1dEUJVelRZR07MQry+xghRNr5grg1ZeHHRafvd7yjkEi/xGKkLAClQhL7jle+80r89aGvaZO+eWzBlmt7BCoEHRwR4VuvXePe3XtcfvSj2Nl60qCxD6P0GrM3RyWv76R59RqzFum1oAzPo0TqtS0Arr/5Gq46S9eMx6AUSF28+e6PA2GrRxxxAk1f0iN/P4QOxI+LUcWYgClJ5TqHUFD+zXL8vKgZGkIAC/VazalzO9y7extnLHhdJNkqCSGo2RsiXdDiy8BI28VQ5JaGqv+tXKg5NhHfDeitXq5mRgyxzojNTVgLl8CHwSRNVJFEqBiAoBJg6hlFaPZIiJEqWQmVcxhTJEHn+TVC5wDn6FxENiaY0zMmrqKet8jekuXBEUeHh7SLJf5gTjhY4H3ALn1PaQxpL+yIODNkw6hVKIMLlzaLIJDJDqS2EMv7kORXj99l24Ky6Q49hF8y/stwSfHNE893XOBVc4WoEEbDcB4B7UaFxp/GQW76inWjycm2cP/KWGsmFy6hoWp2V1XFghWpLK6x9z/i4GWUZtDKN1IxJaWY5fbwpaZEFIYXYynrlOZ/V8eo9N3KGDHJNxcj1JOas+fO0i6WmnSbQgEhKCkjAr7zdDH2+ZMwLpYcwuDvZeFc7aJVIq7ZdSm5qRnVLaulr95PP6ZhKMnRp0KtJEf3oZsCKMpjlNHR0ZH8c+ssTYwsaakry3RtDbu9hgk7zDqPnS/wiyWy6AgHc+RwCfNG0+QWDV3TErxFXE0NVMZhjOaeDqsz2ToyzE3wnqZtWIbvsKYsB1ARtXbwH+PgH64Gok8258bvl//mxaVxS4hi6Iqas9kHyFkjuisJOWMzgzeja2ZlnsrnIn1b7nq6yfrsPDevvcnHf+S7+fyXvn7fMRj7wiebs+Vx6fwOz33ukNObT1JNZxqGyEVLE8gCPpnj48TcjDiKpOTj0iWQlc7JXuOfRjSYvX5qm8vG0CyX1GtreIHotYqEGDVNS41VnqvUUCLS81en0+nofktObJk9UfKgV0MaZRuAMYg0oLb5908CmXKNoX4aob/vXCM2ptdiJIU6LGvOMQ01wWTqnmrsaAWqGUd02NqwdnqDSgzWRzbnLXbR4Y8WzA+PoOkId48wIV2n71KIcOBrk0IrAWEZIl0TeoDp2x0PniVSpODEOC7FWKb35KMMOg/CmmOZjN4rj5icxEjiva6IWL8XicEkDSnkZGsoVeBg5rIiRLFv+y55V4vq600nWxwcXaPKJUryeYoLPwkQ+LYgQbpX5QwbxBqCHSbQWUcINpXD9BgxOOs0bJJ8UERSwWmhS8JpjdEc0DC4ClE0BosxGsxem+CcMpgkdCxTXZq+ip0OxKgPS8z+YAF3lRqu5MGWc7wqrPk3Ss1ujKFp1Arp8zZXNH8plPk8eYz7YlXFBtC1LaSwUFmxTo9USDoqoIdJRHsftN1h8naMCJNJrWvVVRjRsh6yNtW1UVXYpqFbttT3GhYHCxbzORMfafYOae8eKHgUNSuJIITTmzQ7M42/hrffuPPxjoRyFazptWIhNyXsvfq8Nx3vJ4wrR/9KqTUSOpcBpmFZM+TQFV8u/RqJKxfbbxIaaxIjnNp+nFu73+DGay8lqlTozZ/+GnqaHP17J8Uu829ba1guNHVrMtlWKN5ZTFlLtzyvodAEMjpX1mb50SYSuE2vkyqLdyEilSgJqHaISbVkFkvapu03Gmst1aTua8aWm20e+hJljDGyXGrFmYyklh22VpOCS42Zxyf37ciUvLImUNb8wEhrl0SD0jTu56MD37aINZi67sGXruv6uquSSqfERKsjbep5Ll3iVIcQqF2VNjkdB28gWojTimo6wU8j7lxk2nRUxlDPlxze2lWUt0klKYmsXTyL1BMQqF29usRPPH7XjJ7hjQI4uc/nhgnJRZjfHhSBbG7ExD9dmYB43G0YXRCqIQegJ28C5e4xfirGjPp0AFS5Urcv/ZZ0btHAvhGlueV+H+NL0QU2m9W8+HVtm76xdgFJu/lgfqk/2d9jIQC6MMfjOLTgK4LhVXVsI8q+XOnr62tqaYz6dhSfG4cHjm80pY9ZbkZd1/X3lM3TVZ8vnyN/P3+nf3/FIikFMB+rFdZFZCiOZXI/yJwvOrgItr/W4jcYVsVow7VGcY2ER/gevFG3vXURsY7Gqla0kymmPoVpOqWJxhSvt4KfL7AnVNK73/EOavSM7M5EGk/dh99Gxu4npG/7WtJomtIo2DgIpbNK9B38xEHYerQrDqZrynPu+zDqiVCh6hfBENaZrG9R2Rk3r73Bk49/mG+9+gbeaJqVIL3gSirGowKUS20Og55/30jEEbWfClptwEoi3JvBRC7HsAwFaB/I8cJc5Y92XaeFkdP7JqUYhSLo3gWfFtig9XIpEZ98oVJL9liAgElmtiUlsUvy9xFC1IcIiXhu+lvpgrbxyz1cMnEB1LLIXaxGpqveADkuaqxVEz5CjB6XqIkiyaq3uQxJrfOTtWJaBCKSzPukKWNKO9SbTPWIUhOq5AcaIxBNX28puwQhhX2UySREH5LCSLWEgFA7chjJCJok3npiMxR3+3bH765GTxx4k8ShyNJJx3H0dfi7XGgjkxA0uyRpSZs2RS1+m0jlMWISVzsgmBjxfvA5R9edNUjxu30162TGgGplN53ibM3tWzd5+kMzrlmhIdL6CMHrOYKk3vYpfBFFG4WGwRSSSF9szIQhqaxZ3uXozlvEMAc3XG2ufJbHrOu0u1fbdljrenN2VeOMSiRm4M1ErAyt9UIICoSJxvOyX1rsSb2Zms87mMq+D/RDypm0gu8iXQI6kBwfHdraxuTnRmPIObZZm5XzX7ZTyINXVXVvEYw2oy5gnUWTj03fqi4LtWrulLuZ15dA6OclE/ELc9wMpnfOndQxgxgloeFpnBJPWq9X76t3ymKEyqpzGjSmmTtxCwZPpHs77VUcv6uQSB7QMkn17T73dtqy/DebUVK8DsKFc6eYrs1Y7N2i7jpiVRMjSSgjvuvwMWoh3ODhGEi04r+OfqMU40hol/jQcv7cBZaLBROb4mfeD0nJ6IT1was8weX5I+j2HFguAo8+8hhvvPE6L7z5H+BNsLZitrYDwGwyoW1afNDYn6QwRNd1+KA5itZYYh1x1RCLC4WpSX8nSVijJ/qhhUQ0Q8ggxN6U6MdolZubj9VMj960RYWkR4VXmgeVm0eZlGxzkL04VxbWci1lge3XSIxEqfrNKfuY+fpWi1CXpqihUA6r+IcZ6tuWvnFSs4mho6jwSR29BsxCT22dw4RkfYmGeIwxdIslzXxx4hivHu+YPHA/AXs7X3IAe1ZGpTjf8Zhbeh+YThwPXX2IV156hXb/Hu7sOSXIpAwKsLgIsfMYEby2Mi5+q0h+luJfVff6JP3g0f4tmu6Idz313Rzs7rI2cbguIj7SeM3pJGZLpN8n6al8/Y2BUtgCXRuZ3634sR/6FK++8QamqmhD4IWvfZ3LVx/iv/jP/yy7d+5BSnuzgaGCXEJBo4t0TUf0RToVQ9DeiMGHLvn4adHnIlHJL5WywU2hDUu0s1zUJdpZgkAZmRXofbf8KOvZlOfImq+NEWs04D4WgkEQs4DHOK6KbmVoPFSul4E/PfbZsmCaGPtSKDGj1kXToFLB5GsHZfSQuoOPQacInNwcSdFsVRCC8jUkRszuIeGNm8dk5KTjd6Upy0Ep0dVvrxGH98uFkI9RLh9JEUUIzRF/+a/8ef73/+X/ic//2j/kY3/gP2GysZ38AjUP8nd8gK7tdeEqTpGcESH6RFtLmi4aIERu3dLiXA9fucrLu1/DmYh1ArXDhq4HStRczJtJ7P3CYVyUzmAAkcDB7i12JsJ7L55h49QW2xcu8mf+5B9jOrG8+a0X2ZpVrM2mOLE03lNZS1XXKZaZiAE+gA2Ic72fqVpZw0ImmFHgX0EjBxLw+AElJvvY2hDJd13hH6vADADOoO3K+RKjAFjuoB3juKpb/k4uNwlDWK00w1fLxkwmk2RKDq3mNJQkVM5QAkvl9ZRhl7H1IJDCRaYQorzOtFDygJ73prCPvX8c+m0ulZM5wQzN1yySEwq0m3Mg6ua8bHB3Do5976TjP8p8zf+eZIqu+ifDYxC8sjbo6hGSq6ckggjtnP/mv/8/85f+q7/Er/+z/zcf/uhP8NB7n1YOaAw90SBEofORLpdoKI6M5PYAT9be+bqN4czZJ7m79ypvXXsDGzuiBCY2YCYGGw3LrDH8wIrJQplwXoha29tKIIduqhgwviO2LeFwztGbb3Lt9i3qumIyqfDTmvl0ytpsRlU54mRCaNHKa0bPn00s74L6U06Le2XkNo9pGWy3uVizpMXZeZ2DMMQ22+USRHDWUte1xgETa6ojJNN6qM1T5k3mxZiLI69uzuVzY3K50dWsI0YpXSdVYzfWouDfuDHPKimhfD/XG+o6zVWdTqdYa/suWtZaTMFS6uPuxihVlFxJY2yuloqolIf+ddI6jwFnBCqHXZvRyuqKPPl4xzV6smBl4VolCZQTUULfOomJcL0y4KssEm0xZnqgRzNDLC4E/upf++/4P/zMX+S3fv3n+QRw9X1P442hMoIYtWmbzqdAbaGdJWkUSYNpEoKK1u7Jn64nG4gYbt2+zal6xnJ+RMBjCEwri4k1vusINoMoAwsnJHAKNFHaWZt2zogzYCViCbjgmSw7JsFglp7ucM6BFZq6YjGbUs9qJmtruogmjpitMhlKMmqrc834UPJ4Alyi+r+I8kGpKhCDjYGuaVgul+qLhry5+CE+6Bx26nHTKRhPEE3e7VIXqTSpiJihUzGJNVNo1dK3LM06XbiaLJDXRdZMZe/I1fKXGVhkRejy+ikZQydVtSjPW36mTvHMVStgcKHCsO0WtNJV5bNaaLkUVmctRgyT9XWOfi/6U+aL9r4rzJbxjZy0S5Y3rQoqC6RNi3qliWj2qdIk24RyVhKJtPz3/4+/yj//57/IL/ydn+cTBK6+78MaazAGcTCpKpoQ6EKbgumpG3AI9Dh3alGAL6lRUJ86x9b6JZ5//jn+6E/9NC889zVtxxcFEy2VRLQoWSBIwNsimM+A7FmjrdGt1TDOdFLhrKFGcCEg0qnbKxbjgaDtt7vlnMWhoZpUTKYz6tkEUztsZrFELSLWWi2RaYrN0iRztjfpqorAPN27ZzFf0DRLzXTIlSPiEJM0kwkBrUQfnSUYo9kXlZbm1LmJIAEDOMmEBb1zY8ac2CwsucCzXufQ9DULWCksefNfbRSr5rVJaP/xqu2lcsgCquvNYiuDWIdJmriqJ5pa5RytD4QoPak+HyEJZUxKJKOu+bx5M1k12XPhNxNygS/d3GLtwD1Y7tY7Ml9XkadS2EqWyepxP15sCEP7tZiAk15g83+SY1YK9UcTCGHOH/7pH8NY4R/8rX/A98fIQx94GoxVInZV4XzAdD7lsuhmkH0w9dPSbi89LKLC6hyPPPmDPPfsP+K3PvubPP74e7hx/U0MHpsg8SiSyodoDNWYMCCcZDPTYIg4Z5lMKtYmFXXlqK3RQQ+pIh1aerCf1k79vGY5x8+PmB9UUBmsq6isxYrptUZVOSqXFnz2jwcMFueqgQoXAvP5kYIiPugj6rVOJlqX1PpIFEtnWrwIwRioK2RtAqnXJJAq6Zl+jmIIiT+qv5wXaRa6EqzRNTDUiF0Vxhy7LM3TnoonRtdJjGpJFeuy/Hy5MQhCFIOGUA3R+56yqEW/dO15v0IRTGuy/P0sjPne7of4GorYq0+c19phZt9hRk8OZqdhOCaEpbO+qi0H1GpsIuQbKY/VneckM1yI0LX84T/6ozgx/N2f/ft8gsjV93wQ66YEa5m4ijYtLq1OnUxhgdCTH1Gzr78rJUWYjU0evvp9vPrab7C+tcXD73kXb776Kkd3DxJYq7EyEyIugomZaWRQy9vgrMUaoaosk7qiqnIbB13URqI2F40RbLnjBsCDqBkqTduHM1oRbC5kIfTxyzxGpVCKDGMbIylToYUQyCnqBsFOJhr/q2rt8GUaLWDctnQEZDql9uvainA6UeAjBowZhCEUc2pTGCML2kkmKiFiirZ8oMJYktTz+UYmbIj9eYwxvem9umbyWBhjaL3XgmHFWsv0vhijziXH292pSTom0q+u0VUusLW2b6CbD2OEtg34uiJuf4cLZy2Xy2LHyL7UWMDKi76fOXuS31k67hlFI+NeamPSLzYEhyZA0wR+6id/CCHyt//m3+Pqt57l+37/n6KerjOtLI2zLNs0oUWIRdJ5MNpIyIsG7gWtZYoxbF56gitd4KWv/QZvvvYal69c4V3ve3e6P8O1Gze4e/MW+IhDNQcIUTRgrnSvqOarqEYNrbagE2PAQUUGqZSALknTIh6RAGIwUbAhWw1goif7yYFuSOTm+Aa3+loWWScWKyqYdQDnhcqAaTwxLAkhsFwsWLQNrE2Zdh0T75ltga20J6YPPpnfukk6q2UkJ1WVNoTEKuo1kk8uCXpfZhwuWQ1LlH6itVaBFxnWQYga7M+ATAaZ9F/T0zE7Bu5yadpmJWPdpNewpZJR8zpzbYcc13K9ltq+B4Dy2i7nwhi8ATZnx+bnpOMdEdIHrVjGAO8fayyF8KT8v9UbHO14fTQj9zI0SZMpyGSiSUz/jp/6w58kEPk7f/PnOPoX9/jw9/wkO488xbKuOGoS4yNT1pCB7ZRDGHF8H0GEaAzr5x7hiWqDN9/6LC9+/eu88LWv6aA5x7mLF/ngRz6Cny/xzZI3XnsN8R1VNFij/UJCDMQuIilxtw2RRYx4BeToqpQJIgGEVLAYjIkYm9LTOl35Nsdki0oPrGyG/d/xOG1CwyNpwQpJU5KyGbQVQrcUJKgALRcLDhZzfLtg4RvWY4fEiK1rve7pJJ+496Fj2tbUpFWwKWbrKYFR2opcN/fZbDYqvpzJACUQ2FtYxFRZQRsZ1VKl+8m1B9XfNAKuTm3fHSCWZduN1nC51sbZT6spbG1at1opPX+uFMZSU5duXO9EGEPw0MVIvbnJgxwSV9XcfY5f+Vc/P0yuyRQtvZCyZEN55IvM2m/VGb/vRQn0wf/CNDtGTk7oaRSDrytu7y358//bv8jh3pxP/f4/x+ShR7hxcEDnvcL6rQbXNRdT42yxa9VMDHFY1KLV5eJ8CU0H3YJuecj+/hsQ4WB+nflyFx+U8L2xucnDjz7K1asPsz6Z4ozh9s0bLPf3qaOWI+y6JZhAFSIV4IxgnUkk6cTzNEpst06oaouzTn1WlAnjjGCNkqzLjmDleEMSxBgLRlPy0Y2CJZWxuNS8qKpcTz7Qbs8Vvus4PDrkYD6nsRE7qZnNZqytrVNPp5itNWZbmxhnqaYTnZfURLXM+OhbIIhBErCiyLEu8Mlk0n82C0xJDjhJAPLrzmhJzZNYROX327alDUOoqOu6vkCYIqzjQl9ZyHJXsOwTZwoeMGIg5c+Xwp3XPAk1XrQNLgqTJvDj/9n/+r7rPh/vOE453Pjx1+Hk+FOpLcvd5f6COYQxyt/sydL9xwTdnyN1F7lQV/y//p//A3/n7/0Cv/yvf5aP/+CfJZw+q26bNRAMoVNzkcDJG0l5fhTqFzfBuZpTazsQIzvhKUK75O7uS+wfXqNddDz/7LM8/+yz/fVeuHixp4k9cvVhHrv6Hu7ceIvd11/HeXDWYL2oliTD+RFrwDmYdFBXBisRCR5jtKSks0LlLK5yg2BKBjQS+yeX0+/vIhECBHLfzmCULN6FDonqD7kouOhpfMth13LUNjRtwHpP13nmiyXiHNVijS3fMV2bsVk56lQcO3M987iW8VIN4TiqyiUkf9isSz8xg30Z3c9V1DWk4QYFAEl7lessKwpGDy0qZnDW9H+DnMQB6Df/4+loRZkWBsuvtPaGtZRCbSlBwtmK6D3ivsMhkWpSp5uMlK3MYaBUlZ2gyps8hoiVNvgJirpXWKTwBYUpHJXonfHZZH8pTB48UxP4L/6zP40V4d/84s/x1Hf9MdzFh3SwIWUtpHL8uTboYCun68koa0JqQ/JxRe86GoOpak7PnuZ0eBqCp13usVjc4eDwGlEiN69fV9ob8Pprr/GbIly+coXv+cj38OpXX4J2gfH0nY4RkjaE2nc0zQJrG6YTR5UEqjNCFYUuRqyPOJeBpRwuGANuPRAhOSYrEIVgUrWBtHgE8F6J2zEa2i7StIG2i3giMXiCb2DZ0kSPnR/hfWRja4v1eo16uqEhKO/7zUDEYJySEUQMiBLIq8Td1d/SjIu8gVvr6HyiwiFYaxTVDTEVozZEVCsbY+gS6waSqwDEmEuK6JxFbLomg1hB+s3YaoYTQ+w6s5Iyeh58l+KUgVzCTGOmQ5y+qpy+Y7SMjHadjtpbpct+tKZ5tSftAiccD566NeIp6kOSABmGUhAlopaPUnOWqOv9gCJgtMvmdKE0+vTFn6UIZQiaOkQkti1/7j/9aT796d/km8/9W57Y+ZPYyUyzyEXoJBnHxc+OfLDhf/p/EXIxZ/17eF0MiHNMpxdYO3OZM+5DRGsJ7QJSFkF3eI/dWy/x1hvf4J+98U/4w3/wp/nql59HCCn1SE9qDNQCaybS0rE+mzCZreOspnoZk8xeq1cWYyCQEEjNlSEUvFExJgl6znTImkzzA/UGTa9JTNdR+0DntTpBRlWDVyFuJXDUNoTDQ0KItMuW09unUipdxMfQd4uujOBcpS3nrCNGCjMwx6v1PvR5rqLnCVlzOzVP29DSdQFrBVCBlMQqSvskXaIahkC6H92Eolgimj7UF/SSjIvkQdD7z9c1hOFSmp016jPHLJTD+jBmKGzmU8xTw1aWIG06t/6UZ0wyuN/xjgjpg2CNgR7NrwsjU/Wk41iuXnGcBBYN/0rf/kDlUIrBA53YHLdKvlSY8zN/4Wf4Cz/zF3jr2d/gyoc+CeIG4APVUiaYVGkuFkI6tgTK17IGTbddjAHKqbUWqRxuuqXgTYTpxg5bZ67C14Trt55j0bUcet1ENK1L0mcNnaSQhe84e+E8F688rMBPArkMPglgRKKH6GnbhsV8kUw+XZid9/i2QcRQO9cjrnqhhXkbhxq+1qVOy76jTZnzw/zkwmgdnQ/cu3eP5XLJhQsX2Nrewq5NsdYlE1mY1HVvkqq5OqwB51xPHsgbfA8EpoWv1pf62KpRFfDLvNzSBcrxwryXZhMWUBS8MDNHIZbClcpHGebI/iRprUgsUOJy6hN4lt0kK5pTuRp5OAkdP+n4j25bkN7toeDS+S0pTychrvcjpI/PnU3LXI1H/aLRIdms1onTHNTAY49e4of+0E/ya//qF1nfuMipq+/ui2wBqagzqZuvZHFOd0S29nrLtdfyx0DP2Aebc1nWmL4TouZ9dss5R/PbbJ86zWGAuRiqUdYDqfBToBX1e9dOrXP2oXPpvgMmhkIgI8SO6BXAWiwWNMuWLmh1geVyydH8iGbZ0DUdtROcFFRJXf29KxAA41sdkxh6HzGzqtJwIEG1R+w8+3t73Lp1i53Tp9lanynwQhxyPzO7xVoE6bM5yg2+FBBJnw1xTC6o6xrvQ6q4oNeSq+973yW+bFWELnImx+payrWF8jrTc4N2RlsN0ThXJQsxxVoD/bpOec5JIC0+xJRArbVvAbwdymoGjbk90PHAQjmfz3tCLwy8RWCAvXvzdiyg5d992CEcr1KWnysAMNQYHZe0DOTYWC6wnCLDBK+iq+aJ0PkF09kOH/2+T/KF3/xlDnbf5NwjT+M2Tw07XUwE4mRGSbZNrdGWZzGTi0fimo6c5Z42qhBTWzUVnCgQfaA5mvPKi7+CqRve9z0/yOe//DVc1O9WIS1ao4LhBWRSs75xmoeffJizl89gyJnyIMl3khgxvmN5uE+zXDLd3OTw6AiAZrlksVxSLWYcHR2xmC/pukgTYh8GGcH2MWXFq0rCoOlVVpz6aHnko2pxZ21f57RbNsm0VoTVmMTgSZtNVdd9Qa4S6MtrJ1dWAFLr+cBkUqPmfFkhL2h7wghdF8jUTGXgpWJkYnuQqOv8qLdlBn00hKI+ph49sRgw6X1tpiSEBCZatC7tYOkZkwuC6YaTm6OpwZQ0efL0RFKFvbeJOJTHO2qvXsLU2Q84KfaYLzzXiDkZzBm/VoZNShNCB5mCa5u+n9skr5wvG9aaUtkiHbx8I/DhT3yKz//6L3Pn9te5+ugPsn7hMW2pl3zjPGsJF1HfxxgMQhuWxKCAQMFL1jEg2wkCwUOrzr5BtUo3P+T1V34dN2t4z9Of4Iufew5jVN+1ScPaFAqwxtBJZLq+xdUrpzl7+QKz7U2c0arjZRq1xIj1HbPZlC5VNt9KpReaZcPR0RF7+/tUB/vUBwvaecPiaEmzVO5r8L7faCKenM1iiakBmTZo9V0a93SfViS1kRPEVb156pxDJjX05uqwDsSIZtUU66OqqlEeZNaWdVWndnZjplhZO6h8b5iLAfldpXWWZupqdCBXNzjpkRvzVlU1As6yppQ0FjHm6gp6LWU1iPz7ZUjw2x3vICQSCcEnG1vJz12n5RCjH+8AGQ4vJ6G8uDwR5fNyMFYHlxH6GpIpMP7NXohJG35CDdemU/b3DnlBZnz8D/wxvvnsZ/nmS7/E7I3TXH7yU7i1bYxzJFhAr6ccRGvpRHfJkAgIQ8euweQV7xnidIpEh8WcN9/6bexkyXs/9Am++IXncUbrxKRNNG02el5vDKYSzl24wKOPX2V9awtb1whOhTIGYtcls0k0y306oa6rBHSptmralrX5nLWtDQ72Nzm4d8Dh3iFVfcT88Ij50SG0KXwStGmq+nXJbJOkAcQgJvSNg0KMSaub/rmtKmxVUVU1pppo89REr+vxABFCGAoqW+vIYQkjuYV5Tk+zWtFALAkgJxASYTy5GSH3PjX92gBlZYUAvksF2tCvqA/akVukG+MwOVsotXMfwjSD1ZY3nHHVBcMQHskaOCN/w9ovN4TVtf/tjncglIY2HCDeY8Vpd6QQoAuj+NQqVSpfaPm8jHWO/QvoQZZksurNDSbvYK+OhT332BBSGlNURsZsWiEe9m4f8Olbtzl79mGe/t7H+eoXPsvLz/1TJpNt1jcfwroJm2cexc42sH0g3PYTG/J5844//DoZJPLdgsX8Fk1zj6a5x+H8Bpvbmzz1we/ld77wFWwBEISYGiCFiEggWksMkQ5YW5tx9txpqloXSqIuEaPHx1YBByMEIxr7yhufFRUKUzFxgplW1Gsz3HSCm06o1qfYgwpzWNG1Wmyra1pkqa3RlUuqpUecrWjRdoQ+sXUQzTyppzPqqqaaTtk5c47p2gZVPSPkzTWR/TVLQoXdmqQ9RRBTpYbaVTJd85pRKCvjE5l8kFsZaCt2RTsjghjtfB1DpOvUyklTlFBW01emUNTWARbrkg+IUPUmrm4WuqFqsyVJ1KcoOWHcYE1NjFlItcqFkDdZbeXoU1lSlYe0PvL5HuB4YKFcxI6qmxNaR+WEiROtG2NSqzbJsabjhOIydlbuHFm4SlT3uICOKXsyEogs5PrZzDQixuTHBGWPiEFCwAXhxus3uPmm8MEP/yDN7mu88co3uX1Tg/433/o8GxuXOHPhQ3D6Eq6q04JP2qxrtUJcuyD4JTEG9vZf0aJZBI4WNwhRYXpXVZw6e5qrTz7NZ37ny0P81oCE1XBQ0ijW4rvItetv4cOjODtFG/+oz6mWQqKvYfAYsrOpwI0ndnnhG9xkgptMwBrWtjY4PDxiur/G0ZE2tFkuG9pFA0uvJfm7DhMDlVXTdbFYaPgo8+atZba5wZnTZ9jc3mG2scmFSxdZ3z5FNZ3SxlRYLPnlGkvUNvUaFom9sOja0JijgnOq2owk5Dhpm5IaZ3MmpmileEkAHaJmaL/WYtElO/ViIYFI9CZsMkVB5y+tVRVKeqEcEtm1rpKRCh8Uie1dqfQIcUgRlLQh5feLRf1tjwcWym/tdrxne8okWoLVXSbXWREG9n6ZTApjQGfV5ywXZgkAlNozH/1n9Y/ep83vac7dYIImLw/nlK7WJRaIOuWB555/iZ3tDR790PdzZmuCGHj5+We4deM633r537J5/RKnT7+Lze3LGO9pdt9gMd9l7/ANGn9ECOM+I2IMp8+e5bEn34ubzGjawLdeeYPf+dwzqJmTgC9jsIaVzWmgd2ENt2/f5q23rnHx4oYmMdP1HZhLJslqMnFv0qf3cx7jbG0NYwz1ZMJkOunboS+XS9pFS1x4fCGUzghd23J4eMiibfoSkVVdc/bMGc6eO0c9W8fMpqydOYXdmNHF0HNaSz5rnteyz0hg8CGzhswhNXxg2TTHaGwlSpvHK4dGSh9y1Q3q52fltf659P8rxjKbmxobPhbKiD0EkcqdDD1CQogFwPS7Ox5YKL+5u8VTW8JssmRhQ0pDyghZ6IUyD1BZrj4/VhdRSY3K3xviV4WfWApv//z4NeZ+mFl7msQiMb1pqyZpSOGP23sH3Lq7BzEgJrKxsc4HvveHObz9Ji9+9SvsH7yBs0q87vyy/52Llx5iY3MLV1XsnL2SENrIiy+9xue+9HIqoU/Kxle/RyH6FMeN2seirBNLtiaMYX9vwQvfeIVHH73I1uYMO62UKRJLxHTcJkDHMJtwYbSI8/OqqtjZ2enHu21b2kVLO2/pWm2wGppG9VEIrG1v0iRieQY8tre32dnZoZ6t0QJiU3uEHCRHyQYxXY+1TmvmStIsouZeDu7ruOSyG5FFu9BEZOf6NLAyDJc1YTYRM4ZArxmlr0CXr7t3dkrcgbRBo2wjhblcQksDIuDc4CbFCCGohjXiCDJU0Ri4y5J8cf28MUrPG4gK32Gf8vWXXuJbV3+AGdfVXwsBcowtEX5zkaQ8gXkxrLLyy12y1JKrmrNcUAPQs+p7js/V49CoZTObzcgAgQ6eQt0hdgnCFhBL9B379w74rc89y3Q646M/8AdhuceLX30WEeHJpz7GbGOLvYMFb755nRdf2yVEoX3hVjIdU+ZFzJPdX4ZOf4kUo7mSzo7vUaLmDLZLwyvfvMYbr99i492P6GZDBO8VmF9BF7PZlRd36cOXQXaRoTGOiDCZaPn9sBHo2o62aQhtgwRNxYoiLJslYi31RGuxbm5ssr6xTuUm6kOazAiSvhWiEaU45MLIuThV8F4BG5MRVMF3nhzSCCL4gI6rjxinWjVnggxJyZEuhZ+stdqnMoUo9D4LBprkyn/JH03zEXOejAjGinoFxmqsU4SIQ4wnxFzQOs2xVZM4mgQupdCRY6hdFFIjHyW+x6R4TtC49zkeWCj/zc/+FV787Q/z5//8f8nFWUeXFlmZzArDD5cl7PMiKYPHWbuuJqmWar801QbzNfcwPCnmM9AAo+giKBn99H2gGXFBIWLisIt184bPfFaF8dGr70Oi5/NfeWUkCOqxqjYMK0KYh16K5yUwRRLKLg6Z9sMhBC/cu3fEM888z9UrF6gri5FI8B0uCXCG8kdZOAXtOAtlLkRlre2LF+fX8+dM7ainUzV7fYcTQ51brafW69PZjBi15GNd1xjjaFvfF6KKRjB2tUzjMPdjMzOb31rwTE3Ewa3J38vrpTRbTzryOltNrC6Bx1V3IWtqTNX7piI2CbdLfmZLCKYHDtUNyWCW9Ci4IFSuYjqdslwu+14rqiU7nMvX9B0mpAO89PyX+Av/1c/w1//af8fGtMUjmFpRKedcv1BKUkB+5AEejiHsUAaVV4sQlQOZNWX/nBMyPWQQmg7BGZNaNh7PCBmuhMReGRcBizHyyqtvYOR4ZbyxwL2zo7z2tm37uJ6I0EY1fY2JvPrK63zrm6/ygQ+8G6FTs7IoKrWaLoQMVdlKrVgnytvqeGXTLs+RqypMrHBGF1m+UU/scx/zkVHxnMGvwfqh3EUGdrKLkh/eB9oU/1OBzOlX2e8cxilbXdknLRlfZSy7LLRVbuT5c6XlkL+jfw9rTzms9GVHJdqhwzRDgnUU6WmWw1wKrffQLHvAKR8iskIr/PbHg30qD/Sln2B395D/+r/9q1TO4KOm/sRQIGR2MCPypAx9McYB5KGcxTiWs5roWgrl8P0hy8D7oJB+iAkpTOyJ4LGxw8UOq0VARoN1kliV1wfKYgkxahNk0GyAhCCqz4IaRhLBRC0HadSMltzIJD2X5KspsyOHbTxd19CFji50tLGlCy1diOwfdnz9G6+yXGj2RRdaWt/12kvbtCcGk0b5AIOxDtJiqOuayWSiHaXSosstG8QI9bSinlQYq8TralJhJzVuWmNqRzXRIlM92kmOIfsUhgJXOzUXRdK4OC0BFC0RR+cF74XOQ9uRslA8GJcI4+rTdWEoV5kFrdys83A6Y7BihoT1ZCLq7yfzUjLyatTntU7T8Iwt/lVz1Fihqh3ilDCCsdoXNaDXJwYxFWIdUaKuedFYuI9aU3fZLjhcHCl5PvrU7j7iKou12mLPfKdDIgDx/O/DxsALL/4bvvbyDd5z+TwSOkJV981qcj3NrB3LoOnbJTaX/mXpWx7zGeOQYZCFMgtXjOSoIQASPVaESlDz7wERsVWN6gvTU8G6DBgM1zP6fvFvFv2+JKOkN4rnIcU5FQRJ4exW/aBXXrnGG29c58l3ndcGMsIoj1LHIZVRTCBHrhXTo50h+XHFpmasBtG1WnoqfOxSVYCYskhsYsYaQ5fAFxKIp/FDr/WDjKj/F0nlSUyiv2l4IaO9IpKSijP7JQXfEzod2qLzWGF29loujasR03fxHoCv4ZEHJyYAIiJEm1hJ1gyeT4ha0VD0GlAMTktror0/jBiC5Hq1Wt7ER48pADxjtD6uBGU8ZaDRB5/KjMqoKPW3O96RphQccuUPIXaDv/43/y6xEppuqYmyhVlQxpjyazCERwbhHBZ7qQWzObYa2xw+S3++1e/74Pss8xADzlnqukoL+XcDU8dBiOJANxtFS2PxuN8xcvTHH86IYr5vHzyd9zRNy82bt/n6179B5z3T6ZTJZEKdHlVdU1UVk8mE6XTav19VSqQus+JzIL4s1py/6yrHZDIZyPEjs3TcWr20ZjQVSz+fu0IPc6wWTNO22pEqPZDMG7V0fjCle2uqiFWrn2yHniFW/x6sqcL0ZGzh5GvNY1++llO/MhAV0/3lWY0UtWv776ZgW0aYg1pQne/oVj5bjlH++52ESN6RprQxMFm/BGc+wYvf+Dc888p1Hn1kk9p7XHUcXSpR1ZNMUdV4Y0HM791Pc6pmGgttPvQcuoMDYAxV7VhbF+yBmrP5HG83SP1v9h8pt+BBMzN6Nj5yDZzyGG8wChXl8pbJgFe/i6xFhbDseOmbb3D9xl0ef/wqtXNQEKPzArDWIglEycycEIZYZkCtCg2sm6LXh6GubD/+maNKjKr14vA7OqR6V865fBU9uUB7K6W8QrTubg5NZE1tc85rgJC6mMVkjoO6NJIqBHQ+t2+oCH5ICsiIqlrh2h07Z/mfPJdhtI5KLVzOyaqFNlp3xbpYjZ3qdQ/kd1dpOCcK9BTtGPt477c73pGmNBiCNZhH/ihmepW/8Tf+NlO3CXHcyDQvkoyKtW07QgnzjWbBWg0Alzt7fi8fIQxsj1WBzGbRcJ4WVy95zwcusb5p+l6GA+j0ALtX2jpl9NDwhckPuM8j9o9SeEvBHOemxtSyDjyitVet47W3bvDl575B40GSv1VqyNlsppquqjDOEo3Qdp6288wXjWbzi8G4CldNmM7WqNwEm4juNlU8l6iIdd8jpRie1TxDXZAae4tRMzc0cUBSWdmYKgPYVHfVoaU51c/rfCCSKgtgEOPSIz+3RFSQ899aB8j27wkmmZHDGhit1xOuOT8/SejKf0tcowTmyvVYgmm99jYpxILiBUj2OyPd27hvo+t+oE+lQ2/KEDYu4q78NK986xX+0T/9Fep6MhqY1Z1m9Qby4PRmZggjYSy166rghjDWkuPfGYcmQvR4v+TJJx/lypVLWHN8gk6+x5VBSr7LqtBlf/EkgSzPdzLqFscPGZ6rDtW80BAN83nHl7/8PLdu3aWqFEmtk+mawxxZUMv4cNd1zOdzFosFwSuCub6+znQ67T+XN6k81v3Ob0ozcVy0rATwfCpK1rUe7yO+U7MuAhjpQamAlmBRcCRiKwdGtB16ajUv1qQQU+KKWgVpApFEgyrSsxVkq4BJLDo2F/NbPvIY3e9YFb77WVK9m5R85Jwh04OcKW6aO83E4nsPevwuhFJr4ZiL30d96uP8/b///+XVN3eJMdI0S2LwiWgdhn4VhRAZY0YLIpu4J2nN+2lORVqPF34eLjQFtLFYY9laX+Ndjz/M+XM7zCYGZ7QYlST0M8ZMdJfiMTrhyivD5+4r3Dpg932/PHOuNk6P6mrAPIilixGPcP36LV584WXapmO2tq5JvUablIYu4NskHMkKyMLaWxkydLvqN60UkskNavW7mWRhEzquD3qtJnSpPIgPkeWy7X3DGHLbvcHcWwX38t9ZSEqhH9rN65EXe0wm96DpVOkaG3ASmYV+xPvv9e3W5XjobdX0zNeV/x6XUx27XXA8zdBae+z8/ewmlPskbOR+xzsSys7rRETFkqmf+LNEd5b/+r/5q4ChafaJfqnORdB6p1omIRBCh/ctXdcSgk/1Vhjd8Ek2fQkOBZ9SxWI49pne/E0BXh+E4A0mWOqw5PFLW3zs6Ud5/JEdttcttfHY0GJDg/HacyQGgWiQVFPWxDRAgqJ9UBikmnkgmBN35gzJ5h1TVaokpA9FBSUBDuIQcWCsFgc2E0KocLNNwmSNzjiapfCVL32d69du07VBGSjBIB1IGwmNp1k2NI3mVrpKF2Y2bZ1xEKBrOppGO0Sr1ZF6N6JZF4gGj0IEH4QhrAGdF5ZtpO2gC0bZN6QwiDFJQ6SUPcbhDGAU5shapswqKhftZDJJRbfyeDKsEdEeLZGIt8KyTnxrnSqtS+SGVvAWkpuha1Ji6Pk9WlQ8s3DU5YkpI0d90SHRwTktqGVtin/HTEdJTK4YKbs9iyQBllzOc5UocvLxjoCe0Gsm1Rx+dorq0h/i5it/m3/xy5/hRz/1HmJsESpy2EJE65Y0zUDgLv3KHog4wRw9Zr7m9+/jCyqKllFYxbdjBNvNmZmOx65u0rSnmDrD7p0Ddnd3OZwf0bQhASEy6Mk47L3ZXNKbEjQVKKG5chxJ7o+xIzkMCEW4JFdWBzAWqSdELN3hksrWTNYmzO+02Njy4guv8Ju/+RmM+W4uX7zEzNWIh+hjylSJhBSEn9Q1Uk/6UhneK5WuRLRLkrgKkaZBabv4hIoWpeX7+Y8RKxDF9ret16+4Q9d6JA4NerKpt8r+WhXIfE2lT7da17V/bgQvkc5CtOpd2lwFgLzBpxIyfYZNvtj8PG/qmWFmTrDAUizaFD4p9L5sXiv9IKT1GcLQ4j0TEt7OfC6Pd6Qp+6x+dHdtxRIf+hRu+yP8/N//BXYXU1qfry9l8adCR5PJZIRerYI49/Mhy9dX/dVVbRkL3zQkQkGXsuxjbJnUHY89cor3vfcy73riEk88fpWHLp3n1PYG00mtaTcxgy/DaOvg0g9yMlyLj9zP/7g/kkc68+CvpZqkxtCu13SVZdl1uMkak83TBLvGvaOO3/rtz/LZz/wON27cpGkaOu/p2o6YgLRcXzWTvpUJMzB/crysRBFX0+30Mfj8bdvSFWEun3z78h4hb7ZFbxHGvOfs95ZmbWnulSbtyeM1CNsw+HHQkHboUO2LcEvmxYKM1lhMgtNvDCuYRDb1RaRHrNVvNGmM6QX97U3TBzdd4Z2SB0QDq72WQKDaQK78UQ6f+0v8rb/5D/jz/5s/iw+CkQaMR2R6bHGu2uslBW81BHKMCZR+9qTJGv1GX8pCEscy4Ezk9PqMzWqTqanYmtWc2Zqwuzfnzt0ld/fnLOYL2nZJ1yX/KGVeUHBl+/Y4ZuDwltefJ+L+wqrXZQxELK6aaIu7piF2YN0EO410i4Z2HllbP8Vi0dHe63jtzWv89ueeYevUGWbfNWNzOiNE5fhOJw4ffTKRY18bJ4SBfwoDKnmSnxOCdnbuaXIMn8sab7VQcTlvMYbC/xvSmEoubkl9WxXI/Jk8Tr22zOYhWTtpETEdYiWJSMr+ySZkHn5rszmuNXcQMnEZQmr6FNLGgcZbbZHtQVTNmAuPGaOlO1ufoJyYi7plTTo8V1/7QQR3ON6ZUKYRKWGPGCGefhy7/V187rO/w/Xd/yXntj1RGoxdIL4idz3NxIKTfMdSm5wE/vQLf8ApRsLQa8vib93pE4cyCg6b0rkcVy+d4czWGvfuTbi7d8SF84bDRcfRfMHBwSFH8yVHR3OaZaMmMag5HAzLZcdyoZzVthub0+PN4n6CqeaihgwiFoOtK3zTEbvAqVDRzir2mz2WRw2TakK9vkk8OqJdnuKb37rNr/36bzCd1HzkQx/CWZOQy7SQUUTVMM5RLWOMJdK4ulgychtCQKzTsESxWebv5DHPpPQeSBItniyBnmRQJiOUgmqtHb1X/pvnves6MBGL9Myo4DuCbzFiCV6rLZCqVQjKd/YhWUyS11qXNnX5/7f3p8G2ZdldH/qbzVpr79Pc/mZlU43KUqEGMAY/GwHi0RhBgFHRBDZ22GEbN2E7/MHh9+G9F44XNg7z4dmAeQJbopHVUkIqySohGocNEkiFLaGOQiUkS6oGSVWprGwqM29z9t5rzeZ9GHPMNdc6++ZtslIuyTlvrHv22Wfv1c4xxxj/McZ/QPErjdFocapaESKuhM+0QkfI0CQ/1hfy62hK6VmpQCJnTBbQLjOTN68XoIeNx2tbYNRYUNRQVsNkTzHv/COEn/oJ/sdv/Gv8v/8f/5oAANNtLIHOzyVdmrS+1pxrsEcfziUtVOZ5u0rr98TfnF9ra+2cCyMCrvoCnYPN+YbzjefalTPuHCbuXhzYH3r2hxOmmJhCZBwDYVLzGcIEL774Cp/+1PPIHE+zg7gYb6wpU2Fjm0LCxMSw9Zi+Y3+YuLc/cH71Ku4wMl2M7HcT/ekA5yc4DozTxE//7McYBsezzz7Ne971LoKQ2cwLWLkXrRCoaaiaqPXn5f6WzKuc54ZINi/up+6rbfrauiKKlMqkXTbUiU3VznprBX3hO6qpW0iU9XytofQDzeQUSqmJgDgV9TQlK6kQi2WozYgNQbiErbBSGBNLHBQMAWuFyCzZov1thQOkxAttQV/8U10Qdf9lrubmOTzqeOxeIvPN0hicrBbx+pdin/1j/PgPf5B/9OO/jd/4m25gkyMTFits69Mc8xVbf0N/f5CZdVTjlpNrhbZqCqeFuCU53EDfOc79lv5sw/m1E8Zx5GJXAu6U3MykiwhMU+aZd1wjjHd5+eXPFivAVmtggRA99B4KQDOFkY4ThtNTRi64P+3p4ynD6ZawG9ntL0jbDd3JFhv3sD8QwwU/87Of5Id++Ed55pln2Q5dPUdNP6MuWhYtjVqv3O2i1/qebYVGO/TzWg3Rhrf0nmuJUkpzdcdaI65jt+tn3ZrF9Wfx31MM+G5mkZNrCxgTSyuCojRyrMBLPTfvxGzNQT8FWQiuLUkSQwiSlmCEYCtnsWhM4ci1JkN2xYTOcp+NEWTXCOug0WmQm5h2Pr5Ir8cTCGUJbmdJ8vZK524NPPd74NUf5y9+3Tfxdf+/P8nAHfZWej4YQ6k0kEUt6U6MtH2LQUt8jvlnNO/NP/MibUkhKKPow2I/alZlsVEKLoeYI4ifuOk8bAbCqRg08j1bwixR5ni2hAl6Ej/0Qz/GC5+9Q5SmI+VgbYbOg+8hWjVCJMWJFBL96Rnb5En3LoRnd7ulPxk47HeEw0jfeeg3EE9JBu5MB37ghz/Kb/xN/wK//ku/mBgPzf0xcwV+ZX3Te+EQlgJBkcWCCY1JKX00jCmsdSu0vFo1SOaQdx7r5C7KTdVEdifunRE+J8tcpWGdZ5xC6dEpiexTiCWENi8cChI6a6QtPIk47QkKL9R5kIlxFG2cSi5umqoVI1WvEaNP25brMJZEKOV50szXGiGldrU9hv4QBF5CKWMNrRibyTmKUGMx0dGXUJmzshjZlLlEIv6A8Vjo62JaVU0H3sjqYYar2Hf/MV555RW+5pu+i5xHhLU8kFJA6DCEZEriPwI1L4Vr3rdOLmh5QNcIHMym4uWLbuNc6hPLq+KkG/EXvMl4Mt5kNt5w2llOe8vZ4LiydVw567l+dcOtGyfcunHCl7zvC/gN/+yX8fTTt0taVZvn85BhQHpSFqEMI+P+QqoK+h7befa7HSFMDNse62Ha72Wl7wfMcILpr5D9GS++ep9/+KP/iHu7XVn02lo+W3/Pea6ouayl2ucpDGxSMTIL43qBrH05ciG9YqbmqIt2IaoyRpvoqg0oCK1m/uj3pEHQcg7U1EwD2SYwkZxHETgimCThoBRIaSTFkRAOTGHPNO6Yph05H8h5JMaRnIP4h6UxrzOJzsOmdwydxZqIMwlDgDRh0lQoysqWAzZPkEcwI8ZOOBsw+YA18toRcSQ6Z+gceJuxJmLNW1Alsh6S4EzRfuWG3/wy7NmX8X1/7+/zUjylGNuz4sqqIeRBqjPc2uCtf6JCFWOsDNNr5PXoMHOyttr57VDBXmjmsmnZk7NCUeicpXOezluci/RD5OlnrvBrvvg9fOmX/Rpu3b75ZDdQLp6cA/vDXXYXr2NcIJ14mCL54oAz0pcjhFB7Jvb9IJrJejKWn/4/foZPP/88IZR4oCZsN5esvmVr0sNcVqVpdPp3771ot5Uwzhk4y5zT9rm1IZBjYxlCWS28zTPPq9e68Ba5rtdXmxolKUgIMZTwTSCEiRii8A/FIABP6ZgtbSKoPL/eS/N6Z01hG8iLzeRMjpIIgzmQzR7sAetGUr4gc4GxB7AHMjusPWDMAecnnJ+wblzfiqPjTQklaKkRZSUEXId/9x8j5oG/8k0fwrsrmCwt1ZTnROxr5oJfrQDIiRyF3DmFCCkt7fGcq9/TPsyjF1ZQv7bxjwrhGs4ve6Msx9SmN+Wn0ER4Zkp76PrMc++6zRd90bv4gvc+izEj1pei2Sbl6vIda89Gjuoy5HFk3N2FOGJPOjprmC52TOPIZtjgrWO/2xOmhPc94EjZkXLHZ158nX/8kZ/m3t0DOWqcLyIEyIFcWrLr+Wjaot7DNQLb+pzGLrXl2sdvY4rt99d+Y+sralgEWAjxseeqQBFQCgGSWCY5inVGIscJUpDJLLGPkmFTfhd1DqWT9yITR3/PNT9rlaCfSnYawkUVQpmXGZtFezqTMDlUbWryiGXCMmGQ184EvH3LNaVM4kxpgZYLj6dxmJtfQnf7d/MP/t7f4yMf/SR2CkyTIU+ZHKRrss2ZcNgTx4M45ClAyaxPOZDSRIxTmVgR60x9reauPsx5m6F/3wSqjSm6OS2FcjaTzaVN51nOkOLMJzObqInt1vHMczd45tkbDFuHc7mkYUneqHLjXAo5MAunsgY5IE8HwuECkzOn52ckk7h3/x4pZk42p5Ash8PEFHJJx+tJdOz2iY9+9GP89E99nIuLQzEHk4BsiJmX0oyQ6kRvBUVDIMeqI/T8W84lDZOsOy+3QrsWVrV42uQF/Z4k2XeXwLuq2TOCkiLMA3WxSZEco5B+6SKbK4RTNNxy1qLXlufEgxafq0ojixZWrSnEX6FqTQmrlM8bUzRvURwmituWJzG1TSQVqpeHjScXytZ8yEmC1kj2hMkG/8zvxfqr/JVv/BayHfABTLTkmIhTIIVYKR0WvS1y4RwrN2Eax6XGLHe9FcY2a6RW3FeiqHKJWWCgoxUm1dmcBTIXUE19MaUbmRcjMNZwdrbl9lPXuHbtrMDmy0VCE61r/WJz/xQXkdXZ1WZA3LvA9o7ubEsorc59KdU6HIRE2bsO53qkySv84qd+iR/70X/MJz/xCxwOh3IuCn4tqVlawVjfvzVnqbomusBV0KcJiLcIqSt+ZKsBj6HrLQKfcy7Paq4gkimwXBgsRVuaUoubonTlNpnD/kCcJDaba7aO/LNGFj4VtKytJyg9TkoBBXkWRn1EOabFplqTAg7q5ozDWS+1nUmb+2RSEKE2GeK05qk6Pt6U+VpBzjKBpYst+Gwx2+dwz7yfX/jFT/H9H/k5wnBBdCPV5G1QvHYFbx+I/k1H+/Dbh6yTwbommFQ+p/SGus+lhpyBCfV7NRFg7duuh8iUpLGdn11BW30bsziFeh6aYqZJ2O0Col8wGabDgXR3xxQmXCfCHCbxJ7cnJ1jnOYzC4dP3GzCeMSRev3/BT/3Mx/iHP/KPeOnFz5JKcr10NpbrbJkg2snf1rnOJqciqctc5VnQ0iWftRZbMwtra6a2WlDjvmQj5V4hE6dYhEpQWBFCbWSgafNFcxpTMYbFsRUZXiws83lo2qBWxRxL6WwmzEJj178ZUxeldv/tfdTR+tmXyeOOjzfpUy6HmLKZyVqSM9h3/wHs6fv481/9l7h/cUUSp9NczByScLxkI2jcFCPZGGJu0qvg0g07ZhZV86E8OFPSsHpvGXov5XhHkNFawYLEuESvzP+iVgzoqpwzZE2AloqBKUyk6MjJloVqXm6zpudhi+b0dL6j9730MayEU0UGpsi43xHuXdCnzKbzZDKHcSRmGE7PCTh2YwTT47szJjdwkTwv3Zv48Y9+jJ/6yU8y7jLkDujI2dWUQ1POow3oV+/KOAm5FbvEGofBSbOdIjxCaO3JSfh3gsCsYB0RajG1ls/FmEkxS+FQlClXW8tFyAFMMIRDwCWDCQEzjvQkfArYOGLCHp8DJk/SLD1GcmnDrmbkulZ3CSZZaTlgPcrGoAzxbeKDCqn+XQiylvMhkYgpEFMgJelWphUmapnoYlUBSp3vv3xCmRevUpbK+WTB+C39+/4TYnT8N//NVzP0m3rRqQRcc5aUrLGwE2jBrSKC7cqjyQrr95avi59Q4oDWZobe03ce9wDwRcCqSEgjMU8IpWAiE0lIyVmMY0ntKnmYZtbKgmAqVhVBpufCL219V2cdQz+wGTb0w0Y6axWk0mSIaSLsLmCaGPoe33eEHNmNB1w/4PoNhykRkuHs/BrDyVWiHThkxy+9fId/8k8+xp3XdpA9OVlSVL3e/myvX8wFa2yhA5FP5az33BXNMH9ffVJNQdSwRsrqnJlqRWnr8pwlD1RMZHUNxFfPwWCzKaDNiM0CjHQ2QjpAGiFO1Ayquu+y5NklvrD2h9fv6xwbx7Ei0OuiewnZaGxb3BVl8Gt7pqq/Ltc4J+vr3Mp5blb0KONzrCl1mPq7PXuO7bv/DT7x8Y/zt7//I6g/Jg9xjkVpQ9o5+8ZdMgVaMKc1SVpBk30oOdL8QLq+o+u7oyaOgECN3xVlFayZIIUQKsQ5O6nsgHv37vPiZ15kv9sL1eWKrqTV8GvzvJpdfvY79fpDmNgf9mCgH3p810nFS8oMwxbnvJBS5cz25IST01Os88QY+bmf+xif+cyLZZGYy7Q0xQ0zm6Rris/WFJsXEhltEbJ0qLILc3+e2GIv68Kqx9D7UjW0EXQz1Xsv8eyUZRE0plBxCo8fgignCVUVRvjF/MuzH3vM7VnPJR2tlnygu7LCL9rRfm/dR1P9eDWZH2W8OaE09b/mjZasNhNdIj/zWzD9c3zbt38IuitMGIKxBUhZNuPUn13X4WqCc7sKzj7aGmSQn7R0nxiB7bDG0Df0GWsYvh0tKNKa2y1AkbIQEL/00su8+OJL7A/3RbM2D2Kx6q72E0JhQTNUxrauF+FzhWd1t9+zO+ywzjBsNmAch8OE9wMnp+eEDBfjiPUbrl67yenJGcYYXnrpJV544YWjQI4xGg+mak61WEQYNaRCoaGcc2VVKEXIXdEY+dJ9a6+zrc5fI6vz+SRSOhDjnpQmUhTzUP0+adirtY5zg1t93rJP1VyypaQ+byFTq9psXizbRf9Yuudiqhtz9P12wV36nrkerzWJH2W8eU1ZBVO1Y64BOHnXQn8V/9wf4e7du/z1v/ODTLZnMhCZqSFaWgXZT0mMviQ45sECVbBsxU5UgPUUjTGVx+Y4b85y6E1uTZtxHKVb1Tjy0ksv8+lPP8+nPvW89CYpZqsI3VQJw9r9hBCqwI5h4jBNxBShZNH43uP6DuOkjdx+vyPGUAS2Z4qZEBPdsOX06lXcRkIjfXfC6dk53nfVQtCJ1yYG1LrCEt5R9DBnIcISU7MUh9u59QDMC18VKC4DbpWypTAHKqBXwTi7bEXRDx3GZkLcM4UdKQdiGkkpMIWRcZQUxFRCEWRNPhHgRwEnmfxqpcQivGJajuOBaRoL88WsEdtrWj93dYXasQ7ltJ/X3+XZTkzTyH5/sSjEOKaBj40nTkhfD700BeEFVKheFP07vpz86o/xoe/6bv6F3/abubrZQ5yrD7KinysETFbSJcDzAAW3DDeoYaVBp5zAaOmWILJjG9t6wGjPZc1n+9JLL/GpT32az3721eXVq6+VlxqmHTJxiomThAhZWqwLoVTGMk4jeZrY379Pt73C2Y1zDocgGZxDT99tIE24IOlpw7Dh9PSEFO+y2WwW97CdSOuAfytsl9HpZYhC74NaMTpJ22qP+ftp0VNG25TrpM+oSZ8J4QBOcltTLJ2/cJAyMUwFoFLHR1kNqD9zlgweubdy/733C74dfXZ93y/MzGPP/LIFdjzu2n6+NVVTSkUQZfq+ZW0Ljo1WGKmv8yXhwm/o3vl+DofI1//lb+Ck3+BLVn67CpKl4efi+4sb16Tssfjaal1rP5/rawF/RGNKo5rLt2A9ORd+YU6EmLh3f8cLv/Qizz//IuMhXPq+/lTNuNyHAB4a+0pBOl4d9qKBc0x4Zxm6jt44fBJTs98MnN+4xvbqFfzpKX67Ydhu6TdbIoau7zk5Oan8PHLrqqFX71NtnW60wkWS1HNi7p+RjbxWASoLDRSe15SrVtXR+ls5CzF2a8auQ0IGCc6HECTWnVK5v4EYQwl/RGIS8K29t+uwGCw1WasRVUu1z6NFQ9Xnbpnpjs2JdrSVTK2WXBK8SfhFqXAelQ7kyTSlaVdPQTobq7UYF6KpBB0rK/SV9+Cv/4v81Ef/d175zMhZdwHpOtZ2YHYYE/FmDjyr79auxql0aFYEbz4ikG3VkuUNZl5V9UeLFrcG03fEGMR85OEs1mJOS0XDK69d8PO/+AqffWWPs1uyM4QcCuHu0jSSFTxfetiixMUHlzJAYYozLs1AV6nCGXcHun5ic77BdZ5oPC4nfI74QcIN9y9eojdS8DxsN6VviCkwiVRupEgJvzhiiuWeikaMKjy+I46j/O6FldxgSsaawdiOEA04i3e9JGgYIbNKZSKYDH3fFQ1haglXa8rGEAlxzsKJIRABYzqpLLLSXkH7DEiX5bmwWkISppaF6ftT4SJSYVRLYe03tgLeuk8KyFjrCCFWk1/mu3xnisK+n4BxChUslLbxErNOaW4D+CCtfGw8vqZc79gsf6qBUSx+tKopGcjOM7z3j2P8U/x3X/tN+O0ZmTtg7mHMBDkRQ1zQCeoFLXlb5oqH+eDz60vxSAOYhFQHlCpym3FaX7nSsg/SkiAplPtD4IXPvMYLL95hmizW9BXtzVkgdGM180SOl7NWyYjQGrQyvSRhS/YFxECcDkzjjjDuoaSSHe7d4/6d14jhgPMG4z3GdhLuyB7bdVwcDoxJuj5vTraloavEfYWF0JYJSymyFhqMmEsYC1l4IrnGj2VhbX1NWzOJYG5VrqERBeZUEFsU/JjJrKExaUIsAJOxrtyhAtqpC9NgCW06YJtr3AbxW0FY+4FrJLUV0GOhlfV8EE0pVDNjCalMIRTKET3dRyfLasdjC+UMrM52Y770R3mdjVDwR0OJXVo4fYbunX+UT37in/K9H/5ZfG/J5gIVi3ojGv9Fb0rd9coHesPzbeH+1X7mS8k1JHJcGDXmZkjR8dprB1544S53Xj+gyQEzMsxicrSglPpP7XGBSviVivlWEcIUSdMBm0Zs2HG49zqvvPQZ7t69UwLWmfv37vLKKy9Xc+xwGIU9fbMpJWXFnJsmphCYglBMSnwucCjt21ISKpUpRqYwiWB5W5HZGo6yRXPa5TNQkEXu9Rxy6boOg6lJ6K3ZZ4yR3iGAd7PpaJvkhmoEQW25CFwSvDacpK5J+95aCDVUo6Go9nm04TYdKtQSrgp1nxrjbGPsarquK2/eOqAnizmaV+8dPZyBmEtc0gjWlw2Y534X7rM/wjd+y7fxm3/Tn+KKvUvMPcYmjG1WT0xpXlr6MOTiTxqt4WMWNDPrx8yxVU8LBhSKshU9jDFKobJZfme+toJWGst+P/HiC6/wwvMvM42J3DmySTVBW01sY4wktZSmtDJ5E7MZ1K7QuoFeYE5GOmzZTA4B44XjdbqTmMaR85uJkyvX8Hni1VdfoZsGwjhiGelOugJyJElEqC0FZPIcpnHhk6WccWlGSUmm5vHWczNG6riTEebybDGWUjUhdbWYtkek2CzCNDGnVbaAh8Q5kW7I2UJ2OMmtEwFoXBONT+o9axHfnHMtSxPf1WLMDPDoc2n7gCq7ooI+6vetfdV2cRaGvEnisMYWf3FCaVPEPLdy1ilJl7IyS611i6SCNxqPJ5RZJ81DRgODSuqdvpa/WWPxz/0h4p1/wjd+2/fwn/+Jr+LOXkzLzHyDKTfElmPrRaWctSZ8nkhZQiFCuDufw1LAUq0YkCoK5vIeLi8s8j2ZgPLADffvXfALv/ApXnrpZTH9osTRdAc5SSqb7HzWevW+1JIFXT3n4m0Q8ERz7nIuxdMGyAEbohTdjgfixUR4ak847OjCnrwL5DQRc2S7PYOcCwXlWITS6GVi4qwtQghCHJUEJe18J9o6qeknK73zwpJu3Fx1owFhqaktnLHWSGLDYSJGqZpptaiGlqppZxAa0mwhWjpnSwLBPOdk4Qw42yFVQhr2mhMFFhaRMcDMNdvOgRbQWSL/yxhrK/T68FKS2HSMsRZx67FTCTGJ8JVsICOs8pLW2LDVP2Q8llCaB7zOD/hQfXCIIFkKAwjgrn8x22e+in/4wx/kw1/+m/mN73sHmQer+Qq3pyRZAQ/AWtvR3uCcK14gr2k1ajntlR87C7PY4jlbXn/9Dr/0wvNMYSQmy1gYxqt53KJyxMW11P012NTlu1i0rfrVRhjI1Q4wSVr8jfmC1179DNkmrBmZ9plkJhKJ8/Nz0UrTxBSn0mJA45BN5YahsrcrE0BIEVfMT9Ocl68+nyGUhrGxmLwYyZPNKZJixnRzXm2M7pL5phPZWifmsHe47EhxrL4YUErtZGFTbQuatpZr23KYWzK0wM66rlXNSY1T6wLR9z3jOC7i0W18FeYa1AogGYvLM+jUzlMdzjmm8dGyeNrxeD5lY2W10Mobf2f2D3UYAGtx7/kDdKdfytd+3dczldbcdb+qJctNrchdI5BHbfTMIiQzC2ZaCWku2rVMjiNXo5+ZNXXilVc+y+uv3UFRiPbBtceTBaQ9PxHsWu5TmNGNmcMT1s5NerSBTzvZcs6l2xeYlAhhT4w7MiMxHaSyPkWunp/jjJVJVMqNcpTwU1tTWjXCKl1xnTYmx6fxI0szhmblXwMj+szUz9L708Y2IWMNuAIMqTuhI5WEgNZnXWu19jraZ5Dz7E60Qnnp+R75Xb+vGUUae1yTWOtn1Ydsj6fa+I2O96DxZHHKvNweRThz/Z7y2RiMP2V47v3cu3+fb/6f/lecHbjoM8lkkhH/s20nHtLM4SKsY1CcpVLmo6ANxJAXeZUpLQVVN3H2rWjL0mfCpDS/pvSgSJnpMHJx/4CxPcb5YnpRUvkyFN6dzBwW0YvX6gpjPNb2pV13h3WdvLYd1vc4P2C9xzmDczJZ6yQutXyV3CkFbBE2Y1Ktgr929QxnIU8RkxI2aZFwxqQIMdZYsI7anbnJYGpTBEMQKg3lXArTAWOkfYEtwiWPI9V+JkCdrLofY0xlevPW4k0mHC5qi3nJBCpCXZLjRUNqAgQCUB3GKjSHw4GQNENqrN29FMvQniTtAl9BNZ2bxVzS9vPjNDLFwBgmxkna2ksLHVfbEKwBJD0/rcbRgvhUsqX2h7eIDuSRNeR6ZA2TqKkkIJC5+evpz7+MD//A9zMSGeIOY0KZ6OK7SI6oEb9mYTevNFPJ0NeuXEtBTEdfW2sZNhs67xoN3fCzlFhnShP37t7n3r0d2ownL3rYN06QrlTVHRHTz/uerhvoup6u2+D7LX7Y4HrZun6L67o5u6dJS6sk1uo721SoJySlDCMhnpPTgWvXz7EmE+Ik2tqwOLdWI9Tn2qz87U+dbON4IMTCYqDx2JxLEfnys22Op5qRC2unoKpSWByZDnvh0knSgmEcDzUIvwZatB1BWxOpr9fF22vg7lJ4JBdtnEWEM9R7HS8h4nIOXd/V4nkVyJZ9ISVpRDVNgVgKCMSVgRB+mXJfZSI/2mczEAxEAxK1M4zuFP/sH2KaEt/8nd9L5wArFeRrEwFWwA1Lk1Ee2IN7jrQrvzrjIF2atC15ayrmLOwHu/2e1+/e5fkXXuDuvfvVf7Rqdq3MpMU1N5O7nrsxtceKtTM0bwoaud5PDbHoPup9z4twirWWq1evcvPGDVnQ9J7Vu9/cj6T9V/LskhxBHltzv63yWAMrbdH6g65//qmCPhKjoMnaCWwcR/b7vfQuya1Z2vSJSfPzFi0eq3bWc64dvlbz5NjcabdWsJcLwrKVgmRFLZMOdL6M08ThcKj1mq2v+yjjiTXlorMxxTyCBwuomgZQA9UBIxUjN38D7uzX8vf/3vdzN94i2EAyqa50c+3e0neA9QpfQib1TNuDH3kIaa6Js85Jy7jiB1SHP8Od3YEXX7vPL/zSy9y9t8MgHZ68daXnxHys9aKh59ZW4M8+5+Vq/NZ8VGDBey/n1vni/815o0pjIcrZc35+ztVr50iEuM1aKYhliWznJKat0hK0WrOdgHrumranJv/6muWzlB4kS42rz1CvP2dJWpimRAiZEEveRBTwSDNxWq2bs1hMKohKz5JLyE0yfZTCxczngamLnZySqdpLwSM9pxhT0yKwPQbVpNbrapMU2sSFTJZMJTWrS0yz9UMfNh5LKFXoVBB1m5OQyniI5sxALFk+yWQmP2Df9x+S7Sn/9Z/6C5y4p8rNvdzmer2S62tdgdszyppOVGz6xepXG8QURoECyigYUIPxIfHavT3/9NMv8vOffpHX7l5wmCamUILG+QE9T9r7ZiQeVsEbNXdYLhT1/jTXtXjwzokwMqcfksvVGou1HdeuXuPq1TMwEsLR/ZkMrgilsxS6RbkPrM6jvY42lNAKVztBdXbkzCIe12pREGE/7KU3SwyZaUpI2p6v8WzMjLKLFTDXpsYoJNmx+G1a1WKNq/m87fmoQCkpdEjyfXFxJLyx348cDlMVSDExJcQRi0+r+wLN9bUL0EjvUas8jDFzRVHRnI8aEnli89U2W6Vof8gwLKIOjexm8slT9O/+d3j++ef5W9/3k1jb1w+0gtle2DGtBCwmeft67VscE3Tl0hkGaRm/u7jg+Rde5FO/9CK7MTCGII5/ReYi68Vhvamm0UaoXddVDbu+Jr3eNivl6HXm5QtJtNhw8+ZNTk62dN7RdVrYLKCRop1WzW/bIKarxaTVCOu80UVYpXzumCDra/X3xE9MgOTbSvK7MCAqHYka56m0AFCtu1iENeatV27UDfBIy4TGv2tQZDFLl6V46pPu9/tFdo5eU+uWtKme62s89p6GT3a7XQ25PMp4ooR00/wvIy/eyfNbi1GR0yPvZmOZnvmt2Bf+Nt/1oQ/xu7/iT5KRZkA6iZSBbKFV4OiEms3ZpRaq12BMfeAzlCwCJFlEMik+8/JneOGFF7l3bwfGEkMqHZ8j2FzROj1P26BwemqSTdLhfI8kdmc6I+bjeqKvmREW5rrus7mJFUsiMXSGWzeusd0MmNhmRsmqn2IC58FYnBXNlwyFI0n2rBkp1SIqMUytqGgnrJaetYvmfG/nIgItkWuBIN85prF0S7ZzxhRZS8AyvrOkkKvpqPfhmLvQujn6ORW8NiZpWHZ0a7V5W+up31mn6j3SMMt5qPfhLWkam5khY/X3irvWhDwebT/tx7Mpk9sPmPf+2+wOlm/+9r/JSd8XQChXikC9LQlqAXRqNjUJZ/QVWmO7Ptzy+ZgL3QeaKJ7wxtBZR9cNvPr6Ba+9vmcKhhAzCUfGkU1Jms6Ft9UK16w1QuYrnTM8znqG/gTrBjA92chP64RZwXmH7zp8oSuxKyRvAUKkSDKpafUuSePGZLwNXD2J3LrSEcYDXddjjcOZjLMZbyzbYWDT95wMA1fPz9gOA7119M5Jt6oQcTnjsRAjcZxIsYSYpsR0mDjsRw57KS9TMrGcI2RloBPC5FyoG5U+tLI4kEk5YGzCevUuLFhHMrby2eqCOR4OjPuD7Ke0vMAknJeGTc5bumEuWl+7N5cYILIQtklW2BLEgXnRaTVka7a3+MBiTjcWgzVzl2xlutA0v0cZT2y+CmgjF5bXC0ieheBBW8YswgYJwGTSzS/F3fzt/P2///184jMXJGUIs+Zo7iPWVACp/BFoTYnLAqn7qK/L/7MZJ9Xsrut5+bOvcrEbSdmSssG4DuN7jHe4wnszDL0QXDlXWgbMx9tuTzg/v4LzA9l4knFEioYqMHxdWWGuK2wE8pK/qgthcZkxGWsSV848pxtDCLsZwIgBYgAjGkmp+p3JmBzFEIwJX/or5ig5pjnMXKcppmp6Ckt4rHcupcLZC0ifmCI4QCi1hAqcqFWSciATMbYwxRnA2driHuPK4poW6LKW4alFIXFiyWtem9IPomOp97PxpVtkX38+slaECuqohWRK4rzyImnd7luDvip6SlPi81g7WI72uxWZtRae/X0Yd8o3fMt3cNJ5oYO3M+hB49PMYYbmNFcAybxdzoW8fE6NuZuh67yU4xiJk86ATU8/yOu2cLd+0cAw9JydnbHdbgU5NVwSshZlrIK00pCtOX7pxpXnYozh6pVTht4RQ2C3u0+Io9QohlAmuMZcYwk7TCh/jZGTq2GSagamJQqqPqbe4zlMIgnvVRByqujjWnutM3Paez9NUxXEnHMRusIzyxx6aU1VzUeFmV1gTftRj7Fa6Na+8FoLrt2f1kyfE1Oa8zUzWGiKxtTXjzoez3xVP61oSN3ySjhraOSSxOZL2/K7xcm/8hz+2T/CJz7+SX7ipz8jFQTGgncYJ+VDukrKtxYSeWnFOyaEDwaISrWjEfPovV/wTgy+7qMKZN/h3ZJnNOcW8MhsTzo2W48v9JYZ4ZjVpOqjxz+SeTT/vaCO1dqY/+6c5fTsrPpH07QnJZ2YhXI/HohxJISRmMZqdmYmcp6kSsekwjckPENtlf4x1FvPuzUXc5ZSsVAa7GgyhrQAKLHVRuvmGi9VRjuh/I9xwnlTtW8ujHZ2Zvcs5zDfq2kaGcexAiutYK7dgWPjQde3UABcFsj2Gerc1jK8NsPpUcbnhGLy2OGqZZpX75lyQ9tt8Q1DMh7e+fswwzv52r/8TcTuKtFI0kF2tjKhpyIISku/OP4DBLK92UskVq9FJn3KBlLi1q1r0h68mGIz7f8ynihbw7ydA9ttz3bb4b0r6WMy2XL1fh9yX9faknY5M6Vnjezr7OyUW7duFk0XkGa9hSMmJlKYCNOOMO0J4SDVLVlS5mIYyWnCGaHfUHrNEIS4a61R2pS8BYhiZp6aXMiJU2ncmmLisD9AFvRUe3TklKpgSnVPJpdziGlO0dPicLkXl0ML2ndGCLJm7TwnHMzCs9Z86wX6mNC22lETH9qsosWCVRYQcYPmkNCjCubnlPf1czPEFI2bLf6df5jdLvA3v+/H6PpNlWrbcInC4/sAl45o5huWcy5pgGLmdd7RF87VqWSdiAaZGmHUpOWZknK72XDz5jXOzk7wzksrthQbgbwMrcu4HMpZ/smgcdh6/cCVK1e4cn5GjFNl7xYSaaGynM9XzEPVSMZQ8muViU8XD0FGM7OJ2VJNrgVREdacc9UM8yRdhp2W934dWC+wLyqE0tocMl3nUUZyMZfnxaIVkLUvOScI5IU5DQ/uGtZqv9k0lXpQ1cTqR7bZTGvTtqLkxrz1Qrm2TpeG6NpMfZT9Lb9rDdjnfhvu+pfz3d/xHXz29bEiWgbw1i3Mx6oVjxz9Ue7FwjdAuk4fxokwJW7dvCnFtzpRqtGuJtU84brOM2w6rl8758aNa2w3m9r3oq2qOHb8qg2P+JPVLCoXJMkAlt4LuidFu5ZxDMXHSsSQ5gUjREKMTCER0c7JoTCal+avhWJF74UCQ6RcmzEp+GOb0AJQhSHnvPCp1CRfa6nWj1OfVIdBK2eEh8mU5ADve9ou1BLgL1k9WQL81rqa9dM+0zbZvhXKY8KyNnP1exrPbPel599+t8U7dBwT/geNxxTKJh7SoKh58fvjiWOLPi7ez5ZkHN37/m1Md5s/+ae+mm64KVUSSA6+M9JCThRoKf1ZpDXMWy7lUg/2JWdULpGYUmI/Zi52iefe+RTPPnOL87MBaZNRWp0ZbVFQqklMpvOWm9fPuH37nLOtpXcJm6XK5ElQsfWDlL6IEnawOeEt9N5ydnpCmBKHKbAfA7v9xMXFgTt37/Ha3Xu8evced3YH7ux23N8fCAlCzuzHiZQo7Q0QikssORlpm27AG3BkvDViBo8HSJE4hYVp1i5OKYG1Hms8qRQAo1k2SMWPVP9kYYwsWy6UI8PmFGs7fCdNjGKyJDxdf0JMjhSFnWEaA2CJCWIyYHwtkFYgaUZGW/98FkqdE+qerBMO9vv9pcR3HccSBhQMs9aKWT43y3ykZ/7ERc7r8WZRWLP4jdoh2mxO6b/wT3D3//izfODb/xb/3vt/J7t0IYSDWYkH2xM0l0+mgrPm6MoovzYrI5n9GBhHw/3dnmHT8dTtGzhnuHPvPhcXh5IwXfyjLPmnzlpOtxve+c53cO3qKc4ETJogptXDqyfbnMMDkNVLdyqz+HqGzWbDlSvn5AyHMXD/YodFtBmpsPBZQ5cFRQ4Z+j5KiMkYQtB8VisLnXXSNyUlvHPiE8eId0a6SXvPOGVpThTmid3WG5JFa1WtW8i1UsoYxxxWKSEv/Q4YnOvBCIsC2TKlUjBtM6HwCW03HpIUgIOtRdqqctvkADVbq6A0i7CONiyi31VWu/bzDwLojpmvAM47BjNgrSGEt0AoVXjejAA+1vFy2W79etzVf5a/+3f/Ln/0K38Xm14/UbSjodqob3R+RmIHFf5f/7UclRgTu92ewwHu3bsgRTg/OyOT6fqBrrvP/YuL8nnxvby1bIcN166cc/X8BO8ghon9fsd+r5yp8wO0TdlXO3ke6e42IdicM2enp1y5cgXIhCkwBUsOo6QvWCcT1kpsVKlWNIPFGIMv6HLf92At1nWLUJLy6iz9JyG4ik14JKU0g0CFP1ZBGu+7Otm9n4VV60VDCDjjsGYj/LMmcwgBjGEfDId9IN8bS5aNaE3vLIPrkJ4/mu88H1czctQ0P4Zut/7ysi4y12Ryvaa1pm0FsQ0VtT5o+/6jmq+PnWZ3KVGAo4rpczJyFr5S7IB797/K9NOf4Gu+5a/xn/0n/zp5d4+cPaZA5HORkln4J/ONmJPWZWVnFuQm7mWw5BTZ7wP7fWSaxsK7Ezjd9jhrJOvHyZWbEkPdDAOnm4Gz0y0e6VY9lWyWQ4wcplFisPby3VmwvMEiTvdGD9IYKQE7OT1lGAa0wY3zXaU6xDqsxhCDppnJwlMJrPJE13XSDiFm+j5X1oMWcW0nn/4t6THLxG2rQWYtFWtD2BAC1pfWeiq4UYifs81423MYDzjfcTEeCkhlGQ8WW7hpXbLsR8tm6Oiyl4U5daTsoWq1WBZ18T+FaBoSipxL3WPlfUqZea02i5/tZhprS69Vhb8V3FZo9X496njitgXVFzwyZ1rBfZCAmgf+fd5pxpSYYSZf+yL87a/kIx/5ID/yk7+Vf+4LbwMeayfwVsqQAElxKS9Xk9o2KKvIr66eZj7pJCZpmBLjIdRCXNJIChM5Rs5PN2w3PcZIWp51ht57OmexBEjCHocR1jTrD4RU8lDL4Y8xm+U8x/LWwMhRXzhlttstN2/eLEkVkc1GAB/Jsy2cMQZcdKWbmMQ0Y4jCXW0siSSsBDmSDmMBT2auXQ17gC4g6mLM8T+dqPv9npQyYYpVkEOIeB/x3nP/4oJsTA34yzE0tS0zGgk3uGC52CVSsljTCfiWR7CGZCxT9LjoMQE6DIkesrZnz5ADMDIjELNZGmMiWonfWhUu5WGS/M26GSMLhizWlP0tE1daUKmdd23M81G1JDyhUD4InPmcDyNmSS6BBPv078C8/L188Nu/i3/+v/p/Eg/CldMWmbZCCayEsnDNFOGQzLJMioL4xSDLoTECfAiiGEghkEp/SnLC2o6+E0TQmoAowIQzCZtL/0oMmFJxsjFk7iDLzDIg3b4WoCk/GlyMCMXZ2RnXrl6VNERna3WL72yNCwOlpnCJOIrAgZa16ZgZwm1lQFChVNNba02zneNwh8OB/X4vghvbMjgJk0hX6omMrQkJaqVoEkAiMoaAy55YGtN23pKSJdGXeLRhip48wpQj2wzOeJkrOWPtBpMCpEDhTyk+LZeQWb3Oek+bBaZdkJaL4uWwTltTqe+pZbD2Xx82nrhK5A3nzaW/NdpJ3zn6/TJpjqjhnDMMtzG3fx8vfvqv8ZGf/Bi/7oveUdjUlUdU/crLE18nqNTgiajH4l9YY0i4kiMT5wmSkvho00SKEZOFkwYDzluMSbW422EEpSxEwtZYsnME09P3AkTkxcNdCuU6Vatdjdth9eYZ8M5y4/pVNkOHIUsSeiEW67oOcqT1bzS+qBNmvjdKayn3MmcJNVxc7BiGfkHepZOvCmU2NT642+1KQ58O8jwhQWoLa+sCrU1MkMmS7ZRBqTxDKCGSLKEk9WElAV/oO2MyxEMgBNFivqSXe+uw+IIddGgCRZ1Dq58hhKrR1xqtvf8tSrs2WlqhbLVlG4M99iwfNB4/TvmosY4nGdlg8jLUkhrFMTlLfvZfwp1+Cd/yrR8ku+uQenKSlt3Oelzpr9iufuJ7WTCubsZ4vOtl67TtgEDXzhnOTk/wzkAWHhxnKBUXCW8Dg0sMJjNYS28MG+/Ydh1D5+mdxXu3qJlUUGHtK7aTYW3iXBZIU++MzZHT3nHjygmdzXQ20TupTem8F4a4bIRUqwAdc72htBt3rkNSCB05S9lUznMrvBDEL54K+TDWElJkPx44TCNTikwxcBhHdvsdY5jASIw3If02YsokDIcpchgDKTvGMcnxjCcbj9OwRxahCwW4yU3LdqmGkbrJDKQscdeQEuMYGUNkioJBREqapJck97YmtZ0XbZJBa44eK0WrUzQvYwXtWKOzetx1gfjDxhP7lJ8761W0Us4IBWJ5Nzf/twtBHq5gn3s/n/25P8MHP/Q9/Bvv/z2kNFZIfyY5nm9OC+QoGKLvC1jR4i8Z7y03b1xDCIDh4uJCfCU3N6rphx6bhQYFKK3bE9qtJ5UF5TAeuHfvfgUgQghNR6z5/NrzMUVnt3+jhG2kfC2TU+DK2TWunZ3Sd5bN0NP3vpyLNL8pqqiCEwK2tEHsNu4sQyaWaEpjDPvDAV9S54yBqbCrxyiMg8Y5ptD0XjSmch+l8hxclrDMlBIGB1mqQYzxBUERczfnRC6hg+hzBVdquIPZqsimmJXWMoUIncHlTCcfkntpLTmKVdFqq3VMdf36mEC2i6gtecysnpFq3Xaste2jjM9Zf8o3MxQlW7zXvFZDVqfqdPPX0r38W/jwP/gwX/mVv5Pb54aUStythD1gGXvSn+2Nr+8vFj/xmbq+4/bt22y3W15//XV2ux2QpZFq+a4pydUzdUUQgCFnUjHP7n32de7dvTcvNlmQQQmJLJG86ne8gSWSoVBKwo2bNzg53dJ3HX1tHS8mYUpCSTmjyseyTEwRhvlzYt7OMP40jo2/JIzwsuJbQgYrMLTEMbUiArOYxBjxaSXuKaalhk/UtwylOU42CKOdHetDWcf+UopEo1yw8rhttISimW05pjWWkPPR+9neh1bDrcMb7fH19fz+6tmsBHsdBvn8FcrGvczH9G35u2ou0aD6RwlHGNdj3/1HGT/6E/yF/+Ev89/+V/8p48VnMcmRSvoVSHOZNkNfb0prRsgqOZslphzUW4sbenp/lZPNUIRyKeBiR0mQeRql+kKTuVO2THdHLu4HxjFW/whLSQebr133Wds1pMvmbAWnSGQC5+db3vGOm2y3HcPG0vUSlvACMYt2tE1Svm3jeCz2q+CXmnJCHSKAT8za61EYyUE4ZrWNQStcM7gRqxOv91fvtbEGg4Qo1sjlNE3llspr77sFSCIJ9GVfJRHBFr82hkS0huAC3liyFXKz3Mydeg7m8r1fuxOLKdn40rOwLT4yW10roKjN8Pn8FMoHaYBcIxR1GEw12Zo3oYRJ0ukz2Ntfyac+9d38xM98il/73itMhxEcGCuXpQFk7SC89jWXPoBBWerIQrCEkbSzzp+y3QzL0zHldFIWzp7xwBTGkuwd2e0Th8PI7n7GuQHvA2FKTRhgSQpWhR3RdGtQQv6YkR4ZiRs3r3L9+hW2Jx2+M3g/14umnOi6jhRnFDU32TULS8HMhM/1cei9chJOkOQBydARoTQVTNP96zU554hpKnmzasrlqn21zaFGhDQxYZomydYprRGkDwlVe+t+1MKQDlxdwRAMxgjQo4zzmkyvBSUPk4d2cWiFr976xt9UdFm/d0yw23225vGjjLdUKB8Wm5n9x7wQyPaPCww2i3ZNxjPZjP2Cr8K+/hH+7J/77/mLX/PV5PElUoz4sjMVwGma6g1pA+LtqmdASsLqUZc30Lsl/0v70PqhI6UNWjA8jiOJPRcXnyHGzMn2hMieqRQVG8PiwbcsaAV2vGT61GFg6Htu37rJyemGfujoPIUcuL19eRHwx1rGEurQYH/5BVP8M1kkqPeuM11p2OOKWVv2nJuHo6dVEFkNT7Vh2Jzl/NSnJ1tinLNfKpFySkeTKyoibWaeG2stXQFQBFTLOG/o+w0mRXKMHMIoxdbjSM6zRtfzXR9jvSmFh5rmGiKy1mLSstD68vkuE/ZTShVLeNh4TPQ1z1tutwd89MHfLlupLMnHvlI+sTYTssEm2VK3hff9B4Rg+dN/9i/gNtcFZSxFsGPxh9qt7qfRFPIGC+R2vSlhsveOrpN8UNmEjWAYBrYnG05OtpyenmGs5d79Hd53tV/k9uSE7Xa7oLFs0b/K+NbQKi6uHUFgb1y/zu1b19n0jqFzbDcl06j4k2pat5M45TmDpy17s3YJ23uvmmf2G9oFaMGwkI8DKC3qLIjp/JlQyrx0E/rFcb6+Iw1m9RxsWSD0WSjbn/cdfT/Qd32xipQHVhIXxsMomi3PLBWaI9Ca+Hoc7VnZxmld6clZ37czoNOGVPS6j/HyvGWactZcazuuGSstN2u6NXxz+Tvzr6b5g5l/L5OlGCuk83fjbnwFP/Mz38dLL73EU1cyaTqAtXS9rx2rUkzSasAABYEU4itmniGjC0HWw6KGmrhI6pvl+fpq+pIBk4nR0DMwBfjMq68zpZ5khY9m6DzOCFDRViOoqq7+1zF/0shdcBhunJ9y89oJJ71h4w29lVCNw5XvyXdjYR6Q70tbBlP6sdQsHQO6Von5l8v5zWuusRZDAai8p5ZIpYy3jjCF+vthP7HZnjAdAjmbkudqa5rbPowY10lCP6YmIBjnySkvGsaqP1Y377GFjc9aaSOfmYEkrb9U6yfnTMZgfE9IQcjMCliVindkrZGu2xYwCd9ZRN5KAnmZb6ZyRQnHUAgj2+229FjJkJLw6hZW98rQXgRxv9/zqOPxyZgfc4gflqtAtppS9jlP+2b6L46aad427V4MGI955veSGfhL3/htDKdnWIfEGGUpr8RM7VWkYi7GViOZLOxovcP3VgAPm7DFNPKdw3vx37y3wkRX+x3a0pRHFpT79w+8fvc+r9+7z72LC/b7XaXGqGZwSoWmI0ozojjz8+ioq3WpHz3dbHn6qds8desaQ2cYvKGzBm8ttn2aWeOiZdNK/zwvPDJ5ZeIJU0Ail14h0sZPqEvCNIonX92CWauo366/64Km4JGpzVXHirJq2CXlPC9vjdXSdla+tMmB1MZaHP94edaseZUPoDIyWovxM3+TXkM7e9VkpyymFZxKqU5HTRVcM+C1puvlfT94PFGR80IuaH5CEb7G9Gxv0mIvb+xvXj7gg94zxLN34d75b/KJj32Mv/MD/5i+6/CdKyGSjFZ5tqaimoutf9T6U845nHd0vmvMmTmZvVhB1T/EaCzQkVPi7t277A8HLnY7Li7us9vt2O12C8LfNRDQbqAmW5k05fjn52c89+wzXLt2VUzls1O6Gg5ZkjrNBb0zYCJVH8vEaXlWy2Jt/bus+KmYcH5h6raTrs0UAiEcy3lmBKihhpxWx54LgPV617G+NktGs4Tahj4hBGkLPwX2+wNC+FxmYV7upxVaNTGPuTd6//W4reZuwx3t/WrTBXW09/0t4X1VlBRWiqvxMavZkFupnb+jwjxzuF7+HIv3HyC8TbF1tp78jt+KGZ7jg9/5PeTNVRIjxoPV1nYpsWBbu+SzFW1t5mLoikAqJb5Rxqay1ZVvPlc1ne7duyvUEdPIoeFzaYWyFcJjVSGtL6sP/Nr1ntvvuMJm49mebNhut/Sd+FYpa7yRqrFkQhehQ7hjrUFS/pD2BWGaBF/Jorm9K8W5Bpw1eOcqr63uVxDIWUOum+LEsOyAVfNMzTIctY4h68RvP3Ms0Vua+kxC0zIFdvuR+7uR+7sD93YHDiESs5GMoqRtHuQ5S85yua/Yupi2eavrxWk91nFI/bzvOpmTeUaNK9j2iOPxmQco8TK1ARrKGTm/fAzRmYWR44JtzPoNlh9eGb1VIJFzsf4E+wV/gou942u//kO4rsO7hDPSs9HZMsG8r2bUfFnFiG4EcgGLG1sq4h3WenmoBRQy2rcBFS4xrO7fv4Cci9+5pKVohbJ9v10oFHDQEipnLX038K733ODsisN50UYSBilJ4Y0ATGHCmEbLFCY4ZdNLMZDChMkZUiQFqW4hRUnRQ/KDyQnvTOnVCRZHDKk8/7mpbGtGhjg3F1pTZqy1hfpees3rxO2F0NKCYzOQM0WhbtkdRnaHiXsXO+7vRkLKTDFJwfoUhbfXWGxt0OTRbKdWU7ZmZqvNK9hlFhNzca5q1rbhFf3+w6IROt6UTznLi4Ij+Yhie4jGe9PDVBk1178E+8wf5MPf/w/4gR/8ecw+0lmnqcx0vrt089cP4GEro66qC1SumrSSWZRTYr/f47wXxnOWx2h7WRwzYdcIYBYHjWvXr/Hudz/HyclA13u22w3GGKYpMDXEVWoRtGNtMqrZp6NdENqqCJ1YwvkzWxnTNGJoNGTZt3Ou8MzOx1VhW5t8qhVbodTjrtFLvQd6/1rtmbK0w5tCZJwCISRCSoSYCy+RtjgvC2fOi3u7RqXb+bE2byXGKlZEqw31vEMpzF6b+W+Zpsyr10U/HPnc/O/yHt7AXH0C+TXtK2PJz30l/vzX83Vf/628ejgFo/STc9trZax+kABe9u/mz+mKbZrfNe/WGOG2CclxsQ/4rse7buGbHPMd1yaQCjsZUhAunBwn3vHULW7dvEXnPEPX0fsOi1RgxEbzGiOUHsba2nOzvbZWS7c+qF5Py/WqYQsxww+kNIMqCyFb3bv2eG3anY61MLbvw1JAjt0/FTD5A01oY65y0bYV6gbMLe7mxj6tUK6zdtpza/3eVpvrvsZRwjpSXJ4X+32YKbwejx2nFJxO/08sRTDX9x4uXesJOu/p0vfyWmCL/6avDNKOHYu1G7qn/2XGKfBN3/Y9QIcng+nEBDWXqwXeEBMr/q8mn9v6jVVWSwk7xOR5/qX73NkZjB2KyQumMuEVYuEjD0g1Q2WDAylzmiaubDzvefYaVzanDL6vnXcPFwfyBB5fmqNIEZpvguyt4Gk52rKmMAk/a2kRn4mEOJYqjEgy0s8l5Sya39lShbE0PdvjrFHk1k9Tk9mkSBgPJa1P0d22K8zM95pSwHC570d9jtZKZ21bMr5S6RTuOozzYE1tu14XnBDKkSxJF/U8A04aNmrdC8UMUob9OHEYJ8YQiBlhmshU3379bN8SoVQTpRWd9W9Hv/WGfuJi73WPb3wWDUhUYPpsTBVMbnwp7vzX8aM/8iO8upP+HkfzbIG1D3NprL+28ovbD+aUub/b8XOf/BS7MaMMek5NZqMAzBHtW7ZlCwQDWZjk3nH7Ou969h1s+oHOOtIk/SsOe+17aEoRd74khK12SCkRopitdZI0CNxSc+aaSC7+syn4limvm7uw0gSpea3PswI7MpGKKRgrC7pW+KQ0m4fKSpBSqmGstYXRPqc6O0p5nrWSAI+1THG+fsUVcs6i3doFdiVQFbxq3Q1K6VcFkKjvtSb6ej+PMp5IU7Yy81Z5io8ztA+JCKbj4M7g2T9MTJZv+NYPkYYr9EQsy3zE1kxpr2MN9Bge7ebmnLl79x4//09/nsM4ksgLf6R+7sh+1n6kQuspRTbbgWeffZorV8+KDzlV6sQ5rJNpUb+cc42Bqkasnz1y+oqgthrBldbv5WSxjYDaxrxrJ+AseJdLoORvcge0BZ764vIhlvtg9uta/0yuozFn2zkpt2EOdxRzlhIKSpkZIBqnYuoW4SpfNkaK0oXHSIm3liCdbmvTuiWD1vN/3PH4IZHc/KL6J7/BJmd8eXuIOOf1Ph5+amLwmGLZXf8SzNmv5Yd/8Id47W7Gop2c8jKbBvV7qK9bgRX0VczytOoBstaYOSfuvP46r732GiEG0ZTeYTvJRNFuw8aYxWWp2do2iQUJVmcmrl8/5ZnnbjIMkPJMeyh8OK1vJ9ptXtHnCdgmomOO+IRH4P3ZF1NrogkVNJ9b+5Ci4OdyMPKsfVISHtSMMJ/H0lHaUtpP2OV5rPd9zM8ny71XS0TT/Gwpjo7JkrMTvtjsybkn556YHCE5xpCZosQ6Y5ZML2l7aKRQO0vB9jSFCibVta36sGluo2FdiQWXeYx2gn40AX0yhvSVj/eG0YyHCNWDv3t58tftmOAb1ZgZCFLg+vTvB+P5xg98J871xCDEuqph5FJKZkjzwBdxzLqCyqSPKcwTxSDhlAYM8CWEMQxDQV89znf4XhgOnO9EQItv5jpPP/RsNpvSdXnWCjEG+t5x66mr3Lp9TjeYmtidUqoF15IQMLchyDnNQhnn1nVV+6jxv/DpL5uEy4XJ1PBFKrB/K9j6+ZxzjUVWYKTJu1WgKOc5DppjKI2BTVm4LiPiuTm3NlGi3i80BprnwgIDKZvC9eOAjpQ6ch5kYyAkR8yOEDNTSBJGKRpV6zNjyoSYGEOUn5P4kKk0W4oZQsryewmf6Xu5IeQ60gLl6Pjl6SXyME36uRymWSmufRHu7Nfxwz/6o3z6blkJm4C2IoM05skamWxPUd5fGLrNJYq5c+XKOSenp+IbOid9T0q8cbPZsNlsaot17V2o7fTWk9EYuHnrBu9+zzu5dv2cYegqighzyVSr8XQs2byXSKL6hTraReiYSWbtnExQr9yspk5egRvqZx3xr2w1W2cNaq1ZtABss4VmP3z+fLsQtlqdCuLpQiH2XMoGYz25CE7C4PxAih05b4jJEyNEKWclYzDWsT+MNQGhPZ/2HGMzr9ohjZ5mUud1mOpB4y0XyjfSoqJJj5i29WWDzLYr5iMeNfsN9pmvIsTEB77tf8LYkiaWLXPOLRowQU7nWMhgOeGrv1B+zzlLW7cYOT8/5/TkpPpdFe0tmkYFceh6+q7UA6IJGRROnYQlcbIdeOdzz/DM00+x2fR0g6U/G9inkZDErMJKE1qscKmGIETSFxd7xjEstFnVavkyWnoM1ZROYfP35H0t+Vre8cxyn8ZmYpwEeTa5JH3LtgjEN0KWsnKxzv7vurlQG1ts/U1nhHjaYOasoWzI2ZKSUKFYJwUKyv9k3QB0WNND7otpa4sGLMRehX5U1raOlF3RvJlpCihLnoZftK+J9jaJCdGaGcbwaEL5xGx27cN41M+ux4NR1jewvx9qmjfaxlrGG+/DPfUH+fEf/9t8/Cu+gnc9O2DZUOIHzbdK6VPpdWEKO4DR/gnM5lPMSTJeCqAxd6mKbLdbrt+4xic+/ZIQSZd1L4NoAqgphkISlgu7Wyz0khHrMt4kzk+33Lh2wulZh7ETZhO59b49Fzawe6EXmD9looVkO4iJe/d37PYijC4ZcAbjXTUeoJRxMdN4rE3XuToDSEGa+ZSMHmOYeYaSpOp1TgTYdVq1EaXvCOrDZqyJZBsLbVCsfnqVHxIpSrYRQJwmrJeCaed60H4tKuTGYrKgwNY5bFbLB6hBO0tMFutE4DbbrVgFwRDpMQjBWTYG123JxpBNJCRDNl7ypzvhaDKuI+aIzZb9oamTLG5GCDBO6uLMmnOcDhwOUhmz241vNHHreIJ6SpZQ+KMMtVXa7c2M4jy/kXQaDNk4oj8hPPcHSO5Z/se/+gH86Q063yE9DJs9mNnXetjZLU1FEcqUA8aIiXf12jkxBA77w9wqr9AwhmkiTcJJapCfMRykR2TZhzOR023H00/d4MrVE7zPGBvILnDylMNf6wgFac7Oka3Fdp6UDbvdgRCEDHqapFOUxviqFuN4MH+dMidGgoJes7BW4Kcxb9Uf0YoJaedO0YyZlCeJR5YyKPV924dawaqqITNzbLcgti3qKy8qwDMj6SW2WV9ZEo6Ekxb3OCIijClnQs7EbAjJkrInREfKHYmObHqs35JNT6YjJE/ItvqfY0iMUyHySjCFzGESdj1J84NsHOMkGUaPMn55fMpf7lFAHzBC2X9yG975x3nxxVf4wAf/Fv1gyG6S1TQ//EYdC4FcSmgvCFwIgfOzM5RkahoPTOOBMI1M09j0tpyIYRLKDtW0KeCsoe86rl27yrVr19gMm0LWZYkE2AbyxhJcT7YDznV0XU/nO0KQ2KWaUXrumSVKuhCscsNUGHVyi1BKjqmaiQrwzAI0gz4aVJ/DELkKsp6H967GUtsMmdY/01u6TkIvR63vtX6vfqn6rbn+txiawVPR25xLOp4ITIqGlDpi8KTUQd6QYg95Q04DOQ3lvY4QDCEYoTe1PdCB6QjRME2ZaYJphBgNKYnG7vqTh841+NUqlCgwmrEmYU0m3vx12PMv48Pf/wPcGzt654W3NKWyDi/HG6GSxz6TcmaaIjFmNtsN51dOcTaR4oEw7UlxxOQJkydghDxhTaLrLMPg2QyezdBxfrbl7OyU27dvc+3qNTwOh8PQkcyBKd4n5AMhCeucJFZ3OCPmkeSllwaB1SqZ/bcWGJqvY46paZnRnNMq9ZZCoSnayllLToGSS4ABIRorfp0K3jpVTZMOQphqqKUyI8SZG6d+JwsbhGkSIzTOactPRXFR07WYP+o3gvABxZQllAFgxG/cjxNTSEwFeZ2izIUpR0FcM4wloX2KmZANCYvvN+A6sJ5sPdb3uG7AuA4/bBlOTunKT+t7QjZgPf32/4JCWUHdxrJN5RKD3xC+4N8ns+VP/bd/jm5zRiQTSIRS1gTHUclWq7QTB5ZglLWOMMln3/ved3Hr5lU6D9ZErI0YislKABNxLrEZLKcnHdeunXD79lWuXjvjmWef5umnn+bWzVv0XaHqz45sJ6wDk0NZbAwki8mOGDP7/QjGCUjBTGRlzbI5zyUKDJaUj6LVfKPtIr5zJUwlbHcpRawxDH0HZLwTYbTG4IyUebUcQaoZu8JQtw6qp7w8L6lLzXgr5VXO2FKpkktsIRdQrIhe8fNNQdQTBUUtwI6GNWJSNBYu9hOHKTBOiTFmDjEyxolI4mLcsxtHDlMg5MyUhLc2W4v1Hb4bsK7H2A7rerp+i3U92+0Z2+051vX1795vcH7AmEfj6Hl8oOeNsJl2vEm38c2ORVqdKSbY6bO4G7+L55//W3z0k5/lPe/oF/FKnRDHAtawTEo+PmxpobfnmaffwXiY6Iee/X5f24/Lp4RHaLsZOD09ZbPZMPQD282GYdhwduUKN2/eZDMMdAhXasqGa1fOICcOhwOOHpM90sjGsN8fOOwnWLSEk1xVvY72ZxVQY7BubuDTCkUrqPo30UziQ2qs1BSNlnJGGiQhXbZdU5dajqccOvp+i/ra0myoTeReVHKkFcNB89zac8+Neb22dtaVOSElcpR8ZDNFyBOYzDgGcjJY64XxPU9MIdCVdg3e+KKNLSlbUnaC1BqD63oye1K2hAj9sBWfNj+aDnxCNrsmwLz4tYFGc3ltlm//cg89P2sM2ADv+Vfg3k/xtX/+a/gzf/r/A+M96djVnOOxuF8VqDaR3WjoRoIqU0zsDyMpJvqu4+mn38HJ2SmH/YH79+/NAoFw6pycbjk/P+dksymUItJKYHtyyjD0WAObzUDXd0wc6E56cghMFwdM7haAjSZESEZMAhNLHNBU8KT2mYwiWPNCNLdx6/uBcTyw2Wwq8KOMbtZKGwDNy10nGpBnQQ2FYUAZ3LrOM45ToYYsbfOMWS6KhbDLGEFZhQsIQlgKqlirqfLqYCSH1tgOLZTIRFIyBc1dMhGu46ACYEHIigDLc5VEB1vZ7ObwTMIq162zJUFBlsMpZ6yTRALveozN+G4jvEDH+kgeGY/dybnG5vT/S5pzEW5faqzHPdib+WKLrGZTjFhP6C08+352n/jz/M2//QO8//f+i8QUi99/PIl4DUbMginCmLIpWSGOwyQpYzEENkNP118jTBPTlbM68Td9x3Y7cHq2ZdgMQpVoDTGEUokBxk5Y5+g3W4KJ7NwF57cDHDak125JGzgXC/JLKViOkKyEIEh0XsIGGanMUCoO6dhsF3m2Ocn7XSfIdEvF2fe9cAhpa7gSLopB/UC54UJFmcpCLEnew9AxjlOpixSBcSaTo6Cx0zSVCT6hrnDOkpUTUwRjyQQwQt5liv8bDlM5r4DvOvZEkolMacSV9hVakSNrSBYBbrSosbJA5qQkz4Zc+mTGmCVdM4yzG2AbbtssMUiRs0TMWnJnCCmD8UIGZgLZOLn3PBodyGNqStO8yuu35lHib48GAD/oSG9GvTZLR169b4DbvwHz/Hv5u3/ne/mXv+r/js2vkaID/EIIdaw15iVNmiUTZAyJKUoMzqDgiIXssHTkJFk75+enXLt2zunpCZvNgHUCfty7d0/q8mzxr0qsMOSJs1uO4Tzw2i9O7O8ETrPGRxOJRIgjWvJkjMM6EYgaXEcqMUSIBCFteUi9PxFWcufZbDY45+j7vmpXYyw5JIy1hQBMtfBcY+i8q/dDh6TETU32jraXE99vmiY81HpEa12Jo/pGywVyLr1a0HCIMATGMNEZV38XzZmqBp2TtZeaspr3xhKIxeqw1erJOS4W4lbTrpFhuQctIi3VNZrnXE76kUOBT877uvh9FgMNMLN4N6udN29v5ch5XjTaUXxL/ID5wv+QKTi++qu/me1wHdOsYseQVn2/TUnTDCNTck8P40HKgAwYZxtzePahXMn0kTS7uSqkpvnlXFuAAyVpes/12xHXHfjMLyRyhBgnxoOwsF/cv8/u4gI1D6wx9H0n+bcNQ4Iy71WKkSMcqs45NpsNQP3dWiE+1tBKuRsNSbNw5ixT6ZaFw60V0rIJzJPalNzduVxLF5mU5koYTbrXOa6hG8hM04hzGu5ZzlMlBhOe2zjv86icNOGW1TiWUncM/Gvzhtt58yjjTTCkz4apmi+1xCk3N+O4eLwlQ2NoRh3Z5sDSk7Jo8GxIV57BXP9tfOxnvo+Pf2bP01csPk2MxmPz8ZrOS5kvWXwKnGUME/txJOZMLj6XdsjSOJ6eUIyJcZzoeyFZMhYOh5EwSdmPcQaT5GpCCDAeSFju7Dpe/aVMnmAfd8QwMU07DuOO/eFALm38rDfCrqC9Mq30ztQMuc73JS0s0/c9QE1u77oO33mhMylcrNqCTvlzpT41oXQgxnQFFc240rx2s9mwO+yr0Ou+AZx32GlCtCZAwntbumbLllMoPyOGTC6EX8LTKk2ADAlrhHvIkGrMVzh4gILIYkp8NU/k7KFoYGtM6Sl7PGnkWEhsHZ9uwar284tk/vIcH7WM67E5eowRZvkKf1tTfi9b+eC8oD6aSGooo26Pc2Krc5y1d5YHR5I22mSsyZUlIL/n/dA9y1/6i3+FfnPCNtwrfpee+oPPQrUkRnhld+OBQ5jEizGa6JXJMcnEhrpo7fcH7rx+lzt3ZLu4v2O/OxBjhjzXRE7TyP7eHe6/9Dovf+zAx/6h59UXJu7fucudu69z/+Ie9+/f4+7du4QUcZ1jsx04PTulHzphDu8GSYDvmwT4QRLiW46hGWnNpJhx1kM2SA9LKU9y1hHGCVKqvTKdFZItb2012dVE1RikFm5vNhuE5dxgnXZKkyoRbw3KOmAQYbQWco4F9JG4aIqBOXs1Say0CC8pis+ZUyX/0v6i5ImcJgzSIlAaAMsxpULl+DNWloJjyQywJAK7lFDSzstHFEh4EoZ0Q9NFvpx86SWXZU7V1nJSgVHM1cc4qTc7NIhcgSnTalE18SCd3MC+81/lpU9+DX/jf/nf+Nd/x6/Bx5FMv7TQdR+Nr6mrYMqZmJM0+QmBTDcvKpnF59txGA+kO4G+79luN7WkyVoLVh784TAyHQ7kceIXfvgOMR2AhLH7snNh6o5R+iJutxuuXrkivDwldigt8iwpjlg7125aMwuOJg0452paoPqTes1KsqXhCf18ZUqwSrPiSmLDMqwyTVNTclWQaxJdL1rZOo+J5RmJpOGKWZ9zwntheN/vd7VlhJqpar6qwMQYCmClZqw+yPm1Jhzo9UzTdCTTaVncrOONTFf9u97T9nNtC4M3Go+HvhrJwLfk2lYcNFVYL9QIZ06aA/LlTNc7e+jxjkNFx02NB5wxikJX47FYtcZYMhCf+nLsqz/C3/jrf4Pf+Zv/CzZ+RzZi3pjcnEPZ0fohxBiJQTtqJbAK6RtsdrhSxa4dlevJ2CU03+43aU+REMgHmKaAn8BYaTlAMREltOLoO/EVz05POdluMdaQU8Q7V1jdHXFMOD8fQ0vFWorHdqwTJkSouoV/2PrDfb9hipGuk0R5mFv71QWsCGgoqG0lCGNpBq5jpWr+eucvnWtlQ2gWzBijILPleLFw3JYHWbRGKsokAXM3MaUiaW21Nb/OsdK2uvfGR26pQdbsE280Hst8teX0LYLemcJBU8pTQQ2LLL6klh7mI9uTgz0P+17Rj6XqXA0d8ToM0TiBqI1DsmQM6dk/CP4qX/dt382wvQ4mlJyYkiWy3DOV2KlkmAjYZ0iT+DfWZDpT2AR8T287nPE46/HW44xflIotAImUSFMgTYE4TcR4kEBCIYI2JuFtZjM4zs9OuH71nJvXr3HrxnXOTrZiGhZLwFDMuRgXAqmLQduYpk1IhxkN1f6emt2j2u7k5GThN4mAzhlBmrwO8wIwT9awKNBuCcMU+W1BEv0sJrHZ9iVkhBQBFMTVOrleazM5BXKaIAesyZV4Wvi5At5K1YolSLqgVSRbiwpEWCVmmqQVRY6kNBHjhLZvaM+xXaiVKU+KAeYMqbeknlInpW3fgDrxlckrZkoDHqVC+uUZx7WnqVtuNqGcLObU1ffinvnD/PRPfJT//SM/i/GwZFVr960aLlYTOScxFVNKwvuSpIekWhPOWun1YWpkEy0dM4WpLUZpOhvDgTjuSeGAyRHjJD/WdxbfGTabjrOzLVfPT7lyfsrZ2ZbT0y3bbU/Xu3K+qYQP5BgxSZFt5ZXBVC6Zlv91zfeqWkhbCarWWo+5mQ01yWCapkrlqdpyLgpOl4q6FQias34uI5jQZlXN56gJBUDRmC1TX3lqFbBJBeGNLNnzij9rFO2NzT3UMr/CqtdMtAchtHr8nHO9f2+EUbTjCdDX9oxmzRfLZI0FuXzLoh5rFFvt0uVpHTvby6M6+Jb81O/AfuZ/4Tu+47v453/Tf46ZXj2qk3PO0ohHH3JZ6a9cucLdiz2v3rvHNO6xncXisNi6kqWoJn3CEtDMXIefJ4CFbhAmNuVutcUfcd7Se0vfzzSU0vZP+kpWX62AMjKJlgkPonGWFSFAZSlQrdWaYXOa3JwT24ZDvPeFoNiKf4tMTE0t1Ma9IqjDwmRtBbPrOg6HQxXkth2dnoeCYCrk+lnVpmryKkAjvLfLRUatgq7rFoTUc2gqNJk+ltaamDGCJRrf/u1yqCc9spaExxRKDW+kGnQoWgMJD8xdlKDx4j53ow1xrPadVTDb1cBcDseYGrIoHy+CmU5O6d/773H3Z/+/fMM3/3X+4z/+L3EIB6nqb0zMXFYF0SABrHTEOj/b8vTTt+BleP3O65AOWGexxhdtKoRRBoQ4ykrHp77v2G6liBfENfClf4dOyHZy9p3wyFK0dYhBkEdMMR/nEIwxItQ5CYN4PwzEONb8UgVrgDk9riYLLFPgtNGPhlE09Uy/d//+BcOwIZe0vpQS9+/fr59VsGe73S78Wt13S0PS/mwXldY31Z9t3FhHC9iIcMzgy9ofbAGY1hJYg3r6esmiHi/tq00sUWHVBeIt0ZQ5S+a9EQREBLIIZSyTVY7bemGfW8FUQ3StA1e++XzCiw+Z+f2FYEq2ZLj1xbjX/wj/6Me+m5/5rf833v3MKckIfD4HNJa7NymXqvzMlbMt1t3idNszHaZSwaHnJ/63tw7XOYZtz3DSS46rm/fsEGoLa8yMYJcTtcbSeTGDc4H+Q3BSrxklC8h6L75MzhjnZCEtea4hSjEuyCKhhFsgfpBOSK07VM05jmNNKACqlhyGofDPyEKQYqRzjqkI7P3dRUFBY9W2ouVEcPpekvW996UO9HJcsPVLW83eCkLrG+t3VHCVo0ivr11MWp+2JncURFmFqNXYsm+hnBRalOnSOc0CO2vQaZoWaYsPG4+pKeeiYF19SsVdA4foZ38lDYGpsvOY534n6ZXv5es/8O38F//l/wuz+zTgH2wG5yI2JuO95fz8lM2mJ06SeVNYmGTyWC1p8vjB0W08c1v02Xed+dElu0eQbFlHvJG8UAXWvDf0HqZJ8i9DKGhgntMFdaKo9vDOc5j2NQTSxtp0tW+14NzmjsUk1DGbgnE2H8sxVcD3+30jOMteG605qxNXTctWM7YayHvPOI5479ntdkd93SoEzenq9bbJAC2Zmo6W6rO9N4LSLsm7jv3U+732jR9lPLlQlt9LXfvqc0843uiLj3Y9TzQM0McCwWxuYG//Hl5+/jv56E99nN/wBSeC4tZzy0XRLqAfCZnEiHWOoe+xvcFmW53uCpIpNG4SFJPWKVRuMi4vzWVMXmhSkd+STG2tZB+ZDmczMTv2dfWeb+c6BSyWOGI7EdsSKZ30KlCaidP3PYfDWCesTvAYoyQbMPcZQakwS+pga9pJpUrEFUFSTdT6d63p2gpQu49WK62vofUZne0W+2g1lmrD9QK2Bpjaz2uqniwmxydtK6DtwvIo47HQ14Qp2SoFlzRzkOBzPcwDtjc72lDhfCxDdJboLNk6eOfvw51/MR/8wLdysr0thcZHY0xSiSCrZ8kYSgmfMx4hv/I2S0s+l7BOSqoyk6SRxYDyGpqccMWqria6mmPFnJVMpFlg1W/EOLASxN9ueoahY+g6nF02KlXfRjNU1NfLOddSrWEY6qRU7aNo6KJYuevAGmznOYRJfElraslWOBxwBmKYpKV8mOi9Z39xUfpfxpJxMwuLXJMgo85JpUff+xqGaBHTGENN0YO8QDxbrVqfcRGOFoA6NlpUuGVGAJp9CgqroRRZjGRT4i89Jszo9FsSp4Qmztj8vhimTKy6maMbq1XjYcInbHPNd59QSsXUbDRPfV1irMaQh1O6p9/P66+9zgf++v+K7zcP8QdEM1kDzmi7GImfYSLLyoWIlhRJj8hYcj7bCUTxu2TT+kJ9prJSz6ZRC0gYI8nomnS+/owKY1uwrb7VZrOpAtfSgsgxZ0FVHlOa747TuACK2hrE2Z8SLeMas7ZFMSUFz1Vt1KKt62QGJdHSYH9eCXe1AhqrZi2ox7RnGxZqk+rb+yvCH0hJEHStAYXLiQdtHHfRE/UNxq8qOpBHGuZ4niPQJEE4zI1/juHm7+bDH/7feOl1ASHI+ikur06XxuXq93ZTIVy8N59IfZgtELE2iXTC6nvKV2PKojUMQ2Vdb9HDnOZVW9ncjTELjbhGE0ESCaqfWM69ats0f885R0yJfujxhXRa96/aWs1evWy5TlczcdbASKv9Wv+4TQVUTagaM8Yo/reZF7F1mKK1GtahDL0/69BN+ywUHFp/pv0s8NaZr+0svDSRfgWMR1esluR7/HN/iCn0/A9/8RvYnl7FTRkTBVGtvS8WQjqDNYo7H9/ETs0tCtxaEnq+jWACiwmlPphqJVtS70KYcNZAlmTtzdDjnKXzDmvAV2Bp9uWGYai/6zNt0/D0OJrl06a1qYClnGpZWD/0+F5il13vBTmu52kZxwNd5zkc9jhnmcZRWrcXHtlczp2cUdJs7+b+IJJMVRI2Ylo81xa91UVAviJmrnNzBlEbh9TzU4HW+9+WabWC13VSGqcJEu2zUhC0Padj/umDZ98TjF9Rwtja0pf+9GAxTSYTz2/h3/H7+cVf/DQ/8XOfwpoIAWzKqk9LYr6AMznlirbmIqRKTtFuuWgy6x3OOwllVODCLGofawL5ypRSjaSpXCFMpBQbEKIE8q2h947zs1M2Q89m6DnZbun7npPC5N76YiqMwzDUCanZPzpJFeTRsEHOmaEfqka0TkI+IQWst4xhBGPY7/f1kUAmhAlrIEwj3lnCNInZn7TUSvl+pGysc14AopJQIcKZKqVla8a3wjlTpDR9RpjrRdvRVoS08dDWnz6Gyq5zfNvv1Tn1AD92PX7Vm6+Gxtx4A9NVR0aA1GQz0Rrcu38vbvuFfO3X/GU4v4oz4k8py/niuyvzNOsO159b9QJRoXMlXLIuTJaE737x+RaE0J85J4ahbybDrPW895yfn3N2dsaVq1fYbDacnp5WLaGhDEVajTG1i7MKIVCrKTSuqOarnoNqp34YyOXc9vs9NL6h5tNq4vi8sMxt2fUcVLh0AZizi2TiHw6Heu/1/FrNtD7HnOYaUr3utjXCsfBQmwnU0oLozzbMMn9nDi0J5vAWa8r/M8Yb+mcPGo05eAwXar8vZqVZvM7GkPwJ3Rf9R8To+O/++29me34GSChC2ygdPS+0MiRjUrNl0bKtv7j2G1UwW79Pzcw2pqc/rbXVd9T3NKwhwE9f2QX0d51gw0Y03NnZWT2WakRNEpcyrmkhBO1xjBE+V31vmiY658mFHMtZh+98TXtTwQWqoKpgiLZvEw1m4q71s2sRVSjuRDHrW9NTrYrZvFwioQsAkqUFpQK2/r0FblJqq1syfe/pOo/3hpwDAnBlyG9BQvqvtPGoPuTS3xPxFcPUk/Hk03fhb3wFH/v4x/nkawGDw6VINBOpwuGFKl+RvAc4lDaX8AZSIDx0HoOgq1KJEJhb2c0atTXNYA5TqBCp5qh9PsjVnJTvyPl1neTEdr0Dk7hy5Yyud5ycbmoFhu8sMU1stj3OG5y3JbeVEooQgT49PZ3RUjMvLKSMSZYckPI16wqL3UwDoprncDgsgBhjHNb6wmDnOBwOi7xVNYH1XogGApK4D60F01abqEC2GksXuPZven5QmBpMwjqD7yS2rMh5jJMIXJZCbWeh7xybocM78Ba2Q48h4a348p1/i0IivyLGG/iRDxqt7DQ7ImNJzuGe/f1gNnzrt36QbnsVmyw2mZKC1/LKLPlY1qEeay2+aEL9vet8nagtTN8KWou0wgzKtKv+0i+VJrWqdXSCqjk1DB0K53sv/ud2O2AtnJxscM6w3Q4FMPE1F/fk5KTy+aQSoBfAijlUgvh6vf4tz/7ZbrdbUGMoolsBo8YsVW20Tp6vx6jXvsw91fujwrzQhIZL+1qHQC7v//JwTpgXQpDice8t3lucU2YFJNfZZLre0XWWs/O3gCH9VxC88zkZs38J4ep76W7+Dj7+cz/Hp165j89nnIQBl3UiLHMgjyVKt75iKyj6HRU0bUHXmnYtibBO4paPNedchcX7jq4wl282myKMXTUH1VdtzdQQporCqg/qvWe73dB1nvMr53S9mLnWGjabgVC/G/BOGARaoYCiNcvC0grC3bt363XDLNDqX7Z+5zr0o/6uLjKtT9uShbXC14ZN1B9vQz6tNbL+fBuC0XPWXprOze0N25pQWQwooFnPZjOUhIiHj8dPHvh8R17XqynHNCCXPvOg79S/GYv7wn8TNzzLn/lzf5Z05TrRHhA6SQD1EWftVPfXmKHq/+kDTClJp+XS7ZcM42GekG3dYzuhdMKoSdiCPs5Zhl4oTTS0YA30na8EVIf9nqHvyCkKZYiVLBtnDSkG+s7jrOX6tat457h18wYn2w1nZycYsnDVIkKgPrQKkKbRWWA8HDBZeHB739XJLI9qrtHUCS7VN1IgrAhva3LqQtJ13SIzRw0jpUapoZIiQAYjoRcrGr5NfXRWerLINQmS7p2TPGUr+/LOF9IwI9cQpaeKM5btsKHzns6V4vUccRZyjAydp++8cALZ5dx80Hg8oSwzdO0Yf94Mo5k+x01X1Xzr7Vg+n/QqlP2V8C+h2+Kf/YNcXOz4n3/oB9kPkWQo/KxyK52zVcuoRlz7MnKqc1A5JfHJUkyESTSiAipq3q0hd0UNdUK3PuY0TeSU6LwjpyTkVIUeZBpHOu+JYaqpeykEhDEulXhhYrvZlNim9AvpvK9xzs57tpsNJ5ttDfYv4oLGMI0T5Mx4OGAxxCmQUyJOoS4mqmVbbaToaZsLuwxv2AZgmU38vu9Qrp5UmAbCFHBWENcYgiT3RxFQFVSrHLje452n7zqssQz9UJoLzYJroH5fCtcdfdeJ8BpbCbgk+0/ve8AZU0M9jzJ+FfqUM9r6JnezGqI33dO/neHGl/Nd3/kdvD5dk7pII4H7dWbHIiFgZSatM0daGL+drO1YB7vVFG01ZiuYs6+5zGjR9zUpYJrEdN3v99WE1bDBMPR1jev7jr7vODs/rYkCMUZOTk7wznNyclK1WIxRirqT+NvTNInJaZeFxicnJ7XaQ03S1ifX8E8b2G/jf1o8rZbFmrWgdSPW2T+Lx10WBk0KaEGgFmhSbZ7zbOZfzoBKSJqgHEN6oaZjeuLoeGKhfGiW2UN3kN94ezO7bs7tkhn6Bie+/FzNvSmjiLrbsnn3+4kJvvVbv4thOK1s2EqxqaEQC7U2ss3SUWACWNT3gQAkKSaGYViko7UZKBpPUy2hgqQm3Xwc1TKmZuS0QqCmo7W2+kSthp9DNGIuyzlNnJ2dkIlstwOkyPnpCd4ZOmcK0rhkclssOM6VmlGLzeCNJZek/NjQjrSZRBoTbTNt1sLVmvNtqETJmSuQRutnLp+/MaaGbKyV83MY6eqd5VkSE95I27+h66sJK8993shCYWmy0IyGaaJ7RDa7x06zu2SymsvW36Pv7fi/xxmXTeg2me1SctuDz6X5aNu3njyzF9S9nP8zdDd+Cz/1T36S1+5kMKmYdwGbEjZGTAiYFLE5YbNwmW43PVb4rxYTpS2o7Ytm8tYuBLv3Htf4YFrRoQCPCqiCHHKMgHDOBIaug5TonCNOU/3pjGEKYyWgMlZKxXLh9glx5OR0Ayax2fSyr6HDmMTVK2dses+m94Rxh3cZ8oQzGZKcn5ikoWoT5xyU2G2OCW8tKQRIkTRNNYbbpv7BHD/VRaRNEm9jkKoZFQmV8JJUlNiS3I9JJcQhfVtqy4PyM8RRiLdaLtkUMSkhjQYTQ+eETzbKc07ThMmJFEZ84bI1OZOC7MfmjM1vgfl6PFjfhB90BXrA9hhHeugnLvm0+voJlOwlbbj6a6tBJwx7HN37/l3s9ov503/+a0jdrXI+SA/FJA8rhpEYS3vzAsWrWdmaseM41pQ59W/WplfOmb5oTy2zWpNPtVw4reCGgmy26XqaTCBZPH6hlTQr6OTkpPK1hjDR9Q7rhEWu6z0hSP8S5yRoHsLIMHQ4Zzg9PWnAqbhAMEOIC9+QPGfqODuHQfQ85SNzbHGdvqZ/1894PyOrqvEVXFMyaC2/0vitcwZtxg6FqR15lt5QF1hvDd4Yus7Ni14OwqxnUikzExYGfeYaMntLMnpyUcuPq80ed8hhHv8YdXq+RacnWT6QcyD2Zwxf8Md56eXX+aa/+p04O4DtKnBUblXhLcqXzNBaHLwu6THzgqMpb7X6nzmNTbWQFvKqWduWT+lE9cUcm6aJw+FwiVWg73p2u91CoNvc1nVSdowR7+YMHY0patqcLhTq68GMmspCM4d6WpLmxb1eKYCWWaD1rVVIFU2dQRsBYdrXfdczdL0AN0YQ4s57hq4X07JBZHOeuY7acIia+uuwy5qxbp3n2mYtPWw8UT2l/Pw/LzRyTOu+dTjwUtfLK4m/cf1L2Tz9B/jhH/pBPvqJ58mMJAOBTPaW7CDbLKzx1kg3qabBjLgDVMEUJHWe+Joxoyv+NE1zbmljsmqMTyeFc65q3/1+z9Bw4ehPFagYI867RiOGxc+21KrNe5UqjznlTheJmuZm52LoNu0NgAKS6MRuY7Hidy75eFrQRt+vaXklQd1by6br8cYy7Q94Y/HG4Y1j0/U4LL3zeOvwxQe02dBZx2G3k0yrTN1yFN9eF5ZqrZRFp1382tzdNaDWCulboinRk3usL31uh1n9r0Kiq9pbd1TdLAmPtM3z9E9/BWTHX/3Ad4DbEHNmVyrxjRPNar0lk0vmjgimEBI7pmlksxnqBG59Q20f0D5gfbgaXFfEUieICndb+xhLelpLoFxNy5wWXDjrQmclt+q6jouLi8bslKybvu8Zx5HtdlsELLPb7SrLu5iteTFZgYUJDzPghZGwkj5L1a4tqrrg1DES1vDWQcxFqAwmgTeG3nk6K+ASUXrKOAyd9YgbmYUINIPNeW5jmQScmU1iX5MCuk5ilmpxaLxUwbS2UBrmxfJRhfLx2hbc+yRZWh89mWbKy18e3I9r5ds98GDzHzIUv/KNLnxuY/Cw/elO86W/lUmUC5SU7+M2z/Dyyy/w4t0tZ/m+aDxm08o5Kc9qzTRdbdVcNGaufogxVbPw5ORkgTy2q3NrEu/3e05PT7m4uODKlStVgNbCADNh8n6/r0Hx8/Nz7t27x8nJSTVHp2ni7Oys9s1Us/ni4gJYJizMGUbqD7Y1iYHe9PV+aDyyNUGr6ZflOaqloLSUmiPbZjC1T2aOPcLQCyoaplxNWk0icLZnTFK/qai4QVDvXMCn2MRO2wqeWk2TEzHF+uzaGKs+I11c50T7y37wg8ZjCaV9/pvg+cf5xnJ8rvXYL5fGftTwz3d/6Hv4t/7ob2ezGdjtdvTD5ap/fVi6ymrSeKuRcgoLk63vey4uLhZCOE0Tm82mClCr/VTDtSGUvhe/cbPZVIE+HA6lZd2Oq9urFfW8d+8eZ2dn3Llzp1JLtsTFbVimBVN0n8DCf9JQjWrfdpForQJjDFMI9JthwT/bfk7NXA0Z6flYt6SVbH1bPZ4KNFDNe/0+UFnddYHRFgr6nKp1EQrhWXPf9RzbMi5dTNtreJRh8ud93tzb4+3xf63xqzCj5+3x9viVPd4WyrfH2+PzbLwtlG+Pt8fn2XhbKN8eb4/Ps/G2UL493h6fZ+NtoXx7vD0+z8bbQvn2eHt8no23hfLt8fb4PBtvC+Xb4+3xeTb+/7un7uXS7bBiAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sav_dataset.visualize_annotation(\n", + " frames, manual_annot, auto_annot,\n", + " annotated_frame_id=0,\n", + " show_auto=False,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Show the SA-V annotations in frame 0 - auto only" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOUAAAGFCAYAAAACSjT4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ybNl2XXmif12d5rbvNabCI/w6CPQkSBBEiRTZFYyqyqrG8jKZJKlmcaa6m/RTAOZaS6rNJlMplJmZV/JTLKSfQIEQCIAROPhvb/+NqfZzdJg73PfCwAknVKYiYPYgRfheO5+37377LX2Wt/61reUiAhfri/Xl+vvzNL//34DX64v15fr8+tLo/xyfbn+jq0vjfLL9eX6O7a+NMov15fr79j60ii/XF+uv2PrS6P8cn25/o6tL43yy/Xl+ju2vjTKL9eX6+/Ysi/7B3/pF79GSom9vT201mw2G0IIaGvQleaV+/ewbcvzp+dYGojQrS9449V9NIG9vQM+fvCY1WrL/qwmDhvOLra81Wr+6/dfZZnW7B8f8GGn+eHJlsvNiq7reO/997har3FVxZ07d1DKgHUkpdFKkXzEaYOI4Lstw2rN0G3wwSNJSCkxjANBEiFGkhK0MSxmNds0ctGtaCNczgOz+/doHiY2ITAc17SHe6TTK6rakiRy6/AWn/zogmQP+Ae/+g2GH33C//Af/2e2Q49C8/d/+3eYLfZpjw4Zgqd2DqUUEhNXZxf84e//HqvVCbPK8stf/RqtM6xXK2KIaBQKyn8FEYEkqJQgBfww0vkBGkN1MOOi39BUDVdXl7jFjMY11EFzq1kwW3v2pCJuel79tff49JMfUo2Gb73zBt3gOV17nvstp9sVXz96HbnyPCHx6dNzgmuw0rByhwz3/hs+PbvgjbeecLw8RSdPUCv8rOfunVt0jy7ZPDtFdxEnljgmUoLLq0usUewfHzCaRNIJoxRNbNmcbVlfrPH9SEJoFhV7h8cEWeN7xbff//tcyac89s9Id5e8bm5x+qNnXF1t0YBSirfefpuPP3vI05MTumGgto7jxYLDgz0+++wzbmnFf9FGvr24jfERZATCz5zpkBIBIYkgohjE8OF2w3NvWN054s/OzxmCcHR0xJ07d6jrGhHh8mLDpx8/wftIjBEkopWgteLo6ID9wz0O9vd48vQprm5p2gU//OGHeO/58ZNPvjijNMagtabv+92vjTFoY1BKce/Ve9x+7R5nZ39IXc2w2oEOJAWLdkZMkfmsYb1ZI3hS8qBGsC2xauiHEUZY7B1yvz3gTVeBUrz95lsc7R9w9uKEkxcnbPqB837Dqu9p2xanDX1IPH/2jNV6zRhGvB8xJhsqQEwR4xztfEbvR/q+4yoMzA+WmNmS0EXM6BB/zDpeoK3Fb0asG1jomtCPaA1PHzxmUdWoeE5/+pBq6XDOwAAiEGNE/TV7KAgxBIYUePLkCXuzBhFBoyAlYojlgAgoCD6i0EhSpAQxWIwXSAmFI3iN3xowBh0ECSOXwyV+E9Gp4v264hdDxy/sH2C2Pfdl5MF6w/rpFWYMLKPn8uwzhi4irsFYQ3zlmIsXHX13i7MHFe292zz4cMu2ecJSP6etDGnhefboIVUMaB+x1mDrCgUkEZxrmLc1zcEcaxUacFFx8fCC86tztn6gmlXcuX2HEHoSoFVLUy/R5oBh+JioFSI1Slq8F4w2BD9S1zUxJrTKQd5sNiOOnvl8wTAMaK2B/y9IaiLl7yliivnCMRqdhBACItnBAzirOWxroktIShhJVFYRvIeuY1DC+TgybLaEIIjobLwvuV7aKJsmHyCl1O6/WmvQiiSRvusIKTKkgDUK7Qx6VpNCT10tSSkxn9W8/tot5rXBcgRKc2+xYLm/RFYLglIEZdGMrNZX9IPn+fMXdNst/bYnpUQUULOWR8+esVgsWM7mEBOVq+i6gQCMQVEbR0wBEei6HlspTKPx0RCSRazm7uv3GVeXdKcndIeJ+//V63z84SnRarpmzu3332UvaEIamc9nxBipxLI8TTQfdZhQc+f4iPPVClCcX16yODgC9fNMU6FQWOswSlBa48sNiYIUEuM4MniPKof8oluD0RhnqWc1wSd81xGUoBctqbbMjo5Rs5qmbXGi8tc2otdwNGx57/Iz2rFCjZHhk4ektUdWiVmEWoSYepQYVBipasfZKvDi7G0uVl/n//B/+i+Zv7Xg//x//CPOP9Wo/cfsvxmxtUJVFqMdolui01A7DAktiWoemO3voxuLNRp/seXysxPOX5zRhRG177j91l329vY4ffgU5Q1+MNT6kCCHeK0YYgDvsHYfiRrQIIqjoyOGYSClhAKkOLF2NuPq8gxtDMSAFoXKvu2vMVHZ/X1BoZTCGoPWgjIOpTRKpZ0xTv+treatZJAoRFEorXDW0YfA1aZjNQxszy8ZY8TrDdyxjMPI8e1bX6xRjkOfP8bkyaejphTOGMQHfuVbv8Knj15wcrpCGYOpa1znmdUNSsHeYk4iQhoh5UN41W35cdfDdktKAW8No9J4AZ8iISZOr64YgkfKoW6SYKsaZQy37tzhxdPnGOfQ1oAPWKUxqBzqKlB1S9/3rM4u8DGgtUa3LZehR47m7L1zQP8PLI8+0Oi/9z5iFNZoPpPALDmczDBBcMFwrGbMHwrj057LR6d88xe+zg8/+RRRhjFEvCSEtDNEyt2ptcJYg4jKN4N1KKsxaDQgCVAGIWCqiqqdMZNEMonZomW5vwQLqoZq4WgXC5pqRhgTQwiQFHQBlzTBbziNG7ZhIF6NhADihGQdQwWD6ZGkQISk8g0elOASzIYa1l+hC+9iXtXMWo2sNHFV088DMlfY/QqpQJQlKhCjwCkQBUmRRvAGlDYM52uuHrzg5NEJ3geOXrvFa6/ewUki+Z651igvSAJtsj8bx5E+DNR+QNeemATQDOPAdruhnc1RCBro/ZiNSwsJAQ0mCrXWkCIi6WeMUhWnKShEyiVZvt9YByrgBcYhgNLMmhnOuPxUBerk2I8NEjxRtohKGCtEBIugUkQlqJRCUMRxwEdPPau/WKNM8Wdj8vzJFAg8ffSU7/zpd/Bdx+binMViybhdMfQdyQe0UTx++JjNdo3W+dO5pub+669xte053WwYui2z/SWiNTHlUAilmR0e0gAxZoeg0OwfHaGV5pV7r7G6WmOsRVtDY20JNxLGGYL3NG3N4AeM0YxjwFUNd4+OkTFytrmku4xs/m3k7N//GCUJkwI6BZDEhbJYs0BHRZsMydRsLxVvqjv4C8+yrTFaEVCIKCIJUYLKZ74cgBxVWGuzo9CAMYSUqCvLvJ2jVTbawXt07ajaBkFIJDbdGklC6DxpM7J9ccXz8SmULHS9XmPEMNcVBBiHETcKYX8PnWYwVji9xqBxKVKlQEyWASkBm6AQUEIcA5X1NLLgf/q/PkMNz9g8fc7SPgObQFcoTH5nOqF0jgFSSBij0dYQYoSoOH1yysWPH6IuR3wYOXj/Ve69d5/Dn5wyu+joHMz6xOr8Ku+Tq2jtyLDaYmtL2F7RqzNS9liE4Lm6umS+mGcvJokxjFRVhWghkkgqb2+tNKRESvlzfT56KUa5M87yXREqIIpiUJoUhVu3jzk6PMp/SOe83wSF8m8i8RR0h0FQIWbcQgtawCiFAJXW1M5hrKZdzr5Yo1Q/NyTL349asdlu+Nf/739KiIIkwfVbCCProafrtjn0czUn61OOjo/px5HOJ/7o+39BEkUMgTAGzOYMLQpIKK1x1mKMIcVAihFjDNY6Usq/vri8pG4ahr7nxckJi8WC2WyG9x5rDSKJpm24vLokBE/btlhrOH36FF0ZaqdJg8d9bLDWsr+3T1s1OOM4PT1j6HsgkAQSI2u2eKt59Y099rqElpEWSxcVxLQLg6YQ/+Y+GWN3qUsSYbteU++5nL9oTTub8eLsjO3pwHboGYeRGGPJLSFFqHTNcr7EVi2iApiIGjTOVijTopVB0RNDlw1OaZIolG/YNA0vUmAjCk/CS0LlABoAbTS2CRzd+yG33CucfO9X2K4uuTv/hOB+gqnAaocuB05Nx1nlzycpISJUojn5+BGr5+f4bY92hld+8R32P7iDGQOzJ+ccd4rOQR8jbIVtilBbatmQNpG2aukj2IJZpJLbee93zk6S5PxSa5TWjONYjKsAZkLJz2VKF//apRPUGDBCtAbvAyklQggZoyhgnBIF/lVgDYAkhUgOc3NYnfdUFFQu75dSUFVf8E1ZN820/z+zEqCNoTYWrTWhG3Ahb551jvl8zmazQWuDiMboCmfAEHHK4ZWAc0AEH6fLF5RCYvFC3peDnnAm0LYt3kdWqw17+/tcpIQxhhASWlsqpwkxEELAWktVVWy3W5xzebNJLOqa2jX41SXOCzNjcDHg9jXL20ecPb3i29/6TX71134VsZqRxHp9he4vGD78DrdG4QfdmkoigyiGfiD5iARBlfM6hfta53wl5zH58/kQCN4zKs3VelXy4o6zyyu6cSBfXgoluuy9IQFGO5yxOZxSBi0BCTksNtaCMqA1MWXEWXTDT5Liz0+v+DPv2WhFrQPLqFnsqmIJrRVVE+n9Y46Pf5dbr16y3a55/Mkfsh6fokxEmQVTsjadBUVx2iKMfc/p6SnrB+fUQ6LZbzj66pu4d27T6YG9dcSrRDSGoCHFHA8oEoqItSO3Do+5MFsUCZIi+ogPAURT122JzjSCzsZnoKkdtTYECWgBi+STOT2I6/vwc89FyvcztiZYpdBG0/mAsQbnHNbmVxOJ2akmQekNsM3OWhSSICQhpd3by7e2VozjWBzv3+AVynppo5Qbr2dU3gwRyaiSgjB6Ah5N9jijD2gSygjdeo1zln7MnsePIzEG0r5j8ctf4eEffR/ON2hjUSi0aLQoxsFjlUaMIqoKKXlESFA1C64uL+n6kcV8QTObE1GYCEPvOTg44Pz8jBASV1drYpxcpSJGwRhDHBKqMkQvjMljlguCEZIM3NmvMZXwztfe4df+4f8KbxWqdmzWa/bOz/mL3/sDbl1ekIYapxLJCCEGCIIKgk4KiSHnOZIwVuEqDSSiJIyziM63S1vVXLLCaUNlHMMYcs5HASDKPwKIEqJOiAGNQYj5OagEWhCdUAZ6LaySx+iay9byL883fLfveIQiiWBJvILwlra0KYEOoCokDUQBqdcY86dUbYDmBaQebQAbiUrKTmbwRQEqZU8zrrasHj5FDS2zO3vc/pU3SHs1np6oBK9zzq1EYaJgo5CSQlRG8wd/itaCSQY3KJLPBisxUDUtKMu2GxA0SVmcq5EqsekuqaLQiUFHcJJBp1SSgGujlF0emSYLKishOCU4qxi9QmsDkJ2bJJTEHCYPgq5/QIojKWi8SvgU8SGR0Bm4U0JSOZ0Zhg3a6GypL7Femjzgvc9fo2ccR3zwxBjLByteJwkSI5IiInG3EX3fsVwsqCoLDqJNSJUIc8Pif/ubpK/eYab1LhwSo6jv3Wb+9uuE2iHaZBRAGxIlHFMGrQ0xCs9fvGB/fx+jzQ56ttbSNA0xRp49e0bf92htaJqWGCPG5Pwu+sje3h7tbAZaME7n3EontFUMY0cykHQ++NFkp2SSoGLEEjDlwQ3DQAwRP+Qaad/3+DAgEtFasFZzdHSAc479wwOUzo5Nq1ydjCGgVL7h8srZXiqAQXHTQNnbfEXdOFQQUkAZhU4JYiJWjh9vrnimRrZGEWNCRDGiOQ+eSyJKCzlED0iKWGcz2El+jtOhFgRRkp9tvjpQpZ4qSRBJtPM5B6+/wsFXbvHKL71D2HeMNiASiAV0Uaq8dvkcoqb8TrHdbjg5eYEfPX4z0m/7ko8bri6v6PuRGPNl0I+eYRwxlaZtK2QYs7GjcFqBxLIrP7tE0uduSsonzPVGQ0hCLOH4OI6MMeDDiI8jfhxRxPI5FBFFUBAnxzm9nipPKyWsdfm2f4n1t8spJd9USgSj1C7WlyS7q9lZy95iwa3jY95+8w0qp0lhpLIVEgNzA6pbYxXM1IwX6xPqt46RP/4MSdnrxpS4wPP2N79BdbzH6Q8/xvi02zgRwVpLXdckSayuLlkfHeIqx9iNCLDebrCVy4e1HPIp1wN2wIvWmsrkW2tyMH4ciaNHKcV2u6VGUymNNhXJBlzTULkKkmCtoa4q3nrlDVSquTg7RxkDWiEqgSkgivcg8MEHH/D8+XMUiqZucv5T9jL6gC3Rws3DcjNpkJ/61RQ6XgNJirquaQXqueVx7fiD/pwfdx2XkpBBUSWNrW2OOiTlcBcIIXBxeclYL9AXhlmzzCFziiSJxCiE4MEnNIJxN46PZONKleH2e6+TdGLQI0MAJEdWiUSKsqtnppRQymTwpOzBGDwxJlRMhNGzWq13EdkwDCW3jvhxJHiPT4G6aVAqA2ei89m0hVAifwUW8tctYzRpIgaQHTzOlFA4Av5m7ALqxtPaAe75d+u6oeu6XM77oo2ybhrGrsdqjdOKg4M9vvKVD6jqls8ePuLho0f4ceTXv/1r/Oqv/AoAldPoOOCfv+Dy00fU3cjx7dc4WV3QhRHOexZ/8Jgf/OgZvmyeUgqnDfFiy8XZOYvXbrO82tA/PqGpKlxTUwm89fY79F1HCiND33FxeYW1Fb0KYCybrqdt6nzDKA1Ko40lxIR1FUobYhJqW4AW0fnmDQmN4uz5KTFEnjx/wScff4x1Dj2r2Y4DZvC5aJyEykLtNKFp6S9Gnjx+zPPzU1xTY51GmezECIHt5SVNXeGs4+z0lDB60BqjNZXNYJYzpiC3Nw/TtbeXVLx/yesEMNZkMCzlyGUceyyJz5Rjc9HzwwB9BIOiRmiU4IC2bqlDQuvp9hLOzs/pbc/Z+oz9xQG37+wj9CgVcl3Oe7QvDk5F0LqE1ZA05VbPYbRWgks6A1u6nNcEViBKIkjEicGgEK3pVeKzZ89IKGwU+k2H78YM9ilNZS1NXePHEaM1i9mMi87T64SPmZ1DChhJGJVBtVjQ2L+Nae6AOrJBaqNLGqIKkCdoiShJFMx3d0OKSA5Tyw8UEebzBcvj41xNeIn10ka5WC7YhsQb9+6hJfL3fuvXeeedt1HKMI6BP/7jP+HP//y7/Mav/xqHh4ecnZ3hak2tDDw/ofqLH7PXb0lKcVcnLobI8+6Kdx5FHj3YIge3We7tE3yg6wbOTy+5+uQx1f6CV772Lh+9OMNqg0UhKXJycgoI0Q8kgb4fsVWNT2tcXbNZrxGlsa5CG0sS8CFSCzTtjKqqCgjkAEUaR4yxOOcwonjz3n0+i1DVDe9+5QOMs4wkLq+uuDUGThdz9FMwKlE7zelqw2F7QFPXvPdL32C5v8fh0T5CInpPt1rxw+9/j7/4/vfRwHIxz+FWU2VHZyzJR6yx5WHeRLxv5ENwnSOp69/NwFjx2iJcbtb8yWaDkSoTzKJmbjUH+zWHy0X24gGqiw1mDMXIinFKYhg8F/GC/UMNaiAHZ3nvJWmIgjJS6oBCVAXwKAil6EQyoEtJIk1vMgqEhA+BlC/ogpQKmzjy9NEJx3duMzOOYdsRfGA2m7G3t8fR4SG1qxjHEY1i3s44215S7S2IkkNIiRFTWFKCEHXGOH7e+qsM1VpL2IykJJmogJB0Th2MNbShpGgxksSTEGISoiQSlDxWIyhCjPgk2Kpiu1m/lK29tFE6a0Epaldx59YBd27doqosXddhreZb3/oqT598TNMYtIaPPvoJf/797/Irv/VNfskqdHdJkzyZICbUUbFaD1x99owKw3/2j/4RH3zlq4QQePLwKf/D/+2fEC62PPvhR9g37lM1DdvzNVrlcon3nuViQUqed99+Cz+OjH5kPp/Ttg1JEs45qsJXnGhSN9kZxmR0bfe9GBGTc9XKOZqmYdt3RGegcYgWZKywtaM6WOJtDumN1jx7/oKNbHj3vbeoqoqYEienp2gNVitSoWqN44gSoa2rvPmldOKMYxxHmsItvs4rf2rJ9K9rjF+pbAgpJWKM6BK+Re1IUmOVRuuRttbcuX3A8TIX3+Vqi7+8ysinKpyjmzlqSqRyM+c6tUUXkE8pvXsvU2aWUgFRdCKS806tNFpbtLMYrZAUSCGWNCKXNaCARKPHx5hDcWOghK1KKUIIzGfzHAKKMPQ9ylRYZ3F1RdyWmiQpI6hKAyFHSrt9K+umNf6cUonWZncmvPfMFnN0lZHzGAMxhl0OLZJryVP++fkfpVgsl3z08BGVD3zwi7/w15nYbr20URIVCs2nDx6yvrrg61/7CseHR/zJH/4x9+/f4/XX73G4v4dGeP70MbeODnjx9Cmf/sUx33znHU6ryMJrqmCRGKlFaE3F49MLmlcPWBwcsJjN+eFf/pBuuyXXahX6ouP5+seorUeU4A1U5VNbZ1mvNjx+/JhxGDDW0o8D4zAybjss2fPn0C5D/iLCMPTU9XXNKJXNNcZQ1zWVsWhrqdsm30kqh8CiQIwBpTFNS1QaJTksVCJIeZDG5CtAJu8ZJaOHdV1uxJBvGjRhDPh+wClNH0Kpa2WUNr/IdCP+HL9eYHyjNKYghZCNdL9ecnB4B2VnzGLibP2cSgectVijUDGTHJJRO4OkAC7X2SqkglTGGNCqwmiLtQaly9/TquS0YEsZQBCU0QWlzSimaIMzGleurRAiyjp8DCSqAlJFtM7h4eiHTBZB46qGYQg7Z5dSQiQRw0jb1myuNgQ0SVLJTzOjC8BM3IHrLZt2aZf+7Rg9TBljSQvKuWmaGl1ZIOEH0CGhtWEqyohk9DXxU7mlCNpYYsqI+8vmty9tlN2mx9iKFAIXV2vOzi74xte+Qb/pGbqR2jW0dUtbOT569oivf/1r7O9VnJ8/QNk3mXvFTAKiPBDRSfOaWvJsExgvBlanF/S3N/zrf/HPM/teBJ0qmiGhU8rIlnOZxiSBKIEgvnhyzTCM7DUzBh/yg/AeZ+d0fQGIpEDjKkPySQJG55LCdAxjzMm9WEvvB0xdMcSIFo0lH3pTVaiq4uDwiDNlcCJUCDYlCB6lBO8HtLI5V5vqYkrh6gqjDSl5fO+ZtS0pjJw8e0ZV1SQRKutwxjD4cP1syYfd/nRKIpIbA1QmfReqFKP3JFPxldffQgeLimtGOUeFTHEcesEKNEojzlGvPL0BZWS3P0oyepliNrIkiUTIN0KypJBvBzQorUHnMgCKDJqJEIkIEKIQg0cZTeg8ikxUEHLOl4wikql+kiBJLp1FFEkMCYOrK3ofmc8bNtsNxIDfbnFHLYt6SdrKjg9rMdmboLBxKjFcRxUZxI67ckjBthGgT4mr6PFhJBagSCmdqwoIJKhCPiupOKGYclYZEZLKHSdTahlE8JKonAHzBZdEplCvahvaWctqtaZpat577z2+8Y1v0HUdy+WS/f09vv3rv8rh0T7Hx8dcdokRRZT0ORhdAbXz7LvArb2aZ08ecbS/z3/+D36HcQwoGrSqMbrFqAprS75nDViDF0+/3WKNoanrXch55+5djDJoBdaaHJIWV2gLO8ham41vQgCLt5/NZtR1jTaGwY/UTc3gR2KIWGXQpSgv1lI3DSkJmoTTpSaZAtrkQwXpBk8430La2sx/JbNTUozEmCloU1mJkNDW7g4Q5bDITznZHeJabuWbCDPA1WrNg88e85MPP8osG2dzIXsY6PuO6D3KGOr9Bf3cMTqVP9sEuJWfG7NV5lwzRYZ+pO9HhnHMBPphYBwHvPekEEkhO7ZUSi9GWazOYI5FY0tdE12ii3I7JyVEyWUIpQTrTDFQEDRjCJyenzGGkNlQElipgeZwzv5yn3Ecd8+0sq4c7Oswf/oHYffcpRQs5cZXUgovkCRS1xVN0+C9z6G197lDR3LeGEs7YJTrSmhOm3PYn9lU+f5s2jZzs19ivTx5IGVeoRJhjInnz58TU+I3fvM32G5W/P7v/Xvquubs7Iw//tM/4o037nP79h0+ebDiajWw1gkbPM3udEW02nKrrnnrN36Bc9tycXHOixcvcNZgbCjgRUIk7trFUlKoqHBiuGVbtuNAVVVorVkslyjrWD19jnUOV7lMwSpwu7WOFAVjSjmlEJanw2ytzfA3Obxq2kzXiz5gtMbqQpzQGtc2FFIdlXVI3GbDUCAxZTbSTaqdSAaqTMnLlM60tPI0RfJD9sHn/B12Bq2m8/Vz1nS4tNY30XiUUpydnfLardc4PDri6GjO4wcf0V2ckIaAmWnYq9m/fYtw55h0es7z00vSlhI5F/JCef1pf0yhvTnnMC5Dm1orRKtdaUBKSOwl54eVttQmM2Xmhh2xbxcmly4NyLS6/f19IOdwUyvbZrOh6/ps/Kl8H8VwtUFtesIw5PqzypFDZkKp7GR+Kp/cGSTX7Krp/Ygi1yS95/jokL29vVIKkXJWcgadSg0yKbnhfMv+S6b/mbq0bCnFfD7fna2/ab20UQYfCAVNkxh5fnrO1WbN0eEeMQQ+/ehjPvjKB/y7/+lf8pPvfZ+TN17jndff4gOp+Ph7j3jWH7I/rvlGPdJI5nJq5VlGxff/7b+jf/V13n7zbfaaineXCy62T8FqWqWpKkWzsFg749FGeHR5xd1W8e03b/MfP36MdY69/X0AVleXiMphptYaYzNXNoQAkkMRo00GcbbrEv5es5MmWl6Mkaaps5fses5PThmIbIlcdR1XmyuC05gRZtqiBZJWxBvFdD3lapTaqlK0dU2HQpEJ1QrNXCxONN7k26OxLtc5p4dcVlLw0752dxhK21EMAY0ixsgb77zBu2+9iyZCUrjFktX6ghAGkNxKx/Ehzhr27xzxxqrj5MNPefDolFQimgxoZKN3zmGdxRqLtTpHyyqTxTNWU95tAqUmYsG0vyrvS4jXFERKCUUglJtssVhgjCXG3N6miNkxxpTfS/kiKrSHdLmF8w3Kp4xBAJVKGNGoHFOjb1ilTIb+Uwa5O+caNingY8A5lw3dmuJkFSpEEuAlMUrMTdLqun6eccgcAThnSaX301XVDmv4m9bLNzkrneFlQAt0w8B62PLgux/xwdvv8LWvfo2T58/Y/uQRv5IOqB+PvNlf8GqEZxdbvsuc3mg+0Bc0cSigAtR+5G6EH7445T/823/JN0fh3TSi9irQkdoY2lZTzxTn2vHP+w1nSnHUGO4uQSSAViz2ljhrOT85Zd407O0t2XYdVeWYL+YMvc+GicfaDHUba7jGVEpImRLL5TKHKmRCwfnJCa+9fp/9vT2q6JFhTXWwwGuhEsXMVFhliNbk1/C5S0VyC8XuwesElasIBqqC2pISTdRYZdnYzK2sjNv9vekAq88Drp9b001mCvCkRHH79i3u3b/LRXdOihFnYH7rmMjI+ekLWMxJ8xlXhaGTaseto2N+++49/vTPfsAPP/wxImFyKZ/7WYLkUDXl/FNKfJumz6oVYrJhaq3RkjmhKCGMI9FHjDb4GBhIxJAIhfiQmVE91tbZcWtdoh2NMw5rHDEIwSckgoq55czEzMSxyjCzGiel1ltCh2nbMtlieiY/u6Few6huQl03/ryCMIwMwbMdA6HQBhMFjysRj9LZOdR1Qx9jAdL44o2yfftVZsuGzcUV+nxDZQybzYblwR62rVBacfLZY17bwi+wRxgT9aNLKhO5SJ7DwwXzURPWJxlOT4qohCoMvK48z2XOk7/4IW+bikNleVp1HOqRsW15hNBvDJ/5nqAHjvfnNLWQHIykHZuFmEiF+mdMbv9yzgEdm82WunaMo2e9XuNDz+07RzhnGXqP0jl5z2FtIoWAUhnSn7Uz7r3yCkErmrFHzx3D669yUbeEfiyIpiGqTDL33uN+2npuuOSoyB5Uq2vkTymsc/RdhzW65LrXPv5vwu2mGzkfZMVrr72eZVBSNhpRoKxh784t5gdLrNGYqsIju8tuvVmTRPP++/e5uHjGk+fPyk34s29CaY0xKrOBioNNqjB1MpR23a1B5vgqYxiHwHYMuasjBEYSISii1iQMwWeq4bRuph/GZJKEVpkAfrMWv0O+tcaaibJ540p+OeATURBTdiZ1XeOcQ+lrkAhUzhPLZ941TzAZfHaOPkXapmG93ZBSNtQv3CjljWNGA9JqnNLoiy1XF1f8vb/36zx79pi//MmP6LseHTXRKR7qwGATXUxsR9iIxnrJpF2Ti7tWFFpgMQzMjdAmzcLWPIiKPx81/2BhOKPinz7dciGOioG///Yxn44G5/tSm4tIEi4vL5k3bSY1DyOSEs7Y0j5T7W5BkUwVM2aqkeWltUZEeOWVu1xerYgiLJdLrFI5xFXl0CdBmwp3cIu2atgoT2sdldYMQAiJFPNtBVznLrsDkvO0KAmURueKHkaBMxZfeLlMUaEASud8Hsig/fW6STBQKLQxWKVp2za3uhW6jnEGVxmcGKq6ykDI9PqFfxtTwocRbTRvvf0mL85e8FMZV/6ZMkWtuXyBVtmBKEBiYcNMwMp1GG5Q4GNuBg8etCKqHI24uuZgvmQTN9R1RSj03pwfCqagurkVa7cZO2eUUjYULRpHbqXK+V2hw+1qiPI5Y/6811NI0jn1MJq2aXBVRSylmspZgu5zmcZqlBKcirl/dPeE1e79uaYhrbe5TqssWruXsrWXNspNHBl//Ayz7vBJCDFxdnLG8xcn/LN/8c95fn7CTEUqYxis8Be251xFFt7wVdfyLHUEp+nHPRIXaAQXwEtLr47AVeyvt6iUeOrmfGwUv9mMRNWyrRo2RnC95TDNeCpbqqrCiKAkEcbA5mqDUxmo8cOIkkyEr9p2h1TGUIAXyZo3khSbdVcScMEYxWJvwcV6BcD+wQGVMqzWm0KRyqJbgiLNZlgtKBKv4KgMxKjoukiICp1M7toQAbkuLIcQYAwkoxGl0aIJOqPlravYyEjbzmhci4+BDMTnMFhPdK4beeTNs6WsIY2CrRxNXTGOA/P5PO9VZVA653laDIqJezrVaRVdP7LtOuqm4c6dWxwdHJZwWIAIKmWpDIHkc7i4s49yu2VkU3JDxNTHmDKf1KFwCXRVU9lcx0WEoBLbccuzfs0r9+5Q1ZZx3SHRo1VF8iNOa2aLORBRKlMD69phrcbHACY3f7Ves+8TqqLwiq/dyYSYXqOtO2gMgCSGmCp8DLlh24AiokvNWCPUMdFGBU6jtNCgGCXuIoSdAzUWbR3W1bz73ldYd56Ts8sv1iidc7hbB8iLFTMRxArf/e53+PFPPqTvVizEckc57uI4TI4P1JIHVWAvwRvach48Y99TxYFoSm9cLCFPHHhHNaimonEKrw250yp7fq0FVKaCKYHaR6StGMZxx5Jp25bVek1VVZkbaQxVVdO2DV03sr+/zzgEUoJ+2OyQ0okxklLu1YwpYitH5z11XdM0DSHkcCsTpzKfM5g5F23LVT0wqIQTsEqx3mwYfWQcS9uZZHElbhALmqbBaLCzmqpqkKpGzxqquiIZi1vucefWLR4/zeoC000jU51iMsRinNdoYv7e8fExxhiuzs44ODigbupCAC0xX2nKjSnR1DUxerrtlu12iw+Z5KC15tatW5xeXDDZnHWauq6wVSbyO2vIzegZ5Yzl4E8Ajy7PCy0Yk8shlTIY6zIRXWAz9nREIpEgkUePH7F30HxOHEtJ/owhXotXpVQI4yqX6mJRJyCB0xoo+keSEdJYst94w0EiU6lpimoyVXAYI9q4HUNKSoifRk8VEvv1jMFERsnCcDkauX42Qi5/Ka1Yd1tGa1neuk07X3yxRnn16Cn1K8fo/YbtoxOSCnTbNfNZwwf7x7wfW+4lx6FO2CB83SzY2jUzP/CaREgQ6oo6WHqVGAWiyl6y6i/5tbTHXtUQXWBrNdLl0EQrTW66EIwFZx2GBU+GAX++Zu0T1Tjyxv37rNdroh9pm4bFYkFKDdpZ+v557uMs4E0OHyNTJJTzlgx3n56eEmJm9Pddh9GaH/zgBxweHlE3FY/PnhOHhD894aFrWM+WfMqWbeu4fXiHzXrk9PSEwXdgc9eCSEK8J1ytM4fz+IgHn33KrddeZTGfo0VwWlMry1wZ+qQ4ODri0dOnfN6Xf379NH1wMv7KWlIIxNEjqTSITzGnkG/ulAjeY7Qm+IEQckN4DAWY0HB4eMDZxXkOH7Widi7XAHUu6RjRJf8rubESIhqdUm6vg8KnVTRNTa0sTiyVdiWEzA0BW51wVUUdM6mjqhySQo5KYq43S8i1P2stIcRC6SuN2VW1Iw4ocseSKtY83ZBJJtS1ILA34tZMNp+SjEyUMFrfqP3mMFqLYHyikox4qiSEGDNKffO5lIcWRbi6usIJvPeL3+Tw1u0v1igXz1bE9YDpB169fYvXbx1zcvqcJ48fIamhliWb0JMkoY3mI9PzuArcDYmohFnM4dNgFcHnEKcHTAqMVHw/Bcy24+vzPRqdDTaaGb04ohpJrqXXPX9y8YTnG0MwsF4ZxGY+5Itnz9l2ORR98ew5s8pxeXnG/tHh9cGVafOv60lTAj4d7HHowRgqZ/HjgDOGP//Of+Iv//IvmM9nnK0vkaQwKWEHT6g0J4MgtWV/f0nyKz7+6CeIFmxraWY1kiJOa2TbUaF57yvv46oa0QZVVTukNWXxHrIPizsjUhRUlet6mNa5zqkLiyf6gMSISoll3cA4EPsO3w/EELJR5jNYQteIFEelyHW1YRgLUJHD6f39BabkiVoSKoFJCpMKIpp0btmTHEOkGFGjJ24D626b80ZyR0pczKju3EJJrtNSwC4A5yqqqqIhh6Qi2TC0MiSlsNbgQ8YJcsh9swUvA00hhowiaw/G5fdLicTShBHnftBsoNeZ/lQLTZLwEgghEgXGwVPV7loxoBDpO2OyHi8wpatqykl3CLTObWgIlc2tfN04fLFGWYVAPBvxfkBaTe0DS2W4xHDit/zpTDGqkW/EitfMgg/thgcmcawVvRYeOji0gh412mfpwaQ1VhJrrflzIr2J7AWLNbDVwkNxPAuRzgiIxY3QHjSI7/mle7fp4z6f/ugjJCWODw54cXHGskhBaqXxPuzC02v2RjbGJHmDK53DDGN18cY5TDaVgZSwWtMNIyHmyGB6EGNKDMoQjBCMIXmP7zoq57j/+j3e/eB9bt+7zWtvvMajh5+hJKG2A7//736Xv/jLHzKMA2/kQl/x6opACdWUFIQvexA1lTzIodIwDBmJLISBHGJF+u0WI8LhfM75+SXKBwwCEpnajig1teBzs/pNZcIkOW8yKiHjls3FFSl6jBZSTHTrDS8eP+PgcB+jLaI1r7z6GtbVDL5HgI8//SHr9ZptuZ01OX9PlyP92vPqNnNHIWvfjNEjYui6jh7Fe+++w9X6BZDLS9a0KK0IYaRqqt2zzGRwdjqvuQ4dcnlCR1Sc+m/VziCnko1AadZWu5s0d7oIq7ClHzxRWZ49e87+wR5V5ai0wg8Bui0yCHuVw0dPnwJJYnmOhdmTi/C8ODtlDJ5lVaGMzjTEL9IoJ2ja2pz7+HGkspbbd+7wohI6o6ltTaSFakFFZKYSjdV4Kp66HpUCR0LptC8HshSOgmhOqhn/No70vSda4Q+erTiz0CuHCZ5FgLfmR5yOz3jx4oQx9cSxYxVGbh3fon3+hKqqAHbCWbv3znUOhlKkUj4Bu4Ps1+vcUNvMFqxPtvzu7/4ue/uHmap3I4YUKajvjXKGiPD48SOSON595z0ODw8ZR8/z58+pm4Z+vSaWPHX17EmmZ8V4Iw8pwpQFlZ1geChQe6kPxhSzooEvPZ2ljkdMDJsN9199lRQDfbclxYwapp+Ti8aYdrno5LBiSnTDhqY54M5iyfj8Muv5+gAI3WZL121wriaqOdvthj/44/+Z1WrNwcE+fd/z27/5bZbmko8fPACdATYD+HFk0/e0g8H6Ut9MCS+RJIXUHbJ6g/cerXLXiG0aFos5q9XFTmA753pZSc/arDYRQyjuLZfD2IkfZ2SYcnOKynlnLq1eF04ECFZx0m8ZROEThNWKzXaV9ZVQzBLcUQ0hClsvJJUyXxfFjUAEEIZxYLVZI8De/l5pani5usxLG2W/HXaMhcvtFcs2ohUM24HteUcoB/N72ws+Sc/44SxyUgmbPvFwI5zNHFSwJwXzkEhICmIkqcj2xSU/Xm34gYmQhHbQnAfDVQODElKseBZ7Pv3kit5oVoNDp5ax1jhtuby8Ym+5RxgHNtsNo/fcun2HMfh8aMsNsYsvJEsBalGoJGy3W/q+p64aUoisr1b044irGsSYHdwtBW0RmXK6XKTWKnt2pa4PevCR9WqbnUPKSqXKulzjUyp30qvsX3cXlmR1B81UsimPuRhWbq/K7JrJWCE7nllV8cb9+3SbbZbWbBqstvjPlTVyjTHXbyU7nNIVH8eRbrOhW68xTc1rx4fUxtKJzhiw0ty79zoXa/jBX/5Zfi17APqI08sBRcO/+De/y//+f/O/5uLklLOLC0KKWeOmSKl0wTJ6jbFqqjIVVl++xS8uL7j/xqs8efI8i2kTOTzc4+zsGVVdFcPMXSJt02Yebu8JUTACujCnRLHrDjHFGFPZp5i4vm1vGMogsPGJ0UPSGiUpvzldJD8iqCo/mxAjrrGQchTB7vmUnS7MJa018/kcJfKzDQX/vxrl2fOzTBVzhhQTR4caYiA5x3Y7sg6BFANrpXDOMAaNRHiK4mSu2assumpZ1I7zkzUSe4wYjFjaUbFoK+7OWuroMUvHvhgQw4XRnJlEV3iHQ7qD0467tqF2S7bDSBw2dOst77z6Og+ePGQ2nyNac+eVe7x48RytN9wExhWlzlb4kdHnTvX5bEFd1RzuHxAjHN29TVSaoVCrrs/1DRFfgeATWjskFXJyzOwyZUyOCGL+WUkbqGpEGURi7q2caoXFYUyGZlAk79GuuqG3pLMRxsyoqatMvE4pH4C7t47ZX845f3ZCGAdM0+bOngJsZUrhdZHbOYdPU0FUkcZAGiJXLy4Y25rZfI9XD25xdfmYpBXWWN54423+yf/4L9HVK9RH/znaHWTidRwBTX/yT/l//Yt/zT/+b/9Lvvsnf8DZ5TljHElaUKIYRNC6LfVHslq8UWANLsFmfcVs9iaKjIYrHem6FU1bUddVDhFjINMUhRASMSpiNKAisxhZ+hx1GDLonInxJS0gKwPF8vCydGhBscUhNKAjlXXMm5a6zvNgtEAdEnYIGBXRxtC2M7rNihjTrsE5J8tC5Rw+CUZFZrMZThncSwpnvbRRvv766ziXUbFb1nF//5Crywsu+g5XNbROaJqaxd4c4zRj9KA0wWqMsbReaKJl3jZs1qfEQSBl1Tct8EaT+NZbr/FabWlrTaodKdb8h9ML/uDiAiMWUFhToZKjqff4+te+iV00PHv6gMsnn7KvIovFAmuz/OLF5SXHx8ecnZ197rNMt55KkqVHYu6qjzERfKTbdpASFxeX1IsFqZQlrkNAnY2yKLgV8mFBBGXHo1XGsPOdAmidRZZ1Dp/HMXe3I3JTQWL3c1K5NSdO6dRilhUBi3KgyuGcM4a7t+/QrTcEPxKCZ26XGGPxqRxiQG7U6XajJ4rSnxYgwtnJKfHuAbZS7C0WWeJSMsCyHXLYWy9/iaq5w0ToN7YhpUR79Dusnv8TvvOjj3nz9dfxY8/F2GONRUIOWWdVDSR0cWyDKKq6Zr8ydH7Ler0q0o4G5wxdv+Xw8IAxRGLIGkrWZvkTpxwx5MFCqgwSMjdyR5jCf7VDY6/lJa9L/vmm0wim1GP17jlqnRu6JV0T861SbDcboiS6sccLUHi8UQmqyLNonUs2zpis+PcS628xS6RlvV5zdXnO8+Q56a/QSnjy5DnbjScI1HWFDyNvvHqXW6ahTsI8BVxl2cdwVxmsmWFMg6iOmDpELIKwNJG9KnHpe063wmMUPlU8GDxjmgjBuUGZ6Om7nj/6o98nGoVJI8ezioeffMrrr79GHEeiH4ne56ZhpoZWAa2wGGLSu0g23xw65zDGc3F5RUzCOPTcXSzKA8oh0PRKuQE3P/lcRJ+84A1ie6W5gfWiyANpdAmlMtE6Fs2Xn/Wif2UpZPoqBWulFHWVa6rd6oooGarPGrBkwSq5bg6WSbRCct1UouS2rRIKd93AYrnAVkX7p/yNECLDOJSdvJYt2bk5pbDVAcoe84d/9h2++d//dyyaR+gYaWczzk9OqRM02mJ0AYEiJB/ZbDesoqZuLVdXV3m4jlal/S4xm89hO7AZtxhjaNuW0fvr/sjyZpxxmAmtfgkbkBvPJ6vPZSX22jlEIjEJItkoc3dPFlieW8eWwGrYlE6UYuSlm8ppTfKCcwZnbaFMfsFGud0OnJycsdmsSWlk1a3Z31uyPD5mtoQnT54xDp7zF2fctTW/9tqb3ArCUReoExx46KxlPY7YyhK3ciOcUqw74S+fDTynJihDTyRKwANJN0gc6bue7bYjhVRumlxTe+f+6xgxPHr4kL2mgRCIw0Bb15w+P8FojTPmmgFlFJLyLaZNJkITswr26D0xAUozxoBRBmUcUShyE9koMx+zFMu1zUJcRa07SSREjxVHcaBMfjnnRPkw+0JcVzfM71q8+abck/BXmaiU9zFvWmIIdONA70fO12tu368KH/XzRnndipSV30zx4rveT9HUVYUjkcQTNQia/b0D/vg/fReUpWrv7yhvUridk+sx7buk4SFdgnnV0GoLRnERE5VrqKzDFmR2I4Gkcv+lF8EkOD8/x5iKGANVZTHW4sfAcm+PzbZH6axe3vd9UbLLe6EEGmOx5dafCEV/pXf7qTXp1CUJOKupm0yLU6oMThKNGkecU7u6tkwEWGRXbqMQ8Z21zJZL+m2HrXtE+5d6Hy9tlE+fvmC93qKApmr59re+yfvvvYv3kY8+ecTDR8+IAjoaPv3slDtmRn90yIM61yJfmVtcjLQxdyUYBK0i6IQSQ0iaEwyr2pEIBDFZRiEmUohs11suLy9LaJlvNqVy3qFNJBKQFLg6P6d2FpUioR+4vLrC6MxjvFqtmYrDMUXGEDDWZbl+Ak1q6QePtgZjHEMXCT6glSHKBMVPnQvZuJQGrVMR5xKQlIWmUywhUT7oasdHK+09TP15aldrJH8buO6O+HnrJqFAyJ3v+4sl4zAy+JE+BHRVsX90hI++AEnXRINslDnsjFni+0apQSGiM80sDPjkiSpT/V5/8x2+/+l/wMzeR+t69w4mqUits65Ou/g6YfUn/Kvf/0P+0S9+hfOnj9n2HWOMuEVduG+Tm6JQCbODiTHn2s7qEm5mpPjJk2e8/e57hFJvjmnSkL1OD5RSODQmUUC8a1zvZQbRjZJY+5BlKjU0Tc3EXbZB0EFwRmN1KW8Uw1cyOer8vEXAVRU6RrabLd//3vdIrmZ8ifcAfwujvDi/KLeDYEzN1eWK//SfvsN2O/D85IKYMicyKFhp4Q9WT3l+p6Gt5lRRs61qTLfhg6g4qBtWhSWR1JQrWTKTMOupTrMZYgh02y7PniyzNUhF5q8YRD90LJuK+WIGCE1VkSS3ADWFMrZZbwpA9vm8L6ZMjra2wpqEUoEYBVeZLFlRNnnqVABdhJyn2meZ3VnC14mEMAlz5RtK5d5KpTBmMsIp5CsbPKF3JUSeOiKyZs5NV1/uo13nQnZQR4eHRSQ7cLVagTIorXc0sWllBPpGxpXj4N3vBx8wOhvpMPRZekNnsESZjDBX88PMeGEy8uv3F1PEuYZq79s8P/2fSfM9fHzIVbelXs4RZxhuqEGEEkZP5Ibp2bjK0bZNnlZmcgg7DtN8yrhj2xhjioHmXTLqWntHTZ/vett+Zk3VIiEb5SZ6VJ1HJcYYdkavFLuhtZNzC2kS0JIShWV2kQ8+R13DQLu/4PX33md+fIvxix5bkKHhXCS9Wq350+9+F0kRrTOPcSIkJ+2Z7Td87RtvoLWjVwlfWU4RmtaRRo0ZXe7gV6XFRhQuDTi1BeUI5FAxhMBYFNmD9zhnmbUt202/I1NnZXFBkuKtN9/GD5kylgpkPo5lBsnNJPvGIaqqim6zzVxFuT4Uxhi0ZKaMbbKs/mSUQOk6uT5IkzKCCDtZCq11kcWYFAhyOeNzNUhVRFdvAA6icif/RFGb1rUpXd+VGo3ViqZtOTvb0Hdj1is6OMo6txMDZnoF4TrZkpvmXgr6caAmMfaRi6uO9XqDVRrb1Pzljz8CoFl+vVDgsrKcLTVsKf1URmtmy68yXvx7/s0f/BG/8fZ9wuqSpIQ+JXqfD3NSMBawzJT9fe21u8zmFUOfcFXPYm/JcrkkpLzHWak/MTnH+XzO0Je5KwiNgOHms+baOosz2qn2Sc4Xp/3xShOUoa6yONjnDLlsfkyRzbhBEAZNJj9MP6c8T+MqfEwMIXL74JC7r76GWy4Zv+g6pUGjdSClLGSUdEQKM99MiihKuH33mHuv7LPUNbWuOI2RwSVOtLBEEaJFokJbh/ElPBNFG4Uq5RYYJZkgnqmc02HNB7uZ5Zsv35q5vDEOkW478ODiM4aup53VPH78mHv3EqurNUdHR/l1po0j06/WfYc1lrZpSNNoAWd2D0wVA8uyEtdPJyXZ5Wcp5nmKzrmdUU56MZ9/oooJR823qs6k7J+S8cgNwwlRiaTSzpinukgqe11kSNFaWDZz+nGkHwPrbYeIom5muas/lltVlb9dhLEmlGq6h3MlLqK05+233sKqGU/OHtEPES0BR6AvNDGtLbqAP/nzXANZE2BkbYNp3+H0/COWv/ltwiefoHTFGDWB3C0yasGnjGpa66gs/Ppvf4Xl7A7/7J/+O1abLbNug66yJtO6W5NSzktBIyqrRPT9gCQwKnKg8hyRdONZKyVFfSCL/mg0BlOodgqdFMFArwxjsozbDjffI6mpq2ZKwxNRAn0ZvzCKyk3a6joUD9GjZ3O2SRhEMz84AGNB21KG+ZvXyxulhVfu3eLiYsN66xGlS8gwdTFkyLmaOQ6Pj6D3tFWDVrmgIEDQJsfVMe3i/nLzo1Ouze3ynxth5k6rpoSQ6savjdbEmA3FGIMPnoN6b3dTOeeo65q6rtBFyGgiJvd9j1LQNg1dv82fRa5HMEz1KV2kOa7D3msO6o06ye49TSPbphs7iir1xPxh27bNPNXd5/n86wjsNGDU9Nmv77oSgpaSiRhefeUu3g9s+i2dH1Faszw8KOrlETONZChUlvw88q2miqRjZv/Ar33rl/jW+x/Qn19x1fdZdZy0a1/K7+Fa12hCtvNtoXaiaEoptN1n3AaGEAlJ0ErlvE3lcQ9pkt8sxfwYI//P/8e/QJIhxSqXG/oe6yw+eEbfg8qqEVfrK4TAYjErpYdcw22MxijJVR74mbD1Jgsrh0bZKMXAKEIo116MEdG6cH9VJhIQScSdXGQQlXPc3WtLmakKY4qI0cz39/ApgkTa+d5L2dpLq9lVlfD+e/e4ddyiTQYxbqKGqNy+Y+oacQaDxobytFTu9ohGsYkjlTYsTXVjMmJmYhhJeVKRVkViIYMyn0sObtjCLneQXKx1tny5ihAipYSWZ2u07U70yVrLBIHGlDBFDn+6xVQBHHaSk+XP5Vzx2lGoAtJMHeVKKW7dukXTNOjCUc1KaANd39Ftt2w2W/YPDrh///4Ng/w5S6mdY/r82pll3jdjuHXrFtu+42x9hVegm4rbr9xByIdfqbK/FN1uyXumJKIlk7R9DCznC27vHfHkwWOeX1wwWksqt//de6+xWm/Q9gilCwBy02lOTcWf+wiZ8hhiboHquo5t3/Hcd2xVPsxTzpuxAkHCDFJu3QKhvdEPa4xBUqKqKiYlAudyx8mUDjlrb2YCf+OaENoJMMs16yzTWRKO3et8vsSibohVl+NEISKozPjRJs+ZiTFidc4xX2a9/ICfKMyNsNfoLF9ZorPs1TPtVyFlQEtG6yRDk2B0UYOzxEYRVol6mklfdsRIovUBK0Ivmc62UwtTssvDphadzNQoOYLW+eDpxKzNyOswZElApVRpw8rTm+J4DRJMSm2jzyPgjda5adbn/kk7BHzfZx3VXR3yOq+ckvt88AXnLPfuvcqTJ0/4yU9+jHqQ1buVZIXxrF4XSN5zeHCQdVOVzp5e3Yw42H3lz5gFtm56JIXGaMX+/h77+/s8+OyzLHWqNbaqyui1UIxFoSQW+pkiprgDsKYiejeMpG7g5NkLZPAkpxl8zJ0aKJb7R1xc/jl29h5G28/1cE6dGwhZFLrk0M3yKwyXv8d3P/wRbdvS90MG3Yh8tr3itfleQWwT/Q7NzANgrckotSn6PEbbXX49pQpTkT87U0OVNFkOPNwQ55pSh5+zSgifgAD0pKKprggx0Kqm0EJyiO6MxXi/66FUxUkryUBeLK9ptSH5gco6TCGymOzCX8rWXh7o8WCD5/bBgh/bC7oYbnzWtAuKLs8vkddfRzBEpTL8bTRt3XKwWHJQCfV6Bdv8N6eXMCSqccAmyXzUEtqmUgaawtYp15vgaGs0xhlEa5rKYvqASR5DnvdgTR6xroC3336bH3/8EZvNJm9cDEWWUOXxZuUGSSkzfOZBcreBVhhtdvmdyDUCJyIYqzMv02ouLs4JwXN8+zavvHGfg8MDDvb2oIwHPD894ff+w7/no48/Jk+ZCjlEQmXDVNOO7oIMrr/z+SUI7777DsboXe0TNN225/Lygjfvv8bjx49ZXVzsOliapsboUvIouVAUGLqeKsLlWVZdGAz0ISLKsH9wzPPzS5RuWN7+7cwSirmVSitV1Od1QYLLexOhckt0/RqPnz7jH377V/jw+9/PKYYoOi2cjz37rsKmCDruSkVIYhwHtNGFeC4Ya0vEEtlsNlRVxVBmoCCCxuCUoS1KaDs5lr/2uszha0IIipwfakAycj61TWgyGWChLSomlBNQGu810LPTk1U5f2+aBr3tdhETNjuqNL5cnfKlw9eUhNXVFXvLBZVzu8+0+0/58F3XsVlvrj2/ygJEB/v7mMqxHnt05bBN/Tn/5SRRhZEmBeoUudU0zIxFaYfSFo3eecpdERyhqWcc330fO3+dtj1mvneEaxd88PVvcnCUQ0kBlNZcXl6WRuecJ2qlSk3M7YxMa4OrKlrR3EoVy2B2Wq85B/x8/fBaUzbfHo8ePcp6QYs5t46P888v6GyKuV1M0nVj8jQe7boyoj73/278oBu1zryapuHw8JAnT57Q9f0uDrPWsbdc4JxjPp9xeHhAVTk26yu26xWzpuK1e3d59dVXOJjPsD7ifGLP1TTGUbmabd8zjJ4UE3fvv8Ef/dl3eO0r/5hf/83/iqOjo0w1M3anBTvN2FSq6PVI1tdtFu/T9T26qndpAUBwmrPQ06msbGdz3QWj1M5xTCypCR+47hCJu26gTP2U/BomtwTeRKz/pnUzV59SlKqqc4g8PYNS/2ySppWsI3V4eLij3900holTPL03pa/TIaNeztxe2ig9gRcn59TGMqssRq7fyDU6aPBD5OzkNAM2OmErS+0q+mFgvd0QK0MvMXs50SWmzx7JJaEWxZt3jvlvf+e3uLW3oDKuqJNPzV5T21TuYwvJcNXVvLjUeFnQu306d8DgDvC6AW0zvqg1Cc3B3iGzdj4RzYhlxHksYME4DOgktB72Tc3MtJ97yKmoYv9029O0QswCXav1mpiEEIS+H9hu+wLlG1Dm8wrt6meNT2uHMQ1K1WhVo6Yv7RBtSTojek8ePeb85IzVuseLQVSVHWHliL6jrR1t7Xjr9df4+gfv8Y2vvs/9115lVlf4vkNLolKJeWXYn7fMG8dy2e7y+a//8q/wh3/6Zxy+8uv86q//91Su5ujomL29fVydlettkeMIMWT8wGQDUUoz23sfpQwfP3xEO2uzUytefFCKlfdZFT2zMjB2qgGXA6oU86bhcH//urYZQhZ5LrllLKJZDoVT16kF/HQemM/s9XMjnwKVIz0f82vN5rOs9VpexxRGjym6tXH0XFxcstlushQKZfztTukAfBTQBlH5TFxcXBSBrb95vXT4Ophct2qs4njuOD1VbCWSRZ1MrveUXCIMmToVVB7iQogoY5ntLbD35sRhy3y1ZnVxlpHQKQSJgh48ry8tv/Pr9/nJw7s8/uNzVEpZ9g8wKWcAKXliDAzec9F56nZBcIHNsATVsBKLVQlrAmIMIQ0M3mOSY3//iE4FalNzcXXOctbiigRFf7XineVdjjcJvTdD3bmLmFSGz+jMhYTr1iCJUMoJu3ZZpQgxF8VTlPyAdQ6rjG1QpsKHtPOgk1FqrVE6d9sb19C0B8QxAw9T25xWuQyitSIoYVxtWIjF2jmjRKw4vB8xOrK3rNHKUytH6kbaWUOMgZOnj9l2XeaQNjW1VZiZZW9ZMWsX9CKkJ5GmnfPhJ5+y3fZ87e/97yiibSzmC8bDI7QxrNeZdkkpqg/jiHOWyllSjDSzI2xzm7/80Y/5r3/rN3nw4U8I3oMyYCrAEZQhhSKONZ9xuV6BumblJB+xKnclZcZU5gwvFktA53HwknAITWntSui/9sbJuXR2BskISRmGYDJl0uTbPjHd+pnaYlJCO4sPgdFnXFqZ3PETRfLIQW3wSrE8OsJrzYOHD3l+dsrzpy946+0PvlijTBqGIXB0cMBrr3b85LOzPDTzZnG7AAd914ESos6CQ846Dm8dY5osMaa1zWBKCR6SApsUTYBaWX7w+JL/5UXAfvNXkUcvSE8jfutzXc8osANxCEQiWkcUAW0dvQ8MPqGNyu1RpkKrrLjdj1e8uFhTKeFrt++xtELVmCz5oTOU22B4/+AOr4SGKJFH8yM+2m55pc6TqtLU5nTz4ZJDaVXy3lLByDdhKiBVCXsTgLY7St4Eskwo7I41VP68UvnWUBnQY+IZ5Bm4Ci+RJ6sN82ZGr1weSJNAhTxPsm0sRs0IzhCN4fLsnM1mk0smixmztmXsB5BIVTt8GviT739IJ9B5zXy+x9Nnj0CBq5akEl5WVZXH2bssc3Fy8iJHHRPhXaRIlSjwgaNXf4vnH/3fEVfYLkrjnGU7CmMINI2jNjXR6mu2juSpailG+q6j29TX0Qk5Tbpz934maKR8Dk2SQhyQG5KcP2WMN3491TCVniKgny5Llbk3AjoKKYRcL9eKUHjLuwC41JiN1iQRNt0W3c5p5zMWY8/i3SW/9Mu//FK29rcYr55RymdPn3F0fMx81rJd565xhSqHLEIKXJ5fsF1v0Ps2q1crhTiDcgZCrpNECVMUjhKFiYpmFMY+8KyZ8fvPHIuvvs9bv/ycZ//qXzKfaE9JEaylaVuSCPuzBmUNQ1Iocbx+bPCiYUgsa0vTzjK17UwxJI3UiqP5nHeXDX3akqp9Vt3AmDx1Urw3O4ALz/nhMT/yFZ9dXXC8bHG22t1Wn6tS7OpeU+2LnNRPejI/pb+rtcrdG7ALfXNucrMuO/VrZkx797Ipq61NP0cpxYM0ovsEoS2HKyJk8sWUv+3v7+PtluQ95+dn1G3Dcn8vj+qLW1TKGrdn/Zan/YpgHWJaXr97h+1f/JB2fh9XtbmJ2+TnXVUVTWpJ6RRjbM7JQtzVenOImTVzZ/PXULriweMnLA8O2FxeoUzR6ZEsCyImlz9WfZ91ScpKMZFucnfL5ktKbLcbnNtDJCKYIv6cz5Sm1MEpxlmKqZ8z1AIeGp17XnN4mY0sknstDQmV5zXlM15UEKezO9EAJ4ektcaPgc1mwxv3XmexmLPYWzKbLaiqmpdZL22UlsDAyIOTZyz3I4cHM64uNgSXdVAnzZQkOelePT3hIGkWxtAMmsX5KXOtaa7WDGcvWOzPWV1q0pBK+45F6ciBrLH1FYd/8M/Q36t4b3POO3Uk7ilGn0iiibFlMI6gwLY1l3XHZzpkut22Y2/ecGXyaIUx9jSNBh2J0rDpN/zowQO+vjfH+DWDSVjTINqxTAG1WrNpl3xSNTy76HFFNmQCGkRysX0iOEw5ysRVnU7BdS3z8yu3WVVQUMspT5r+3O7gydQupokT5KBy7j4NBaJ0u8SQqG0m/EflkaQJ3UhKkb7v8H3P5vyCF8+f8fTsOXfu3OX84iw/rzFQW4upG7ptYDN7my4ZTNCIO2C9XnN471tYV7NabyDF3B/oLKP3bLfbDLYgJKMzu0copPwcFRkzxzW3+PHHn/A7v/YtLi4uEJ8nIA9GoS1s+p7UWby/RnW1LuPyYrjRRJz3NETP1eqCxaItGjkGpxWV0ZiYR+FNhPTEDfT+xnNAZJeGRMmlGlGOwU8pRbbqiClqGflJxZhAl5Rkp3hXSC06l9SMzvVjax3z5QJna6be0y/MKH/rjbeodWDhYTw7x/drrJhM+7oBWLiqwdUGGTy3Be5uO5zvkJPn1BFaH6kl0ccBVSkclkqyeneoLG8qD/0FzfYEyE3HfhTW6wE/BlCGgNDFxMr3XL644vJACK/cYUwKcXucXFzS64bgRw5Mw+g7mrYFvSWJ4eHlmv3twJsu0ZiYw10zsnC5HLOyis+u1vRBqHTcQf5T+Lq7FclhpmihadoyiHbNVFj23uehofEaSQR2Uh7Adc10OijA5O+1cblsM31fZTBtopBZl8cDttZiylBWmpFZEHQzwxpDVTnCMHJ4tI9OnssXL7BIOcgaUzmcrcBVBCoGc0QnGp0CY7wmRUz1zfXVCmstTVNxfnHOdttlHqxkFXlnHdYYhnEogFyu4+3d/hVefPo/YtoZkYT3hZRBuZusZVsEwbTNqKY1uR909Lnm7IMvGrzZ0ox2+W9LvnErbaiUKgBixKQ8sOem0UxrIpELGkmKPlm2KLRxdCmhRoVR2cOOWrNVCqtz50ofB1bDwDZ4xpQZW6ItFAR6u92SRNjbW5bxDrkl0PwVXT8/vV7aKH/79l2seGzouXQVH6sVnc6baibIOkEImnM8vjW8sWw5GnpMKBsjgkWwBFytuPPqURlkmqULlxYOTFEFczbru6DoQ6Q2lmCzXnVvFC7lXkghe1nXd6go3Lr/Pg8fbYgJ+n7A7NWgLJWtUbonInTUPPWRO9ZwHAMhbXDRgWno9g/5uIuchRGjK6LKWcokQ/m5pQrjQ+ldaJskT9tKMU+LcmU2yU2kOhe+syfeaYtOX1qjcNSVZn9vH73N+keQb82kLaqM8nPO7soFxjhQFdFt8duRZBzO5Wlj4iySIseu5e3QEAahmwnW5qE5bTOjblqEzWQihBR373hqDpiIDSEEtl1kdbUixIgEj7G5mddaQ+WqfHMWuX8Bju58kxef/lN+8OGPmS8WXF1e7owkFsR6YunoQuG01pTp2hnlVWOuF1dVjTEVi/khIhWKGqWhsjCp0d8sLN1cArvoZKqt+2RYp4bBgKpmRBPw4lBBGFLCS2ItEZ3GHBGmQFPmb6aUW90mKXaRjCdYY6irGl8GtSzmM/o+vJStvbRRzohoiVgFXina4sWMEgyJ4+Wck8srkmhS0JxfXaLCiLLXpDAhkYdpQ6UdxmcEI/fdKpyG1iq0MznpxyJJWMwUh4dFPlBporEEFAORfhRO0oxPnUZ3G9zmhHtzi7/YQuyJfaSZZSnLCs8oiagNZ0QejyMLl2i1obEtaX7MZ9UBP3rxjF4ptEok5UhqIqkXs1LX4aQqZIIQwu4Q54NcAKAS4k75XWYe5fHfWgxDHxjHuBubJ0qR4kCIhrZq8UEIhQCNUgQ0XiJ+7Ak+qyVkyQqDkYroOtx2ZOwOdwbvnMWMgXlIvF01rEzFAzLLpHaWps7EC6sUqFT6GyfpRBj6jvOT51gFVkGQRIqqzIrMoEwMWZS4cTn3nri/s7YpZA+Dtg2XV1fcfvUVri4vs7rAZDop8PWvfo2D/X0+ffSQB4+f4qqaxmkaV1MZQ4zCYrnk6OgufR9JStP7iHIznCRam3VvJzBoWqqguPkQ3qAuFhDNI6wx9Di8ZF1igsdH2Q0dFpXJ2qJybn+UFC5pbAKjcsSYExoFKdG2Myqbe4N9CjAOyMvZ5N9i6haeaThDpYVlWxWy+UilNW8eL9l2F6zHhI2KIXpUCsxcPpSq1DUNkms+KLS2JFHEiRGkFA6DIk87Fg2iNSIKa2pAlelOCacjjYL9SnFXBr7GY6R2nI0nWFfzlutZ7ydWac3MztjWsPfKgquhYxM9IWpsMEQRFkYxNxv6/fv86HRDV5S3jc63WWeEsejeZNJaKWqT85UQsyJ4Sjk0XS73CN4Txh6YEWPOgVRB6JzLN7eEyOX5Fd12yJS7LBiKhMToBUk1CcUYsodOJdyTmDnCUwdvCTLxSpOagSYqwrDls4efcnR0hLMKJ4GDceDQJ56drjmf7eOd4BCivyK5ivmsJcmGIB5kZBxGnKtIfoX0l4h2+JDV7ZXOvZU70CuWATslCph+L/ics7aupVl+wMXFd7j9rW/x8OEjrHMYhNm8IawD6uyMvT7hug4vwjh66u2W/VnFdvAYUzOOgSQblKsBzRgEbyqqIMxkQIdpuPEUgWiMTN1GUsCe3BqnjMaPIx2JM6PolC3CZ4oUi4CzzgN/cokm77lCs7GJRUy45Mv1q4kqh7IhBFqdqaVaNF7l2rrtv+CcsqlM8TC5w/y4bjP8XKqzcwO353O2XShobA6ErNO71h5SQktCR0qHgWWQxGUMjCI5P9K2zPAtiXZZP02X0qX8IhMUrfI3XzVXhJRYtoFhyALBOvWkGt6+UzFKaZfSCo2hTTUmKEbp8RX8F/uOb9+5y4pA1wnr7cCgTZ7EpPWNtqtyW6aMNrZtm0clCMxmcy4uL/jkk49xTx8D2VjbtiWlRNdteeutt7g4PePo6IjDo2N8KOLCRV/m8nLDw89e5KK2H7mGla4jD61vCHORO1okRSwWJYn9/X2szfVRp6BNiVoCTRCaKEXCUiAqLi4u2HaBtl8zD4KNifjgCYd7e7w4+xGh31DP9mmcod/2YBLOZTEzpSgzWza7Lpmqbmib7HiM0sQQMcbtivZT2UTt+hYT49DhxRLHAVGKum647SoOk+JBEoIIYxT6MFLVmqptCZJTHBWhMlm5nptEm7JDOT3Mu6i1RjQEyePUbdWw3cCIJccJJV2gEAJKKhin7yqFBAXaoFXIyoOStWF1yj24VZUnvRmnUcbglGPYXLyUrb287uvgsx4KYKPwxvKARfWEdRqIJMarLb90/x2ev/hR9gwTYWKSSigQv0xcQ4E+Jp6HkQfjmqvkqVXDXT1j3zTMCxlhOohIniWfm2MTTBopCmQaGgMkpbPmi1xP9s18WaESUD5hJFI5AzrlYnztcMqh9ZajA020WQ5S7TVEfcx/dA2frjf5IQg7Yd3sbAxax8JssYzjyGw2R6Fyy1jb4r1ntVqx2WwYxxFiYr9paduGtm2Yz2elRlb2qTCBMqhhcm2sdC9O4fKkuaOm5uuSR2kR2rrmjdfvM29zucFohUtCFQWXEk0QZj7feMkaFtUeunZcpgtc7bE2ociS/ZPTFSW7uR1BEtshcHzr1u42NEbR1A7SdcM3kOmHMXfsHN/9NquTP+LBs6dYm/dKiYVtJI2B6rBlPatYDbnmabVGkXK+jGJE6JOi3wpmGNhXI/0wgChqUSy0oUqJoP9q+Y98YaQsTYliSLAZhD7qYozxBuB2ExlX5Za9Ye4iBB9yNGMU3pTyijZUdU2ShFUWieBSYLtav5StvbxGz/OTHa3JKoOuZlS1hm0OpWQMvHew4HszzUe9ZkwVY0y5N+5GU+3k50UpLpTwPHieBc/KB+ywZmw88UBhXYNDdi5PFCStUEah0UghJ0i58RS2dBIINpVaopgdjK0RnESMZjfINAeLKou0GiFpjVYRKwpiRGGoGs0t2/KA3Dy8u6dEdlB7QhElz8Toup5heEbbtrzxxhu89sb9PPFrHBmGgb7vefLwM77/Z3/K0G3ZO5hzxGEpo5T6owal880waZfapDAJOlsMZHfIppBsqmVmBLnfbFF7NbWzIBHRUJVIRRixMZKUotYaW1maumK5nCMHM67CgMSBsbvgF77+Vf7N7/4+l1ePWM4OgMiiaeiHFXVV0w8DIokQslOZqgTW5siqshW935SZoJkT2g9DoeIZUgh4hHq2oH7jNU5XK+KsRa07mkJy9wZImiiGkBRiHZ6IDwk3StZzqjWNHdCmQ6kpl/8pokf51tR+N/qRwQtqvs9QmsrRlqhHfMrt3xLBYssEr9xUoFTCKNAkjDUkJRmR1hZxlnY5B2e4uLoCrRjiSLhcwfOrL9YoRVkGnz/soCI+CLfbhs8uL5DK4UOkP3vB3Znmky7RBceHj55w981X8rBQJqPMswq11gza0mPok8bHXAu6wlNt1hy7GjVNiSLnlVFPN1Rp55Fct8t6NA6UQVLIwBHXinP5gQiV1aSkPxcYG6Vym5NR1xKSohBt0LrCmApXhKMQjai4q0VOBAEfIj6EMg2qtIONI6v1mmEYuLy8ZLFY0LYtIeRxCttuTRwHQhhQKuaSicphe8IQjCNiiWjEWKLJNMSoJnkRsALmOoPIOa5Av9nw9OEj7hzdR7QCAjEFXIxYlUB5VBgJIWYUUUWQwNXVii4kugRGW1bR886dOxitWF1+SLzzdSQkjMtqd76osI/DCCRC8Dht8ONI2zY5D46ZLJJTjPwwdCFtD12HNQbjLOsQ2GjL6Bzb0RNSgEqhrMYnzWByN6jHMygBpQna0dnIpqjtZY9mCingr+aZTs9HgMVynwGLDT1744C1c2IdsMZgEfro8WkkpMw8UzqidcLESFtZWqfyEJ+M4HEat5jK8fDJYz559jzPODGKhVK8Xs1fytZe2ijjDeJ0IjP133JLPlQv6KKwDp7L1RXvHB3y4fkZZ9HwFyfn3LYKVzpGUvBorWjnM5p2QUyaLkT6BH0CHQQI1MNADBFX6esLdqK1qCzdkJRl00PnA9YpjvcqnCRMGR6jkKwtWg5tzoan0JMp58/hKyX5n3IJBdroPHavdOZPFLrPZ7qfX9chZalTFlmQGONuRIFSGmtdLrFoRYyh1MxKXx45T51L4jWbGP3ASMJrAWUwqeTrcmNLpsNW/hVDZHV1hQKGfsA56M4voRtokqZK4EJC9Z5xvWWsDDolLi8vMQnoPEkr9Kyl14rl3h5XVz+gH/87Km2wDozJIWJuNLZZEd5mgKVpW5q2YTFrefTpA0IILOY1YUrOyjmKItRVhXKGftOzHnpM5ehiwKvEVkdW7ZLLUdhaYS4DMxlojUJZS9IBzcg8wWz0HLY+j3vQpvCwZfezds8oJYZ+wDpLU89Zec3oez6YW+4tFoi0bJqB5PNnOU0dz/stXmvGGNEmT9xunEOlRKCQ8CkqhSmx2W45vn2X++99lcO9I8QYfOj40R//p5eytZc2Sk854BQEUIQj5biz2OPB5SVX4jnbbnntsOawNpxsE8+6wKjyjxjiiCQY+wHZ9Gh7hatbeqsQnacCRwLbEKh7RT9G9udtrllKVpAxJgsoj6J4Pnj+lx9/ypPzc4ieX7j3Br/+lfc5nrxxQXP1VI5RoGIeHUopNqukyvA5VaQuJwqboXI1zlWI1nmTJJU247L5O37qtfLcpGg3dX9MlLBJ02fKCY11eaCqyh3qO/qeyih1mzperQO//LVXSN3Iuu9Zx5GLYeBqqOnKjTwoRScwpkAUUD5/RhszdXG53Ge13bA9PyV++phG9rBonFhcyLMhR+9z/moTEhOzyrJaBeZ7e9Rty+Uw8Ku/8W3+9T//V5yefcTyla/njhql8H2fZ0MyEfYVOtfA6PseW9QAFULd1KS+uz5PIkjlsIs54zAgoth0A01TZRFjW5OUZpzPOI9rUoq0acue8rxVtQQVOYsrXq8Ne9Yxm1veYEBkREtGZnMYex3IKnL+WzmHriuuNld4WaC1YykBoyyDiowpsPIj/ZjRVKtsrgC4CuNyU7vRB+iUQAWiFrYJlLb0cWDsV9y7d5/DgwMWswXKVVz1jlc/+MUv2Ch1RvecaEatMBFatry3rHmxrlh54dHVBW/cnvPmnT1+/Mk5lxg2Y0bDemPQGEadWf4GYQgjUkSYlFJElcVwg0989OwFdAOLmSFZSzNb4GymHvgBvv/kId85P2M1BiQGnj/4jE/6xG/ea/jK8oA9bfBMvYr5tjPOZE5oiigJ5KlQpYFjp66nipargEQ0QqPzGHelElFPyOvEg9U7jVZdwvKpLStrz1zzWMl/K+dSKaeyY5/VQHdhtoJgFG/Hjm/Yc2K1gVqIWhG1YSASUKSkSbGhp+EMzypFukvP+WgYes2rh8ecX16x6jtWj0/4hcuA1WtM0jSqxvoMhHkJnF6c51mURqGcUN3eg6qCquJq6Hn78BgQxuEMHxI6KJy1aPGsLs/ZjkMeax9yyGi1welMJlguZuzvLZi3LedEjN3n8uqKu6+8ytOLM6rDQ/yLMywObWtu332Fzz78GEuu/XUK7KJlfbVmrByymPPImMI46rktHbdiZN5ZmI/EZDFJ53YsZfJYB/JloiTLj/ogbDcdbd3S6AV90KyM4dlswZVpWI+eS90jlcLNHbKIpOCpmqrIhsJoGkZ7w3wkYWPP9uQpSVcs9/aZlMWSCkRleHbtk74Yo7zE5yEnpUhaFV21W7VwZzHj8fmG5+stWx84Xi5pnWYbHWehZ9nMQQJRQdD5QCGUCUmaRmdWRAaENIeSN/3s5JwXRvDEXOvaW6BMzRmGT05Ocr3MOEISzkJgePaYZ58I37i7x+98/VVuz1pMukZ/J3cpCEoLqIS1ZKeAzYoHpYivo6BJKElYpXZhrOjrGxIyqHGz9Wpqdr7ZkDt973qp3Vi3MLVuqUmAStBG0xjLq8sDVFOTyKySQGIIYx6YI4KYAW03vGuyeHTYd/io2Y6a9SsLLlCsL1dsz1fc3dtn4QXpxpyDxyx0rWtNEsWm2xKIxNqBdrj5HGsqNs/Pme9nwacULhiCR3vBaUvtLGn0zNuWhFDV8yxWZgyNtWiJHCxmHLQtCtiuLojhkuXyXZ5fnLO4dYStG1LI7Jj50SG2bTHWor0nJVitN+zt7eVIQBwb15LaBhuF0K9RYoljx90q34rmBuovZUxd+R8AfvQkNLPZjDEm4jhyWrX8ZLHPZbtPwCGNoT2wjCHuKI1VyqP5QvA5LQkjJnoosZhKARMHtiGibM1sscwc2aJ5k5Jwfv5Fo6+2RseU5TqU4IxQK4hac3vfcbLesO01n5xueP3eLVozciqaJ92Kd+s5LsGgY64VlaE0rbUczhf0SrNG0ZiRxhu+3sy5bzpcVFyJ5rOx5yqNXF1e4JPh4TCShoFj25KSYZs0axkJEU5tzR++uKT+0PPf/MLXmO84p6kgrdMDc2ht0JKBH1N0VnJOByqlLDRlslp2bpnKdcHPG9j1DA6jTb4xvL8OYSdua+k1nartk1HG+LM0jyRC2PSsV2fUFKV1o5jPGvaqOaouenQqEcnlH5EsJtwkw9pZnjjDZ2fnnD99zqFxtBjqytDNgHGEFDIVMHiieJpk2esSd1rLvF2goiIFwR3sc/H8BQD7t79BSIIfM5K6qBsk5TMgNh9O7wPj0OON4qCp2Z816OS52m45vTwDoJ61pHqBW87RASox9M4hbcXl2DEEj0VhRJVhPjYXK3QimoQYg1GwUYqVFT6VNd+yFZLAxixlkmuTquTq7KzSOYcyjlW3Ba1prWWtLY/NnI2q8oRuAT8E+pD1eCaRtBRiFmQrkZ2PReEuCSl6bBrxkljOWuqmYdttC2GkDI8KXzDNblXPd3UwJOZwbuJ0WmG+V3GVNKskbPzAbK44267YDolNGdWWKJou2nKsE//Z/hFSL/le9EStEKO4NXjejIpbUdOPPYMIMXoCuWXGaMfhzHJbWyRZQlA4EQyazo+MamBlDY+vIk+eXPD6wZzKOaxVOGVxtqiQkZXgkuR5hqqosZlJviFFBM/B/pImxgLyZnTj81zWideTb19tyjzfMtPxppbP9KcnQnsOcX8WNlICJgraR0ieRC47dX2+5bQ2aKNwtaNtKrAaUYrG5BB81DVV20IKzNs5Nm7ZrLc81xmdDSoxaxqWiwVX8QKjFIeq5htmzi/3sBn68vkVwc34zrxMm3IO3TSs15eI1uxZS2stHz95RpcmhcNEpRWHiwWzvQUouNxGnl50nDz/PZxz3Hv3TR50l0gCrR3trKUjILXJBh1GLBpjcwfS6dkZXiK2cWijIHSEmMWthjHSzo84GUaCFrRcj/sDrrtByldQiTF02FmFAF3YMuo9pFeM45akElZy0/4oZfpzKjW2ndpE2tW+d89YrlUHFvtLjNU7vd1s0OxYRl+YUfryAaemW4qMffb8kaM7+zQzy3breXJ1Rd069FXHNhoe9BsW1qF1oJLEbSz/8OCYd1LiUbemWbZZVEjGLBbsR84FVj5yGgaeO43g2AvC6IQWOKgNV6LpBkUTbZbeiIlOAiqBiY44Cs8fP8s6MkqYNY7FYsZs1pKIoD0iAaUsBruTpJxE+JJEum6Nj7mxdepEZ3pIwDTANI9zyM27WmcqVt/1u8PwU2b3V84JgRwGV9rs6qlG6aLeNwl2RWIU/DiwvixyAFqhrMmASbOgG46JWuNTJISR1XrDC4mlUqxIoqldhejc4+qScEtpXunHLOtJPkzM9/i//PF/QNsZy6OvEGKkuzxHhgFrLIvZgqPDI15cXSIkdArcPtzn7dt3SMlzue55dr7m04f/BhMf8Pf/wd/n48dPqQ4PMFqx6Tasw4atCfQmsjRZhEwFwTUVYwz4kPN/4zLJ/unzF7imJWlFH3UewDSvCHEgxp6UcbtsjKUeHWMkJI9VinndMibhsu94ah1Xyub6J0LUFpVKO6LKjfSpoPmobHxKFR1cNRlZNtBUxtxXTbVTYZxQ9Rh+to3vr1ovn1NeXubOBGuprMm5EFOJIHF865jDg0PWpxfEBHMsbxzeRcfIoyqPPpuJok4WNY7Mup6LcMVl29IkReV7uvWKC0m8UPvMk+bSw1XSvFCK6BZUCLdSz5HW3HIV0Qeep0gXhZg0MQivactbOvFe42h8wLqKqnRJnK9XXG5XBaKf0TYNi/kcUYKp1DVgozXKaKxyjOOAMi4zWRJI/DwBcApPb07JmqQvw88JTSexZ+vcTi/2Zt9lBnYzW6iAvEyd1TflEhX5+7lBuszjSHluSSpaqiFmka4Ycj9oCiGj0KWGa10RJAvX6KSVXJKZkGJtHM/PzlBYLrYjq6tLCFlYufMB0w/Mm4qYZjhrqI3icH/BGLasVp5nZ2uenX6PsP6P/PZv/gY/+LM/pf6Ft9mfK1xdMaQ167jh+NYBB1bjz1Y4Y7C1pVnO2XMVIUbOSpuY9D0pBLQIlavY6p5BJ3yUPEGtSE7KdJOVMpbWGqsdnSied5GLoLjwFT+0mk+tZbDXuadIxmy1JHTKUeFEe1GUMlr+g1lbSMrvxYgm5Rx4J/OSv8ZxvC4o/w3rpY2ybhoO9g+4urpktR6YNU3WMhW4c/cO77//Lj/4/g8IE7UNxde/8nX2lgs+OnnC6fkZQ1BQGYLR/FnX8RobOq2ZbTwLP7IePBd+5FMxvGP36IeazmvWRjhrHDr2/NrxPm9p4Zm2bIc1mzCwGTyEyLEV/vHRLb4xsyRn+O6m57QfmTmHVYpYOvxHL7AJnJ9fYcwWY+Bg0dA2DU3TZIUEo5i1GqtrtFEEPxIlhyEUg7g5n2RSa580SZu6LdzUz6+JGldXde6//LnuM6JT3JVzYOJCFdzg5jfLXgvsum2UmmQ1ypxKY1E6EKaGaokklaUrKlEIGpMUukzfyj8gu4ChrbLKm5rx4uyMgo+xHcYc9qP4/1D3X8+2Zdl5J/abZrltj7/nmsybrtJUZhkQAOEIECQFkESz2VRI0d2kIhShaD3pQa+KkP4FvUih/0DREYqQ1CRFsrtJgAAIgCRQQBmUy6r05vp7zLbLTaeHudbe+9ybmbgFFtXUyrh5ztl2rbnmmHOMb4zxfcWgYH8yZr1YgpcsFkvKuuVyXjMrL2jmv8tzN2+yuDgnC55fQfGSk7SVYZ3lvDvMqVzL3vkF69qhmhZP4PzxI0xjGIwnFMMhZr1msVozKAoSFNJ4Eg+pkoR1xYLArG1YS4lSkIpIEpkET4Ni5j2fGMenlWNmYXhynbutZZFk2LjKxbGUHSeuE+Bll1bxdJXJ9CrSwZsNai6IzBtZmjIcDDBtixRRt9QDTVPRtOtnsrVnNsr9g2PK9Zq6NlRlRV0bijxHKcWqrPj2d7/H7HwGIaozCwGf3H3AdDxCIcithuAxqqFKJe8lI/xZYLL2SL9iqiRzF5h5+LZd836VsHIHGD/kwnrOZw6pS0y+ptY1x3XOV1XGewLuGcvAB74+yXmJBbZSzNyYP75M0aMDbosVe9FhRXiP1AlOClQROrRV0RqJaRouLytccCAjKKCylIeTfdxgn4BCBkGnIUoQPcluZEHrd9k8jyV267Lm7Oxsw+TdsxeUywWTyZjRIOfs/Ayt9VWa/eAQ1iC86/RE5IZcbFMscKWKrAOQQpeblRKpFKqLf9IsRaUO19YEKdDOx/hLCcY6xZKQ1TKizX2JUCfA811fU7cNev9NZFA4b6PWi/Ms1lV034Un0TEeXDeOoFMumgZjLQ4PIdJ4rtqGHHhz/pCvNA2tgDoR/NXjfRoJzXJGFUZ8/fVXOLcVNsspRUKV5DRSM8hH5OMmcvGWNVVdMtSK69N9biYj7tLysB3w2LeUOQxs4GRueX045L3W8/sXCz5tWypaJpni9eMhF/MJrUpw1nZSHJEwK/iYt5YdNtDLNgi68ME3WFeTat3lp+O9unnjBrdu3KCuK3SSEDVPBNlQc3Jj76drlN/93ndjpYqLgq3eOq5du0ZR5Nx/dEbbVCRSR7Ef6xkNhnhnWS9WEZQgruC5TNnLE5at5Z3geT4IDquacaK5aaB0cF6veccrKlOgW2hkjfWSB7bm47Vhf2gZ4rleFNwUKd83c15Lc35VDUiDxwrF4ybwyTpW8AyvDalpmFRRt172kubd6uhCoDKWRGqE6AZZRmS0LS1LNDYdo3TkgN2oRwg2seGGuV1KsiwlSRKWy8dw/z7j8Zg8z2maJiKubYNvmtifqJ++BQ5HU1Ws1ysMBqU0KklJlOr4b3dfvXWm+9+8j65Tzx8zLHLEsuk6w2JnfpAxPk6kJgRLrhISLIlSBN3X0AbKHj2W6Wa37l1bpMJ6qNsWQsJkMmGxKLlcldgQC0JUfkCt9/jwk4/4pV/8qywXc/aLFIlFBc/AxN3da4kNHqka2mBpE0EtA5X01D5gvKSUgmVqadc1rW2x0xEhyxiUhlQ45Kjg3CdcFEcspznz2YxRWpGfHvLdD+7ybgiUSRpJqNOENBuQZlnUD3EhNnb3caiIJNDBd2RZWBCRLMsLS5IKhJNICVpIlE5onIrUop2Sd15EacaAQ6eBW7ePf7pGua7qzY0XId6UdVlFBWMfUCo2twYX0EIxzId427I3GqJUZP8a5gUiOISpWdgFj4qMorYcO08ePMdK4kkgH7CqAybUkblaVFiZcEHgo6rly0PNSAWG7YLnZM6BkfzS3j63QkUpLFYq1gjqRHL9+WscvjphffGQ+fszjlSO9kQXrzNM2a2QJkTNyxi4xw6SWEIlesh02+wcOsidqy6slJLlcskH73+ASlK+9rWvMZ1OOT4+xhhD0zRUqyXf/9Y3+OC9d0mzqDWB7LsiI7Hz4cEex6mjaiqscVRNzaqMytKxsz8ivn13vuzQXBkEAsV4MiFbrzZtVaa1Mf0SYq9gawzlek1QjmAsichJ0SQCrJZxIc3H/Lff/GMQEj16g75/s28ibo3DGUOeRZ4giWI4GrFqWkTbdux7W0BLChgnGUMlsW0bFzQfa29P94/JshxBVGmumgovLI1dY0wJJFgpqVVAFQIGIy6CozZLEhVoaTliSKhq2qblxtGU79crpK2psz38OOH0jdvMa4tdLxlai/JxXjoRc9DWVfjgSLOURCsUDiliq91qtWQyHvLcrVtdeBCoqgrvDHhBnmQ8/HTNcjHfhA6ibxoPlvc/+DHpePDTNcrQl5D1hknHdBriVJIdWiilIE1SGhcLt9dNQ11VKCmx1sfCXe+oA9Ra8EgFXg8JQSrmiadxkhvpiFmW0l5WPDiLk5KgqDV8ZDyNizuSsZYjIfl6NuS5/SG1jzSBwgsIGdPCcFwYLu9fcPFoTn1uqPdGnOjAMM9jnadvqBPJwKmNaxJCdFe8iLib6iozguy8xBCuxnb9pJMSLSOr2mq1JB+OkEJijGE2m22KDLTWaJ1QVbHEI9JHaHoyLusdaQ4jVTBhtCnHa4zBmBbrPMZG9vK6LGlsbF8SQjCQOUjBvF2zXM24/vwNBhaqtkEah0Rgg6NcrzmYTpld3iM0jlRFPiTnO6kAAX6U8XgxBzkiyLRbjHb7OmP9alnVWBsZ01WSMhwPqRcudgntIM+Z9NwYpUy8QAs6ACVgECzPZlRCbeg+DsZDslyjkwBEMqrWeirTYFtLXa+Z+o7GO4GQKkbacnuiqILHPL7Hq8ZAKvHLBa8WCSd7U2qd064rzMNzdGu4LQyl1Ky0oM1TGt8icxnpUfMsFua/c4lcldTVkksdGEz2WDeR6xbnkD5gnaGpY14yyTKqpo0NDiIya9Rtw/2PH/90jdJ3VSxbvdGAcR6dpEgZXYKofBTdVBsEoFi1FlAEIVmbhkrEOM4pSSUkRqUsVcFZoXhPtcyspCpLQqo4mg4ZLgwXrqYpFFbmrBcls6rmWp7SSMnQVbw59hQskBgSFN4JWqk5euOrPFg43OMaffoV6kHJcH/Icv2Qk+sHDBFkd++jyxrniC6L6JCMHeRMdol/L9iUkj1pkH3zrurQPyEi0dZyuSTNUnpl5954Y+pE4nxMKidpBiLC8sI7hG9xwqKl7jhUIS8S0kFCv0GLrnnYtG08I+8J65aKQL1asn9ySCsEy0/uczRKSXPIlEYJyIsxDxZLWuc5neyRLT1BaLzSm3P8YFjwaHaJGv8sUuZ4Z+gJp3po2PsIMPnGkCYG6+YMR2MOD/a59+BRt2jHSVNIx5vHU4bCR4rJrh5YOous2ogUB09FYH0/INOIwiZpQpplZMWAcZIhBgVipLu3S5q6RghPcAZpK/aCx9uW54cahKCxJV/WCev1nCVzyuAoiwaP4cvDKCi1Egm1SFk5cMpR+sDDxjJb1kyqCidSjHHM7s4QLkVlGct61RWXCNq2oWlrRsNR3KBkTE8FZDcXAuJJvtH/UKMcDIY4Z7HGRsmyQCzTUpokiQpQSig2gq5E6N9JjUjirloHj1Sy4wkNBOdoC8X9NCeMFA9X51wGqJVDVSV7QfDmwYAkGfJISVbBc3AsqFcPaCQY4dC+4VgbfO0ISnfahhIXHMtsjwfDAY1Zgh7ShIR3zs558aVrtF+6jg0VJ3uawYcPOP54RqpBa7FRmN4Acv3C5ENsldp5LNJrhs0Oupsacc7RtM2mgKBXiIIIIiF2aCZ3gJzUQqoULYHWtbHZV/eAQ5cS6T6o1/LAOxQGkSRokfBwtubdiwWPmjVfrVJuHSYUMkEFgQqSy3TEPRRV0CwenZPICZ6tC+2k5P/+w28DoMZfj6BTxzl0hYNVdLxCPrAqS4osVkqNxhMOJhMeX9wHV/LSiy8yrJe8VOTgOk9YSJSn63GNu3PfWKdELMc0jaBtLeuVJZprJwsQoHE+UrF4R1Hk7I0H7I8K8lx1Nc3xPhauQjjPQb3EGI8RgjrzGAROSRobaE1XHYWgNVAFWAvFKhEsTg+4MJ5z07KyLYn0XK5W6GWJz1N8onDBIZxnOpp02ILqRpKOR2m7KP/UjPLweD/GkesV1bqirZpYKjcasDedUJc1QkiW8yXOamSa43UcHKUlWiV4laLSgjTLYxVKJrnAkKyWTOsSrTNCW1LWFQoQPvBI1QzSAbUXnNqW25lhbzKJ1Tw+pmQ8sGjjToe04BNynzB794fc14OIEL5fY60hPRxw67WvUocSm2Y8OJpQ2Bb16QUHQaAJSBFpkHoB1F6dqmfEvrpPCkJQ3XMKITS9bF3vufXVO7vvUSoFqTaaiH2BOx1/0fnFktwsyNIBWZLEetgsZTIabmH4zof01hK8AxvZ4YdCcZOUDz2IvOB5HxjKEoVHEw0gFZ4HF0vuW8fEpSQyRdDx6gQQ6YBPLy8QIkXILFbP47d1TH1uDkBIvIzUGj5AXdYEE8jyFLf4XRJteO2Fl8jvf59JFnOjXbdaN76xmN+HgHBdDbDoKpu2+flYfhh8ZE30HmNjuOKDp1peUM7mLAcJWZGSZhlFlpFkGVlSoBTIHEQSyJQiIzL2WRtojaMRvuuZDLTeUQTBQbB4KRGDDGRCZQV1UDgJZ3mgGg9YI5iLjE9azzxIhuMxxrlYyCEAGZC25pXTU4z6KecpP7n7EXmeMx6NuXbjhLZumV3O+OGP347oWegS6yHj5u2f5fS1X8UUCQUhlrilKWQpVgnqto1d38KBqDjmLmZ+h4ycTEQiLtO2WC15qBtupRlvrD0vuYBNYk7NCDDdjbMe1qEBKUkJSDRTLD/jzrimNMLVjLzFpRK+9kusw5zFYs7+4IhMD6n3LX9WNPzSWjJIJQLXlUR1Rc56WyYRLSHmn6J7El/luzI7lWSRAxS3qfrZlNT19a9CgEpAaIxvaV2c8J29AoFVabm3XIOoGOSRWmKQp+zVJQiPlopURZoxiUQKSKWIC4ivUT7h3XPNd84rJvkFr50k3YITXSp8y8PFmB+ZKUfugjBSBBHZ6ZqgaacHfO+jDwjpLYIaR4a7TejSu+txTGLRdxQtGqSaXCcgJdX6El9/xMmNm3zwzrt8bVKQCLnJ726M2sdGaNW1eUWgjVjdFToGgBDd5ECU0PAdezxdrlTolAYPxmGEI2kb6pVBhVWHoHa3TwiGw2GXrgikRcYgzSnSKAlofcfmFwI22I7532KsIfWGPQFCWG4ogfWxYL0Vhj8VCd9qPTorqIzZbBbCW77iK37zaI910v50jVJ4aMuG87Jhpi6ZTqccHB0AguViSV03mKZlZQ2XInD74BCco1wvqBYrqvUKZ2sEbUzEu5a8aUilwQ4zDid7qHlL41pMlrH0DY4KLxw3rObVRcv+eMT9VPOOAolGhYT9kCB9STAC7QXOBbQIDGXger3kdjJAC0M+VgwOhqwO4L+/94gfvfcxw/EDbt26xd44o6ob5qXjWjFCQKfQG30rISLre5B0zbO9i9oXwsVO/aAg0WncKTuG86ZT7924sJ0LoxMd/Ta3rQDqN2AhIB8MGUlHEILgHbauuVyuuVjNESKQas0gKyiSlEFRkCaq0y2JdIizkHKmDqnGkksn8G5OCB4nQAVHIhzT8R4nap/1ouWx9RwqiRNxkTFyu7uH3hJ3DHLzTNgpbBCC2rSMBgNynWDdanNdIcK223+wrYbp6Dl6KFEQNpVHu3tLX2cauvGMY7qT4A2iK7d0BOfwIapwiX7B647VatWxQFjOzs5jy51SMbTSOv4uJTLRqE5aT6uE0ShD64RA3GUba2iNhQAJAeUhT3O8j8ri3jvE2rBXNfyVsOL4p22UiUs2Nyj4wOX5jPnlgsGgYDwaMBqlLOdz3LKhfPg+3/uX/4SAJxc1SkVh1IEzDKxFCMiE5dhWHE5zbkxvcPn4AbZqSRCkAZypUNpibM35rKYpjrhzesiPjnLWZzWmDcxoOMjjwA9Lx36QnLTL2HQbGiamZuxS6j3BzRdPWVKSv/0d9h87itKzPF/y4f1zDveHhFXJcu2oJppimJMPx+iOIuRcR5Vnh0DKrqxuM0lgpxEl1kmKuH+GIKiblhDUxkj7qhytkpjTpUux9Et5j8DaBu9MJPASAZXqmEdVHcVJCCyrmvmyJFFLtNSxjzFJSNKU+Tgw2j+mSEEuz5DIyD4YoHWOVQ1DZThkTaszvnnxkL+aZUySAo/lRy6Kx4riS1ypVOh9y60juy1qENB4x6PLCwZZjne7k7ArbBCR1YFu91MdMIhtCV3pZjRgcWWR6vbPKCTkPMGxKebfxuQC/HZHDSEy0YlOSDZ+VvzQnjOJndx7PJpN0bkHhIqF8dHFjuknpWOrnE40w8GYAkHWtLz1+hssm4Z7d+5sRHTzqmF18ZhPlnf4b37xOgfPYGvPvlOGvoucrr8pXsxyvmS9XLI/HnB7/wCGLc3ikleG9xhrwVg6MizaR2FYhSFJPVoEjGnJWHNj5WiTIe8nQz44X0YqkCB4XU15bXIDu7igPhkSfuYNPloLblx8wC+FivttRWM1lw4eFpqPU83A7zG2kqGBTK65SDUPpODRB/c5TRsabZgUOacm49HaYuaXnD96RLpcsLaaWT3jhRcnnB5bklQRhKJuJ2TrFO8VIZRd/+VWTUtEm8N6jxcOLSEN0ABtiMMsusa8qEbsQciY55SxBct2AJEEEttglUESGQUCsVE8hgixwkcKQZoPCKnv2OkDjbFU9Qq3TPmwFsxfGjDIGuTFkHdWZ0wGGWmS0oYAKuGvpCUvtXOcDDRpxbwpUTgSn/Dtex/F+54c9xNgsyUGJVAWJllKbVpK6zp+o/iSNgSCs7Tz76K15q03v8Y73/4OlqwT4FU7rW2RqFrupFs2Dd+9MXd8uEJGWTzvwyYVBzGGEZ07LUTkZ5V92N/XEPdUY4FOzMeiUJu1ZbMjiz4dK6NhOgg+kmX5YPCdCFAUx1UkMsEkGXfnDSY/xZiG6eEexydH5HnGc9WCX3N7HJgjRnr5TLb27PLqu45EENDliKRU6EQyISN7OCfJFEeTjD0/Z9p4ClOTmpbEBpRoOTjKeP7FKUaU/Oie5KRMeM3HONEq+L5dU/qK15IpfyU9oBiluGtHfLB6xPv3P+bHswQxv+RmsBwtH2DdkJlVfJLAGSn3ipzLRNFmDm0kUgc8BTeLfV7ILZwoQt3woKo5D5bWtDhXM0w0VgRKUZGPxii9jFJuMkGECSlgOq13ESLhr0fgu9yldz5ScfiAloJGeIKSlBgubctISAa9dqL3GOlBBQSGsWs47nKWAjhoKpJg6FvCemdxU5aKp6dsRbCh01SJIlEaGUaMhgdcczBZPUa0D/lodi8CPEkKIeaSJ5Mpx8WAUTYiu3WKddBUBpyKnRldrHhlFgTAeRK7olr8O3z2BujT7fzo9Pq8N/jlnzDdG3P3k3sED6bvWRVgfeyqMK2hqmr8uolN9CpFyMhssGlwJe6KbQgYwPmAc4EQtoYmevDIRZqXDR4XJFvz3h6i81D6x0I3rUOXwtnyHfYucn8P+l1eImwMLVrnmLeWD87v8ZW/8Quo8YCsyEGA9J7i/BP2mdMm+TNZ2k9glFdXsF4HQhDdkeFwyEBKVvMLpEmotaJIFVI4ggyQQDYesvfydeqjlCYRXHtxnzc/gen3H6B8QzbyBLvk9ZXjVweH2GsTfvAz1/FtzeJHnvc+uMQIySJI3nUtp8MxpU05X9UsnGddOZQBlWQ47VkIhQw5zmf8sXV8MPPIeoEvcl548+tckwVnF5fx/l2e8xVt0M09PnnQ8OGDNTqBrBhwPghUmcVkEh0ShHHI2qCcYei6TgLrCK2l0mAHgpnWnB7f4LxeYNoFtUjwLgIyIXikrfi5V25z/uBDvjS75HXT0ouY6mAYG4MnwXcs7aLfGa7OrM0k6sVsfbCIYBlWH/Nq+xBVrUnkBSpPMK0BIWid43J+ydl6SSI1A10wKHKyYkSaKszxCf/6f/wj0BNkdtrFjd1uREC1c8zs/4NpHyFW7+D2/+fI7Fp3etEazPpdBJaf+drP8s4P3yfZAa0DbCgmizxnb2+CtgFTNrSNwdvINldXdVTb8h6EopKi8xwkSB1jzh3w6coXsHVhr4zZZ83rnd/DU7+LLlv1BHLa7aguQCvhMQ1mOGZQFAipUS4SqBUGBssW3S5wov7iE+mOZ6/oefLvEAEQKR3aWWbVnHyokI0hDQFrNZW3+ElKsj9iNMqYHu/jn7/F47Tg/mpOlmgO2jmFcqAsqyTw2vSAnydjT2m+by313Rk+BFIm3PSaReqoneDfy8BEDvFaM/drzpzBJEknHAqHxR77e0WkIXQeVSgemRFpUWPNmqZ0VPUFi+Wai9klZ4v7PP9Lr3GibnHn4wecXSyoW4NOoDm9pHz5NscvPsdeNmR17wHLT++yt3A8N5uTuwrtBUFIGhVIE8l5MuCFGy/wz7/9Dd5ef5MsG5CqWFKXiEAyv+RnnnuOw+KQo/mCm8ITupRED5pEPqAQvZK+XjUENtsHbCZmlxkFFAHPsH2IDgbcgICnCQKhNEprghAUIkcnKVpIKmeZrR8hqxmjLEcMB1R1DTLtdoYenPEE3+Au/ymHQ8Ov/sJf47/7wz9CtPcQ2Sl9S1gIgbD6BkpKqrKNNa0iMiM4IaJeKV2U1xXcKwVqkDEYdCzqDCPC2oFl67ImGMtiXVJVJcELEFHCXaooehQ92YDuNjYlo6JW6FDpOHF3ciyfY60b5kIRGQ68DzGE2H1N9xkCgROKWW2RQ8WgDw+6MrtBW1MYj3I5uf8pG6UTW3g/uq8ahKfIAgdKkeO5nmn2TydcXi5wVuCdoq0cq0HD0aBlMLyGHE45uz9jWXpmF2tYLkknhhOrOBkf8cLNF/j0z37Ij85nrBYBfXfOZaGZZxIrFXkLi+WCx0dHcHJC6y3nsxnz+ZzxZMyyWkc9w1FKU1Z4t+bi4hIXAmvTUrUNbVMjO8CAjnTXZzXfvbjHr+7tI4SkkZK1KrBixHwwRJmWTx8+RB1cY68oWEhDuzijtpdMUofXGSZJcUpSLxSf3D3nrP0BRZJx+7VXOLr+HHuTA7wH1TaYs0f88Ft/wsP33uWFo4NItd8BKKrHIb1HBR+pK1H4oDqGhG2cBaKrwfUdJ41GdN3zOkiQHhtis7MPIjaAB0GCRHqP1oppqlGDIUqlSJnzyfQo6owOvwai/04PwhGW30b6C/4Pv/n3udhZqaXo+Xg7vsPQydEHhxMBI2BlGowYETAbkxAh4G2UHVAhNpeLnpWdGLNnhSYpxoyk5oYQtK2haSxNHVMP67plWdVUzmGalrSMjQ+DfIBTQOKjAjg9Zr5rWVvDDN1JxU2xl2ePY0sHMm2OjmZEErBomlYzPipQSYL2HhEkMggy35CGJeCotWb8DLb2zEa56bXrL6BbFZNUcl0pUim4NUw4zTQP0sDHF5bGZYx1TtsKzs8C+QQWzV2+9fZHqOEYFDyslohCc2uyz53r1zDpmG/up3z0eI3zgaqxtGswqoPACbTW88OHD8nee6+rLLIRPIGu1QnCR590pU3bO+Ccw3mHEgLdJ6u74noVBJNGkKwcF+clvhYYmWGyAjeYomRAzB/w4afvcjRbk4SahV+z2p+wvnWLqmm5WJXUTnJ/YHjgHuMe3OXGc89xsr+PCIEsyxmOxjx68ACzP+WDqmQlA2dthQ+jTUG7FAHrAkFlBC1wvsXVDWnweKnoq09DFwgFRMfIJzY7W/B9z33Y9HraDmXsaTJ7smohYzc9ODyOh2UZdys52IQpAMEZWH+bLNUcXNzlfr4XR1ZE+s9+kQjNA/Ar3vjyV7nz6b1IIKYCi8ayQpL6umMUjK1vUXBCkQRB2hNR7cw0unymwuKDJ9eQJwoxKqKxhAEmKDyCpmlYLUva1kBw+LZlsawR3QIkhSBLksj7IwSiq0LbeL6+16eJ/ZMxZdOP7facdj3HyhjqENg/mNJ4g5RRY0WGWJ2lPbhuL3uW45mNcpzkTCZTyqpkvl5H+MEHbNsyzQwZgomDA6VJjoY8xHHRpIibtykO9lhWhvvOs76/pq0TLmeX7J/scXz9Nu1Fzf3LNT8I77PSl7yflCwHCUjFsq2xIeLcwnmkDbRCEWRG2XqCdTEZ3Xsnm5Hrg/0OIZUCLx0SSyDEjpCuCEBISWIEyeOGdgFlaZk5yfC1lxndvs5FNedYVByIhkla8vyBJxkltHKff9uOqJIcpTVusWLVBhoMrTJYAUEphAtgHPPZJcvVCu8DjROIdEwdUqxI8F6gdMRVTALrLOGiGLIscrI0ZfTwgsHlCt3J0ydZQl6kKAGmbXDOo5UmS3PquqZ1hi3aIVBKg2tjWV8/Afs8YU+DCaii4Dsffxp3yOwG/RMB8GYOwfArr79BsAvS7Np2qGWXNhCSIB0ueJIkwZg2glFOsKgCi1azn4yijouUpKlgkEjMat0VBGxLCdneSaDTQfViC8aIaDgqgJJRBGmQCQ6yISBIVFTRsq2lbVrquqGpa6xx1E1JXcdC/jwfRARbCFRH5xK6xeFq9rRfogKiEwwEKE1Dg2cwHWPx5KoTCQ69VAS0qldH+4uPZzbK/+pLKW++vM+ySfjOQ8P7l4Y7Dyt8LckGA05GhnEmIJVoaTkoMj5N92lefol0NCIVAtUsWb3/KfPlklBd8OsvDHnzAAZna4rKkIY13/I1NJFhTQmBkmCt20wuK6MLJgJIH9WOeuQsKg7vGOTmrorNSidED3H3AyzxAZyDj8oV2VhiT0acvvoG/vZt1o/u8BtDA4vHtLMLRNOytC3FXHL95ilvJmtyM+c5VVAeNzwG/kQL7rwXJdCckAiho4yds/QVKFoIJlnBYyeZrwzWgA8tba6QqSbkEqlbgmtZiwH1yYQ6eI4v1hzkK05OLcWwK2pwCW3jQQ7QIkecR+8BF3DdKi8jLRsuBJCd+rFzOKXwQuBIYu1ymvHDj34UkfVk0qmbdftV/SkhWH7x9i3Wn3wLN+2lAURHxNztlCZqZownE+B+HOcg+TQEfu/OY26lES3O0oTpKLb4jYqC6ycnjN2KAZLUeoJpMG0NIRJF42IOOIQoVydUihCazXYm/WZxlkFERn4hSTSkOmE0TKFzIGMqxtM2PlJZLlesy4qmMhF5FpKAQum466EkOs26etr4PcpHYvKFN1gCiU7w1kMagxDlBZmvEbhtSumnaZS/+ErBzb0ZVjneemGPGs2fvuv5w2/eYZTX/LWff5mpDjRlTe0sLQWL0THvFyN8OqBFELyk3DOIwzv8+rUBv/DKkJzHyGyJfrDmS41AyIKyLPkjEyeQ6iawDeBk9O59l4IIoWMb2xgfscWs73uETV5+I1fQ4eCRPCrmuCBQa8kHrWE8HvPqG6/STg750Qcfc7ReMmvOadoaQUYuoFWOykq4qHiukBwPNWNZQeY4wfCD5TmpafB+QAgqKoERIRjZqZdKGciVQkjNUirW2YC8XTHONGoSu1EK48lkwF2UuPSQR1nBg8RwdDIlnTYE6Wi8Z123lLVjXS0QXpGTkU9TmlWNq2O6QMge4o9FDdtQxJO4GGdqGXVeetRRSh1TCsHjXY1ffZvnTk54sbxkjeZaFqXUrT2Lxeod+bFbf6/7BN3FjXHnqWTCI2s5zBPqck0zm9PefRQBKKmZ3D1noj3TJOF0POVglDEoRiRaIbyDtoourHW01mFDC8F21KoO6SMRdL8jye56d6lx4nwQSCVQWpJlCUJIDo8HOBdl340xOAvLtaE1jra1lK2lLGuEVFGhWhkSJTBCcGEsttsRcb7rbQXtLKmrYnztRRSO+mka5ckko5BrjLAUzpJXhqNW8+X9lMOhIQ9LhkJSCAhaMjgZcqks7/aNtQSSVUvz8WMa2/DD2RlvXV6SaUnbKkJryBYtL6aaOkv5M2VZGbOponDW7ZR97Ujk7RxPwt+7MTAdlB49XdEtXCKusCKyvK19wgM/YGASDhgwclOW8xkfjo5IXn0RL/dI53fJqzuMlitYrzkOEisbVoWnSDPufvKA5dwQXBpzdjsupOhSBkJGmXCtYg/i/f2Cd1884LVVSTo1pAOPdgmDNlDWltoYTP2YkzTH35Ls78XeT4dmVhs+OrugbAMWhQyOUWK5Pt4nGw5wD1dgLcIn9MrTiHgO8VCUHbGtCKAPTqiabyPy50Gk204QMwO/5NWbL1OePUL6gmI5R2uNrT+Moqgyjbld0Y9/9w39TisFDV2qIC9I0pzWx13aOM9Z2fLYW6wp0XKBloEi11EuMMvYKzSjRDPVBXkiyWSgEJ7EO3TXrhWlBP3VBOROZNxF4xA6hvvOcG2nQSOVJ1MAksFgSPCxaMYF8F5grKUqK1ZVzaJcU6WSxlumkz3qqkYHSbOqWLrA/vwC7x6jOrLp5KdtlCNZkDiHC5ZzA+99+JiP7q7I/YDCpdSzljAtyJXGO0tpSrLW07gVSo8JrmF+fpd6/ilvDMYcjzzl6oJ1SLi8UKxCRpJk3DCKpZboROBbE0EMITf5KNhxpz7LOAUbkVofrsLY/fv6DvooIye6hLcEq/CV4p3vfsRXvjLh13/5r/PHf/L7PGznhNEBnzxyhIeWnz864ZXrE4rLMx7WF5R1yWFSsJxV3Ltckw2uE1RN4g1NE7lag4jdJCARQaKFQOsULRIuErg38XxpOAI3A+dIMCSZI1cZF1iOR5LDgcaPBa5cEFyC8ZpZUzEPUKsEgUB6hQmCqlyTC8H+eAi1wBmN9SpSXggJSuNVglMZsyLqY9ZNRWLTKFU3OYkeieja1ZoPAfj1l1+E978HnXvWH1KIrnZ0p0qmQ2wkUVIOHTVphBMR9Q5dU7mPFC1ZokGlsTJKQuMtD+cL3GxFohISraC1FEGSp5JhITgZ5dzcn3A7yxjmI7QUCGfBWfr+X+n8hhZUiG2vi/cBGXqxwc7r2mVuDpEyUohA0vXa5jIwyXKu7U0x3rNKJN/86AFFMubs/DF+74CTg2OuHx9we39I9v7HXM4vIFEMdMrkGWzt2fOUbUmQ0DjB44eBi0dFJFcKgdna8fHjwMzWaO2YFkNqaxCrNbiHtMkJwq+pPrrPyXLJL54oXrpmSAeHtGaIF56P7wfOV5IPnWNl2tjaFaLar++kuvsi5Mh64p/aGeMmEEBue/6uJn1j+Y3okLENnUcvfRck4yQWKrcXa378vR8yfzAnVSUf/c6fQrHHoC4Z+JK1XmJwECQnWcZgnBAywc+d3Obmcsrv/vhD1muo1g2+N/oOkBcdqpekBVomFLXn1tqAWSG0QyYx/6u0JEssAwWTKaRZTAWsrKfBUdmSS7OmQaCcQgaLE0M+lRPavRMG+4cc6QGydFRnJb72WOuwQeKSIe3gEJ+O8SGNII0W/PCDfxUnxuSt6Gp78HaBX3+bL926ycnlQxoifYb2Wz+A0MeUbLbIuEnJThAqGp71HkWkYvGETbdHLNOLNadaxT5T4WGsE7JshNQpLkhWNJzVLaYyiMryzkXD6FHNraIgF4aphmmRUGjB/njMwXDESCm0bcHWBC0IIp6LDALhmyfjn+1uKvzVZX8z1xyBFhk8eUh5pCT3yyWv3rrBiy+/zCgpsFJT+IqjwxETMcVYi3w2LuZnN8p/9e2PeP56jvMJdx4HlsbQSrDBMneG1ULAMmCbktPhki+/cItj7XmhfMgnDzPsnmZdrcmlJ3OGNB2znBvuPTijFRmjMKW1gUrCLEloVuvIdRKiUq7r3C7oYsrOILeUiPHoayqfPrp6xQ7gkSEaZv9cEB5TG77/599Dq4QPfvwBdIuCaFakScI/+Bu/wMePLrnUCauT51HrFUUzZ+FWmMWSyht8gPO2olUlkANRUCgWYe8coUcsFRNjGM4uWIZLPqTkuMiYjgYMlEQIhxrE7ouytXircSFFyISlFZxZWMkEpXLQmnW+x0NGLJsD8voGs3wEOExh8Ynv1MAEQSZICqRTBBnTJsMs5+w8UlYImW/qR836BwRf87/4ub9C+eHb3RhusUjosDTZp2SeuNRNR4fHdXnWPm0Tuu1UdAUFPWt8LyHYq0L3BGVFERnhqwYIEuVjiuyTyiCdITUVe3nKpMhJLy/J1YyxVoy0ZJRJhoVmNMgZ6oRUKjCx7tb7iKiyMcKu2UCEK15avHUBjydIT609lY8o8GQ6IQAOiQxQCM9knDJOpgA78+2Lj2c2yvfWDRcfe1IUwgsOxwPUcASpZmHWzBYNswvLMMm5fu0Wq1VL4yxvseCwmvH91CFzQVIGponCNAmfvt9yuUhYuRoTMpQoCFLgpCdNc7IsitCYEDZV+kJIWmtJRErbtht9ht34UXbSA1diyvhMfG0c2V57BRB4GQAf6yp9n04gsix4TeEbjqoP8a8cc/bil/mdeyUHg0NO+JS1CxysBG0jKMuSc7MiqAIpBNZayrJkNJ1ub2oIUatEBERwJDSMxJppkdIYy4NqTZ0JDlQGIUeGEZBT1oIPzQCRj0AVXGQpd44Ua1egTYGQA1Z5ipMJkxA5SptWxpSAd9FtEz3Q5Qii6br4Y8vbC0PF47MHiPQ6yNiChLOE6j2GRcF1HxuBZQdj786xXvQossPT5Rp3KDGJOVgtZEw52C78+AvK4Pp8YugAqhB8LCWU0dORQpDrlP29I7QziKZEeMe8bgm+RYaAFKBFIBOBcZEwHQyZ5gOGiSZXgUlRMMhzMgnaO4KzUTmNyF7n3K5MRZ+jDwQFSzwX5Zrh3i1GwzF4iUeTeMHAWrT0mCwatgzPZnDPbJS/+aWXqLxltVozGSS8dPs6SFiWK2oCq+qIt3nE6Y1j6raibk3UVfAlz63fxwxPSfZy9mTK8GTEuVH89r0G5RPGekJWDAiJAiUZtILRMGc42sM6z2K1xoZAkqRdz57FeosQCiF6uo1+hetcxB1lrH4og9+ZSGHnRwd/xx0TejcG6HIvsfNhUdygOjjlwigWSrIMgk/Tfe5X8DoJh3pFGloymTIuBA/nDuc8q9WK0XS63cW9w7QleWb51Z9/jYc//g718DpVcJzJlGY4IogCUU1owwAvChAJ3inWFGibo0lwMmGdSZoQ8LkgoLAiuoA2wp54Ao0IuEzQ+qjeBXRF2/EarTUEHK1YsVzMkYNTJEn8nPpjvHnAr//Cr3D20ccUFpQSkYrySYekCzF2/xbQlZx1nS1Sd7teDPDFE8bN9g4SdhbGmDvs9EZDTIEEREzniIBuGzIRSNIUJSHkaXSPO6Vt7z3LpuJyUaNWDZlekmvNSEsGmSLPUyZKM1aKRCtGg5xBmpFoGXsyQ8AZi3dRmiFGpoE6SBpjGY+mJEkWuWNFRKxzYUkIHVseX6AtffV4ZqNs0pqsLHnhuT2KSYbUJdZaiqQh9RaZtLx0LcPUl5i2ixVEwHpLbiy3LpdM8oLnb0+Zjgs+/fAxDQnzquEeDXZ+ic6iPIBIMupWURlHWZYxHRIgECtNjHexkZWwsyP2bsbWfd3t+O+2h6dckc1EEJtIYpP37F/qVNSG/DSfsnAJ5dqQJJGbRQ4LLvyIR9WMg/UDrpk5w6xheCk59qe0BGazebdTxooTb1vacsX53Y/46kvPsx7e4E+bN8gnByyLIbNkjAkSJ6KgjeonaiJRXqMCJEGgVI4BKtfQYjv3MHQkXbrjS2poncdIR4sh6K4UzocNCKKpSXyLn5/HscieQ4oYIvj6PYSA6WTMtz96lwOh0FqRJSm3nN1Jn/SCRleBt75RuX8sl1tx3b6iaPeeCOLfmxCkX2dDv4b0Je9d/azo/vnIC6WU7HRE4u4mRSBPRATbshF+h/XaBc+laThvSsIikAhBpjWj4YBstSLVjiyJSmp7acE0ydEqIdUJiTV4a6mMom0Ee+NprAcnzjkRHJmw6BBiH6nnp1/R8/Erb3F9cYmmwruKVVmSZRkKSRpyzrMJd5zHNytyEUgA4cGmKVrkFFXJtYHnKJ/y3t05nz6qcEnKSjqsjryrAgdtiW8qXFA0jaM1ZrMihi6tEKTo8mJiwzq+e+zGldvnBJueup3XbX7nCaNka5yeKNX3QUhI1Ris7MrYPNIFmjzhAZrU5tSjE3RRoof3GdgCU1bcv3+PxXrFeDxhMpmghGA43Ce5pfmD73yTud/D5i+QFKdY77EiqhBrHEpIVBzNaEQhyq6lUqJ8Q+UNVahpnCGEyLjXNi15mjJKhzSiwQSPEhnKQihbElsi7ArTVLRtRdksSWzNByIm/VX+PADOzPDrH/DKSy/x6d27VCrlLBDrVJ3hvGk2C2E3oDi3XflEV1TgZOz9l0FQyK2KdURHBdui+q7Txftul32S24ini0K6uxa8jUKxritVDFtsvt+LQ+hTUrHlMNEZYjiI39k1NVtnmRsHpsGFikCUbM+kZqBTsjSlEJppkpPIjHfWDUsvuDkcQehgPG/RviXDRBWwp8KoLz6e2Si/UZxya3TAYn3Gjdk549rg0Nh8wHw05aPhKRcvHCMu71I/fo/x+QX5qsIKz4wG4xrMouaTh2e897Dm0qTMsgyfyo3ibc9dGmsmdAyme0WNbhWKYGkPFsQb+IRJsl1er97DLYnF9rl+E6VLu2wYsjvwAS9QIsVqzacPS169PiXTGSBQKFIxIvGa4CvupWvuCoE2a86qf89s9hCZ59y8fpOXX/0Sk8mYoii6HSrw8P49vvOtP6MNSxpzjhJjNA2eaSQcw8fSMhRCxJrXVipqfNwpETSAlRovBMbYuOwoiS8rfNXi1gtCW2KaGbZaIVqDdTW4iuAdOgRSoVGJgGy7kIUQ8OYSQsPJ4SH1g8cIEsymagouLBwc7HP/4SXOVEiZsO3+BDqlMi/jPVTE/KwVXS1oIDLhhW3tKSKmLmRnjE9RlfXea+gRUrp4c2dB9d09Fv1sUJvPEF0huQixQkh2+iBSaqTSeOnxSVeALgYguv5Xa5g3DcoZ2mqFDookLfhhq6lVQiIVwVpaF2hCxXJ5ztKdwVB0nE1PFg9+/vHMRnn/g0eIm6cs917mkdznK01kkL6z9zJ3Tr7MKpeUOkMdP8+1F25zcve7+B+9S7NYk6QKEzQXVlKFDDmdUC8rRqnGNoEWNjtfXO3jyhqUJDhJcJ3liN5FEl0+iU4XsM87divhBsre3s2AYkPL0X0+ImyalYXUHR+PQCiFSjRaa6TKqPYmDLKCbHiCdlP2x4cIJLYJOCuxTuL9ACemNJkFfYrPP2K+/BFUKddfeCkqLdtYLSI78iipFDgFPiPYjESOcCEj7dBNLVOyJEeKrnjCWwrt2MthPr9EWk/hDd47qtUSv1qCb0hMg23XLINBU8Y41xm20H6IhZhdkpyguPHC8/z+H/0OQh+g86OIMJoLAI4ODrj38HEXRfUmJ3l8dsarr3yJ+w/+CFffQyWjrdUQDcM4H1s/lEQEWLct92SLs1GpmRA1QpVU6EhJ37m3YcN0EW91BHpccF1ZYMeRi4vUmKJ3acU2dhNbc+7jUUHsnRYhuraim3cidjbE0s4eHQ4CgiKgSNOUYTrEe0/tU7xIMDphXjdcv3aTe59+wl2gKAZM9iZcywN7ScpyvkYPEpJugRj9NI1yNltjzV1uPX+NdLTP905bjlZr7tea+aPH6L0h00Kz5wzPl/d5JVzCtSn304yF8YwPMvz0iHK4j5q3rN67Qz0r8a1hVhkcsdzJ97Fh6BhZRGxJ6jZSoq6D7wQ7O2PruxOI6RIpchAC163ICBAhQYQCKVOEVohEEXSMF3SaodKs68tTmETgco1ME1KVMhQZiUzIiiGLBZhqRaIT0iSLaZMOSvchQv64vtUtdqwopa6CICGSDvceABKEbCmGimpZg69RMctNXS/wJqouY1tCvSK4mroqcc0cEdbxyr1Fe4MWDkXU08QLpDPITYqoW6Hk7t4TSb6Gw5z1eo2cvIUQOqKc5dsAJHIziJv5EAicXDvlG9/7LsgCVTwXUxw7fYeyQ5mljKI5tYZHvsasRES1AeEtAtBKkacd+6Gg0wHtDbyr1Q0+KoD1jmmfsw6fAaH0AFJ/mVfcqb7jo3dtRTdv5ObFvTzFlc6oEOem1hovNH5HynA6mXCwf8B0/4CsSDl0JeajB5yfzRBZwjArUIni6AtsrD+enaOHnHXV8snH91gf7WNGKT7M2Ju9x1GpyK/tkxxd47g27C3uUpuStRWM9oewbji/XNGuG0Q2ZyoGnOSKd9czrp8ekC4FizK2wODjpI4OZOzj6ystvOhEdHpS4P4VIjbuOqGxaU5SjGIJmxRoKaMCsR7g1RhUGjUMpYxiNzI2JwepCSrujqmOBpllGVmSopAooSmKjFQpnHcYY1k3ZXSROqYm2bnWBTlplm/SLT0nzZUYNkQBnDRLoWk5P7+L3j+iWl1Cu8C2K5yxpNaSGhsr5n1sKFfBkQqQ0iOEpa9MCpHKB4nrvA2BDCo2SIttDi7O8/5cAtO9Pf70W98AkZJMfrbjzrGIYMiLPC4IHchyZa+Uirqq6bfdsF05AfBCxAVQqbjAqMBcBSqTRiDNWYRwCO9Q3pEYx54LFEqSKR3j5gDxqlRcoDsV5X5W9te9W4gDfdXO1oP6rCO6z/GXXW7eXYAwhLBDE7Jzr7uY2IfAer3ixemUNEs3GEduHMeTCUfhmNI4nImdKs9y/AT9lAlGGla1Jbt7h1FWc+hm7AnP0eSI2VDzKYr71jNzB1TiBCkT9sIZN/yMwrakwRGaR2QqZVFLxPqcl/Ym/MJzY0ztWDaOu4vAp2cVl82AS1diEFgRJdmDlDipcEmCTFOSLMenY0Q2QWkd/fpEIbTciIfKbvR9SPBkeBH5PmOrSSQv1kqzNx4zHAzIkowsLchUuumyCEJGqbrgaY1FhJ48WSC1iDqE8ZYhQoJsHKlOCFJE6D7EAgLf1VHGeStQOhplWq7Izj5AihWZbRGhhVgugQyxzK0PpNRu+NU1Lcd5Fej/8/2M638XfgN2bGdk/OEJHJwe8ft/8vuoyV8FOcI7j2svCOYhL7z8Ovc+/TS62iF0gEjnnvb6m727SYheS7e7FMWAVHfMD0BuA4ohXglCcASZEILCuZgP1N5jcCjnUV4yRjORWWxpCz3soDZyB3EMFNL5zh2Nr9uktXbQg/jQdtvclmrS2W6fU+2c4F3IuHOje6l1QUzvBAGtsyT5gIP9A8qyjAuaEAiWiOU88vUWOUkheRL9+Lzj2VMiKua1xq3lVW14SzoGTuOM55Gx3Fs7vlUbHq8trc2hjUneodCc1oLDswUvDAYMixGXbeDhomLNmDN7SDG8DSOD9hXHBxpx6KibF1iva1TdNahKhdQpQSfYRBOkihUxMjLOiU3VRywspktkbyZgiLIKiewqRETHyyQlqVJMxgMGeYZto/6mFQbZrfqimxE9vaCgp6zwCG9xzuC8xZka0VqasmR2foYjB2ep6xrTGtK0E/HpqpBE93kyOFJbk9t1N7k7NvLPLBXsJleHVopu0nRT7akb34Mhn7djTPf3+ea3/5RAghr8TCQAQ+DLHwLw5de+xPs/+EFkMSC6lSJ4dID9vRGtaZGTX4wS5/EVG5jtZHLAfqJpXYnoFhflE4LqXilEd+86hnnvaIPrwhMwCBbeoIwjEYqkW0tdiBQcwCZdZMKaQuiIVguNC7JrU+7IujrgJ4KF24b9p80knv0VcGnz3h5VjkX2znvKpkENu6aJzqPwBFLfknc9l9622PB0Pvbzjmc2yuOjAzA50/kDXvcVo8s5jQOvLK1dsLeo+JnBjB+0OR/6ASpJaYFLOSGkExY4luuW2y9/jfl4HyUFrzBkzYBvBQlpStXA0ntWWaDMM5ppZMOWzkW4uh+frrg4eE+g16CIw6m6uFPK7W65Gdo+jSIk2gt0kEihSCXQeqyPuh1ZkkRQwDuEA+0cOLcRC12XC6wxKOHw9RLTrmM7DxYpKrSXCNMgMbgArtc93DGwrfJzusmz9nNigw0LnjZIuDqTNvXAOwb4xNFtzFc+v98hrl2/wR/88Z8gBm8ikwjrB2+h+YDxeIypt7wyInQ8rVLy1utf5l/++3+Lzp9DTH+Wvq7YebtZJFaLOV4lpMUEV1Uo0SLk9p71lxJ3sXi/JJogYlxqhIiFEd7He9F6XGs2BMxSQIJimCZMSJAhYSzSzsl2MQ7td0Apu0aFDlvfpGW29+NKFdjOLenWQLaD2xl0CBhjooTfTneMDDCwkPndqrIn/OsvOJ69SwSojSMzK/YKByZSEGpnsCFhuK7ZW9zHDq9xXuQs8hQZcpJ8xN7gGoPxa1xWKy7Hp4R0Dxs8Hk0gxwWPMRYTBOu8ocbiLGD8hpOGEKs6Ygmdiri3Eh0vzVZyLRVpN/gCL8WGiSB0O2hgyxkqfYf0WY8PJW3rqKwhNDXStXhrwRhS8SDmm3wgWEswEZyQMpCGmkHojE4GgjR4odDoeMNDdHn6Y6O+FSIYIxNFkN3u0sUyPWwVwpW50S1I7D5y5bcuPLpy73uD7xFMutwgQjDen/LhJx8TRIYe/WznuAW8mRHMGc+/8mUe3X8cEcgNcBJ/GiV5eH6OHt5CiWSLkoZtSVoZaiY3btEuW6y/JBczQqgiqrk9w62XSHTaw6awPfTuTLwuqUHLruMjIu/GeeamwbdwJhwT5SiUZ5BCkmgSBHkQ6A1Vpuvg1/6Ed47O5e9BHgmdV9PdhdDRqBBpZEyQtAiKLME6F3EKYsiRO0eCQ9K5vYjdm/WFxzMbZXXvHov1mpekRaSKtRpT6iGlGDAX+7RZhiHhLBtRT/ao8gmFGZCKgqXNOU8MIoegYg5KoIi5QdMpTwlSrUj1iEY6WguNsVGEJbioS+hs18Aaiw2id9nFS11+UwgXlZx8ABfwXXAg8AjXEJzBOUPStmjTELyPrid342osApkLZL4jgAgBKdcdi1ycOv2vogP9tthGgCCRBNKsQYqA99Aac/Xe99xBHfN5MRrE5tkQdTFl2JJQ+O6m0n989/PK53UxlOBzKCfEVqMD6NqXBMen1/m9//c/Ru/9MungOviAtRZfvYsQ8OrLr/Lh2+8CyaZyBhHpId+7eyd+9uitTUpBitApMURPZXp4TDFNSB6fI7UkaxWfzu/gw24rXkf+tbHTSPsCXai6e7FCRGKqbrhlN5bee5bCsQQehKgKl7QwaIhixMEyyTOGSpPrQKI6niYReeMlbEiwRA+CdcPVh0Cuv78yLlzGCxZCstCSyaDAeBsBIRlQQTK0DZr1xutxYpeD8IuPZ2ezC4eoyfM8LIb8gZK4UUqlM2qRsAyjbk0IGGmpBIQ2pQ0JtXdgKgSCVMS8m/ce5wJSRRbqpja0rcW5gLOx4dT6KHsOISo6hS4x3hdciq6yX3ZoYAgE51BihbcO0Vq0WaNdSfAW5WpkM0O6Bggo71C9O0tA6xLdxc0BgRM7EIHvGeM2j2yOsIMIbBhcQujQuVjzaTuj7GW3hYj8MSC4fvMG49GAB3fvbACFzed3caPauHpiQ8+8OcSTZ/Tk0W+dnn43HQxHXH/uRf7tn/4ZIjlgfPwrtC7uPAKDr77H/nSPZtVc6fro3bgsL3h4/hghEwaja6R5lEk0rcGWj8A84Otf+RqLGcyrBTelRqeKD85nSANWbIGazc608QnC06e++f6NY79ZA3vvaVdmLlKHOCrraZxlHSxJ3TIQinGiGOUJk+GQ0XBErrOYfgK8NXhrYnzrPKMqoPqKIylpgqXEsTaGy9Bwp7GgI5pv7VZEyJiW4KNAr+h2V8J/hC6R5tov0GjFJyrjYydiDMDWTYSA9i3KQ+FE5OHUEpXHVVYIiQqSsmyw1tO2TdTLCBYXNciAPh8VUbzYb+ejxFv8SmSILTrBW7y1eLNCuDWmMRhTkto5iTOkAXQwSEzMFQoQIgIzYeOmbOOt4MC4zl/sjBNBpGVk2xj7ZPeJ7HZp6A20fw2MRiOeO7rB0liatsF5w2q1xHuPbQ2XF+fMLs55/uaNjVv4mcdTOM/W+H/S4+XXXueH733EH/7Tf4pjxPj5/waZjFHCEHxFc/mvGeWe3/jrf5t3f/huFHfdnEMgzXP2jvf5xnf/DDX8Kkka1TGUkNh2hT3/Z7x0+3n+12/+Ik1Z8Z6yPJw94sPHH7OkZaAjkVh/5tuh3DyyE6awcTFDB9aFnYXrKhiz/WOT8spiF4mWcax0MWB0eMB4b4ROEkKSYWWyEbYN3uGdxZqWarVmtqyp1usoXrVuWK5XPGqWLJxn6QTD6QGDyYTLs3OCkFjnGAyH5CIwZxbBQQ8drvXTN8o6GXWQcLx6EWLgrJTEidjs7GTU7gshMqyZyuPmYlMkHatSPEJZBJ4E0fXgxdYpKWUkgjKGVDgkkdre1o9pq4dRn9407DUzRHBdUbVHia5WUgR0cJ1zG3eQIGIs4MMuLki3qMRZEXeAvoC5c4NhsztGztNoxD23aX+End/7FiOIcynJUrIs48HlBe+/9z5ZnpCmCVmaMSgKbt26iRLw3e9+F9c2TMfDDqmKyO7OPKNnnuuJgn+SIxAJiV975U3+2W//LotVRTJ6g/Ta36VKr1H7NUnw1Of/Br/+Pr/1D/5L3vvhe1sAqkt5yCC4ffs5/l///B+jildIT36LtY05UFmdUT/8f/DSrTGv3HyB//YP/iVJImmFoPYWKyyZ0N31dbnGwEYpbDOGRJR7Q3+584TbbUvZGYMIBEWvJ01T0jShKAr2JnvkWUY+yMmShFR1THWdJxNCVHHuU1RlY7mYLbm8nHN+fs5iuaCuaqbTKTdOb/LjR3MseQQcc8Xk2nWSNGO4d8DRteuxK2o45AjBCw9r3HpB00nIq2etRucnkVfvBiKevyB4T2sdro4xn/Ue6xzGeyw92hVFbDa7X5AgYxtMQgBfg7UQPNrUhGoVm1tNw9ifI4LFWotsKxJvEASkhKSjaJCic9z6lo5Aj4Rs71sf/wFXvPqwheW7/R66z1ShK5TeWcUjwhsVq7eN1RGU8JtX9bFgnMxlWWIePECIjFe+9ArT6ZjpdMJwMIiunmmZXVxEl5Z+59tCO0JwxQD7utyf7BAkwN/6uV/m//aP/wlleIHDL/0Ww8OXuLdqaY0g97GZPNjZZuA29a8df5EIgqIY8uHdTwkIkoNfQyQFhzJj7dYsHv0zsGd8/cu/zDs/fBuXRM8EiMpVIdncCCm3u/xWBnDHNe28kf7+bhFrNoCYJKLXWZqSpinT0YiiyMmyjERHQi/ZFY7QyZu3BLzx1HXNarlkvV4zX65ZrFY0bYNHcT5bYIyNIJxWKJ0xKiZcBsHRG69zcHDAwf4+k8mI4XCAlIr3P/6E/YN9sjxntVrhvcN6w9q1iGCQQpN11WLPcjyzUa5Wq83vkYZ1O9sDRDTVu9i0K0IHuoB2nuA9dV3i6pLENaRtiXYVwS4RokUJSIMlcW10N7TasL55HCFxGx2LQMD5rpIn9Ijf7pL6ReH0ThkVMvoTcus2RvBsB7HtbESIEN0hJTdseZuLF51uc49u9mbZpQ4uLy9JRgcUeRHj56ZBK91JwLGNhUSUq+dJhoInj3AlonymoxiO+Bd/+mdczuakL/1vaPWU5uIx1sau+4m0ZH7FPfOYw4NDlvPltsuGOOqeGAuOxxMEgfLsD8nKh5ycfJVFe87CPuKrb73F44eP6Am6dpyIKy53zyLweQwR/c30XepLKUWWZbF1LdHkeU6eZmRp9ETSNCGR23Gnq7RprGU2K1ksa1arknUV2w0vZjMWy3lMrYjIWzQYjbh56yZLUvaGQ0ajEUcnx0ynU46Ojzi7OCPJEo5OjuNc9D6yX0jJwckxjx4/5vT69c0OXxQ5AzeIrHdFRqHTjq7yLz6e2SiN7fvbou+9ScAGj/Yt0lpc0yBCBaHEti3eNCTVY4SzZN6RKEEaPAM8OZ6gDUJ2FRIy0i1Gp3PbfOY76e7+CCGgZJST850Cstg4rBFU/8xD9K1b3YoswoYvK+5NPhYoC7GpHon3Nxq8FDuhpugnj2LbGASdqmz3e5RQTxJItcQ2Nd5KEqlopSJVMWWiRH/2Aekjkrzt3e9OYgO7sikL++xj9/Ht5F6uVnzplTf587ffpv3w/8KTxV5nRNc+0Ypf/5W/x3s//GCza296vQU0VYWUgr/+a3+DP/yjf0N78S7fufwfgMDPvvUWg8GIs0ePI2L5JEK8ex9CLxYkQMlYNdW55koK0jQjz3OyPGM4HDAaDtGJijusjCVuwUfaECEF1nmaJhZprFdrjHXMF0suLi6o6pbGxpJGJLz+xutcrkvy8ZQ8LyiKgvF0ytHRMYtVyatvfo3jk5NIApbomOoQgn0puH/vPifXkkhT01VSudaB0pzP50wPDsEH9pHcnOSc5iO88hgZkB48n7UIPX08e5lds8R5F5HEdo0wJdYZhHNk7QJMizAGpQ1ataRCkApBJmpkElGyHmXrV1Av+mLyLskr7GYibcH9rjC9B2fYJrB9CJ34ym5vwNUVeucKAI0gAghxwwvdBPeb1FW/T+3GjXHd72bELsQguneEjlfGb93LECRKpYzHGXlR0CyXpHmOEYrQWtpEkaQqpk+UJBUixsNed2UqKu5SXUzSw+0iXGmOeuLY9XW3C1AQ8NHH7/D3/7Pf4t/84R8+/e7OIH71F/8a7/zgXYKXWxc9sKWjFIGqXBG84R/8vb/Pcr3im9/+Freff55hMeLRwwe44Dt9yM1IXjmzvo9DdXXJUmfkwzGj0ZjRaESaaIqiIE0TpBR4bzu+HhNBQW8w1mGN5ezsjNl8RlO3VKVjXdYoqbhx8zk+vnsWpRGkIhnk5IMBw+GA1gdu3L7N62+8wXgyQUmFkhKhFMtVyeOzC7IipzUtjW2xXUlfEJplWbNcNxhj8A6MMbRNTVWtuZwtuHP3Lkf7e4w6l3mdQeY8mTfQdT89y/HsMeXHf4R3DuE9mbfkuNjlLWLKWSUKmXXIGWk3/T2CNFaIwAa675PUcHXyb2YIEHe8XZQxXHmNFDFWEaLrqfwL0I9txUYP8PTfH1fsrmd8M0H/4iN0aKDv2M8deTFgb/+oK0qG46MTAoHlYsHe3hApJUkCWZbhcFRVhQ+BIs9RznQpkbAdhT5UDmyKoqXowZ6ny++unvd2pxRENvR7n3zCz7z55pUeVIEEF0VzPvjxe3i/2y3Bzvj3bwhUVcWPfvhjlBa8/vKXMMZwfn7WleB1C6XY5vgAtFakacaoKCiylEGeMd3bJyuGSB05cvv73NO7GGOp65bFYsHl5QVVveLy8jx2ZUz3+PTTT0iSBOs8xgSk0owHAxyKkxu3eOmllxhPJwzGI7JBjk4StJS88+47HJ1ejzUIzuMI4KII72z5CUd1i3Ue6yUuCLwPrNcN6xLu3J1RlmusiaFIVUUVMOctxRgmhwN+LMfU6hVenlpGsx9xxIqpWzOwFcNnmFnPbJT7fkEgoLVCR69jE8hH6tSwRTt7dytEd3LjIvY5mx0D273h27hj8+xT57FbptYzD+xO0s9LF/Rin9vv72XQryBB7HLGfJ5pbkEKjwtwdHSCkJr33n+ff/fvv0FdPyl5tuOOAnleIKXgZ3/u5xgMhrz1tbdo1kvWsznW2XiuO+O0MbYd71gIcWUx2uTwxOZC6JkWelfUe89isXgCZFHgRYwvdaTZBNXVv3e7BFtjiUBL9/0B5otlN/YR9BJKkOUpWkryPGe6NyXLU5I0iTFgmpIqFXuZRax9dUDbNlRVxXK5YrlcsF6VXF4uov5H02KtiSk075hMJhxfmzIanzCZTBiPx+wfHjAcjRiNxjStRcqEW7eewzgTG5dFrGbyQjHaO+Deowv29vaiZmfvawVYVg2Xi5KqNtQtNMZRVw3nZxf4AOvqsgvbJN5rvBgRkoTxeIAaHFCGMd+2N/mOOuJETGiT60xCy/PhnAMx53//OXNq93hmoxx0icLosfXiKrGnW9CBnqJPUffrdDdhNnHc1c98UvNv95k4aXb/vmpkn2XMuznEp3fOsPPPP/G32Jzj9tXx7GW3XYkgO0Q2uqs+BI6PT8iKIf/qX/8ejx8/RqBJ5ITD7Gtsy6oCqTym9Wdd2Vxg2fyYNlT80R/8EaFjDAd44/XX+Mqbb1BXa84vzmKoIMLm7MQOHNuPbNhewo4xx7/7GlKCiMX1Iepn7KLKIXiCkEhNF7Bu88/OR3qMWJoYaRX7eFoEYmNyomMaIkkpioLhaEiR50gkSRL1MJUCOkIvZy3rOhYazOZzLmYLZouYCyyrEtMahBR85a2vcO/RIy6XCxKdMJqMODh4nrzIKIqCtml482tf480330IpidIR3bXOY13g3r2H6KygXDUI3TXOhxbnPFZ6ZheXBJVjrKeqW4wxNJXh7NzStuc01kcdGBUrrchOkCqnltAKQUgSetEfEwKl1pjRAW56SpAHuKD5pAKvjriH4325j0rsT9co5Q6TrOwD9StxWDd56faFDRjyeUfYWu9nPRueeO3m8S92U7/4+SeNcdeF3e0cENsVJLBjsB2qKCWnp9f5xje/w/sffIgWY46yX2Wgb5LqCVIkT5yPgHB789i+/xpBWGp7gfErGveQyt3l7bff54dv/4jDwwNefulFrl+/zuXFOW1db1zK7Tq1E1luUCm25731Xru1ob/W7XltwoJY5Nkh6tuFVGpJkmbd++LfWZ4xGo0YjkZkWUGWphERd24bGgBKRte+tYZmXXNxec7FxQWXlzOqsmQ4GjKbzVmVDSpJI1u8VugiJ0kSHs8uObx+jTd/5mucHJ+wt7dHlmdkaUYgYFrDxx9/zGBvjGkt3oktzCcFZxcz9mdzWucwTcAGS2tLjPPMLkqWS8OyPme+KllXFba1hMozyCbMmwSfDWh0jhA6ohpSYoSgVZHXlQ4P8YBMM/YOjkj39ll6gXYBEWLI5qTDCU+jFOifckqkBwGvPLbZDbpb379GPLnv/Cd8/IQnKoTg5Pot/tm/+B9oS81Yf5nj4hdQMtt82FVCLugT5Vu/WCEE5MkxOceMeQGCx7gVs/a7zC/u8Y3zbzIajXjj9Ve5ffsVzh7coW1bdgb5M2Lfv9yoSyE6Rri4m2ml4843KJjsTxgMhuR5jtSSNEtAiO1iQ+S2bdsoszebzynLkvVyyXw+5/LyknVVxRrVED8/UZKXX/4SSVKQlzXHJ6ccHB5wenqdLMtio3mW8ujRI27ffoEkSTauNAKCD0itWaxWXFzOSZIM72IxuzUW56AyjkVZsawalnUnhFQtaauG+fmSJJ0glKWROagBDASMEkpd0CY5rUhwMiMqlsc7uWmNCzI+LhVFmnN0cMxwMEJYuYmHXX+zndikv54Nq/hJdspd49vU8/Wu1M6SLOLpb0K18JQtbz5nNzm+i9Ft3/PFu+JP+7iSpN7dhjrURSC4duMW/8//7p8g3R7Pjf4ztBxE96bLlT69we9eyQ44E0In3wcEgUCRqSnXB7+GC4bWzrm//m3+7M++w59989v8nd/8nyHWS+qq2jk5wRXy1U4TcfPczm9CSJx3m+vsu1WKYkhaDEAphoMB4/EeaRoT8LF3VOI7zM13XKt4IgjTNKzXay5nl5yfn/P48eNICWoMR4cHHB4cMl8skDIhzwcUgyEHBweMxgVpmnJwnPJ3fvGXmUym/eh0vowjyzLmywXFcIAPnqa2+BBpIa11+OAIiWK2XpEkDmMkdeOo1hVNbTifGfwnc1a1YekgKMW6NGidk+4foNWAoBKaTGJ9rPhyUuJkAmhCiLSQUfwp0qV6IRBeRNGpNCNJc8ajEVmW0jezP8XYj8DLnkPo2Y5nN0p2vjR+2+aHf6IF5ooH+RRj7/aInTlXrmDzo28s7l75l6rz/KKjC43j7+Lp567CPRKC4OT0Bv/jb/8u0u1za/hbaDGIAMcT5/9Z8W8sk+vSN50Nd+vbFfOJBRGaXB1xe/C/pPUL1u4O//Jf/T5/62/+KjcPjrl759PNIhbHSmzArifd7s1CIwU6ieVn08mEJEnI85zheILK8qjlIfqYuTdcCC4qptVVzXwx5+Gjh6zXJU3TcDG/pGmaWJEke2AI0jxDJ4qqXvPqq69y+4WXOb1xk+FwTJpmXbYr8MO330bphOn+PnVV44OjNZYgJcZ6vFB8/+0fc/v2C9RNS2MMLgSMCfjguFhVcL7CtBWmTZCyINFjBIqvfv3rJMWUO48uuPvg41iiNzzAJimlVB1pssD5WAwSeu8j9GBf6FrGuuVUSLyALEsZDcYMB6NYMdSVBAZiuaAP8bXbgCfEefYTTN9nF/i5gtg9sRXvxIZh5/c+7vn/G1f2M44+ND69cYM/+da3Wc80Nwd/FyXyrnD+iazh7sVuNsUQV1LCZkx2zf6pozdiocnUIYU+IpcH/M6//m1u3Djh5772VR4+uB8/pTPGXQJqrTVJkjAejxkMBuhEk+UxVuvL0PoT9SGAjorHIURh26ZpWCwWVGXD5dmc8/NL1us1ddNQNw3OOd76ylugBI8fP2Y4HLK3P2V/f4/pdMre3h6T8ZDZ7JLRaMqNm88TOh6fyIkUF4/TG7c4u5hxeuMWq7KMpXAmlmsGD3UjmK0MxUXJuixZriuq1uKtxFmPEKdMJ68wGR+SpCOsCTRt1HNZlQ3NbE0tJINrp8wWcxbzOb6uyYZj0izrh3rDt9Plm3ZuwzYcEVKitGZvb4/xcEyqssg00G1UGyyld7P/A2b9MxvlT3T8/9br3H7tF+ymW3z1KuAR38fVx3a9w+5zLxdLPvroY07z30SJbCOT4DeVRE+89+qJ7XqyT78sbL/8qpfRcclIGCbPc8pvcO/eb1O+YVBJgmkNyabULKKfaZIyHo9J05Qk6VzQLvUQ3ec+3IjfV1c1i9ljHp2fcXF+wXK5pmkalJKY1lGVLdb2CmdR1n1vuMd8MWexWvHrf/NvcvPGTfI8QyVdt6tSJFowPdjnhz98h5//pb/GYlkyXyyxztG6qJ5snOCDT+4wGI9p6oYQJK2BpnE0xvDpvUcdwDIDkTAc3eb45ilFNsZbQ6o1TeVYLA2NKXGx6wAXPGVjqLxj0basVUBmI4ppQrVes5qtkKKMi9RoSDpIr86f/l50HEQBUGnKaDKhyAukUDslgv1Ydp0YmxKoz5gHz3j8xEb5rMHq/1TH5xrmk3lLyYa6cufRq793b3n+hRf4nd/7NxTyJgN9c9vT+KSlPRFTdvjAlceueLibOCO+cdtIsAVz+mvywCh5ngP/8/zO7/4u//C/+i+RIVAUBUmSkCQdALOzYyqtUVLGUkXncR5Wq3UsxJ7Nmc1n3Lt/n/l6SWsNUe9DEjwcHBwQpGS0N+Hg6Ihr166xv7/HeDyOzPgq4fvf+z5JknLt+imttR0ML6JsO44kL6hNy/sffogPAmtj3s+GQN0aGmOpbeDR5ZrFvKaqHc4KlE7RScbx9S9z/dZtBqMxznnWZc2yrFiW58gArrUIJM5LLoOgNI7SGVoMjbfYEBn1nJNdnapiMBowmhQE76mqhrquMMaS5zlaK5TqBYUiyi47ryMfDtFZHhsSgog9thv3UHQ9ER2Tf/gPssmfBH19tq/5T9JkwxM/dx7oay6vHj2nGSCgrBvOzs45Sv86QiQbh/UpMOqJ9WD7dXFXDU+YbE9BCRucKNrnzuPbD4s3fJK+zsz8Ob/7+/+Gf/Rf/0PquoogTnfOUsfEv/Oe9apksVgwXyy5c+8hs/mSpq4ZFAVHR8e8//4HtM7ghSfJUoajEdPxlOlkj0QnnF1e8ht/+zcZT6b0wFySRJIogeLV117jO3/+Xd762tfxOIzzkbXPWPAOKQXGCs4vl6TZgLJqWa4rauOpGsPF5SVeZJyXgf3jF7g1PSbNRxjnaVpDWRnunFeYB7EZIupYdiixp2uIb2mcp0JSh0AjwCLxpGyKJjdeqUeKhERH+aA0G0MAa2M3Ul3VaKVIkxShEobDMYPxKN4KpTqaErFZPXdTZdtwRCKewFh+0uM/jvv6n/Dx+YuG+MxXHB+f8O/++BtoMWCUvrDZHD8L03nSlsTn2+vmsc8IQXdi8u3PIELHFJ9wkv0tHjz857z9o7d54fnbtLZhuVxSVhWL+Zyqqru/S5q6pu2MQKjIpqfTDJmk3Hz+NsNhwdG1Q05vnnJwcESe5V2LmuI73/0u67Lk9osv4lysD04STds2rJZdrnE+4+z8LLbudSWHbWMIVlDXLZezhjt3L2ntJc6DSgsme4ccXTvg9TfHuDRj7WG5cny8qFk/PMOauNV4wHjfpWAE1gWMdTgfd/34s0NslcVJgZWxjkl70QFqYct5K2NTgRRdnCgiS26SpCRJCiFE1oquWqqua1CSvCgQIsTP2l1Ir+ArOznD3d7Jv8Qu9ZcyyqcEdXbO51mPL954w1OfF9MkEbl8Vv7Mpz7zyf+Hrrcv7jE9/rbzChhO9nj8+DET/WWUzDsW8F3sM2w+/vPO6sql7lrzBvWjI7Pqvz88nUraWQ0ycYBiyLe+9W3aquYH7/w4wvomds689PJLNMayWKwRQjAaTzg5HVMMhhyfXOPg4IDFYsHx8Qlf+tIrBBmQ6aY2CxBolfDCSy/xg7ff5rU33mK1aqjqGu+iJLo1FmsrnHM8Or/EGEfV9CVxAUES3eCjm1y/9TKTg1NkPmJZGcqq4mJdcWd+zirAOghMK/BOgEzxTmKsxTqzBRC7SmoXwPvoXgYhCV3TtFCuK/eUqCCQqu+2kV3cH0GYvgehr9cKYidu1IpsEEOBvBjiApR1xcPH51hjyLOM8TjqwajOY9o0vfcGSriypu5mr571+Ind16cMsv/f537pZz+xi94//WRPoty/tr/g3gn8SVeAfhfrjahjtBMQ3Y3tZOwNUwBSSd55530AxskbBA99G2l/RpF1buecrpxa5wbv3KUr5x66Gyh2vldsKlZ3qm6ufqKWGZk85uGjD/krX/sas9USpKJICrI0xwdJVoz4mZ/7EsfHxzz//PPkeREJq5MMqSSz2YJ3332PW7dv01iDcZb1qqSsKryzhGBAaO49eMhHn3yKsxpr4rh556mqFY/O7rBqHB/fnZGqAUk25uj4mKPjawxGY4RSVHXNbFXz8UXNxXpJZSV1UBiRYkQSRXqtx1qDcx5H3alNPzmeMVkqhIiLCGLDrYMQIPXV1FD/OF3BUg+aXZlzvcEKpJLoLEdmGSJN8DpKzo/ygsF4iikrmuWSx/cfEBBkScJkMmY4HJGk6cYUxc5c7e+X/wm3y//k3defZn4y8qI+w+dtjFiwWC66h5KuVezqPt1TQX7+N+6snJtC1d1XXL2B/W4peuQXrrhJQkikkoyTF1m7DxFS8sqXXuHg+BrXj0452D+iKAref/99fu3Xfg1rbdT8lAofPNZ56rpBpQllU/Pu+x/iRdT/dNbFvKOLWpdV1VC3grPzEmsUVdVSVVEjtG4aHl1WvPnzf5vnnnuNPJvQtI6yqvnorKR6dEltWpyPBQcWRRVSmiCpWktpSmzPzxsC3kVJghD8pvrlaqufuJLTVkJe+XtDPvEs82VzfyPCqlRCmmakWU6SpJENfvflSpGOh6SjAVN/QmgN87OHXDy8x4OmYTTZY3x4zHgy3aRH/kPm7U+cp3zqsSuI4U9+/CQnf7WF6C/zbeIzdvVtKmK7Y8bj+o1b/Pn33iYVh2g5/MwdceMOB57a+vuv2p73Z19r6NwNj9+4sT2w0nfx97tELzM/TI6hhvlizt/9rb9Lmo/IVI7SCWmW8fDsjEcXF7z00kscHx3z6PE555czqrKO0gso6tZzsVij04y6iVL1ZV1RViVt2/L48TllC48vKoajQ45Pb7A3GaMTwaqx3F82GJ/y9t2SulqhZIJUmsYrKqEwKKy1OGuw3tOKgBMhlsMJjRcdhWef6xOqk/2LbtSGQFmIrtAj+p6bMbnCOLE7zk/31PaMAKGvSgIQCnSGSDPQCSrLQSj8BsjplsXeSxRgUoFOUo4HL6I6leizszPu3LmD1g84PjxkOp2i9a6ok/zC8ObJ4y9llFfcqkCn4vSXOf7i03yyd/DqQvDFr919vPtt+7VdsO89He9O5HQZDIYMhwOUUty6dYvVakUmJ/R5qCtG9uSC8uTlbNrANljuzts+5xxDBDa6TTO60WLHKCVIBX1/gJCCF26/wHj/GGdhta6oqorp4SHvvP8BSZ7z8af3qCob83iI2KQbApXxPHh4jlCKxSryI3kk2XCIDRkqTfh7/8V/znT/iNIYLuZzPpiVLCpP6SQro7FSE5C4BEpnsG3diWV5Ikt52NwzTx2vI2z5dwQgRGQF2FCIbJBo0elydPYXrjqCu65oJEOMhtrXqm7+v6GuidU7EWHNUWlBSFLo5C+QehPWbI3+6n2SPhanN1IiU41WksPBgMPrJ1zcv8uH7/+YwWjIweEho9EYrTN05wo/6/E/ofvapyN+gneEL44mP2/XDZuVuOfF0bHKJY1tQHt7+wwG445FLZZWSSkYj6dPffd20+ui2yvfud1prywDvXH+BWvQrvzAbkN4hCt2jRSU1AhUREJXKx5frmmtp24tzjvWbcvdhw84PL2GswHTitiY2xrWZdnRr2Sk2ZiiyDm5doNiMCQdTFhWntmsZTg13LmwvHd+HyOhbg2tDVQupQ6SlbG0IZKLBCGwXSH25lyF6ImPuguM91t1CiACruyG8YKfKMvsdhhPV53X55Z7/5Mdj2R34PvxD/F/wXcM+0qR5jlpOkSleWS/6FaCILaGvgEW+/sgwmbBIESwy1jLoipZLRfgGuziErxluZyzLlcUXRnjcDhiOBiSpukXT4Du+E8ypgyf8RvEXSFibVcNQQiu7KTee6RUSCnQOiHLUvb29iP5kpQMBgOyLN28ppda2wWzhBCRyKo7jXDFIp84vc8wtjhRtkTRT76wN9b+8RD6ODLm4LoZ2G2afZdBfI9AMMoOydQ+3/r2n/N3/vP/gvNlHWn0rcM7T90YFquS84s561UJpAihGQyGvPzq65yeXsN7KBvHZat4vFyzfLCmDeeYkNCahKZRmCBohaTGYRy0zlEHiSeSpIWO0JqOs0bTgyt+c85XqFVEL8raTfcr8lZwtcCejbVtyE3Ck09uh/azFvjQfadOJDpJ0UmK0imqb8vqzm/zsR2NSiy99lHvVimUCrS2pqpKlosl1jgIULdNpLgMjtC2CCFIswRrI9cvqzl1vWI+T2KHzTMcfymjvIJw7QzQZ0SdT/39xRvjdifsA3c6xGyXlSAEsfEqhJJR+LWrvNBJQpHnjCfjiDgqFblc1UafN97Ajuw3hEi4TIhdE9ZZnLVUVUVZVdvz2vg1XZd9B+U9iY1+/uXvTj7Rf1RvnXEEN7FlQHjZEdvtct1sd4Z+8jjnmFeOjx8vqKuKsqwwTQseTq/dZjq9wfO3DxlOjzA2UFvP+eWCT99+QFXXGCeYD65jfYp1ktpbKhfFWYNX4KILaYTEB41DYoUiSI8K0fUUnh1Zh05PA98xTogr1hLvY6+W8tQgfYZlxed7nsB+R+xBMTaPPeEe9sYsBUka0xyqo3kUIonshCKgpEBuKOgVUiQoqbFNgzUtxlUsqjXWGJyzWFwsCbRdl5OOBGzOtOBrRGjRXqB6Sifv8CYytbf+p6xPeYWAOGxpAsNmQLYjdHWn24kDnnIvt5oSQvTJDg9CbiTWd+e5lJJUZyiZUKQ5g8GAtMjRaULS13pu2mQ6qhApOlKrXvgj/lBS0bQt5XrNYrHa8IDWdU25XrFYzLlx4wb7+/ssL9dY3yJIO85Stob51DKzOwGfXLi2x24l0RXeg25H9vgYhzyphtr9vuvkXS5aal9w/eQm+3v7jIYjvA00Bi5Kx4ePWhZ3LmmDpgqK0iY4DrDOYT2s5hbr44LlhSRSZQdih6LvunnkxnfWHZmyCH3T946z3Y/9hpSMzzC0nfnyZIothM3Ln5ouuxujeGJUwo5RdgzpUsYFW+mIF0TpwRSIBflKxR00iC7X5S11Oce2BlPXONvivMF7SwgyEoIpyNIEFxwOS5A1GoutLwjnd7EPz5HjCcVkH59NUOQEpXBCXWFl/KLjP4r7uvHtPx+TuXL0Lo530SxVImLeLc/J8py863DI85wiH5DmQ9I0hxA73r3zG76aAJsO+kiOLDoSJkdZliyXkXpwvV5TluXmH96TZRkvvfQSSaK5vLzg4uKC/f0DLi/fx7g1WmqCe9JAnvYGNr9dcamuLlVP2drOS4LYxjKfafdPfOXLz3+VySyjbhvOLkru3F9SC0GlExatoBUZS2OpvafqCsJ7t64HR/p6at/t3D2DuNhdPDZxeVx5+92xX6A3rwtxp9xFLXdPOfidS3rCYMWVRW33cTZeE/TCWVvP44rmiVLITpVb68gOGNusNFqmaJkCgrZtMGZO1fHBetcSbCcI3ANrnQCmCzHCTASEYPBZQ3AlqjojrGcc24bjkaFuDQ8u32U9U6jhLfTkhGQwxg9S7DNZw1/CKJ9s4foipCYu+lsxF9kFyd0bN+VOSiuGwwF5nkaypf19xvsHjPcmCCExraFtDU3b4nwsuTI+yhZ4FyXq+s91ITKTr1bLyAO6LlmXsQh7uVyyWi53Ysn+vMSGi6Wqa/I8Y/9gn9Pr13n++dt88MH7tNxBM3kmWHt3RHYrOnY9htCN4cYN2wY1288IceIJcRX46R7dfNOH5zVvnwXMQGF9Th0kVW0wQVB6jRVg8ZjgaDvXXwqJFrrjnfX9l8U8/AYCDRtZiXirxRVUpT+D3aR96IGV3Z1r19D47EDn6gA+aag739M9JnfGJL7m6vcppUjTFK01QsW411tLVa5wpiE4h3MWQawEkqEvTGB7jSJA8Agc0huCaZBtg6hLcv+QvQwOC8H0sGC6d4zWLUo+x+qs5f6jGR/ee8ijR9/Hhxw1HuCf0dr+owM98Xb7qJ6sE6SIVPPDYsDeZMze3h63X3geIQInJ0dcv3GdH7/7HhfzBVIlOOcxxmGMJ3iBdzEBHqkrAqZtmV/OmM1mzBZz5osFq3JN27Y459Ba88Ybb2C94+Gjh8hEd8F4xmAwQErJ3nSP4XBAmmVMxxMuzs/5r//h/wohBHkxYDD4xzT1HYrwOkI8OWSfHUk/tVSFK+YGvavOTvE7/QQUOya3O/FE9zmKENTmPR9qyfepMbOAd6Ibm57+su0mdCwJy6Ug6C6mFY6ez1b2Z9fFfJvJ/4S7c6WzPlw1jKhhGXeUJz21KxCXfAJh3Tk+a4nvY8gN8zr9srT9VBmiGy2FRGpFnmdIpWjaEmMbXLA4YwimRnU8v0ooRNDgu0J3onGHCDQgfYusztHlIxJzxjg3HOxNOH1hys3jW+yPMg6mY8ajIXjBfFmzmFeshy23Tq/x1hsvslysePT4jAePH/LJ3bufe927x18a6Nkdxn7V35Q1SbH16dOcYjBgPJkwGg432g+JVKRKMh4Pee21V6nrNTqR1NWapq5wLlBWVWysrVuCD1RVzWw2Y7VasVqtWK/XnJ2d0TQN0IlzCjq+mdhUnChJ3TakecZgMub09JTj42Nu3rzJwf5+x7am0FrHuAP4829+m8nePqZt8R5+/df/Jv/9f/8vsOqchGs7BvS0QX623xCeeLaf2FuoY/OM6FWnRJSUF1vBIUQvqCo38uIAy9pTVm47AAgimsxGRk8piVKiczUjNbwQkvhXQG4kBuUVQ9uNXq/mgK+c9faxfldVu3HjjlsqAnLTg/psMdaVBWrnLbs7+KbkDof3nrKysUbXGqK6je9UKtSGmRAkrvNEZHAoa5HOIKoLQj1nlK44HktOjyWnxyfs7xeMxwP294aMc8VokACBYFtSWXBreoy/qVnVlkdn5yyWK+rDMS89d526eY2z87Nnut5nLx7YGaG+rqUvG9NZFFZJu3/5oNh0uWdFitRxd0q0QgrZ0b57WmuZLxZ861vfYjIZkeWRIMl7KNeed979gPOL88gD2oEvTdOiteK5554jzbJYuGwdPnh0GqtZpvv7TCZjimLAZDIhy1IuLy/5R//oH1EUA5IkyiP0kyxC3tGlFQgGwyHvf/ABz996DucdP/8Lv8Lv/M6/Ymm+zZ78jZjs3h2ULwgVrkadW5XgJ18DnRstOwBCSiSyi522JWcBcBJMMPhgGE72KStF4tUV/OSKyylAyFgk0Sfb+v9LtqX42xv8ZDDXX4SPIFdnfFfc9O7FkQk/giJbo9z5Xfitu3zl+GwD3Z6V2ModiP4K+qonokBR8ITgOu7hTkVNCQQuapkKUMiYCvUeb1pye4ZbX6KaSzJp2B+lHE4Uz70y5XB6yP445fBgzGCQkecZSSoJ3hG8Q7sQFzoN2BIVPKnO0WPFYLSPc1PqxnB2MefysiUv8s+8xiePZ2dIF8QWFx0T73mek2c5WVFwcHjEdDplVZa4EEEEH3ynWNzdkAA+xNVZaUUIAWdaqsZQNStWVcNyOefDjz7i7r1HXMxKVqsqDrqUm+StVAohFc579qZTRtM99g8OuHnzJjdv3WIwGnJy/ZTgPcvFAkIUa/3Gn3yDg8NrTPf2ODs/iyJF/fLiO0S5a81JsiHvf3SX42u3ECJhVZb84q/8Kn/4e7+HDeek4mQnWAxP+Ks7cU/H6bohjO7BqG5hi6+O8bDsDESLaJAx1tsWS10NsyR1+wjjL3n19b/FnZkh1RnuSli1rRXt0z9XYE3hQXhCkPgd/ecYE37GKiMi/BGk31x6f25XzKmrmtlIpIfeGd69EMFW6q9ftrY75xaVZhu7is7JlzHO6/9FV7N/TdeOJSNNR185FURAYdHOIU1Nu57hqyXa1ZwMlpzsZdw4HHJyUHB0NGY4KBgPBmRak6cpMhGI4JEEhA8IkRCERiMRsUIfZw0+OEQwBK8jXiI8gxyev1lw61pCYydPj+tnHM9slK9/+S3yIifReuumCsnRyTFFMaJqakLToFUaOVacjfm2bqyttZiyoiwj4FJVFQ8fPmY5X9A0NcPRkBs3bvDuu+9SVjUBietWt0QpRuMxk+mELMuYTEbs7+9z/8EDfuPv/B0Ojo5QSsdCYiFYVw0SQV6MUB2JUV6M+eDDO1y/GTBmCz55H8BHcR9nTfxOnbGsLBerFqUUZWV45bWv8Ae/969pwqek4TjGgX1VTwcUxBW8SxCFACKgBaSpRopIxWid26ncYTP5pACtJYmKDPS9tsm2ZGy754aNoBEIIRllihXiKWPa7pZE4OWKuxPTUUHsGMzG/dzdHjc9K0CnSNZ9zud1P4Stwx13sc2+3F9G38vYv6Hf9bpREbuf0HV3dAtJrKJyCB91SAUBROz2CHQpmSBQAbR12GqOb+8j6xWDYBlIw8k05bkbKTcOpxxM9hmNBkwmIwZFxqBIN8UosaAjLh69fN82zx1JmL3zXZFJRHRl991blz16OVrGgvdnOZ7ZKK9dPwW2EuGmY++WUrGua6qmxhM1KZx3VHXNcrViNVsyXyy4vLxktVrSNDXWGkBgjYskvlIy2jvg6NoNZouSu/fusndwyAu3X+CFF1/gxo0bACQ6iaItIg6K+9a3GY4n5MMxxrqo/yf7Ox8ng3MOYwz5YMgnd+6RDkZE0mAVLz/Eyp0QDCE4rPGsG8HZouHju+c466jLmtPjfQaDIU31CWO+DrvcPOFqGqNHCbWAVCekshPr2UyzbUmXgC3buFRxh+yN8qk5v5OS2BicJNESHdTmsafLDftqoc8zou65L0DSt4uC2LHZp13x7fKxA2CJHd51IWJMKbau50ZWka7RSWyx5S3pGBuqEykibiGjtXaQmSfYBu3W2KqiLVfk5pypqrhVLDi9NeX68YTp/ohikLM3ypgMBwySlCxNYqwtAt7bHTkISZxF8Tq8d5ux3VXxu0pNGtN0T42xvCo2/EXHs1NMqkh/iI+MZINhQZZl3L33MCaepeDTO3d4+PAB8+USISVpmvDJJ59GCsLQFX7LfgUXSKXJiwFaa/b29rl37z43b93il375V5geHHTqS+kmBkVKlIzGIITg4PCIO3cfsH98iq3jYHoRy+y861SgrSGEQDGecvfxh5gAbdMiXBJRNw/rqmRZlXgCSijWlaH0GQujyGTBc7de5trJEf/b/93/if/r//n/yDr8OYPwtbhCh37PE9H366TBFZBrSZ6mIATeu64YQmz8vrCZqKCV6kh7O2m87bbCLtQhhexcXTYTIcaGKrpMnxGbxThQfIFR7sgdXDm2bubmy7Zv2u58wJanZru/XqEkFaCkRAmJltH1jJPf4YKPrh9bI9tecZcrDf9f2v483polq+uEvysiM/feZ3zm6c5jVd2aJwoKEBAQBaEFFG1todum+7VfBbvblo/d7fA69WuLaPdr0yCKKCiKIMogUFJMRVHUPFFVt+Z7a7jjM5/nDHtnZkT0HysiMjLPee49l7eI57Ofc84ecmdGxoq11m+t9VuovxgT9gUfaU89q70dzN6ThP2rzNnh4sY6F8+d5MypbU5unebi9oLNzYa1jZqNtTnzJlKa+Cjors8xcg9Dd3FfsgQOQpn9+2Kq0/O3y78uW2o83zi2UF684zxPPvEM167d4OZNzf27fuMGjz32OHvLA1zwdE7NM0S4/4H7OXHyJAfLlqefehIbYeoLF85z+sxptja3OHlSy1wUkZ3xxBOfZ7Va8dCLHmZ/ucIYoyawNVhrYhNR8q65trHJo5/4NHfe+4DmHxqjN7n3dJ1S5gf0ht9aHnD15i0uX72Bc7C/71nuOdq2ZzZbEKoKU1nuuuseHjp9kdd/6TZ4w8as4uTcs721Tufv4NSpM+zdfIIFr8gyEyAnA0gWHjSbxCqLnLb01BtmxWTRydojalej1lh+DcpwiZBCASbtznjEB63Cv21vzoi4Hn6Bo6RxvKyiRTB5mxQ/A8kMLvhOQ8BYk1sg2lyh7yG02touNqYU77FeGwNbVAH3BrxRZFgCGB8/1y6RVUfYu47sXWHe3uTONeH8Wc/Zu7Y4fepuNjcWbK6vs7m1xvp6w6KxzJsaYz0Wj3jwXa+C5JOpGpS/2OgWlzb2Q6Bc7AqtZnXSmgNZWfp5qOC6eP35xrGF8s2/8ss8/tgT7N7q2dnZZ3/vAOe8gjYx6yHEWj9bWbrec+36Tc6cPcuDDz3A2bNnOX36FOsbaxH4MBhJqKeGT85eOM+73/MepXy3EaOLQE2mdPQe50JMJICDVcu1Gze1wUvc2fo+sFw6DlYdvXdgoGsbuv4EN24tOFi2zDfPs37Xac5vbjOfVVTWYSVQVzXeWjAts/mMtYXl7OnTLDbnPHtg+YY/+qf4sR/6P2ntM9TcSdIkGeuRlDyeypAC7aql7Vpc7/JCLTVaAk3VZE1ZNMNRdTEPSekGz177GQDuf8lr+WDXQ2UgON0Yips/rIkjzNPoU4aRfzeh9xoljA+f12v1ucGutrIj+k+GyiqKrKCtJ8Tept519K5FcLlWJLhI+2Vjip+AF4/QQddS7S/pbu7QussYv8tG3XJmo+eee2ruPXOS0+trbK1tsBZJoOu6Ym19zmxeUxvBisewwvcenFfhD8Ru4BI1pPYX9U5ZD4KyKo8EzJjUlsAf6kJdWgXl+8sih+PWDh9bKK/fvMmq7bhxc4fVSm9+AGxds7a5ztnz5zl56hSbW5tsbW9z5swZnnz6aapKeNnLX0rXttjYT1J3ECAGal0UpKpZcHNnj08//llOnjkb/VY1C1UY1Z8NXnen5aqj98K1Gzs0szkHq56dbsbefqDvK4KcwPmKra1tLt11B1/84IyD1YoNgcrW+r0hsLcKVPWKzc0ZGydPsra9TesDy67jE088w68//jQ3li1P717nRc1FrK1Yhs9QyyUGD4oRUphSz5xzuMLsEUm5osUCD1N5icIYV/8AiIoKgnj2u88CsLGxjbne3bYh6VjbHlZ3gwmazEwpJVnN6CmAFM831UU2TU1dVYpAOoc1YILDtV0kVlbuIO+0U7WWOYehTMqkOlWH9A7pV0h/C7/zBO7G51izgfNrDZfu3uTOCyc5vWHZmFesz6oIjBnWF+ux8kdT4+rGUlm1KoIXeicQ45OhUPwaQiGDSZmKJO5F5X2bakaAo0zWJIDjksHjaUl4AUJ5+douUs/YPHmSLbGcOnWGM2fOcvbcOc5fvEA9azCVzVyjxlpm6+t8+CMf5MSpUzz7zLM4T6R/0InxTkEWF6sS9pct8/Vtnnr2Bna+RQiipmjf4r2mRXVdT9cpi9n1mzvs9XM+c7llsTYjyJxu7S7W7zjFfLZBbdcgVLjecWV/idtb4cVRW8tcHBuNYdZUNPMNlouem8Hx9FN7XP7Eszx7a4/9gyWrHnaXQrWxRWu0+He+vsnezqfYMK9FqJCUmSPqg0n00Vxk+gYFcoIpdtNykRe+GKNXVUOGDPDoInChpwu32NraxgG9MbHI14yMXUj8QALY0ZeOdd6gRcc7fmR/M+ldRXzTCLU1gwC7HuMcoe/onUe8J9Ap8qo3W+OhsXDYR+Y76zuqfkVY7eGXO2zsPUEVWtbnwsVTM+560R2cOrFge2tBXcG8tjRiaGrLfFYjtsEaQ23BVtHSIFDRI47Yhj0Vi+lGQtBmQ05ii78i7TGMb8TzCteRHQNGn2WwcI5JBnBsoXzw4Zfy7LNX+Lpv+FLqZqb5o7aibpqhYiTOvwuBvu+xleHy5cs8+tFHmc/X1ATNgWSD8Wqfa9OWntZ5TL3gyvVd1rcP6J2wOgisVh3L1QFtu6LvoZudZra2yaUHXscdrziFCzN6Dz1wfecWy67l1s1bhP4Gs9i30NgaO58jZk4vsAM8c7Bk/9otVv1VbhBoIxN4MNEolUi32Aihc1iBm67m7pe8lo++41dx3KJiu4BQPCnupilu5NVvYxs0zXfVMbm9+FD0VknujKQwCPlTrTtg2T/NpTMP89SNns7WeBOwZZA+C1sCcsZ+bPlHGQVJO7+Ilh8loTSi4JVBCM4TnKNrl3R9pxaC1xieHrKYD1FIhlBB8BjfYbo93HIH0+3D3lXq/iZnFp5zmzX33d1w6tQZtjY3WMwrrIlhsapWoMgaqjpmjVmhqgJ1bagj7qCFDS5aVyGDSeV1IUMcnWipDcwP0XOf5ng/z7g928Wwb00s3tuOYwvlF3/Jl/LmN7+Zs2fP0swXYJT01xjDqu20x4T3WpHdKTOZd4HZYovPP3mNixciIVHwMf0pgIO+93Sdol+rVcfBjmNn74BOruLNDOcbnKyxfeJ+Tp88wcbWNgemZn/Vsotw46ajO7hB71YsXUtfWcysIcxrMHOWxuKcZ+kc+we7rHzsmegdne9Vx4nR1CuRgjW9LEsycX0H9lrPqbteSnjHm+m5Ti1bOZI3LO7hBqWdV2yCaYaFW74z6ilt8JNx2XgWoqiqYikG13cAnDpzgZWcALM2UIbkb55mh1Iccfi+kE/Sx0VvY2w5aIGviULrHaF39L2jbzsSyVU6roQIUkEElizBeSpZqouybPH7N+h3L7Pob3BCDrj7RM1dD25y4cxdbC1q6trQrFXYShvnBN9r0N4YbKWCV9UWW6lw1VVNXce+lmbw+QgB7zRs1/d9xiymlDbPNZJQJYVTfu44puiUL+j3xKes6gUbmyd58qnLnLt4ga5XP8mHwKrtNUk8QAiRJdtp5kfdrPPM0zfY3DqDtQ7nO1ZLzWftVo6u61m1PS4YFhvb3PPSV3Hi1FmuyCmqZgNrZvSdsL93wM39PS5f3mdv1SqlYAzoiTUEs0lbC/sEpcRwjiCettdW586pJuyJQigWI7OMesLgt8VKpryIrfG50FrEMN+4X2+M2dNW4aCCF2LRrOjvKSUtp8mVZtH0Jg53kySypYBJDJAjhqv7v4OI8JLXfA3vP9jCmTUsQqDNRxoLo8REgUGA0vNCwIoixU1TU1uL63T+etfh+54QHL5XoTQ+FMnmXnNHUYG0xFQ410Pb0i9v0O89hbRX2bQHXFwL3HPvBhfObHP6xJ0s5hVNDZiepNmNeASPd722ETDqDtV1TV3BYtFQ1Taag5FWMtknIWnGFPDXTaaMHZbAy2j+nyOUMX1PLhMsTNejBDW5Mwn5/oKjrwcHLadPn+Mjj36M2fo6GEVH+85Fgt7Y489rm7LedfStQ5zh5rVrLPdvsVp13NoP3DgQgtkAu8HG5hbbF08yX9+imq8jxnIrBA72V9x89gZd3+NCwMf4prc17XzBymkr7aXr6HqPC8l0VgbtZMz7RLYkQrAhpq5JhNpTPEPnLcQbHKcwXnmsHYixCiOWG/P7ETHsu09xpnmlfiLod6ZjwxC6GXbwrJueZ2gBcQmcegQRS+t6bq4eZWNzmysnH2ZfZtpZ2OtmE8I4LGIlGpMxa6ayGsa3xHiqgIhHgsctV6y6Dh81sSGw0e+hOGgVQx8+bloG7wKmi0LUdfjVHtXyKmH3CmflFutrjrPnKs6cmXPHhXvY3lijEhCfvj8qVaOCk3JbBY1pVsZQ15a6qZnPGmojVFVMrM+drQPBO5yq/Bg2SymemiXlnArl7UzSKV3J6E4cIbylUCYAMoQwFDUU/qfeE90k7IS68nbj2EJ589YBYhquXL3Jzq0VWN192zb2DfSBzgt9HyKFvaPrA245I5jzPH1rm94uaM6c4dTiDMZqaY1zjmUI7Oyv6HauYa3FBcOKCmfXcCaw9J4lgS62ym5DRy/6dxt5UXJ3qTABNXI1RRhpO2FcQZRStBAhGMlopsFToWl4upPDWqULvzZrzOoag8G5nuBd1JoFuVOB6pXDT2SzhH/yDc3nZhAqkIq99hl6v8/LX/8N3JAtZhsVbW9Zdit8nxzRtLgGWF5i0a81RrWf6/G9mne+1+ysEPNJrQyLc79qtCifWHnvAwaH7w7o9q8S9q4za28w83tszYXzWzV3v+gEZ7ZPsbkOGxuW2byikiqWJ6rbQuwaLdGvU7ZxUVKzyBZgraGqJGpMDbFQgEUh5r5qqVphIgYV1NKEzPe5QEaBvGGOEviL9w3ZPePPp/emkN5RAq/3PG3qyoJwnHFsodzZ2WG5WnGwXHHlyg2a+RqrVcf+/ordtuGg9aw6CGZOs6aNUeYntlm/4y62qzl4w/7+DZbLW7T7nra/CcZhKhP5UipMNWfZOfaWK65JiwtC77U1dpcEJa52n0zkeDNLXtCjhkTQwxjtLFVFBDHdLhfjGTmFLb5gkm+JAgYLWrpHfwHvHSfWHqGpawRtZ+968jkl4UgJ78654djDy/ncBlCnMHMlZdJaEEvAcnP1OGLg7pd/GR/1DcY4mgoIFa13BImAh7GavC+acwuOvl3ReY9rWyRvIIBPXKpF3k/yzWKhL90tZLULu9cIyxtU7R4nq5ucPzHn/vu3Ob19ihMn11ibN8znM6Q2WVMZqQhOEyh86Ami9YzqhEbz18a+mjZmbcWTs8ZSRZ6lRBWSUM2x1pJCWMhoaprhXBRQCM9RPmbaPEvhPUoop0I8Ok5ci+rnG4yxuRLpOOPYQvns1ZvsH7Tc2BM+/eQtZuvCQevBzmHzfmZntjkxW8OYmoChw3O9c+w/c51KLE0fEN8jldDNLe18QWsDXd/Sdj1t3+FjAHrVdTjqATGUBH2k2k3wPYQg6lcYQ0hMArdjQE92vwhidLEqx4xOpJVY4Z99P9WGJqhmML7l7o3A1rPv4a1v+lEW1T2cWjxIZQYhFh9iq+5U7AtEcEerQ+TITSNdYwnUqPUdhVIExHBr+Xmu7v82b/jKr+OT5l5WUeNYYGYspqroXQI2oOuWCrp5F836PvqUHoOjCqq9vNFE8+ADNR7reqQ9gNUedHv49hbtwXXWzC4Xtj13XtzmjrNnOLt5JxvzWqv7IxoqlaFJfxOTumOllmGo9LF1yvYBiUzpJgb6874oaqqqgowh/qKRa2lGJiEtUdYUDy9BmzJ+PNWEpQBO/cWjhLMU8tK6Ea9/mxgatFEov+A+5RMHa5w8/TAv/5ovo1lsYU2DMRWdC+wuO1adY/+gw/UHiBX6SuiCwEyp6pe10DvUzNpr8UZY1oI3gveWPpozAGKq6OulbJnkF6n5EyJqkQAUiS3KjLl9G7I0ITYBMyWMImqW2mgmBecIzmNEqAAb4N4t4Ylf/Id84GMfZtE8yF0n/hALIxj6LDwhZiqpkaUrMYFHXu/k8LWHmosmoIOMyISo3YMInV/xzO4vcfbiRU5/8Z/kw6s1fNvReI/3SrTc9R1dbEFnrdC7NgI1AWcCXjRWGMQQvKEKXkMcIRD6FfXqFixv0O9eo9m9zoZZcWq9544LG5w7t8mZU6fZXI/McGJp7Fz5Z0WvON0/HHgX81cjYmYgh9FsLCYfDAcfq2K01qOyZM2iwlZU1iT2chlyUYfk8cFsFyGDPKUgd12X7/vttGa5XkahlGIcFb8UUV9ZYggpCWZdq685dWFuN44tlHe9+CtxWK7vtewtHb7dQ7oDIOCrGjubUVv1PfZCx62+ZeXB9Q29jwI16pAj4Gv6mO2BLzMnkzsWJ5PxpE1TmJJdr7vR8wMpkvwPCo2UdtogzIxlVi1orGVmAw+e8rzvx/8qT3zis5xc+wZm4W7CQUuz3kDcAb14CFXsneiz0ZutURnkMJk36cVUyCWiaV8aY46cAKIVJtf23oW3N/jiP/o3+cithpX3+L6nDy7XabqgfnNqmgMxgZvYsyp2nbJYpPfI6iZu/wZVt4+7+Syz9gqn1oRLZze558WnOH96g/W5sLFRUc8CmIYgC7VaQkKok7aY3J/ob6UNb4CtojksKRVNrQCJRk5qVTeg4oOf6AmEPoE2Q8+RRKKdNWHQ7xg04WHEtBzTdLj0c5QYEG9XqTVzPDdeZxJKG8+lTLebhmSeaxxbKD/12A0OXIssZqzN17CzBWG2xoFz3OyWrA5aRUq90IuhlbnG/ILLJlu0wgZl0Xf0weeb40aOVkozk6HdWH5pvGuVkxrfQVokCVwdPS+SKxYkfr4WsJVQV4b1quKEqWiMcNfWinf9q/+Zz3/8KU7Mvw36Cu9WWvBNrC80ikZiiPE1zWjJ1xC/WnN5Nccy+ZW5ZKrwYz02TpQFLPvdFa4vf5tXf8lX8JFum73VHriVpo9FypAk2CELiSfZjbX3LPoO6VtW+3us9q/jV9ep3RW26xUv2mi49JItLpx5kBPbm2xuzJnNYdY0SJghVvAsWa76mGIXNUTcXETG8Tx9zSvnaRQm1ZpxsVJqF0hFt4ljJwnbVFulkYTSRs5fa/WRzyEEjQpEZLRUUNP81NvlppbXl0aOHufrGK/TtJYMQ5plmXL5BTdfb53YJvhA73tu0rN3sEcfieRcPCnE4suaIoiLqwA+shOeTJFYqW6GYLcQd8qkEZOaSYecCGC58APJRCyM1HQjwnAzjIg64EaD0rVAUwvWeqyFE43l7hOG3/xn38NnP/Yk57b/cw72esR1muI1b6AyGFGHPmigjhAMQh3zXYvTDKotPAEvsT4Qo0Idb2iIGtKjZnAQw6q7ylN7/56Xv+6LmT/ytTy93IXggBlGLEEcHov3LvuK3neE0BL6JabbJRzswc4+dXeTU/YWZzYN9z9whgun7+HkiS2aSpjNGprZTE0+QwTgtN7UB8H7GYIj0OfyMRsLCqyxsWTO0TuXc2BLNLSyiqYqNQyarEFkRxAKQdUbFQTNQRUQazITYkIxE4+RJocH2raNzPhGXZAiafwoUKbcRKa5rET0PLkium5D3uGNGKrKImVYpvi8YZyQnkzXuv4CM6Q/ffNGWlv4WFaTDZJcazRoKEWfIPlK6eSHq4dUPW8ieW5+aWKn60Z69C4z3X3EhCNfSwtgJJQItqrIGKcIhJ7T64arb/77vO29b2X3xk0evPPP0R1s4MxNgoVFUymbgBWqmPWiKXKq9Z0Z+GhHwIFPSQgmakhLkIDzfTFvhhBW7HaP0flr3Oo+wste8zoWL/tGnmjXcc0Wq1DjfQz8h4D0K8LyALu/Q99ex/mrhIPr1O0e241wcqPh4j2b3HvXGc6euMh6VbPRrDOztZrMJiixVhUr7An40OHaLqKamtY2r2rEJLPRQnzN+Q7nY+le32s3ZD8E6xOIM5hzsUi5EEKJJm5CrkMUSCOaOJDCCSOENdGBELJ56JyW7iWtpZ8zh8zXowqRSyAoAsNF3erYUiu1bLIGTKRCKRVKev/vCdDTFWju2IMY/1EmehHiDqMvkAinSrM0lXGVQ8b/xQ9PXi+/UcrfJyU0+aVhB0u7cu78JHqy3gfuPr/g+i98Lx/4tV9CxPLQQ9/JlrmPq3tPUdeqXeezSgPZ1lAZ0Z05mXXG0osuir7wZfKJB/3CIBXL/iZXVm9l6T43mW1FGo0xvPy1X8zay7+RT/cL+madeW+Z+Z6+24N2D9m/jtm/Qti9xvrBVawsuXBhgwv3n+bOc5c4v73G5vqcelFjGkMnDvGGECo6YusGCfQCxkdhCsRETe1OVaUYsPQEFDjSqg/NcdZuXSle6DMPb7kIS62ZrZjC8knWu4FMopzqUUsfbgjW+wLomYLaOtFJSJM5fMg8HW3aulmmdEUTfVzJr40FsRS43rloeZlDx07nfdxwCLwg4qyCXKn4P+qg4p066RJXe+o1mE+2KFuSkn6NuPuVR5J0xEHbZhkvbdbyAMnyT0I9ep+BYGPsOb4mLm6LnvOnGq7+wvfy6Fvfziu+9O+xdeYOLsoGT7zvw1jf4wQqW2GjllC2OdXyEpSPRzldYkK087luX9J3Rh9s1d/gqYOfxTQdJ0+cHvm+G1vbPPLKN9KsneQzu4Yn9zzO1LTLJVurz9Leuorbu0rV32QhB5xbr7jzvhPcfeE+Lpw5w9r6BlI3mMqwqLSaQzAEgRUOb512iU1J2RJZ6kxakCYi0RV1FUm38LmOUNnEXfw9skKQYp16j7VsJd25oHNCqsiI/rJo7W1d25ggYMG7rGVCCJm/N2XqDBpvcnsxGTQKxGL4BC5C1tTDUolKoVhvRO2Y0dN4T45CWdMaExGaqsn1vmM50J8pMV7jxc8/XoBQFrsekApATaRCLEc+8RjDK8myp5q0vI5QPi0yWKylj5hNimG3LfY/JFZ4pNMNJNNDtUPARhdXAI8xDlvDfefm3Pj5v8eHfuNXeOmX/++cefhlVOJYe3KP+c1bLELAG4P14PqAtx5v1P/SjSL6PcknOpTIHH0PgVW/yxP7P8PdD97Dg7/vT/LYXsDLjMbvMXMO0wc+cW2X/pmOUIG3zyAHj8ON63TVFc6t19x1dp2L509z/sIptre3WF9fp6ltgXgmNruIXIrHB4/xsaZR0qIt4n0++j94fDCxeqeL1JcqnMmH84mdvmCVk1jFYa2JWU6pltRDMHgHlW2wlaWqDE0T823rKms+QU3L5COmhyLjg4+o/t6AcA4rIApscpkC6IYy9i3V9ys3DY2zWmMyHUjS7CNBjIswUZYElOrl0NpmvAGkNLzjjBfO+5q+yAwpRjkYVVxwfv/UjC7Vugwo5CFrWwxy6Ml4IiEF1CdfIKW5PNag2gDGkDplqbmpDvt95yp2/uP/zgd/9Re4dP8f59T9L4YqUTB2rPeeVVBT1UkAH+h7h7MSQQ6iT5w2IxNN48kFBEACK3+TPuxy8q77eftODY1QY5k7i13u0az2aFc3ONjbpWp32ao67jgp3PmKM1w692Iunt7m1GbDbLGGmcWKHe9zMD5lvpgoeM57nAw+lOTNS0Eq12n8zhclTMm/skgmqxaRLCCpBjFf2ihupwBYChF432OssJgrK/18MaeqBkFcLg80TTEExI8D9WVYwYodhKW0noo1VX5meG7I0smCSVQokiy7cZgtmcbGDCVho1sZChUydU+K83quWOjtxvGrRGaz/LvGhIZFF8x4V9DY1dDgpawRLM1eZCyQo/0ujE3bNLQ8yBzxSvyc+HxsfSqaz140ZQyXuaCCGO46PWPn5/4WH/mt3+beR/5f3PuGb6aa1wRR8CUEz5bR/M8Kz4E4WpRWAhdwOK3At6BUh0krDppdDYIBxNhpPwHAhZd8OZ96Zka/u0u/t8f+/g2ag+vU4VNcWptz10vv4MTJM5w9vc329jZW1pnVjnljmImP2UwaPulJ1RHxnvhAH5PTxejmAcPiuF2C9lG+F4wRyhyXDIFQ9KjUDUFRZ7GGpq6p6wXGCLNZTVUPzWLbto3+aKd5qnFdmMKsmsb3xilwaR2OtWWJeA7nWmb+hMKKYySM5SNptTIuOR3T5/JmEdd5NrMZzuc449hCWc8Wt38xnke+ycS0rVCKXPq1MIOnu0/+JRXxHRa95A/ebs9JlR45ghJT9SSScUoIUbEL951r2PuFv8Wjb3snL3nj3+DMg49oxy/RJAIvBmeE+sQ6WyvLrO9Yup6l18oVvCPMLJ4IjhiyFg6ODOoQhhsUJND5HQCWO9eQxx7nhHuSi1stFy+c5Y6LFzl7+ivZ2lRmd2M9fegIwWDFxxrCGoMmXUhKqwtemdmS7yRo49mA0i/6MBLC0izM5mG8Zwm8qaoK4veVWtTHLCL84E8ao7WO89mcpmmYNdGMjqGLgGN1cBDZGIoYbgbbptptcl9jre5YUw7v894Pllv6TGF6pr9Hxy6W51QopwkF08T08vjp8/ncJQlj+oKhF+pxxvHN19v1bC+6u5Y3Xi31ZEPdTq8d/bx+9ujvU3/xdp/Tzx4CeYQYIXSIDdTW8qLzDauf+5t89G1v56Vv/DucevARbKO7amr0ggh9XVNtzjENVH3FzPVI39N3PZ3TXNLgFBYXEzIK6RIZVJqm+H95zacXO3z1q7a44/RFTm81rC/mNPWcup5hTBWtjZ5KYisDqWNrcp13I1bn3EW64yLs4PGH8junKOaUACo9n8AV1/f0pqOyNjZd1e9O1Q+VEWbzOne3appZZh10LoV5tK15iCziaX3kDKzizpVCdEgQCm15JKo7eS0hntPUy1JbamuIw/My1bq/m5GFUMi/HPdQL8CnPOKIEeBQc1MYtcYmWa+FcEyGTAVv9L4w3QyLCR8u8JCvm56L/mVGYoMmnFfWcP+ZmuXP/A0+/tvv4JE3/m1O3/8SpLJRHANdBAEqAv2sgpMb+JVFnKNxgar3uL6nW61wXukSNQ4ZgQMXYjOZuEsXiJUIbDePcLB8mu2w4mUvu4+6NhogN7Go1zaEoL4Y2GhqDRUS080sa8DSvJOAC+7IhZ7QzClIkuY4CV/Wmr3GH1OYomka6kpDQ7Ya0tuUdaKFEGIXar1D3odRL8sUP1S/8mgtVJqNw3nefhsPXhMyrLExSD/WiMm0t3Y4Xy2AcWhT2LEpf7s5Osq0v91I9/6YCjKPFyCUR8RZRAUEkZyZcuhz4m8zleNQigpSYY5ExFRvRXTW042ZmralbBeomVaxxxIlcVS+pRK4dPV9vOk3fpGL9/9Jtu5+MVIZzcg55O8GljNDs94gDYhTzlDTe2zbU80apUzsVrjIxOC6Ppp2gYD2vHRAhDwAYcPczcyc5Kd+6qd5/f/3b1DV2ihGTASiQsknM8RxNbMp5Y+kesKheUC542M4tKCSr5SETkRisL/PpNIiMKtrQl1pSMe5SMuvnbvqutLsn7qC0OP6jn5iAqtQJFAmplHGPh9DjvK4wiKdf7mPJ3wzJR8oOizRJ9YkBq0s0SSQqqpjlo/L60Si34hU2ayXgDIp+OQTh3TXIx6SxF/XtBYqlz5iXrGHV/XEJw85RHiY9e5243cVpxyfRfIND2OoatUW/GpSfAhN35I48YEUAok7VmY3jheVWbwLzZN8WYMinmipFXGya7+i8i0EF/leOu4+WfG+f/Z/UTcnOfeSP4RpKk3xS/VFyGhSVvOK5ckFdmWxyz72xQmYVY9dVfShgq4idYvsVi3+YIW0LfQdPibam6jtggiGjpPNa3nm+pt5/wc/wuu+6KVZiBLUjiQakSETxPuICDNU2A8hAPJ78iKz4/uRFkYSDBg0TMq+SprSWpvN0K7rokBbRDxtu6RvNYPJmKKiPmgbi8oarFUhcK6PFCnjlLejNKMi1oeZ4wbT0uFcaf6m8Eske0azakyh6Q/5fD5uaUW8U0Gjcp1qkohu7pJIJaIhGIXraB10eGTrO3zh45S3O4N0IVPQZnh1sEGDlDpz0IHZ/8xed4i0AEP8Rxi6SOF9FmUTAVUTPBalLPT9Cryj8S21W0W6iB5vPZeuP8HvfOZTXLz/T7J57gJ1bcCEI/e9EAJiK25tzjWmVvVI1yPeU1cW21R4VxFcnU1107Ywa7DLFX5/n2qJ7vBe6LzHG6iqmrXuThp7kh//8X/Da7/o7+Bch9gE0xsgRO3F2PcTIvWKCmSy8ofbFBcfg+n3XGhqai8RwpDGlpBHXUQGkTouYI8S4KuhX0ULpdR+KUPrkMlXaK0kZGVa2xDzjtUyhSle/symZ3p/DNvkhBQZUtpckX97O6DmdtorBA0Tlelx+f2SVu5hNyKdV9/Hkr4wnPsXvHSL20G6gVidftSLojGM4sXkEUkxkZneAd1JxKhHl95hDFp2JAAesWp6iA8YFzC91j+G0NGHA3y3IgSPp6WjxYSAWOHVdyx49z/9ATZPvJy7XvVHmM1nUSATDJPPOv8WAF83rIylrSroOkznaHqP7RzGV0q7n0CB5Qqpa2wdi7TFwKrFOAehpwue2ta0znNq9kU8c/OXefe7PsBrX/sSZV4rMknyyYRoocswc8YotJqA1tJvDEH9ySGfqLhdEwGt65pKNFG6j75j6Xum/NJRDDDfuUHrpodEqykEF31HG3mB3Oi7c/L4EYu+3ExyjDKm2/V9P/L1vPd5RZXXeFRcsQS4piGKaeglmfrHMTnL70rHd87FMrKofI44p9uNYwulew6hzDG4I0bOKkkXEP8ffqrfpAJQZ79SsAQ8YnotNHHaZdcq/TC928f1TjVXO9QUBvG4oH0plAGgQTBcPFHxiR//29x4+iov/5q/ztrps1rVUZz9kNZHbk6a2gUEY+irgJcKKkPrA9Z7Ku8jO4F2gZJKwQSxFqzQVAazu0+3bGMWDDgsdVWzxr1car6GH/6hH+Xk93wX9993UXl+Slg+z1Q8t+z/FD5TOd9xcaWY6O1253JROw5r5KkWSQsqN9hFECXbyWZZmWSQPyOgaW+DgKXNoDRTM6DD+LnpKBPT8yNqxXQ9SQuXx/XeZ81XVdUIkU4Cn447AFeHTe5BsMJIuEsCrZFvH3jO6zlqHFsoxRz91gSqHL0JDFpy/LoUoQ2BUGnv+RABAVosSwgt+B5xDt+ucO1SUTTvCX0fWbgDfQEQhNhKLVvNwYF0PGCf5lc+9VHO3vGH2bhwJ7aGBMGAmtZZU4bknscUTgAjCnYZyRynEOiDH7hivUfq2EejMsxi/mglFYY9xAvQadsFo2borHmY3dWn+N6/9w/5/u//+1icCrgU7EDR70vzWXrwR5muIqnd3DhxWgESN9II3kf2Pw4LYq6YKALxNoZHKmMQPH3fHhJkFcaikFki68Ak0J80V/oO1U7KeXSUZik1Ztu2rFYKsHmcot3xGGmTSJ8vwzm382nLv9McHRWzTBSWzvV5I0gCfBRwRbpPx9SS8EKE8rYHPRx/KUHg52ICiLdcTdTQqQD5HhN6fHuDvj3A+xaCx7ieKsTYXzCEcUJtBn1gSBxQQKTlrhOBR3/uR6jsNne+5BtpZhUiqlV1dQsptDO9koSf6QpP5yupYjm391HASWObElsNzPtAaCpk3lD3Trs9rSC4EMGDir7reOj8N/GxZ36Sv/t3/w/++l/5n3DtKqEPevTCn0pznTah2wUJymyY0mxLr6V4ZAg+Um0OpujIZ4v8OW3X0bYa7shgkegGlE3mvqfvOiXAmlWDaZoskMIsLTVTKcyzeliS5SYjEY9wTjcSgjpCgaCJBaDsFeZwhX/ph442jnjsbGoW7y2rOkqBTCVfpZ96VLbO1Kf+PTFfjwyJwKF1LPgM22CM+pvpBnsiHUjAeIf1EaHsHN4vcf0S13WaeBzUNEoZ/4Rk2UakFhsrPQSfAI/QI/4A0+/iuuvUqxuY7hZnb9zgXZ/8GPe9/H9g69LdmEoGnSOQiqtH5hqH3eTkS6kGDYAuaBNC7KEYEBeo4nOpMSwGpDLYWUUTami9XllwBGeoQsP9Z76W33n8x/iFX/xVvvbLv0gR0Vk9QgRH5yIS3/4mcgAA3C5JREFUNeoEgk9C6IYsHt3ZffYP00LsI7+rjXKTsm/KWJ5N3209WMtsPle2uQhHCoEQE7KtCCaah8HHRjnGIFZwefGGkSbRcEtBq2ESy2CMqyaf1ofM3J6+xzbCql3Ruj4y4I3vWtpOu64lAE1Tq7tVAk8IxhZbm2hBdkApVZLpW5qnKvig0exYaRPX0lExTV/Ulh5nHD8kcjuhjBeiP0KCIXK3JjEglVCJULke363oVit8tyT0e9At8b6L1INgQszyiIteBaeKCeUunotqOQO6INySqt/H37qK33kWs7rKGpc5OW953Wtexs//yC+xtn4PFx/5Eqp5pVXtKHn00C68vJmHLpBkNka3HVDKDxM8lfNUPdpD0Tlk1cOqw7terys4UnmLtUrJXwWPD1VMkYPzW/fTuW/hp376pzhz4gSvecmDhFopHoedXs8loZjJB4OxxnHO0fs+Az3JTIVp9ks8n8JE0++I15r9PKirSmOpEgih1xzkSOORyqKyNkJb363aNjOvm1xCMzaR9ZhGU/NmTUyi143EFyCTCeSOzyH6acZAZQ29RIFjAGkApWURiTQjQzVHuskSuWlykkecR+djjWh8e9KwZRZUcr2EgTe2BMCyVeBTTFVG2ve5xgvwKZ8roXboKWGDKN8NQnAd0q9g1eO6FavVAX65T+hjYmhk5kZSAFwvUoobJ8lPBASH9R20S/xql6rbw+/fwCyvs3A32TKO85tz7rrnBPeceQX1+S0+8dhnWR20PPLab2W+vYk34KQwSfMCKWKEhfpPk5xDDwLiPVUfH85jux7bORxeW7+tOkKnQfnQ9eprxiC/JL/MqDFgCVS1so9fPPUIz9x8MT/+kz/Na//WX8vzajKxkQpFCZCUQlnu6D54upRplOyCAnBIWTXWWuxEUJKGSqmGQ7giZRkpg7kpXJMRmBGfTmCOLuJxojgMTXWH52PH6wlLQNZuEbsvfct0HanKJZ1/qZVKM74Ef0ofMH02ZfIEH/B+7DqkY5ejDM3oPYigY5zv1IMVfg8Y0tPNobiQtFjT4g7BQb9Ewoq2W+FWK2gPCD4uTAlI1rmCDwaoMd5rVXvQ+rxM0ug0O8b7juBXuH4Pt3ON9etPsxn2OVW1XNhecPHeE9x1x70s1mdsbq9TNZZ5qAgnNvn/fe//ydb2w5x9+A30sVnrkSBY8ntI4hn39YCGXpLv7D3iHVXrqDtP0zpM22PaDudaet9x/ZnP0C53lF0ueE5v3k3j1RT0qO9pRXMvvfHY2hJEqGzDQ+e/hnc+/gP8kx/9cf77P/9fs/RtXuRhOM24o2tLwLL4OOe7Kj1gIQTjuF8OYTC2DEbhifiKsTH5Aa2DDCEQejfESkc+jIJ+ZVVKSggY+HXG/DglCCWTME7IIN7QDXoaQklaqBS+EqgZTM7hShMYNE2lK0EeghlItCfzk8+tPHfRuKQPhYUS19vvCdDjRct/NGDtsd5jw1JjcF2Hb7tYhnPAkoNMGx8iIJLQRIJkI1RvYEugJkiF84DvCH7J2t5NzMFNuHkdbl2mCftsbTWcPrHg0kuFu+94gFMnTrCYz2lqTYgWL9TG0tgaWazxA//397O/u8cbvua/xa5v0EaNEQKjAmqZLM1kzWY/0YMhMHdQ907jk20HvWO5e4NnnnyU3Z2n+PyVt9G5fZbddXwY+EVn1Ukau8lLz/4xtptTJCPYVgZbG2wT+0p6z+b8FJWs8e73vZ+qmWF71b7ea7lYYFhgmio25LKW2kWMxK7RqTjZjV7PWgqQI2KRxhjqSpkHBtM5aB4uaBfkbqjqHxDKJBBDyEDBOWKuqRZJ6+dSOEGrbFJ7u3JkQCZEHzEcRonTscrnp/HI8vmj5uso7VkmJExDN6OwR3EO06GtAofw03HGsYVyLexEkl1H6Fr6gz1Cd4AET5fzB0MGPgi6zzrUb/MSYvdGiw1q5uIPqIKn8R3dapdu7wrV8hrsX2G22uHUmuGOk1ucv/8MZ05tcer0BrOZZW2tYjZTZvSqqhGxsULCYqigqpBZzccf/SgbG/eyOHsnvZEY3og7eyBSYBYCSsaUACVhNl7JqeZ9YH3psX1Hv9xn58pTXLv6GB/41L+gc7uKYkZz7mVnFmzWdQaTPnRlh932Ou9/6kd4xfnvYHtxFkTJn2VeY5oKgsO3LXjDmbUX89TuO3jqmStsnV7HE+giBYd4N6QIR4Cp1BZZi0gYLXBrGWkEGEIMJiKYSUuksEdtKyo7IOiJYBqEylp8qIpjDTnJGtoYa8MuobftEDudz+caXon0kArAlOwChfnilfsnaaE0RjHR4rlkKqZkiCniqtN3GCBLr0csiCb2X00CVx5veowpH5POQ6XE1BPT/bnGsYXS3LyqJT19j6KOLZXvQTzBKhoZ939yFoNeYTQXAyIOExy27bGrFtt+ltWNy5jVPnO/y/mF49KJOXfet83Z7Ts4c2aD9fUZtakiRWHUuHaOsfVAUxGpGr0Izgh9bfjNX/oldm7c5GWv+U5kbR03mQ89pWnKw2AnGg91r5ypa62jaXvqg45rlz/Luz7yz7ly68MIMK+EL7t7gzvWKr760jYGz9pMuViNUyz6St9yyzv+6Qcv8/6n/xlbzf08ePpr2apP642qrXqzkUJtzZzEh8BnP/cEL966j871uqB97JCcMk5MSUI9FrhRgr0omJK0WdkWTkDJg2sLdaObhTGqZRFqqxOiCxFcBIxENAk8VaaUvlUCYabxu9IUFJFM+bFYLAaNxuDjjbRh2uiL50rNlf7Wt4YsPOX7Sv/wEK0kY40occ5Ks7YEesqk+jLUBGRrIj2XzPepdr/dOLZQLndv5ZtprMSuvqpmJBjqELDB44KhDzVBHBWepu+RrqVql4TlZdq9p5H9FbV3nJtf5vzWgrsfOM25s5c4cXKdxWKGFaGu5lSNwdaiOzYmJzWHoOwq0fhRUwnBRh4eb2v+w0/8JBub93LyRV9EL7G0rNxNKQxWn4AmFdLawawLzJyj6nrW93v6vVt88OO/wsef/DlCuMUdmxWvPrfGdzx0gbmoH7HC0wnsGuWEsRicE8RUnLA1f+4VF/j+DzzFR66+j4NnnuUB//VcWnuJQlsxgRsfMh+S8w6/irHBrsc7T20U0Uv5+TknWGRAohJgFQbfWCSM2szl0AeasGFliFEaGxHeoCy0efOKX5O0iHLTHrWgB+BpCpSU70sbStLQda09SEpTM9+v5Fs+xyjDFlNBKcfUTE/vG4FVAEFyMn7azNJnjoqzlteYz/2YgliO48cpfRvzL8EETbESegIGHyw2CMZ3eDzGt5iDm8xWt6huXcHsXmO9O2BhdrlwbsG5u89w4fwlTm3fxfpillu0KX1ErRNkKsQMF+2C0/wbAUlkxjKEBwAkqPb45V98E8v9JQ+95pvpNtYUpAlSzE8YpDIMGkVQc3DRBTaWnrpvkeWSz3zi3Xzksz/LjYPHePhUw//7Nfdx3/qc0CrH6I4E9o3QGYOTCCaJgBj6oDts5aAKwn/z0nO849kdfurjT/Chp3+Elm/jvgfeSDA1YkT7PMZiRB88oWsRtEuYl0iIlTRj8ob94OslDSkRhEnyqj6b/p4WYOrpoUQMARHl+bExVmggc9dKmvuJj1YKWXpefcZxilrZuxGGPh8wEGW1rWE2r4/M/EkSmeKXMKUHCSPzu6qqQ9lLpYCW2rJEcxOKm3zhUhAzqx6MgKXxHAx5w8aYGDk4fssCeCEhEYghA4GQSKXUjJ31u4hbwf515OA6s+VNtlZ7bJmOS6dmXLxrzoUzZ9nYuIf5Ys5sNmc2m1E3MyBElm2TuTNFJFP8l7QVg+9UmmrF/imCry3/4d/8BOvr93D6odfhJVUxRpCAYRekeE7wNC6w6GCzFeYHPXJwwMc+8Rbe/fg/x0jLd77iLF9/6SQL79nb22cJ7FaGFjWbkZSEkBaT0Cl+QxsCxntmPvDGc5ssGsOPfug6n3z2Zzh356to1k5CCLSVwUdf0Ihos9yg1JbBKICSd+SkJdP9GZxNFS4xyuQ4UjFRYMTgg9N0uVRATWJuDykWpcJojvbbpkBHKajJt5xWgZRoaGlG6989ywOHsSnlrhoyjAIZ6AIy2jzNdU1aaoSilus4Hjd9Z2rB3rZtPqfh2oaYZDpu+s6sPERGm01I6ymZ1ookHnkutxsvSCjVJPKaOUNHv9ylvf4sJ298klloOT2D05sNd9y7yaVzpzlxYhNrahaLhroJzJomVtZXGsOy9bCbTcyTUgincHZ5bcN5gVjhl//Tf2J5sOSR134zsrah2qUARkL+XIxKRk1Zu8Daqmd7GZivPO7WLh/79Ft53+d/lK++Z8Yfe+ASd9QNruu56R07lWffxmyiaNNF3RKPGf2imBJGTOtrRdsLvPzsnK+8d4Nf/fQ+Tz37KJdOfQliDEurncjSAjLWxETZQcvFkN6o10V6b8qaMUJu7xcKAfLB5w3JVnVMl0vznB7kpAYtsPZp/8q+5fQ+6b3S91ex4WsphGUMNY0y8dumLBrXsWpX9H3PbDZjsVjoWgljX3EqlEk7ludUClT5XemzZQeukZ9dmKsl2lr6kaWJnLVi2pRMiYIfS7xG49hCuc2KbvcGcnAd2XucRfs0Z2rLhdNbnLprwblzl9jeXGc2q5jNauYzLQmqaajrJjKqESvQQTC43scAbfwSGZKtp+bRMApzMwIVtfM4DGZe8eY3/Sdstcbi7kfo4w6V0uhk+I8QNNlcCNTOs3Hg2NrraG7t8bmnPsqHP/cLXNn/KN/y4Drf8cApcJ7drmXHePbr2AGKmFAYYmA9oKVa0SwOIe7souZkkIAzam66tuXL7lrnVz69y1PP/Cp33P86+vmcAyMjNDjv0um6JeGfmqlCFBIzaY6jnasK31mUsV1ivNWKoU4VHzlriEgdGk3bEBA/MEd4Qo69ej8IYxraHDUVHw9xyvSzDEWkOGlZ3WHEQCyuTn03Ul2iCURWh8NkXzCEQMpNIJ1faZom4StBp9KUTqZrMsNLoZ5eS/r+9L0508eHHLoyYnII6Ljj2EK58YlfZW48d56Yc+7ubc6cvZONE3O2T6xhpaepTWa7rmvtxmupqZmDl0jK6wikxjcxXphvaij+v30GhS6zIYNI0C7MTuCzn3mKZ556iov3fCPViTO46H+krk8qoEmohR6oQ2DWetb2O7h6g9/80I/ymZu/DfR86/2b/Ol7ttntVuyHwJ4YuiB4F30rGULnIf3LLMdkgUzaWLtB61V4H1iznvtONHxu51l2rjxFc+HuoVkSg7ugWSxxc4rV/lkI06xEQRRRYdWWcgFCop7UlDpFVlUgqszbO3Q+E9H3JcQ10TOmc84YyMidKLNyji4Xy+GBGB5J75kKKWKyP5jqO51z2pC37bLGm2q+dKypuZx+n8Yjp8+XApqeTxvDNIQyBZKmfmVg2DDEyKjhz3HGsYXy67/0Ds5tr7M9g3m9oJmvU9cK44dZhWQbO/osweO6gHMhlizF16KtmZRWnhjJe3oeU/g7PsvIjwyBYAS7WPDP/+k/oKo2Of/SP6QgUEDp+ZNXmQVEjdeKwFYLW7sd1TPXePuH/gVP7P02bzg/44/dc4pL6xVX3JJVgKVYWmMi0XLIWh1AKHly1OdOSRNCarfuSbwSkoS2d2zW0PsDVns3mblIuBB5bSpbxbBPnD8DxoTBvJQxn6vSZ0b0NXZEJlJYwFDvmEAXYwaqf8nzPySx4z0hJoxr+Zhkk7cUynLRTkGYabihrMg4vJj1/kyrWbz3hN5lLTfViM456lrZEdK1laRc0zHd6MuCa2PMUB9qqkObR3nd6bpK31K/QPISTRr3qOqV241jC+WDL7qbrbUZFT1VVVMFwyK2Ke+McgaEEIbKBEB80ARtYqemrKXiyYnqj6P8X3WSw1QEGQuuCoY3hr1Vzyc//nG2T7+K5uQ5Xf+SdE3IrdW0Xt9TBVjvPCf2HTc+/SjvevQf0/kn+OuvPcPL1xtW3nE1OA5EfUWXFp9ElwxJhAkZxA1E5DGTIhcgSNbR6dp1Uc2ruKC7JXiHcx1Xr70bay0ve/FDeH+AoG3XJMYxk4maKyqST5s1W/IJ9P3GqICX7ADGDJoxzXDaG3MCe9w0CWCrCmOqjPzCOFg+XXClgJaCeyjswADaKGAjmQalfG/y3V3ifo1a21pLU9mMypaIq5gjkgAn35u+o/RJM1BlJEIEh2k60/UkYRttVEYNfp+yl4pO0scZxxbKO05sYKzB2gUEj+8dvUH9pgDe9bk8SG1xMEk7FktS0mKJwxwhkKRPhAL8CeUCj/oyAahVxc//5M9hTM35F30j3hjd5WFg2QvgTaByKuwLF9jad8jl67z7o/+E1j/BX33lKV6yVnG9X7EjngNTEcTG64gLWAq/ToYwS0jaJG5KqW2BVlUMn8n9OVH/7g2X5rzzqRVPX/1ttu99lfK1+iUi2sC29xE+lUFAEr9raiUnEisdsoAQfRrlA5rNZhNhSAKbiqfj/Hjlc01dkpOJmxarcy6blaXZepRA3q5qv4xLlgI9LPxxQkAWBgArOBdbLEaGOalin0sKk5RA23fZmkDsoe9K35eurdTeGbTi8AZyFIKarI7ks9pKCiElh0S+4OZrIDV2cbrggyf0Zfvq4sSJpcAmxQcH/2QK1By1eYx2yKPMj7TzBiGIoXWWN/3sz7O5/RI2735pZCyLscIQ8vvFabnWzHk2V4H1Wy2f/tQ7ubn6LF9/1xovXq+54jt2xLGq9DM1lhDNVpGoHTWwpwwFcvROGjLgErtAxX6S5JusajaFNILvlbqyKCSwVYXvTZGnm2KIqeEqWTgTocpQ2WExJlXdD4shaYEy1CRiSRX1IlDXWm5VVRUmxuq6TitOEmp5FEhSjnGYYJwvOu0NWc4fDEnhJhYQJFAm+fGlKYwI3vnMnpevMX6fsirImBM3DKCT9z6n0pWbwe3WZBrlNaRrS0LpQ7Fhec3t/T3xKft2gI+D1yLkbCElwEGK1O4QItFtFFhJWGXUmPkCx5Og5pO+p4S8p5OjCQYWL8L73v0+nPOcvPQGQt1k8yf5qpLOJwpQ3fcsDhxPfPrdvOvJH+PUzPC1l9Z4Qnp2TdAuw6INZfIiKM52KKUaNHp+pItI35/+NIK4gRWB/F6G9/owshySZrYMmnEwOUNOs9OwhmClIif6G0gxzUFLxDMOodhE1X9Un6rK4QwI9F0X6wEHpLEMc6xWK5qmOWSelt9ZBtzLjaC8l+WGlkxZPTPJGmvIvLEqrEH9azXJK+VrStcZTfLkk2aTVqB3Lltd1toMJiW/svye6WZTXlvJQDAV0P39g+xiVLnfy+9B6VYoJo6QhAuOEq3EcZPBB53h4k2C92ntph0s/Z20JKQuwmFYP/HjCcW0uI0ZP/vT/x4jFRv3vjabDER0V0S0AVHcLead48xuy7Mfexe/9ekfYqNe8T0v3cbNPfsBNVcT67cY4urO6WSDsSSxiDiaYgmtLK4jRkL1EbUs6b0+4C18akcX4Mn6QT2OawHP1vYWwThEfAR0Ks1RNRJPSWK6XEK6tQ6+gGOzyTtYKoNwpgVWghQmgkQqSEP8ODkgkk3cYTH2fT8K3B8lZKWmnKbeHQUSZcGI16vdwVTAdD5j6McYBJtL2EwMCjrnNRtMDM7pXBN9vbSm9JotVWwf2HUduD5rXM1GHnPwTP3hdK2lSR+Cp6pstih646iM+vO1/QK3wlNXSrIvd0jJT9V+GGKOEjUUgZEWK2/EcJgxmpWRwOHAysmEmsMHuwdceeZZtk69Art5Qlu0FceVRPgcJ3qx8rjLV3jnY/+SRbXkf3rlJutz4VYIIBZjK0xtsSLRFzh8sen6U0A7bQSDD3zYBMqLNr3qPVIZHruhFsh6fQ4vsHf1Mdr+Fr//9/8RpF/RWN0CrNEq/Yy8Gm1zkIuHA7FgPG4e1mS/txQMEZMzokqTKpmmiaGgtGZKoS59s6MAn3LRTp8rXZFSaNN70s+kfQczdvDHkrYt/dy0trLfTVxn3g/rAa2JTZZTuvYEMFVVlTVmLu+yFXXRUTp9f1mLWW5Aaf5MahNprfZ56Rxy0A19YJ5nHL/IOY7RwrrNmHoY6eZMTdHnEsipDZ936PSItt9HfucjtG3L+fOvxtka8eUCUhNOvJp+1gfW9zqufu5j7PdX+OJzNRtrFbv67RruyLE7YRTF13cc2nyCL3bi55qTEPKOi0hsCFS09CvN2OCprWW9brRzlqiLACl/dRCmzNIWQkYK0yKkmM+yI9UUQUzC4fPcHc1u54u26VNO1JGZWNzPqcmWBHSqcdJIwlYK61EP4ND3ZZ9Nhs8bY5RytACCplo9acEUrkmf7VyLL+KlpS873WiSKawUIyGn8lXA3qc/T//sTfZqA99+2yUyzMHzvyVecMlKV5ivUCJ6cUby22JWy2214vh3yT5TmsCI4sbKAR+CgjsI4gyyWOMnf/xfM5+f59T9XzLKMlGwx2tnqoiYNssDzDNX+cCzP8t2Y/iG+9ZYBkcQC0kgYytyiUIvjBdZ2QxWv8dPrv94wxttNpQmwYvBEQj9CoBTJ7epahNZrSSfy+BzRlMPMnTvCMO/QCbVSqbp1IT0PuQrDD6GoMIAggzatIgjwpGLOs1HqQ1HKXQT4TlK48IAoJTCmTNlis+nz6apsHVFchk4JMCDk5VwBbVWIk9TSARdPifhmwB4j/MeiTHSkeXgh3hrmteq0ioXMQqWeR+w+yv8k9eobhzg5Atc5JwuKySBHJkohSCmx8jkOUwZny5m/Hc6QvouCEVGCnFZ+KD5oM9evcGVZ57lzKWvwi7WcDE8o2ZyZBmzmrdpgI3dJbtPf5qb/ed55eka5kLntUOU2FhDKBFISf5svDpFOwcTNAmkHzm9xxtBAsGCqS0rB0ZqbD3HBce1y28D4Ov/wJdibJv5aKX0TxkWpOvboQWeAYLJ2mxsbYyBnXTv1P2WyEnjY9hDs2hSsXPy1RRJPpzidhTIk8zC6UZQFmIfRbUxPe5Uo5c/s78c14UYRWJhTLGZQJvk8zmvKHMf+phbkc4n0MeO0hZiUXnAWt3UQ4j5tr3D990oCaOuNfRU1RWm0o206zus6ak6T+UH1+35xvGBnjARlpF/UAqlZKEsrve2owy6TstrjtawAR96pJnxr37kh6mqNc489Afp8LiAtueO5zgKp4iwsd/znuvvBOC15y3BOUDZzK2t1J80mruqGOZEs6e4F+FIc+1YFzwcjF/71A6fvNJz35k/ztbmRfaDJ4REJFyUY+XvmB5bd3gTu16X+ablAi4BlOn5Krg0rcYpWAkKtBXG1RlTU7C8l8m8Tfd1WuB81M/yfnddNwrMl2DL9NpK9HPwnYcNaeiZeQSDOYPmTyZnKr72IRB8jw9F2wTnlBAtWhNJIOfzeY7reokhMWNykYCxBnPMHNgX7FOmCy9vYDIRgv5BSAZesu3Tbpd8nQH9wSdoOR7bezcyGocJjNo2CDYEehE+8L73sb5xP9WpSzgf2Q+SHKYJCMpibj3s37jGk+1HWK+FC9sVQYwKoiiTeY5FRg09jBhzlXSOg4k30pLpDc8hmGmh3Fh5fv3Te6zPHub0qReD1KOd1EfNlY4V0KLyBCQlysajAJs09yHtTqIbZ1kJkefWp3sIiRwrobDWVnneyxS3ZPoaM2wYJZIKQ/yy9F/TuknnWyadl6MMoZRrII3y76OQ3um5lAhqef15vgohzmaoyIiIrPQpdZMY2i6Um6E2X3KK+JMwGIlI8u+hpkxfNgA36SYTBU53brVGY8pZNC2zZxIC40PGSQ7D6+V3lxMaxPKu970XgNOXvgJvYvA7CnppXmK1R6RtPe7aDbqw5GRNNAstIhaMjalFJmK6hwVNYpv2EhTx0e8k/0gg2NRkPDyXT+z2OA/ri7vw1rCqLAcHN+i66zz44P00tcG5mOsa3UrtVzL432ljIwqXEP1IYdiUhLGQMmgG732uNEnnpa/ZWHjcZaQzWUPOJerF8Zoo/b5cEztKnzOUQlmasLebo6OEadgUhsqM8jOHx+FQTPn+5POm48OQlJ6S51MWUrIcmkVDZYZzG2nf5PCk848xbb2eL3DyQHK842US/KDSB9MnCWCIeZmD6VNyphw1ieVxpiO9L/sjleXzTz6JwVKvnYtaJRRFvkR/j5jrCnjPZ3c+gqfn1WcbLEa53MXE4G6RMlacly70YWKDT9SO08U0QO3lZ0fviIvRec/OSm/evD5JEHDW4A72aPsdLl54BELamckhDI3KHc4sSecciu9Ilkk5h9OslbxYR9k9g7Ck+JtzLvtP5QKftrw76r6WZuf0nEvTdIqEJvP3qM+VGjHNa/m9Y4142B8tN4/SBJ5q2NSDJF1/0uyVMZrXTRhdWwjKTC8VuOyKlUDhoak6chxbKBeL+fBHCLi+GzI9GIKoqeuvkVhRkTrrxouLH4+mq88dhCN8kXMYJ9GIYbJEMM2MX//lN2Psgub8/bm/hDeCVQuXrMCNwXgHbjCVRYgd+kLMkrGZ5yaDH/GNaeGla/Reuxtn03B0ksW5HmFZDCac471PrRAxbG7cR7AGLxQsAtE/A6wZmBZiPvpoEUz9saPmLF1R6UPlNLPYrTm9XmbglH7iwcGBMs8VvK1ln5jp90/9uqk/WPqY5ffdjr916ieX/mj5e+k7DoRigyacmtvl5lAeO322rPnMmrHX5IoxkFaUcSEE5+ndtIvZ8aTy2EKZ0icDKI1kpSfsvUe8AWMI8W/v1QBMi8zHBS8iWQhDzD7RlnVF5UM87yBGWwsUO9Hw0+BDwFQLrZVMfqvzIJaUVVMaC8YVNxXIPFqxfXmpJXV7SJpPP5H92mgRDAGCNAYz/iizNWkx7/ucDlZ+zIt25NQLTKEPGaXd5a2rNJcOmU76OZEkjDJafKWmUTDDF8DcEFJJPT5AsJXVwLcQKyDiMUem21joS4EyxhwphOn38n2JCiT4iE8ENbF9UPDESEonjPdV0s+UzTMmzgKN7Y7Xz+E4eDrnqZAnwCttZHpb0uIZhHus8V3ue5ISZiRokvxxxvHjlOUKT1iNDzmGONjNw44lqTW6BKyJkL5PeZchUkbIaKcUydmxJH9gZMaEwGcf+xyr5ZJzd34N1DMlwUm+ScpkSZ6dD+BVcEsC5qR2ylSIECcxOrX6fPx9MPWG3MmxYJYCOThyAsP1iAJIO51nt4X15h6quLF4AnbkyibfaxBCEwZXMZ9vfv+wUNJpp/uRzi2ZpGlkfyjHNkM2uwyDyVvXNWY2O4Q424gdDNfNkYJXjqR9pr5gAlYMsbV7PC8fQm4olNaGsUWDV0cU4MM+ZjrflBE0NXfL30tkurRqUq3mkD+brIchBlteU9rcbDqe8ZFv2NPexn+ejhfgUxaZGUHwLmiw2h2VOpV8huEjY5TQx511cKynu1RgsMdHQmksb/ql/4Rg2Lr4Or0JLmqwuLOmsp6EXjqnPRgz900Y4o3Tcx9pnAA+dtYahQz0A7eBcW4zhGwRHDihdZ712SbO2ljr6WNDHcOVK9e4fqvn5NYM7T5GFu7SU53u9kHKe1BowwjWTIP8pUlZbn7jrszjbJ0xWDOYwprEPiQrTM3V8v6PQULG59SPzz+tj3SMFIZIiG2qzEjJ+clsTWa4lhP2eG9GApTGUYKaRvKpp+CSCepXlp8vr8NWtjj3kOs6q/oLnPtakhKp5TlA3r4/vDtNUbZDu/rErCpH4hOtEIJRM9Z6IRiQesbHP/Zx5ouLmM3TcadUAQ9Be2gYq0s4OI8Xh09CmXZFyLm8gmKuyfwqRS2Fb8pFMj3X5xv53UH9V10YyX+JPEHWYhHWF6d58NzX8tGPvplv/RN/jle+/BG+68/+aR6477ySMbleNV9Mz4uzmMXUhxBpV8aZOSGEUSPVwbf1WQDTgk45oOV1TrVeWgt918WEgsPvSc19yrVQ1l8mQq4yRNL3/aizlrbwc4firwn9Vmsrbh6B0XXnci+BvndYS76+coNIm9U0kSFddwghM95lMzuAWcwUuU6xZIk4iOhzkkKE1mjfUob+Ks83ju9TjpBWDi3O6U57KBWq+H0wyw7vpNkME8F4bXdgESpB2cb39rh5/QYnzzwMzSIxbBSZNV7927h5hE6Fsg/94AdEM4igfqJIWgQTsCJNbDhaILP2mmjd6UgfUy1iWcb1W9kNddaN9u60neehU29kuz7LZ66/kw9/6JP8t3/+f+HMmVO85MUP8Y1f/zW85lUPYkVL5yQi3emsnHejmF/SKqXfloQnVdqnhVqGHsrPDIu70MhxLqq61u+I/mXa8pJ8VpWNydn6vU3TxLrMIcY90HGCMZWSc7l03jHLph/HLVPnL+L3qVkbot+Zzj25P9F6YmxZTHOsS5+yJNdK15u+OwvvcomRggYz+cJGcHgwghb7B3wVLYhjbujHFsqU5RBCiH5VRJYKNDD9LHfEspj08DhcFpO1Z17mGnezQUGGt//m2wE4ceGLsjkX8jaFSonPHim+d9ph2DlscxLZE262QdOeBELeVY2mmgVlbytNWMI4nS47+y9oqP8q1vC2zy0B2Np6OcFqGzwbiZfbvufs7E4u3X0PB/0en7j6Tp64/F7e8uw7+Y3ffDtVZfnqr/oy7rvnLr7hD3wZa/MaQxvNd0ZB7tG3ly5AvFeJ10ZkYAJPCzAt2qEkaWy6pmNkIMenTXkwM0tzOa2hqRZOv/d9T2o4lBRAMh/T+5KWm15PaY6n80o+cgnCTDt+pXPK/mlC1ycx0MNzB6uuI/W7zCl2VaWs+MGj3PKBygrVYkYbPF9w9LXvet3hotlA3n0Op29NJ2uKaMV3oQLlc2V8qTUrY7BBi3WDiW0SqorPPP4ZAMzaSUgRcRkEJmGIOWk8mqCOwPzUvdgbc97z7Io/cNcCrOY39l2HreqcLxtkohULgRw9d2zBDGli6IFbrceadcxsHW+jKeo9bbti1fXqr3uhqee88uLv55Hzv4/WLXlq5+N85vq7+U+//Fac7/i/f+hH2dra5NWveClveN0rec0rX8zZk+s4t9Q5SOBbRFDL2F8JTEwFpUxrS4s41U0eBYjoZxRnKP3T9JnkZ06b40w344QBBAJd19N1fWFlHBaOqfUyvD5eayVxcvreslh5akmUczQFj9Lwvs3Pp82maRqNbTZWTVyUKWIxX7A65kqBF5KQnlDHkLDEQZMkW3pQ83FSiCZ3fAwQfWnCljEpPaTC0IbagDeCWKX8D1WdBSG2NCWxGYx8wTCgwUCiSCbM1zg1fw2Xl7/FJ2/0PHSyJuDxrlffKIYHInRJccAi2FD4icUI+arHrw8zoedo64pFY/G7SzocVgyVh7kx9KGn7VtcCNRUBFEN3tiaxWzO6QtfwovOv46ru5dZ9js8dvXdLNubvOW33s5vvFUtiDsuXeBv/a/fzT13bCmTQdTOVVNn/8c7T9t32dLxYVikKswSaTQGwUtaqhTI9Lv+1FTEros8ramwPN4v510sVQsRfIlrBqKZl8A5WC2T9rLx/lY41wIDkprOIXGzxtWmwof2SylN0vT+dL5TTZs0dTluh9YmN2SaodO2HSHA3MYifiMErzxJIByX//X4IZFIlaiap7gxqN0MyjSWaEL05FVojCjoT6R6HPIAh9BBXrghmi/WascnKwTRxeXrBZ/8+CeZLS5it8+TKEZ0k0jQszICGEwsxwETNMbVG+HEqddz9cn38kufPeDBbY29edfhjCnCFrefvMMCN/wRKC7p0PviNlZpoXLAxTaBBhs8W7MZt+qgtBYYjWmJaHPZCIoEoBLD+bVzGHuBB8+8mN57ru1e5vrBszy18zGuXf4s3/U9f5vv/76/zv0Xt3XjMwlwideQNsF8conpXQXEyGC+Jw1TAiJHoaYJC5BY4BuiJZHimq6IExtbRUEYktVBGQO8S2tLwyAuIqiCyUKo1pUWmqa1pppNz5Og66I0x0utWv6cgpGlZpyaunpeyUWrDh0j+Zt9p4wUxhgqZ6LwSr625xsvuHQLptB80h2BcskOOypxVxFCGGDkYffSY4z+FkWsKqdBda9pLPS949qVq6xtPqjxSTQGKhQuZQJ4otmaTtgDywoWG9us13fz1P7HuLzynF3Tch+xGkrxehASonesCXmekRnsstUwIHYAlbXs7z7N+z73T7DScOfmF3N27X5tkd73zCOSKSgvrADiFDiYieHSxgUubV7gkXOv5NZqj/c9+ev8uf/xb/BP/9Hf4d6Lm6y6Fi8R6S20xzQckuavzAfVrlxjH7UEPdLfZTF1GZJIx0yPtNATEdeQCebiOhlPbjrHqqow9nCyAYzLtKqqihUct8mp9YoPTHl1jhLA0r8sgaHyvNK1l+0IM5UKGkKn2HiOM15Ap4O4E4qmnqnpMSClTG6cMcqYXtU1VV0xm83yo2ma/KjrmrquqCoT6S6ieRs1cDq8AT77mScBWN9+MSA55Ux3UZPOUicfcglN8jZ7oLPCmVNfjZU1/uPjS3zQQDlB0bvbhT6KEPuh517IKH19C0jwrHae4r0f/UEW64YTp2s+ce0XePTqL3Lgb2GMaLpWCJnlIHhNUXSdo2972lXLatmy3D+ALvDAydfRt4a/8/d/kKZZ01S6CeiS76qMY4Z17HyW2+IdYfKVCzTXXBbPJeEo2QlCGOKHq9WK5XKZwcOUoNA0NbPZvFgXNU3T5M9ltvQCYDITM1XiNaXO0emRdEaeu5QiGn2/ytjCf02g1jhmWl5/yoUtUw91QzIjpeMJ9GjmlHsOC6wcx9aUOYSddv2MXQiSqCNtIl8i37A0kt8RX4xLeexAh9QJKwE1kr5Ss1ne/s53A7A4cV+c+EEbp5Ga3oQokETGdhP0+F4M1cZptm6+mk/c+C0+sdPzyKl5zJSJC0jiBQoDElu6mOX5lX/fbkQzPrEmpGEA4z23bnycVX+T7/nu7+H3ffEr+c23vosf+pF/xQee/tc8cvY/49LWPfReZ9kiaK+KYQPy0SdyXqH4moq7tl/Hhz/6G3zwY5/j3ovr0YIYC0jSXOXuX2qfEAL4gcu29CfTe9I9Ts1ySvO2fD0J1BThnKKiRjTEMEL7w8Col855mtzgnaOxNbLqaG/eoj9YKdGXqONk6kq5f2qDVEbpUWWoLApBkXpvLT4LccjXBGM2ujLSkO9n3iAGwe5CwNdGXZXwBc7oGSNQqp1yTqDvCMGNdtFyB7ud9tE2Bn7yXFrpJWCUUsBCNjGTmVqeUakls7nIYG6LsXgb6KuKjROv5ebyvbzp8QMePjXHlNZq9Ie+kCPt2Ku25+ZBT2W3qOo1guu4fP0diAivf/3LCaHn97/xFXzZ61/Bf/3df4UPPvFv+ezOPazVJ7n75GtobMPW7ASVtaz6jlk9x7uOttfduF9pBsoDJ17D9eXj/N1/+I/5v7/3f8GYVZ63pB2T4DVNc8h8TQvRhEG7lp8pj5MepQnYtu3IF10ul/kYIpbZbDbSeoO/OVSylJtAXde5m1XuO0Jsd+481gt17zA39rn+6Cc5uHZThRLog6OZz5kv5phTm5iTG1R1ja2qGCceEk+CVVoYQW+YLdrmTQGjAfSZcsYO1oUPgWo+w1jDqv0C576WpVsK1gw7lTJQpxMZgs6lQE7hbx1DQW4+ckbSZMi0ETD1nF95869QV1sszj7AFAdN4pt0cCAwFDFErWYNBIuvwCy2Obv5dTx762d46xMH/L57NmMO5eSEfhcjmbQy3jcAaJqK7UXFld0dutUthEDvDrj/vnsh9PTOY/EsasMP/6O/zY/+25/n3//cL/HEzuM8sfM+ADZm56nMjM7tU9t17jzxGk6v3cFavUZYBnznqU3Dlz/wp/nVj/8Tvusv/+/8o+/9y4ishiKCYmGV5mDSaMUNUZ88Cl0pSGVcEIawSQkILZfL/N7pd5YCno/FEJcs0c+qsgT8aE2lY/gAZtVx64kruKeu4Z++TnPQ5siAJcBux0p2Cc9cUxCxqaG29I3FzBtMZTFba8jmQoV3PiNUyhgYAtGtMnl9lr5voklR5ZqUSUSdnWOe+2z+HmT05PtEmYisJkcyAVzoCcENu60f/K5C3gYzN9nD+fnIk+MMNqZq9wK9CDs3dxC7jVSNHjPKZTqSRRSBDWBCQnOTz5saDOnDW8t8+2Ga/Uv8xmef4pUX19ioEy3jcErP5wXI9P+RmTt533gjBaDbv0Lb3+RFD7+B0C8xVaWvV4aNmeG7vvNb+DN/+pt59so1fvLfv4lnL1/l0Y9+gus3rnLu7GmefOoz3Dj4DLWZs9ac5lUXvpmqbuj6nqqt2Gwu8JGPvZ/LV3c5d252JLvcFH0cAUDJfI/8qyVY5eP9CwHEWJzz9L2jXa0IDBq3qipF3LPJOZidEkvUkudSprslMzWHXMRCiBlETlH1eS9UoWJ5fYebn32a/pkbVG0/sqSMmOGmrjzB9XhW6u+JotMC+HmN2ZhzUFWsbW5Qba7h1ufI+hyzmGNnsQuXFYLVJIFAABezmUSUf9YaCIYqQOs6usbgTqzhb3yBzdfSnEijRNXyjhcd5PSQMjajiEr0QyUv4hRaSYvVoKEAEQGn/uFB2xEINLPTEAPueqtKbRmrMkLIMbpAUEGNlQbq2QdCZeibhhMbX8ozN/4tv/W5Pb7uwe0iXYyCzfw2czL6f6JdwyGRzO8p32nyAhQ21mcYMQoAiaZs9aGnqT13XFjnu//st2quLw1975nNLKvW8Vtv/wC//Ktv4Z3vfj/vfuJf87q7/hSNmSFiuHPr5Tyx835+7TffyZ/8tq+KwNkghHD7ig4gZqcUPmZE3rTkSzKS6b3PyeFlErcyvMV+KMbk9uzpmkMIOucaJ4p0nWkKx8kCZLdYMM7jbx3Q39ynXXbsPH2Z7uotzKon5oHqYYLE4vekpQ0+MsdXAazz+D5acc7BwR4uBA7MTagrQlPRzS3z7Q3m62tUVY00FW5eQVMxm8/prdEEl0ob39ZrM70eFzDW0s8rNh+4g+qpq7ed53L8LomzhptZmqc6b8NzJgaLy8+WJTTl8QKKKkq84ZreqVC5w/Gu93wA1zs2z7wGsfWAlKX/JoIzCK3+JRI0J1YCIp5QWYIzVOsXsDvrfPzaiq92nip99ggL9nkBnRc4UgIFwGJtwWw2I3gFpbz32jYgx3chQkPKkDYTvG9pKvjqL38FX/Olr+Rgz/FH/+u/wHuf+Ld8xQPfiTGG9WYbI4YPfeTjiHx19v1DGGhTpjmvMGy40xzmaQC+792hZqylj1mCPTCmDSmFzpRCWYxptUkeIeDajltPX2bvqSvUBx1N57RSr6RCkewk5fNXayxt2WOAS7zW3jrXY3qQ1tMsBdnt6bhOJ5r22RmQpqJbLPDzCuYN87UFpq4wWwukqfB1Rb2oWeGpz59kY3PtWOvid83RkxC58mJ1frXkynuvWRUj+QvIc6zp4FNIPRa5ekfvPR0+ZfUNiyOK3VSJCUMGz3QIGsxGNPYWrMEstthYey3P7r6Fj11b8vLTi3im+cJ1sbzA0MeR1zc5hghcvabset/6zX+Q1Wql2t25XAxuDLlHpTEVZfgtgzMSMAS21mt+8B/8Hb7zu/8yjz77Vh4592Vszk6wNbvEe973QfZXgbqK1P8Fp4/YodNxeexSaKa+n+akjuOcyedMGnIaSoAxGZb3A9O5Jh8o0JP+LmOmU5+0DZ7Z1jpbZ06xunoTc/0AEaFDYqe1YZKD10J8dW1C/i5hkv4ZYn6yGKqmoo+xFHEgvtf5ihZX5TzQIVUbE1NgJwTa0GPXZ9j1OVvnTrFx3x3Iek211uAXs2Otk2PHKac7Zfpdq8VF239Zg61Se21BeymWj+kxE2sbBAehD9oExwuOQCeB3gSkbvjt334XxtSsn3kodvKIDnfyb7NJrNqEIkldSig2nTu6IL0I69uvxsgav/rpXVrnhx02QduTkIiUN/2FjKlcG8F7RSUrqyBL23d0Sdskcy0IOPBdD75HgkOCozJQGc228gScBO69dIIf+j//N57efxcffPLX6ZxnrT7FcrVi99ZSZ00t+JyfmdovHDVGSd4p9JKTBsZroox3DhUdAyVlWSJVWlj5uL3DhwHNTd+VfpaNhjyBlQS6rTnhwjb+9AZhc440FbauwVaa7C82tp0fwKnUyiAthHz+aYMxgjcUIEjU4D4QnIaIfFxexhgqhLkX5n1gozfMb/XUz+wSPvEs/ePPMpcaayvW68WxlskLYB4oMxpktMZllJCuwtf3ydcYpzKVQ4GBPh5/gFWMiTA18cKl4qMf+SiIYbZxUnWxpAS7MDjxaQrjnyHvfCUmyxBMju81zTqz+hJX9j/J9bbnXNWM5eewe3jUH887DmlKMwBmqlHiOUe0KZuXBZJc7uyjOHBKCCdwzx2n+KZv+Fr+zU/+DOfWHuCBU2/kmb1H+aEf/gn+yl/6DkLolQspFJQgookDZTgEBvOxpKccACGyVixjk1MBLwW7NEXLGt3cPTnY0WtATmRP51LbCuMD0qs1dvLcWThxElYdYW9F2F3i9w7oVh2u72HZ5vnuncukZ4Jk5DRfG2RrarwTM6y3/NxwPaOEAYloNcLBzVtseqENAZovcJFzmUakre/KvhQu5pmOsx604mJcUlOOcmcN0TksNVPShRWVcvKYBu0vlV6JZmpKtYvHNURkML5BNVs40veMF8d88RAH7Sf55LUVZ9abF64IEwhy9Iv5fIlABUSQR4aPH3lMDvt303lU00uFxKO5of/Ft30jP/Pzb+JT13+L19/xzdRmnV/7zd/mr/yP/1XshJbMgWQWHs5eiUfX3FMxhfWQ/h4EUUQyHWNZdVKavwmJTddSVdWRvKqEQRDL9yR/dRVWkdUPqKBfq3DbDYTAGpa5N1QusDpYQddjru3S7y9xq5Z2Zx+/XGlLPOezT1kiz899m6cu29gEVu5gMFaz2ZZtj1u2hNmC7ngRkReuKfXLgSQ4MrjRueYwPoRwuAtWXoTRXs9zUABJkRvShIDB8MSTV7lx/Qanzn4Zdm1jJIDp93g0PQ8hE3Lpwo6mS/FNUn6rwGxxJ3LT8unrHa+7M1BPbk7+TFAf7kjAJwnmERKWPzPafIuEh1xvF4rvGTKAJAIMeRePIQpJfp2EbD0ggcUcvvHrv5af/On/yFM3H8tX0XeO2jDQcYoiqD4Euq6NizMWCvsAMbEfYqwwABjalZqUxhqa2pLaPFS2RlDf0kftT0Cr8cVC6mSGMgKEQEzU1ooKCoLnJKxlwTVA13aZ39ZYC5XiA2IEZyr2Q6C2FWGzUVbys5uYrie0HVtLh9ld0i9bDnZu4a/vszw4oO868MqTZHygFoN4nePOxGobpx3MxRr6gkJVMqqscydGuZRcUJO3O1gStuYs3Zh0+nbjBYVE0tBJKxJ6USGQKHyud5r46xId42DaTk2bcu2PQAWvkyMitPHGIFZZzUOk8IjGRPlI9mv06YdQi5Smx/hzAGZ+EmtP8PjN66x6R91Uh7VqmAhXAbXnTeI2vhnRBC37JImUm5T2uBiRUYVA6o8pBWpdJt+X8+dEzVDvPUEcf/rbvoGf/tlf4JM3fp3O7XHXnecxqd9KBONCrJDvvZIvAyNtF3xR7Ovr/F2JqDm0AdcP6K2eruYiD7HOgE1NWMNw7s4XSSXxjvqg5WRTrV0iugGtHvEhbp5BqKsKY4oi6LgWghH6Cqgq+iogGzPMqQWzqqY56JCdFavdffb39uiWK9zuAX53iXMeu3KQkmDiveoJVGaohlGrUAYXLm4WXiAlOxDbQqxukyQ/Hb/LtgWJeFlHgvDLjP8yXFJ88sjjHRb4CAAFJa7q4kpOAWYrKU6ZKik1WOFDwI+M2/StgzYffp9sDvWM+fwBdvfeyRM3W1509jmmJsqiyuVYykotXH4gTD47XHf6Q2F4MZG1vZiXqVmVzL9So6QYMdE3FyNsrRv+2v/05/mb3/t/YSx815/5U9C3+EpbvgfA9Y4+hFw/CWOyZO8Hfy8J57SLVom4JtelzE1NqG7Jlj69nmQ+prBYybMzLY7OoZsQDvmrCR0djeif28rShsCKjqa2zNfWsNtrGH+CRe+wB0vccoUse/zuAbK3goMWv7ePW7b0bYd3FqkaGqA2FcZo7Wm0A+Mtlrz7hqB8w23XsvJfYE1ZTqAiY93gP4bBP5wGoo+MMU1eL3+mxaVxSwhi6BPnbDyMkbHx6KNAIjEZOB2b4fcyOaEUnAEKL4TpCJN6NAfpFhyT3mH02WIucodpiPmcieVvXJhbVkO4FBhPi7RAMnUBRIJpUTT8K9/wCNVf/gv4EHjlQ5dwAsEpi4QYNU1LjVUeq9RQIpLzV+fz+UioypzYpM3Lcq6S8iVdU9kGYAwiDaht+v6jQKbEMVTesnTdiSM2xOdCiK6CWNaqirlv8Cal7qnGDlagXrBPj20Ma6c2qMVgXWDzoMMue9z+koO9fWh7/I19jI/n6foYIhzytYmhFY+w8oG+PYpV/+hx/CqRgkQoFLA1qKZMr6VRBp0HYR2C5eVr5QjRDwxEf8QI73jrO0GEzfOvANR/skGDvyBISMXWJFc3Tkv8e2qrTpz1BAIt1l/Erb138tHLLQ+fXicHl2G0CRT5SMWTLyStQG2httulba9z7txZtrfWcf2tSIfpMGKobIVEYi1MLJfzSpnRR+G0xuBCiO5C1HAi6msZg1jhtS+/h77t6IxHfM8q8tJkFrtk3mcmuSSUeRbzPS2D/WXz1BIdTSPFGKc0IsYY2lYR0Vy3OdH8pVCm4yRtmMmqig2g7zpAcMKIsU5HJJIOEKwBExPtXQw7iQKGRoTZrNG1WtUYUVoPWZsjxjCva2zb0q86mpsty90ly4MDZi7Q7uzR3dhV8Cj4WJwk+FObtCcWGn/1x1shL0gop2BN1oojC05GO1r5e5KM2wrjZATUP/nohz8KwHzznCYkBBASM2yp5ZIIFdooJDR3+O5hatLOrQJeN9sAPHmry41YpdCw+omjETo5QijVdRtf187eis9fXzGfX2Lr0ou48cxJLl9+lL29FWuLiK4aCk1Q+NnhcGVGF5PAbXyeyCze+4DUAgaksYgJyiWzXNG1nc5Z1Dj1rMmcseVmq9c1RhlDCKxWyjiTkNSyw9a0KLjUmGneUt+OFIMsOYGS5gfGFkCRaFCaxtlk7cF1nfYZbZoMvvR9n3lXxepzIabV6eYveSVUsVeI956mqof2FIDTWgbCvKaez3DzQHU2MG97amNoDlbsXbmuKG8bKSkJrF04gzQzEGiq5tC6OWr8rjN6hhfG5uBR7xtuyGCePd/QxR9GMqaUhQZ8FO/RYcLhn2F45Pgf4/PNLh0GW69T21PstjdoO8eitooIjjRrPIJIxnk03nXUNUT/ovA4fAj0Tm96M19EkzsMsTMZKv0HjTGex1S1D0Mc0dT1CEQJYcjQKX19fU5RwlHfjuJ94/DA+MLKmGIpcKA+YxKcZJ5Ofb50jPT59Jn8erHhpU1juglOGdZFZCi0NqkfZKoXzTc48/Yw2ZZDcZwcdrJGcY24KbsM3qjb3lUBsRWtVa1oZ3NMcxLT9gWxNvRWcAdL7BFMercbL4CjZ2R3xqRxzSW5jesV33q0kD7ncxEd1GsQLl68wEc+/CihP6CyEaTwg8DmRjMxBUYi3qEJe2Q0Lx06Anb5lxxva+bMmnvYObjGs7dWPHBqTdkL8nWIAjuic5BMVsnnMb6ugqgy+jwwrw2L2tL6FcF15AVSTFMZCtA+kOOFOc0f7fteiZHj6ymDxRdB9967uMAGrSfRJHbRFyq1ZMYChEhuDZZYxC7R30fwQR8ixMRzky+l99oTxSfmQzOsosQ2kH4v7w+5TEpDHmJjXmxwVNaQZNcYMt+qtQ0pjTIwWDgiEs37qClDLDvUi4x8RLEJVfQDjREIJvebSS6Bj2EfzWQSgkuwYuQSAnxTkcJIRtAi8c4RWs8Ien+Ocew0OykeCRgxIjHl7fajBA2mZmtpFuXkZaNpepUkZrLAH/7GP4gA1z7z21RWaUZMZfRh0zEo1vfUiWTwLQWN54lkoCUthyCBEyffgJEZb/70HgQlbeqci0hrRJ2jPyfJWQ0eTaDQRwiO4F3kx3VI8BjRlt2Xb7bcWvZsbNxHPV/LmqG8XUnQVqsV+/v7HBwcsFqtRmzj6X3pud45ushv2/uhdK7vexXwEPAiucOXF8m8PaUmLu8ZgPcOY0SpOuYNVW1pmjpXf6jbmahhTETEReN0TkGkrne0XY/3JQ5O9g+nC61uGmbzOVVdY6zFVhW2VqTTVhYtPjY0s4bZrGE+n1FVFjGx7jGeRSIwl5BQgJSIH4UvNQ02JgqjJbHU6S0WkAoxtZYnxtoAH9n4vC8qikKA2oLVjUk8GQgUlHlg9Vzaqxi/q5BImtCySPW53vdc2rL8mcwoKZ4HYVZFJ991zAV6awnRWVfuhh7jg3ac9IO5mkf+vXR+k79kSP06AtCsnWFr9nI+feM9vOfJXd7z9IqdleP337PgJadn2ILuxMTNICQAqzCPh/+i+ePh49da/uWHd6ntBnfd+TU0Du689OXcuP47/MzP/Qp/4o9+hYZFYhgiUXz0vdM4XxOo6iEW5wtTM15SvNyAC47ghhYSwQybn0/aXtIGxm231mmlRzZtAd8P5uu0eVBprpZFyTYF2YtjJdOzXEulwGb/T+rsaycfM53flIS6NEVTs6JDSyBaC8kML33jtECG7t6DaV+azkMsVg9tqwoTi3pTiMcYQ79c0R4sj5zj6XjByQO3E7Dn8iUHsGcyK8XxDsfc4uvApYsnuPeB+/jc4++iu/nNmJNnSUwiYgXB6i7cQx+D+wO4w6CNBjkfzM34CAw5pxdOfxVc7vmJR99PJRsA/JtHdzkx289CeXHN8NKzQzD9yFGY1p/Z8bz9qZbt+iXcf8dXs712CpZLTm7dweb8Ej/5Uz/HhXNneP1rXoQ72BsY5CIKGqpA3/YEV5RTMQTtjRic76OPHxd9DHW46JdK2eCmAI5KtHMaG03CUYJACZkVyL5bepR8NuUxki/chYA1GnAfC8EgiGXyecmKbmVoPFSulyF/emz4ZQsshEyFEhJqXTQNKhVMOnfQjB6M5HkcQKcAHN0cycTyQBsdPhfQ1pHX9/BPXH7u9RLH70pTlpNSoqvPrxGH18uFkMaolo+ULgd+tcd/82e/nf/1e/4GT3z0l7nvDX+cIBWxwTIBQ2WUB7T3mt4kKQUjnwhkJyH7kyELJUStIUBdc8f2V9HsrLPVPAxUXFt+iBur9xMi1/XVA8eHrh4vGKxfX3N69lruO/lGFtUG1Y2b1PM5ddXw+ge/g3d94kf4vn/4g5w6dZK/9pf+HOdPbuDdSk1sYmKA82A9UlXZz1SzOtbHeDMK/Ks2r0A8Du2taKJfl0rvvPOatC0DwGSKFLKkf6fJINpwSH3eFCYbhyGGkMi0N0cJ7ExpY2azWQRohlZzIWjsta4mTHHF+ZRhl7H1IBDDRaYQorTOlCh5CPekY3gXsn/s8zaXOsEdXufpnEVCBgCd1+odgkdWLdW13eOtlXAcKBR4x1t+Nn95OrGjIHQYmy5jf3LIBCr9oaNGQrrS9zhb8873fZLv/74f4L57v5W7H/4qmq3t6IB72uDoXWDVOg5WLa3r6ZzHuaELE/HcxWn6lHiPCV4XO8qSUDlP0/Y0+ytM53LvSB88q3ZfkyYI9H6fA/e5fI5HTm7x+0Z1ifPbd1PXjVJq2kpL3azFWqH3HU9c/wiPXX0Ly+4ap8+c4tv/+Lfw+lc8TN/t07s+m1iJ3tBWuiuVi6w0I5NWtHGx4JMQxfKjyIrXrlb44KmMoWmaHAdEhB5P5zXwXWoV5xyrNpJrGRONEhmFzlK4pNxsRaC2A/Jbcscmc7RkY89a0lqsjLtmlYkN5bpLz+XSr86zWq2Yz+dYazN6ba2lnms5VTKJ02e71hHE5sbFKlt+pDGnHEM59DNa2wG6HvvUDXY+8Cn+i5/4V0cLWDFeMEfPVLimSQLp9/LnALXHxT/RtNMsEm0xpgtOsyIF4+GNr30Fs7/03Xzf3/sHXL38AV7/pX+Bevskzhi9EAkEjAILzo2EYvR72jQkoa+6A5jkY4rEtnmSs4sEmFULKtNELbPGWnW62GTSf8P3pXI0AerKkDI8TQhY57FBENfjRTm97tt+GXdsvYhHn/l1rtz4GP/g+/8J58+d5czpU/zhP/hVnNjejH6Z5c7zJ7GujzWZPicVhBAITi2AqjIIFRIE6wN957m8s2J3bx8CPH35Gr/wK28B4Ou/+ss5f+YUVeU4sbXB2Q1L1y/pRXlLc8wnxKTr4npNBM7SLJe+ZWnWJUAu4bNlJlDZO3JKf6ngDKrNJzHP7CcX8dFyZF+26LmZ3tPEeObUChhcqKjpgDKtdLoJTImWS2uhslrPOVtfZ/+Y/SmPrSnf/4435ZN2rsf7cX7r4ZKfsVAOPkt58qbIk3UjQR1IlojggCCmRuyM9374k/zjH/gnrPY2efjF38r5B15FZwUXoPfC3kHLrdWKVdvS99oKT5V7DKUk7Ri8tmT3LifUSwg0rcPuLWHZKeKKj8nkMXOmSJpOSceaFphKoqKAp2sxQmUNi3nDzNaKIIuizKMwSrKkJdCFnidvfpzHbryNg+6KzufwNra3tw6TYBXvSX+XLwRgZ+cWXepVObnH6bN1XXH6xAm+/dv+CG949YtwrOhTZ2kfqKLQtJ3eO2Ot9nYxlr6wftKGm3pV6prwVEZGSQOl6TgVnFLzVcZQRQ1ujeRywWkoKoE+XdehiWQac0z+qo1xzKqqojU1zdHWhlY+Z4oNfuXUXUvnlxIirLUYEc0wCoHgHCIw32m5+o4P8yf++T/j+cYLEsrBVA14f7jL7VGmLNw+L7a8yHKXSg5/aS5le99YOmNpqfhL3/0/8/QTV3j1K/87Lrz4i+iNwXvDQe+5sVxxkFi4nQIgEtFaDWuoT4R3EBHPBETVvcfurQj7KzV1YzfnhOym+Eo2XdP5F5uKRGjexBBPbQ2zuqIxlir6dSZWGxhMISF6ogKIEVa+Y9kveWb3kxx0N/PcXd7/GJ3bP86tG4bAubUXU5kFhMBmc4YLm/djrOWpnU+x113VFLh+n6d3P4IPLcYavv1PfAtf/3Vfguv3wcVzE7VINAsnxiRjW7/SzwtBeWVLP1BQHw/IGixtME3TDHMo445XlQybWFXZGH4Kh96fhFKb0AohUjsm07VEbdtuKAsrhVuT4GXk16aEiKTFy65iqUFQVVUYhuT70PW44Fhv4fq7H+XbfuAHn/c2Hb8VXiqfAuCwED6Xtizt7qlpO93lpmCBTLdzQAhY4/gH/9ff5d/9xM/w0//2B3g1gUsv/iJ6LN5Y5ramMx29SETAyFpMVRkQDASPz6ok7nzG4BtL6LRcWmJWTy6qiqavhJTilxIQQtaOIikpXM1NxaFiCCUM6CgYvKR413AeigYLtVTU9QabJ18VE/H1PavujZEErAhmTOcy3y09f+8Ds6rJVTaCWiTGCKfPvy76ujU+OHYPdnns2qN88tpv8S9+/D/wK7/xNv7+3/yLhLAXu3QNG6gvfcgYxkha4ygTFR8wRVs+UNaDMkk9HW9kwkZQKb3HF3Hbo9aRMYbOOYwyv+b3pPhtCAFEAcKpwlCTdJxIP12j01zgpCVDcSxjhK7zuKYmbH+BibNWq1XhV47NzamynULFadzO7yxh87SDkXCvYChycxCECmJXXM+f/M+/ic3NDf7FD/8gCNz5oi9Roawtq87StrqIEzyVhAYF1wi+WNRB0UwnApUlVBa8p8yzJaT3q2DZEH+P/mmIzYhSDFOFUxHS4GKJlDpWCpp7l2zWQajEx6COYMIYBU2l2nNTx/kr5v35bqJB2dqSaU0kCPeR6cgFQuiREFjIjIdPvoz7T72MJ3c/xwef/o/8pb/2ffyP/91/ycUzCw1DxKIIIWSzclbX8bpjVpEMNJS5uidmzUxDJtOk9SQQ1lqt0ZVhHSgTRXw+3tk0TxITTwioPxy/NymGpEW999hqNgKNknCqFky5tmPalvJ8y/We0HAV9uJuGIMzwOYXmKNn3EUpokpxHCVoU6E8qv5veoGjHU/y9OvCi1wqBgWZTDAx07/nm77xK/AEfuyHf5CAcOnhL2ZuK1ZNzUFrkS72ngzx5hULOQtrKM5fUsaPVmeYEMvJzLCYkzkc/FBKJuIxQSL5bxRiHzN/jPa16NEbZ2L2SQYmkskaZVMMkXY/YFIa2xH3ZfRcGH6Z+iRJx6bFUl6HItxe94egaXHO9XR9T7CGO7bu4ezWf8vbHvsJ/oe/8nf5lm/6Or7tG7+Sdnkran/18dSjjp2w42YTkvUUwShtRa6b+2KxGJmNyawsgcBsYREis0KgdT2N1HHji/HGSJZmBKomtn2vALGsun60hsu1Nq5+mpawdXHdarZPet9R/m4654zgpjthDN5BHwLN5uYRd/DwOLZQpuTmBFwkLVCGNo5yT0sTJPkLR/mX5ZC8WkKx6nRbDiElljuUVsLAsuUbv+ErMGL4F//0B3j2qffz8jf8GeZGM0Vmsxl919G3PUTQJplzwafc3aT/9PeULgYGb+LOF1ykulSNaUKgl8ifFy1iQYVa366LyQVRE1gU0XOodhIjGBlK2lLuphi0NC1mLfkYqNZFODFZy7keZnCsQoliWnw+ZW0mAU7CqLH1QOdcZNXrEe+o6oo33PWtfOSZt/HvfuY/8dGPf4r/+S98B8Evc6K3iTwY2ixVK1iccyAmJy5ozuvg45VkXaM4dRjCDiX2kNagovQFG0N+bay9gh+Iv4aWe+V7xq7UUQXYel6HNWX6zABilREELbbOVCFBWGx8gc3XNAZz4/DzMGW9O9yFqdxdbi+YcUElpVk48cXT0ZRU8Wn6wLd87VdQBcMP/dAP07/1gIde/9/E/FNlPQvWxIC3orGanxpKmRyfRTQzQzAxz1UiHUhElUNi1FMzzUZ1FozBiprY3qOfDQ7vOsT5nDBv8hcnyB+MaCK+lkMajCRfV4XemCK4nyd/OE5Imq+8N3kO08yGaMJG4uv4zwTNRnHe0XnNoXUxhKN+pOWl576M0+v38aFP/Cz/2//xz/mrf/HPYIJ2MJbUKdqPOXVEJLeM07aHlVo7RcB/8CWTxklCKfl1a6sBXISovcp1Vgra8NCwl9Fihvh3NGUOjWlYZtCeBU0Lg+VXCumglKKyiMh8ZWtFYad5vrcZxxbKetYMu0qiOoiv5e5b0VGfXuRUi05h5ekIWSaTn1WYwgFM7mIhpFZ3AYHO8U1/4Et57atfzvf85f8PH33nP+bUQ3+MrtEKgkrdPs3mLwWSspy5vJtR68WfChaEHLsC9RU1HCAEKzhrwWqOZ0rYtz5geodbrRDXYryyoA+lX8O8GAEb8yzFaFVEMo+9aE9LH0GPbLGEIfc2pReWwEY2VuNpayAHMnlJMgQiwOQ9kY0gZlZFXh8n2mPx5Ow8d229gQ8/+iY+9OjneN1L7qT1mhSfZ1QMprIReTUgJvci1TUxVFzk0Jet6F20XhCsNcoKELWvMYaARYwKcB+zbkjnCISQKEUSCmDjOWnBtyS2gGC1wonBekhZSQkx966P99pnu0lBuiFOX9eVvmKUvVG7TgftrdInP1rLvLqjdoEjxrGrRIy1GGu0VMYoL6vENPyc+Fv4jeUoneKjUNejfFBFyJwS9LoC2Y2+SfCxGiM4Ao4gPRiHc/tcOF3zX33Hn+CZq+/k1uffC74j+B4JHouQ9tds92dnbthoglqo0b80CVdV6pGoGQNKkhQMWtFuK0JVEeoaP5vh5zPcvMHPZrj5nM42dFLReUProXXQeike+lzvoIuVCBjDvtvFVEoybCp9SARWdMn4HOhOua4uxt+miRlJC43fp3PduZ6+jxoyfX/0m53zsdqjY7lccWH9RWzP7uWf/sufxJs11YzeK98PqjXrpqGqa5rZrGiuqrM/NR11k9bqDB8MxjZU9QxrawKGvtfsLLAYUyOmxmHxGHww9EH0pwcXBIfgMASxeu9ESIReQ3nZsGklTThYgloiZmOM2ZpkHaY6F52cJMDaaVo3DGsbjDSIVECFSI2YBme/wJpybDuPgR6tr/MjU/WocahWrxhHgUXDT8ntD1QjDD5tnqjcH0F3+y95wyv5R1XFtSvv4vSZl1DPFij8mICOdAwNi4yupzi3MPolTP4ej2BEa/9qCzbq8wDegAlaNqXm4DCnA5qr52ST+AdHkI6PXf059tqnOLP2CGc3XpRNZ4Ph3OYdWtPqfQSqdIJCNDdDZCGwEgpeIzni5OMrIWa3ZHBldINUi0ahrsRycvYgjz3zZt7xgY/wupfejbVVzIoSZrEDc0qbS1Oa0ulSjK9c3MkSGsInyrSvGlU3iWS6ly5QikvGW5QFHlC/szAzRyGWwpVKo/QpRYpKFSPRIkkau5g9MdrfNChSa0VrKqeRh2lo5XbjBTEPDLZzOpmsazIUXCJYZcrTUYjr7RLSx8dO9l3ICKLIZFFJMqtjnVuA+czy4IMP8NFHP8HiqadYP3cnVd1oBXkYUuesxJS6MCzVsa+m332kFBbP5t4f0VfLlxWK7mMh4EKgTygtJhfZpq8TCXgJrLo9ntz/RUJ1ixe/5H4+8uj7eXrvfcUlC82VddIuf3HjVcyrbS5tP0TTzJVloOiebKVslT6c+Qjs8RE5HUFGUvxO9oeD96zbsxixvPO9v8MXv+pBgngcIQfRJZnwVgm0UzXHFCgZofDWRv91AGOaplFN3XV5XhP7vnN9JHmui9BFquQgHyMNzbdN62wAH7tuKP1Kj6qqYxVMjLX6werzyfUQgxGL8yEWUCv3LYCzA62mD/5I3OKocWyhPDg4yAm9MOQtAgPsXZifpYCWf6fXE+JW3pj0uwIAQ1nUmNLSRzlVpyyvL5HYJk5NSud77QqMw+y0dOEW4cQ6Zl6ruVkq+nKBphtoNW+0D4HQjbrqjJdpNHmFWJHee4x4JDEWOA+9xy87uv0DXNfH5tVqeJLikJKvDi+ezy9/kWZ9yf/xd/82tQR2l463vfM9+Zudc7zpzb/G3t4+nsBnbr6FEODxGyc4vfYwd2y/gvVmmzpWaXgfy4gK32i4JhgY5CPuLBJ7R052eyDFINfqTcDwO49+DFvVeHpNKayqjLbWTZMJuUqgL62dxKwAYKRCxDObNcAQt9T3erquJwToeyWu1vADiNh4Tjab530/ZN/AAP5oCEV9TB3pp4IzEpMJjKkQfLRkLJq1PFh6xiRCsMjY7/PSxBTWS9LcPiRf+fnHC2qvXsLUGRiYCGEpXCmMcrtQSTnKPMjShNBJhqFEKH5+0iY5CztJSGQAa4LQHrS03jHbWFAtZgSbRDGiqQW4I6JmSLAGg9C5VfRfj54bBUOCMmij/REVD1OB9m0Pqx7XdmllEFAhCagAi9HvCgJd2KXz13nDq97A+tYMPJxeN3zTH/qK/I0SAv/5f/a1uNWKvu957MkrPPHMZf7Nv/tZnrjyDp7YeQdrzXlOzO/lru3XsKg2tEmQc3kTzfPDkJNsGJBeCDH5nuF9DJrHFC3VrK2QSuO6ZW8RFW6J1frD+qjrelQHmbRlUzexnd04U2zU3Kd4LY10TtN87PRaab2VmrrrukMaMltyLvYuqeti3Q+aMoWBQkhxcD2XaYhwUDRfYI4eNQlctLHVR+l7pUMMbrwDJDi8vAnlyaUbUf5eTsZ0chmhrzEhXA6Xi+lZRvnqPSdPntDnvFLSu70le8sl9dqcamNBqG02jQ3kRWpM5HGJ5FK9GBXKUWA4mvIFbosxWCd40RCK9MrPwqrTbr/JTKMElEIUYK9Ir4GWZ/E4Xvf61xBM2rWNvqfvo9kkBNch9NTG8/Bdp3jRPWf5A1/xRTz2xLP8u599Ex/80Ed44to7eGb3g6zVZzm/9nLm9gTr1QkIUJkq+nBxE4GMNivDn0QC7DBcpzriuuhjK/QT21vUVUWolWIlpddlPEAE7wdCZWurhK4pJUdkTw9omMP3HiNKWha8AlnKwq4+eKrml5RnlbRhZGpxfSRo09sUfdCe1CLdmAojycfTaxjCNIPVlvzhMeuCYQiPJA1cINthXJJYmum/B0Jp6Pwu4hxWKu2O5NU0K+NT01SpdKLl72Wsc+xfQLq6ZLLmmrR4/MFeHQt76rEh+MiB2vOffdPX8da3/jbL/lEW5ksxCK5zdDv79MuWam2GzGowylYmEYU1Lvp7JlasSyx01VjBYB3otxeCKTiJQX4fzV7ntBIl7qxJIFM/DVWcUaxDwOG51X8Say0vf/nDarZr6hIhOFzoFHAwgjeisa+08Vmh90vuOL/Bn//Ob8HxbTz59DV+5Md+it/58KPsXP+sCgE1lVnn5PwhNuoLbDfnmdkFIXg1cY0hiIlWR4iMDdHENhZbWTrX84mrvwb0/Hf/5Z9SYUqbKyb6nhKZEgRrovYUQUytmsbU0XRNa8bgY2FXCEPbvVSVo+Z05L9FEKNt24MP9L1q+HiLENFrUD/aoqhtBej5u1jRU2cTVzcLY0QpWYQYXSDnGBsxWNMQQhJS0cQQUrxaW6s7PYEoD3rHcx+YY4xjC+Uy9NT9Ab6rqCthVmmidTCxVZukWNPhhOJkSpQIlP7USylR3cMCOobzJYwD43pMfW+K2xFC3E3TJETfNYCJ7eLEtfSrFhqLnc0wlcaxQPBW6Ijt2EL0XYPH9z3euaJVQdy5k3hGNe1A44i9anbVCHHjYgIE6UcwMWvI+8BBexljhcWixnUHgNUsmaDCqYvS4HJ1SaI/cYQ+LnwAOi5d2OR7/vtvp3PCu9/7KJ9+/LP81tveiXMrntp7hy4CM2OruZcL669ke36WZjbX63AeH02zPEzgmb3H+cyN32LfPctf/K4/yytffD/1vKYLbvDOAzGW2BNEzdukaYIkX1FDCArOqWozgrarcwP5V9rsbarEFGWKT+g1omZoXmshxPkWUi8WIohENmGjKQq52kStN8HFdGRlxhtQaGtrjNQ4r0jsYNYPLow1RvOl44aUXi8W9fOOYwvl49d7Xrw9ZxYs3uouk3hWhGSWDGU4pRk6zS/U8xvnN5YAQKk90xhppyiI5edTCdHgKZYjZ37Gv1SAxAX8QYdf9VDFLA6BUBnCIuBrTyWG2qWgczSNSgIhCtBIV1d+bTDdlUkutY8zAkOL68F3BuWhOdG8hsurX+UDH/g4j7z4Djy9AieMM0mmxcTZpI+vpzrGEAJNY/ii1zzAK192N9/8h78cHwxPPHWNxx7/PG/5zbfz2c9/nGvLjzGzm9R2AwhsNXexPbtT72NwPL33QTq/y0F3hbvuvIO/8ef+Cg89cAmz1tAHn3Nay3zWdF/LPiOewYdMGjKF1HCeVduONvMyY6ZcVyk0UvqQUzco3/PJc/l3yf8Vc5nMTcEYDh2rhCCU7mSghfE+FADT724cWygfu77Fw1vCYrZiadVkzTGbmOxd+hIlXX16TBdRmRqVPjfErwo/sRTe/Pvhc0z9MJP2HGtd3TlTN6hkUqiCCTjf4+j1eSPaNbluMHUF3mNaR+g8pldeG5J+LPqJSCmcwxfrewMkPelj6GS0GEIyFYU1+wCVvJt/9s/+Fd/3vX+VgAb5JYwpDcsYm0QtqybcuBg3/V7Xda5t9N6zuPcM9146ye9/w6vYW/W85e3v5V3veT+Pf+azAOy1T/Pk7rsoz3Rra5P/8ju+na/7yjey6vZ1DiJIlS7XO/WPdYFWmsonUbNITOqLmkxDF0P8c9ktcc5RV1UuAyvDcEkTJhMxYQhkzSiZgY507ZA1bJzqAQwkJRMIUEU3wyMCVTW4SSGA95GKUiq8DCwamaPWKCorkqwfH9dbyp39AvuUvyOv4u7lU7xmdgWt4PeQmMX8UACadslyl55m5Ze7ZKklp5qzXFAD0DP1PcfHGrdpHo+U45mB2ZCYAoRRQoQLhGWP6wKYTntd+tjERTO2SXd3+m25bpNy45DpXkzIYQHJNzFdljDnZP06nnnmV/idD32KV7z0PoXjnVNgfoIuJrMrLe7Shy+D7CJDYxwRYTab4fqA7z3NvOfrv+r1fNPXvpHgNUvl6s4e7/nAh+N7G770Da/ixOYG88ZQVzO82cjJ1iKSWyEaMTgkEyMncirvnAI2JiGogusdKaThRXBec4o7FzCVatVUCaLCqN/Rez3vZN2kEIVeZ8GyJwlHNgnOQ+0pQ0omMVbUKzBWY50iBCrEOHxIhNbRvLZqEgcTwSUjWKmoGLiLfGS712T7COQVSuL5xrGF8lZ9nvfd2OGOtR3OVbv0ccGVxawwfHFJYZ8WSRk8Ttp1WqRaqv3SVBvM1xAd/6NiPul9IfoxsU8iSZDibhrfm3wfvWWTCfMqiMQ+IyHmViZIL0Ds7CTF84fHcNTxG9K1pxjd+DXDwtxPY97Dj/3Ln+D7vvev0bd7eNdTxQ0oQfnJjDPGUB4qCWXqnpwqMmxhYqb3maaimasfGVxPJYamrjmxteDeO76cIDBfLAhBKTWapsGYiq5zAxGV0S5f2Qy341KnsZmZzG+vpW8mgV1j6yitl9JsPWpUtymsLoHHMZaRfgqYOvumIjYKdxX9zA7vTdyIU5VSArOEhIILQl3VzOdzVqtV7rWiWrJXlgTvSfWZzzeOLZQ3LHysP8vLrt/izMkVYpc4BNMoKlVVVV4oZVJAeqQJHsYQuymDylMSonIik6bMvzOmGdQ3xxgWcObUNtvb2+zceJSF/RKQoxusSP6ZzJvheEkYp0uiFO0XOtLxdIG6uHD0tUTxX9mG7frVPPnkr/GBD3ychx84pzBHQUdR+urJp06LstSKTUx5g/F8JdMu3aOqrjGhpjK6yNKFOkKufUwjoeKpgl+D9cP8JmAnuSjpoYzz0Zz1quFcpFxRDT7MU7K6kk9aZnyVseySoqPcyNP7Ssshx1iNasoy9kjCjUSQYIcO0wwF1poLXdzLuNl3zkG7yoBTGiIySSt8/nHshPTWOi7PhQ/sb3D5YAMTukhU1RN8gZDZwYxIN2XoizEOIFtbHdlBaVroWgrl8PmhymBIvtZEgxBS+EJjU1pa7EeCNTUo8yQf0miTZ6WstZQUrdKdPj5C/Fk+VziDyXYmIQbK4pCSymMoKMDC3kdjt/kXP/avaeZr9L6jcz0u+Aixa2GAauwQb6dS8RMXQ9M0zGYz7SgVF11KwBcjNPOaZlYrbYk11LMaO2uo5g2mqahnM4y1A9pJiiG7GIaCqtFk7JS8j1TKSxYsgYreCc6JJtr30PVKuoWpYsK4+nS9D3kNJUErN+s0lZVR4jGDFLxL5OJ0xOSfsZeB8geJKNqbf6o5aqxQNxVS2VjYrh3De4+en5hI2lYRJOiaFw2TuaCcuqtuyd5yn8539MHFdveBqlYK0dmsKaIBzz2OzzwQNljVht/pHXfu7HJ2UTN32u/Q103s+U4mEErasQyaPldhc+lflr7lIZ8xJOSVLJQDghk1UAbmS617e1/z8LlM/i5+L/GZEN88mur0Whj9WRwpObSSncgk+MTQhgfwYMyME/VreeqpX+N3PvwpHnrgNEraPSCHOg86RzaCHIkrJqOdPvpxxaZmrAbRlS09Eh9XkRUgaNw2J9UbQx/BFyKIp/FDp0n4RtT/C0qErdw2RKtJwxVZ642yX2LwnZiM0A3uTWl2Zi0XZ9GI1n2GYu5LbZwmJ0QAIiAEG9MerRk8Hx8IMQ8gRFcmtUbvCfSof+wjkCNonrQLTsnOCDFNUPlxxQdsBtjAeUdVUGceZQUeNY6tKXsrGD9nx57lfe4cH3cb9Kxo+xW970dmQRljSs/BEB4ZhLM0E6flRSUt5WHIOh1v+nnnhwpzX0jXcZ3swyOhOXrHCx33gsdYO080MsM1JCTSu8As3ENjt/iRf/6v2do6zWw2o4mPummo65rZbMZ8Pmc+nzOLZVKmMGOTtVJW3wP5s1VdMZvNhpYAI7N03Fq9tGa0FEvfn7pCD/dYLZi267RELD6QlDdq6YtEjGxNFbFq9ZPtwD5nTST6StZUYXoyWGB5vovNq3zOGBMZAQZkNlOOxL+zAOXPSoIT8nxoW0NtqlS+t5yj9PcLCZEcWyit3WPdL9noA9dknfceNFyRiv1aGcPSl09jQVOT9agwR4kmTh8jkCf/Pu1rURzLDZ2m2tU+X/H7vgzocf4ykOJ4h83UchyW3wJm9WH8KKW0eJSQ0nCU6XemZwYxT5rPR43pvWWzeoQrV67w2GcuM5staJqGpmlYLBZsbGywubnJ1tYWa+tr1E1TbIKh2CCjeR80gD/0+jA0dZMXfmpnELy2M0jzPPbFBj4d9VWjK+GAYHAu0PeeZbsaalWNhoLIJrfgvKP32qYvmdUmdq8Oot2qA8q5Y1OSuzURUbUIlYIzks7h8D2dxjfTNZTIfr4bk3V2eN2N12v5meyGiVDVsUtYZWMWUvzckeDk4XFsoVzzcypmdJXhRnWaD11/EZ/dOcvMNBDGjUzTzUqomJLi+tHucZQQpufKnT29lob3Q7bHdEKTWZSO07YHvO71LwMJtOHxLGzHnRw9MCMh+//nkcfojzD6PaW1aX27+jRNuIsQhJ//j79M1cwykpo05GKxUE1X15jKEozQ9Y6udxwsW63mF4Opaqp6xnyxRl3NsKZGUP8s+Ws++m4lqJbuaen764IWNEVOKze8B+81rOF8iMwA6pOpn2uzn9c7TyAyC2AQU8VH+l0rS30I+W8xVsMn8bWYDDlaA+U46pzT71NBm/4scY0SVCzXYwmmZe1tYogFTwjKRKZ+Z6B/DvdtdN7HehfQGO1/IVhWNFxmm4/dqNlrByLddEHTnWZ6AWlyspnp/UgYSw14WHse1pLD95TOnmahnDxheehFD7PXf4gQduO7xhk+5TjqeSl+/m4E8GjTeapeD7+qPwUJm6zZ+3j729/FwVJ9uiaarinMkQS1jA/3fc/BwQHL5RLvFMFcX19nPp/n9yXff6oBrCnNxHFH5RLAc87RtR1953Au4Hof61UBIxmU8oCL7AguBGxdKXuFVdoQU9msIX3cmMQqSOMJyoWZXkt3SqAGZqFMqRwEsHyUhM9Hjanw3c7czG5S9JGrqhpZDSbGTdXSGWyj3xPzVaJNHzDYfokTyyfa07zt8z2rThMC2nY1kFF5n6neSyEyxowWRDJxb2e2HqU5pzQXR5wsqQ6ua1d8+3d8O/UMlv6DVDZEMiofs4PKqXuO6z/2lI4/dDvhHx85viuaP7rgJGsKj7DgQVwPb3nL21nf2NKiXmPBg++9Jtq3XfYBk7BmK0OGbld50/JaONz3ff6p360Be0XH9UHWakIfm8E6H1ituuwbBp/a7g2uyhTcS38nISmFftpANpvUIeTu1HmaLBjrqSSw8Gkeh8/ldutyOPR2lOlaCuKUWS9dSxrTTDVr7aHjp0mXiHI/X6y1HMcWyt2Djr0Dx6r3eG8JYrnSnOVd3SN86BnB9yva9hbBrdS58CF2MAat9uhxrqPvO7x3WDve2coJmAI+WZu6WCoW/KH3ZPMXDfA6L3hnMN4ysx1/6Xv+Iq35EKvwDmq7wkpk2wn6IKKAKW4gMI5kZBAghURiRggyCNP0kT+X7F8ZDpiELwpBSpzWFuWWEAxSNYSqJoil5hLn176Sf/xDP8Jb3/ZBzUDxBulBuoBvHe2qpW1bQtDmsnVdZ9O2MtqJuG972raji52VvY+VMGjVBZJ4b8B5YQhrQO+EVRfoeui90ewbYhjEmKghYske43AGDPHEHBcthG668GezWU4JlGLeQtC5tFYBJmeFVRPzrfVuYI2hqoZW8BZlFjSEfL9Tfo+PXE+aheNxriNzPwWtdU2FDlWlmU7Wal8TEyAVkCkR2oAz5MwiY/KGktrJP984tlAuW8eyc3Q+4LD0CPt2zpX6Ah/e2+bJPaOs4qHLPlj6aa0p0L9+JFTT/oS3FciIdk3fM3p/Qi2D7uL+/2nvXYNty66zsG/MOdfa+zzu7Xtvv9/qdwvJli3LsjEY2zI2YFcc21AJVKiC4BiIDS4oQlKpUKn8oCqVKqqgEmwKCmKSQMCGgCNA2AjHNn7JoiVLsiTr1VLL/e6+t/s+zjl777XmnCM/xhhzzrXOPrfPbbWMcPW8te957b0ec80xxxjfGOMbicARcOMRFm6Fv/iXfwQrfBQvDz+B6H4TXRgQXKWM5BZSPwbWtLtc85fXieo2yH1zWCdC6QOyoB7wfY9MwuLWxbvR0Vn86I/9XYzRIY8MRIBHRh5TsUycE67bvb097O/vY3d3D955xDFi2AzYrDcYhhE1Bcw2BK2oYFL/EBgyY0iMmIEhcXlFFn/XYqPC6GZZPbn64lRTK81KmtfRyjRWQTXt1ro69p46VSTk1h4YvDLQGQsAbIOXbdZSEMsDLg+aYeWBbYZZCyjaIzZuIO/lPN4ZCXTzMBWlZ0wLrNGY0KcZpxbK5AjRAZGASBkDEQ5ch0t+Dx9xb8UTl8/iGnZhzBmyU6JQAy4Wi2IyzIXNJvEk8OckoZ0LsBUhp5SkGWrKpetWzgOcP8SP/KU/i1tu38Urm5/Hy5ufxEifQt9VKscS/iizPFVy5o2W5XEdy3eb1zh9e9WUpHEyECF3HtlLeZLzHXy/A6YOY/K4pfsWXLz4Cv6Pf/BPEVOS1xhLLq2xxlnSt2TC1Mwfi5fZnNliaQE4eVWffxzH0k0rpSTNUPMULQYMmW16i2Ca92x+b2vWtuZea9LOwZcypzyfTa4a0tcO1W0nLcuLBWiyxjhrFxnT1DNMwkx9Iq2ltOtT9jqyCcB0w9i2Em4kJHf6Bj8zNjkASPBgeDznb8anDxZ4+PAQN+32SHBwNAAugWhZHlwrQHI/ckNtCt48eeBY6IMhFuaWhzXVmhkpMphJcywzPDJCD/zIj/wgvvCF5/Ev/8W/wvPP/yICfQj73dux8A8BbglwX7TyVJqmkI9ca5OgXiaofGDrYPtPUVYx65Sqg6GJ0QCnhBwZXbcQdHOTkYc9nPVvx//7L96Hb/vW34u7bz6LzAld12G5CEic9LhcSsxyrvmnQNVQ2/ycrKGQkiaH+j4DN+ZExe1zY86N/1fLmNpc3Db1bS6Q9h57pnZemHloT4HF/ZDJTJI4YbWtbagKYqmJOS6cOyCgVq8L2VXOunFA4q2+qfYAC3tg0MR40cpOaEBVA7fgYfu9+NqnEdw6Tp/Ro0LpoOYOKgHTpmM8He/BJ18h3N1fwX6/AtMA59eg1EHSJmpiwTbfsQVttoE/RQipkZNGGIq2bH6WnV5zKJkQIA088+YId99+Dv/1n/6TeO75l/BT7/1XePHFD4L5gyA47IYHAHh07mb0dF+dLHcO4CAoY8oSg5oDTZOfTxJMZSvIALw8RKfs7ZwZS3bIwWHIjDRmeBfgux4YR+S0i538NSBy+Ev/7f+Iv/HX/ipuOberyKUuZGj/R0xrVNsYY4s0Hk/O4IKCkw8a26Rjn7E5b1vMibkm5MmUK6VGW4zQCqr3fvK39qs99xgj4BgeVFtOpIicRjjyyIngXQcoWwVBKB9TVouJbK3FYo1A/UpSpNQEXM6dYL1DhbCbQSTHBQHBieZMpKVnysAOZhArjUojH/MN6LXG6Skm9XjZHFujR8wZMZ/FFboXn9js4JGDz+Gt5w9k4Y23wiGiC7Wky5LW55pzDvbYw5n/bDtgu0vb5wRgmMLWUflavPeQ2nVZmJ0HmAfcfcs+fvhP/wlcunqED/77D+Gpp76Il158qtHev1LOsfC3IrgzOL94D/KKIP2/qvaezdjJc8nyyJhlV6fMQjqlVBJjSuj7hRBxRSFK9p0H+g40iPm4yG8FpxF/8S//Ffytv/nXEJZZkFjbwHQuWiGYtzRvW5vL/GrSAbO6AgzneDKfdixLsDZNNkHYyeminTbUSSkVn3L+agV9WwKK5LOiXK8jSIofGJyjlpooaGeoJ2lW0jiUtWHtBAlR6sydE2pNShoHBQgRzklb+uxU+1fKYLFkEOBVOYl5UzV7qRc1CxGn15LA6+glUidLzIKu94hDxkHaw+e8w2evvIyHd16B378Clz0YcbLDtj7NNl+x9Tfs55PMrK0aVy+uFdqiKbwV4iq4Q0DfeYw84MwZj2/99m8E53eDuUNMGYcHR/jgBz4IkTjGp37zUzg8fBmJD3DL4rswDGoOKWJbJ+eUcwgoKJDgIAzoCVF6KnKG74IwlidhRnBdAHEAYgKzxzI/hqtHn8GP/q2/h//pr/xFZB5kfZj5WDYtYTxo52qe9C9zWs3GtkKjHfZ+q4Zow1s251ailHOt7phrxHnFxPxZT4ASNBsyREuGrrLIyb1FECVtRaAmJKcCvJRrC16eFUd7F8AJJJiz9hyNqnSEYIuZRfvDqF0YYK8mNMs8Ewmyq6V+BbnngtE3NDLXH6fXlM13SXcA8g6L4LAbgUgJIzx+Pd+Ge189wu/pBni6irWTng9E0EoD2dQyQ/4jhvNS7NqCBu0DaUfZrQiYcMeoCpXE4hZGbcAEsvCEEi9BZktgEdsKJfmaA+HMcg/f+z2/X8MsCX/0P/8+5Az8X//nP8LnPv2vcHP3hzAMAUKk9Nq+5PGbYQDCYcoZ8F2HwA48xlKP6jov6W5JF7IPYqZlgDngXPf1+NCHfw2f+uzTeOyRu5v5aSrwC+ubzYWHsBTUFgLCqVpp+HOKIHLaB7KCQC3VB0Myh4IPkh4HC11YIrsX9460cS5qlYbzAcMY0YFKIvsYk4bQ6sZhIKF3hBxFeNK4FvR3sg4YKQ2ijbPm4uaxWDFSJZRA9rSd3gc54avVEJkjhqNResBYWqbNKQRJlVDKUEIr5BjMSYQaDpQ8emj81clm5DLjGIn4CePU6KsN1p1HehhmxAgsg0PnJA70YnceH752E17a7CHFQwhreUTOEdK+LsG4Tp0TqHkqXPWh2OICWh7QOQIHVK/++E23ca6K1agwQHdAkiB0ACMQYxkIe53DXi+vM0uHM3sdvFtj2Uf88A/9KTz02G24NP40+mUWxrOCAZ5CTRKaB8TgnJDiKMzgXkiyLO/UBw9yQNasGwuZwPdg1yPgAeRE+Bv/649JiVHDxUrNz8y1oua4lqpzLpqOtGJkykA4nVctIGclvUKl5rD91oiqiFxtW0cyR5m5ZP7Y56RB0HQNlNRMAthlgBKYBxE4JICyVKvkiJwH5DQgxg3GuMY4rDCOKzBvwDwgpQHMUfxDSiDK8JTRBWDZeyw6B0dJY9gRyCMoj0pRpi+OcDwCPAA0gNwI7yKIN3Ak33vtctJ5QueB4BiOEhy9wVUi88GM4rO5Jr60cR0+52/DL167CVf7M1BjuyoutrigPEhzhlsbvPVPTKiSkgjbA3vNQbV0yez86fWrZm01qr6s7Mk6Z3nv0PmALjh4nxDjZfzIn/sBPPzW23Bp8z70fcQNacj2hMwQDp4BcRxAlMGdmhIxwUELl60TFynxMVmVxBK3Lr8FzzzzLH71Ax+Bwfc6Bc10VD5WoCaWW1mVpdHZ30MIot1mwlgzcKY5p+1za0Mg28Y0hDLbeJtnzrPvbeNVuS73lzV0I3FaMfclfBMR44gUk1obUQAeR+U5S48qi4t6mW/tr1ksLn0Rs7ZSjABtwLQG3AbOD8h8BMYRyG0AtwFjBec2INrAhxE+jHB+ONWyuHGhJHOiFaVLEUPK8H2ADw5AwmHYwSc3Z/GFeAHIPYgZCZXnROxrCJN4VqJOZjHLkpA755iEsAqNPc5c/J72YW69sRJ8tlusQjiH8/Vo0O0YYM3T0K9CExFQKe2BGK/hz/zZP4kHH78VF4f3gnFgcXRZLSdcG8++EqC0rgk5DuLfBEUPx4iUM4IX1Fi0J6vQWWaRR4/70NF5/O2/8+MAlhpykIavzBHMCWhiZZa2aHM4R2Bbn5PcVFvOffw2pth+fu43tr5i27i1FeJtz9WAIkDWAHGWhG9OQqiMDE4jkKMsZol91FaD2sPFqnocaJqJYz8ztDkBzRL0s2anQbioYtR1yXAs2tNTBnEs2pR4gMMIhxEE+d5TRHBfZk1pvkhixjpGjDmL0+8WGELAS7gVn7hyB4ZVgBsjxpHAI4NjEk5UZsTNGmnYiEOepcsys5AV5TwipVEXVoLzVL43c5fKBmGvCv2HJlBNpLo5T4Wymsl07GXrjBnIqfLJVLc9I+cj/MHv+k4M6RJGerLuumTM368NgxsW6ABhcEgRBKDre4AY4ziAszaNYdKEb5SUOKm08Lh999vxyqVr+L9/4p9LhTxnAdkgZl7OTWZUnnLX5JxLCGRbdYTdQ8u5ZGGSUoPZAHXt18m9Uu2oPAf5JMm+OwbeFc3O0AZEwjxQNpucwClhHIa6yXKBcFTDtfMNtdxU+5XfVcejKA1GafMAZiX+ikVrSlhF31+euyoOSuK28SimNiVkHq+7Fmy8bqGsuxsj5oRNHMAs3C4heQzxHJ5c7eOpIyFYChGgJLG4NEbkmAqlQ9asGzMTnE5c1smeaEyd9VYY26yRUnFfiKJceVCW/nSswqQ4m1UgWUE188WsHrG8BwA5wr33343QBSS6hHkrBdm4psJ5kohanCuNERiiZEJ1glyOcSwxvZSyNiN1pY4wZwLiOZzr34Z/9I9/Es89d1EhfAO/ptQsrWDM52/OWSrAXEVZC+jTBMRbhNSrH9lqwG3oeovAM7M+q2la3XxjcFBtSco+kZN06ibGZr1BGiU2az1My4ZHVKlDVOMZ62DW2LAIXhVGe1ac8uRlWhO6ldrLk4d3QZ5JtuY+jBxFqInF8jnNeF1C2fpjrCe3KnMCsMgBmW/C0/lWPHF4E15iYOiuIfkBQE2za32JNuWunmPKLtA+/PYh22Jwvgkm6fuM3tCOOdWQFZgwv1eDKsd82/kQ0SQsd5foQod1egbgfILlasLpG07SgnnUD9jOPEj9KWkys81X6ALgHGKWPGAhP3ZILJw3+/Q18NjHf/8//FWQWwLsYMiuYQAAjmnwts61mpxUdhC31YTNx3xW2zhMc7RCPA9hyc+o2j8y0phUqASFFSG0RgaWNq+ak6hgDJNzGzI82VjqdVjaoFXFbEvpbBbMRGOXvxFVQu7m+O082mj97OPkcdvH69aUGaWOX901MWWHlHEUAsYOWPlz+GD/Vvzq4Z04ONwFNx2Zc9aKc61Cz8wYU5KKdG7Sq4BjE7bNLCrmgz440jSsPjgs+iDleFv0VKlggcS4RK/Uf8kqBmxXZga0t6R30uF3ejxgiwzrdaKYtp6kYBctWio3i5Qi8jhKEqMtppyQAYSuh5RPMaQ/Ro9MHiM7bGLADj2EF158EU8++TzAHYAOzL6kHIqPXLV3Sql6V+Ql5KZ2iSPpe+3Ig1V4CMLtw1n4d6LArIDzSEApprbyuZSE1iQnZSbQYAPBgRPAEaBIiJsInwkUI2gY0CMj5AiXBlBcI3AEscyJ4A6sGkjMyHmt7hRMctJywAUYG0NKCZvNZpL4YEJqfxeCrOl6yMhC3J0jck4gM1dh8VIum1UBKG29v9FCeRLgb5oFUMKhzBgdIQUpBRrGW/Dsq+dw9Zp2+MsNT4/5H44wKDuBFdwaItjuPLIj0bHfTb9XP4G0wMoxFn1A3wX4E3y8nLNSUwxIPEIoBTOk3Y6UnKU0aGqX5mGWHhWqQdCpMDb2zwmzaJo9WIsH7wFXtaX1LUHKku7lnPLBaNaJC1LbyEDXL+DDAkweCQ49HgHB4yf/6Xvh3BKcHXIyvd5+be9fzAVHTlvWybuYbc69aob6efNJc56GNTKbc6Z+uc5VsVAKrb+5BhpzjSTdrtMI5AGOBRjpXALyBsgDkEbA8l3LsRUsc1N8Ye4Pz39va2wYhoJAz4vurbkwq8NJShIGjY0atmH+utxjTda3tcVcmxWdZnwJQM/xUS6FlPaQgZwdXgx34NOr87i4VhMS9hBrLMoa0tbsG3/MFGjBnNYkaQVNjmHkSPWBdH2Hru+2mjgCAjV+V5JdsGSCaHlPTDU7SQ+Ap558GpvNBrvucYC9JrJPSZgK4jpXoeU+RHtaKwjxEzWThyAxQ1f5c7zWIaYs57HaSSIHhzNYurvxqx/4AA5Xg/hPRJPCX1A1SecUn60pVkEwGW0RsnSoqk1lbe7kldWlSSXR3LSGmXIW3slNwXpKEs/OLJsgkdljookEUc4SqrJyrHb9cfVjt7k987Vko9WSJ7orM/yiHe3n5n00zY83k/k040sTSmr3XYJ0oGrJajM2/Rov9WfxKX4Lnjy4CUw9RhAiOQVSps047WvXKVmSOml1F6yAwhxkkK9o6T5BAtvBEaFv6DPmMHw7WlCkNbdbgMIo9J/+rWfADDg+2/imXMCGiR+LKarIYisWc7J2BzY6j6Q0ndC+GlLx4sgjaHPVMWWQC+iXOyKYcOBMGKOwrM2BHCJSbYyiOc1iaa+BGUpDWXNlTShFyH2xEubz1s5XW50/R1br9WTkvEFKa+Q8IicxD83v4yybsTyLpFYQyvOWY5rmklfO5vOyajLTZvWZtJv+tnTPyVIn2vr7FvuY+p5czteaxKcZrzv3FShWCjSlRb05S+cyYycAtI9n+nP48Dri3uHT2OsP4ShCatwtOC7HKruO3jATzZw0ah7EXPMAZr6WX+nnWTcQq/4+Hqc8PubvYeZa2R8CNsnjvT/1L9DReXTuHkDTvdpQSwFJ5AAK9JYbKL0mzScW/xoAtDluisJh47vS+UtAnoDOOQDiBnhHcF0PHjfNDWCi9UxIzGQU/06+ZpZ0P9nhZV6980JIPDMFi0Chtp9ofVTnsmpjX2KS28InzIzFokfcbDCOa4ATvIvgPICy9OFIMaMPpOwQYmZTA/wY4CTrJsEaBsk1BjVRrc/NiJxrEsW2/N/2/uaa2O5lrk1bvEPM1IhxrJZDCN2EWO61xusSyrJbcPs7qGAKQZJnB0+AYwdHIgiX/QV85PIS77qnw056URrpNLur+BmzLJtGKOviOOG6Jt+YAAAa+QVIgvAmmEMb2zphtNfS8tmG0OEjH/8Crl45wDn/HoBb8rBqpqMJfrdv0NoBMBiUVDCddXWSC7cu2XEc0YcF+mUv8VIQ4LX6nTOcCZEPCF0HGufPZtpAaR7wb4XtODo9DVHYPJgV0wp7u2DlvXnSU8balNuiZxi6zohxA3jJbc1pUMTVA5mR4qgAlTkDWvVfABXRlNaSzmhOQggTvh17dn3fT8zMbc/8uAW2Pe7avr81VXPOKoiyHm6kbcGXpClBKIHZ1vtgCK0eseS3QgBLXPYX8IXxNtx/9BweWkracmbJ6xS0DgBLw8+WSBkTbakoYlU20+s5dpFtgkClh2gFM80E86QdjYjEv0xAhsdP/MQ/w65/GL27Bym1Z7ZJ4XIfk4erb2FopggxOJNknBBLOZEjeHjVpnI47z1810sXYicpYsTCzJ1TRPAOXRfQzkJddKahar+RMn/a3MZ8VjFnJWkCVIXa4rQ5Q31VNxHa1t9iFmJsoFYH2XktHEZA4enNLKRb3onv7kAIngAICOdRExfKPM5MzVaTxZi061UutZ4GuLSWgyG2ht6e5FPOf9eWmrVa0gAdE1JrqWEm/GnGl6YpYcuPq1SyEDHJZq31eGrS5uzxcrgfn7gy4lF3GePmKpDPw7kOoBWIEgLR5IaNAaCaXrIDG4JnwiaX4YqWtKurLe7MH1WhdgTqO6QUdfG8Not1VjPYdz3e+973g7PDXngHiDrZSFD9CZ0o/VyW4PVst6Xmf0FwgUyaLWL+lglITGCXJcAetL8FMxwynMguxngE3wikEByTwiRSuZET1JT3SNkWsWjEpHPchQ5JNysXhJWcQJqxRiDXISYCvEPwvSRokJBZZV0LxEDfdyoEVBZ8G1dOMSGmmoWTYpQu2NRJZZGT9grWZ0C6LNfCaglJUCkLs98LKVguJmPdVI5Tyth6NqFxzhVAxjmPGC0lcAoOjilLNy0AwxgLWCjZVpbUUdsAnqSVt41TC+WJBzSZoGLy2+WDwMjEyF46NzEIK9rHM8N5fPbgDO7rXwDhKkALEAkUn5Lu5A2IYD5L/blWPNSLqBckl9RqWkDiSDULCSTRsmJ2N4c4CX0DtNosd3jiiQ9j1z8Kj3MAfAEfjDNKrIjG75hdZWtXKOKuP2ZkMg3lSp5rGkYAJPyonTU5JWnhrabvGKVqAuUWSbhXtfER2CHGUZIYSBYNINofpGF5ljxldkK2zDDkUTZE5uqTWWhE/paKb8xAKVKQJIipmTeZzywgHDkCstRHOu8liQIC1uliqBsVppQmrd9cg/hTLTrXgBPgq3nm7e/nIZT2JZZGKEkzBojlLBswcwUkTwvw2Di9UDbfG2jR/kzNm8xaTAA2YMnxZoKnDpwcXuzvxS+tR3w/X8ROfxVMCYQFsEWbmClwkg/U/rz1umeo2Rzmt9+xLsz2uPXYlgtLCGEH73vfzwLssEfvgHW2LLiAmfR2rNl5TvJh6glRpVo1L6mySCNjtWIE3oXvliAA4zhgyBnL3hcTsODh2ucj54w4JjCcorm19SBI/DAfAhjQBA7dEEIlmyoL2Em4qg2FyCJNQKo+vxUCCCJMxbSc8+9kzvBECD4ALsMhik/tauWQzaMnB9f0orTj2eK3Y0rop7b+2xbOMFPSzNo5IrwtM8f+bo2riKjEOAGU35t111bebPNJTxqnN1/bdcOtHuJivdY36I0QMGqaVyahx09MGHAWz7h78OzhHXhkQejyCol7kMtSO6iJBQQJYwhtpKBvJlPFVwOKH9T6tMB817OCAdZ3KJcKK0qmhErzHdRQZWGZcCAO+PCHfx27/iEJg2iPdmbR0aQmI5mDaw6knnUeuD/2oBqfTu4BkAp3kprBQbKm+h1G1y+QOWO9XsFlj5ykkLfMfxa0uLYUkJ18Mw4Tfygzw6spSERAJs2dtRvQa1KtRV4raBy0akI1MbVaS+aj5Ouq8LSAh8Q5Id2Q2QHs4SW3Ts356ppYfNLmrBUgEwBzcbrOgagCPCZkJoBEVNgVDfQZhqG8dwJGNWauMOSNEoclMXONqtM5o7VxajFl6VKmq9Q5P0kquN44vVBODjiXQswtSOgKF5tbF3bQXwdkHPhz+DA9gtsQcS+ex5Gia4w6wdAJcXpKu6msfitQhQgs6U1OwRO7nqmA5QpMWTNYrvd27JaIAC3hElDA47Of/TzGccQe3Qsmp5tFOzWt2NkG0I7ifDc/158IZE6fmI9lsxFAB5xBKYFjQt7dRY4RjiMkdmGdxrjUYG42JpRUHiGlqi1ijEIclQUl7UIn4ZFsWl12eomTOpCvJqoFhDOLZuQsprT3AcNmREosLAa5xugsTGDaDSQa3bEDkkPnnSYQ1OmRjTPCuw5SJcSqjWuiQGsWy/fHY7QASpsBE9A2MX5evTJZO5BQUYzW0Q2TzmZZQ0wifJoNRMIqb3nPr4X02zi9+Trb0VsZnJByFFtOl5/S8kVmgKVky0MsnZe7C/jk0e04uzNg4Y/A1oV5i5qv8bWMAum+xmgnmLngBcX3rRrV9hGafLYKswjK3v45vO9f/zg6uoAed4vm4VagWqu+zemZzRrhOpdfAZ56pCZFgxnMotk36yMwMQgJKQJMGTkfYJWewaOPPYTeA6vNqC0GxEdstYv1vDDLI7NU/HhSn03PDgiDm6GtUf3HpPFkkOTJSukZg7oas0ypRXqr1hOBkQR9Fzw8e+RkHEN65qzZUcpyIYJtaWtc2pYDtSVDC+yY1m5N1mreurJB9H0vKHyTalcQYv1sm0wyjiOYHDxX0MlGa/Z67zEOp8viacfpM3q4eQEKM8z+vu1jjfqXnyUpGi7gYncOnxvuwqV0FtlVc5TkjcVxb3dDagRyq43OKg4zp3wrAzZzXRwzs7Icv9HUwxjx6quvwvMZ0fsz/7AaqfX4ddQdl2Y/q+ErwIl3JZOmXVSTa9b5yTkKk5umoLFmvDAiuhAwjkMp0uUkIaq2prRohFm64jxtjNScroCNtq+ZpbK1fpM9M8tltvksqLrGJx0BniTV0NwJG5LeaNorbdVq7X20643Lsz3uR06e75af7fOWUWSxxzmJtb23DfPY+UwbX+98J43XF6ecHbvxx4+/1XZHQPwR1h0bGcwdXvY34UPr2/HOfsQdfBFHixGLgZFJQIoxifPMBE0bq1XocmDxP51zRSCrqZs1U0V9UW4mXv+X+JRDGpPSEwJk/iVEO0iVOeHDv/4xACR5rprF1LiejRDONKQCP3Y8838LHqQ+OqnGgXYOtmELGO3WQRnErpyLyDaBZgMcsxQGs/S9kL8LA5+b1U3OUcJWq5lw9Z1y5WTRGs53kJYwEltO+n7zz4AaO2w1j7kXwUlH5rg5guOElCM8cSkcyCkJ3KUhK/PZJOQhubMln9Y7DHFUTdiXtk1MQN/3kwyemnAuKYum7c1zYAKGcQA5OabX9zJJlhPPsIdpeZooHkHNBSizUNJ6czo6kNeFvp52TDWkhEUiQ+kXCCCPA7+Hp8ebcMf6Gdy5c4hFSiDS/oRZfJeS2KwQe3XHaj4poJsDm8ljBmoTk2LX/F4WtHMOi+USmdcYRhXgFpAhOd7emTP41z/9M+jdeSzcnciNQMzuWl4TH1u1oPON5rMcYQOJxPcgt914ERoQPRbJdWlUsAijgGRXAQDvftfXYRg3IOKmOoyb801N9G0Ah/1eNMGmJPpnlmC/Y/EZTZjre1PRSm2Avv2embWwOGHcrOGdCB/njKTlUJyT8OU0QIutq3EcJS5q5xtDEfwQ9L5mwnMsPMKqjZsCAjTWgcM0SQAAur6T5AaNXVp8swh6lkZUOUlMOZtlAiDGNzr39QRVWBDPsvWffIhIQHbiKySWCpKNOwv4u/C5eBUP8Abn8BTYAS6FEjtsTYZ5OKTd0QEIWFRM5qlQcmvmyJuFGMsJjSGjNri1IRQQGS+88gJWqw1u7r8exF4q10n8PfsfM/NLrq+xcmdgmAEpRQvOBGQyzxPQoTlUc6/OEQY8BwB42+96HDlFYcOrd1wWCCui7SyTanbeeb6smYzza7HvW96d6f1X4a5fpQpmGAZwyhiHAckJukxs9C8OhCwAEDDZaK1HqaChkr0zDMNE6EqIpLmO+YZjgjl3dVrS6bohTEM5zk1Z3u09OSUM41iAsvZY28Jh28YNa8ryVR+k6QpCjfHO8Ub7IENil6MwXyDDIbFHon08Ge/HW9YOb9u/go4uw+UMoFaNHPdN68OuE966cS2aQmXxVqFkgLMkAZFkrSwWCzBzcfrNh92gx9/53/8uzvXvwJ5/DGNUU1PuWsGesrLNlp1cqzU1td142x4332hav6jMfbupMM/m2lU6FGp8W8hmBZACRWKCErNSwk7ndr4o24p6ZmsSVN9vWpAZ2oNk6j/aPZipyQzkTBiz+LsxAZ4h1SDISHFE73owZySdO2a9LiVgbulZxJqqLeuYqbRKYMgz5JR06moesJSYVbNTKFOFnMySWawzGbPRoU43LZufsnmBkaKGnjYbMPMkm+k048bNVzaahqmWlD6FMkX8GhozEcBeuGUYGQfo8ALO4yNHG9yB+3HPckDUhd3u2JProeMs2tOrlewT8f3k+7rbApLhg7ogudYXAtXEOXPhNvzDH//HcHwOu+6rsRlykTkGwEbrD6A8vfnVkFVIVNChRW3lo9Od1H6e31u5fm6FQu+ZIw7Gz+LcuXO44/bz2KwO67FYQGsGwztCVLJlg6QnAMuWkIAtrLaGdarNSReuhFmEqqdqUUARzFGYDoQJIQuq64LkSkM2yIKyc0YmAHBFiJzzSgYuLoDUovqSpdRuxKXVn/PIPCJm7RqSpewuxoSYEwBXclTlWi3EkRtBZtWOsqa29UBp1yoRlYKH1rw9zXhdPqUDJjmWZYG9hjDa2rEFnVWIwYwRDk/hDJ44PIcL/Z3o8SJsgm0nssWyrbi5HRONyK22aBd9uxCraWPt2rz3WK/XeOWVq/jCF57C2fC1yNwj5TiRu+JV2i9JtZEZtMSwdDTh1FGtnaeaezJPph3bNQZsfW8xfUEgyki8wq233A9PQNcJLWa1Ihq/FLLzw7QZY4ImtxphnjdaAZN6/SKwdGwjIaLS4iDGCLBD8EF9Rgac12sEiDwI0k5AMn1c2UgnFpFqRz0DLA7YFmabcJiAlDAHpuBTTFGTAIZiHbSC1KK3barn/B7t69wXH8cRq9Xq1FoSeB1tCwqAPzmJLE3zkCYfOOEY9XfyuUgeLywu4OOHt+Hxiy/jwQsE0lQrp4vIGMgmZixwTDtNfMrrLPwqmNUId85pFlHGzs4+/v4/+pdw1GPHvRW2Y8tHcmOqoix0M58m1TOkaWEas2WC0OTzVNC2asbGF7z+YGzSU8g84vu+93vgHYG6vlxXSlnCIz4A5OCdgi+EpoZTwSa9cPObM3PRCm0ZFPO0q9fcpbC/mcZogaDQeYyDdkt2NWMKbCVgjNA55KjarsES5gLRoqDtZmyC2MYkCdOObnOfuN14Wkqabc/mxNFgIe08vOFVIjWDBgrAiE+VLOQASC40KdOYvp+33Eejn+SrkwydTBkvLO/C+4+W+GPxIm4Ol7HxvYQk1Dwy3zSXi+FJ8oKhilNToX2IFezI+l5CLkXQBEYgAjuPbucsPvWpz2Dh7oKjff2cbj12j7pwyYCbxp9kKAO3ETmrUKIsslzMB9Lzlzmaafvyu8lup0gsGI4yEl8CEeG+e+5E1/UYhxFCzw9QdvCLDgwxMZ0PGMeIMUawc9jEEZwYPmgcWcuOXCefkUaxkiSekxBCM0NDCAxwkvuEAEicADjJ5rHk8qzJBpmjLPagn2cHOI+MjM4vIN2+pZh82GzgSAL+mSV/l4jggzRs8kFydFuft9WsYkr7iRDGnOA5GHY9CQXZumk1ZOvXt5baZE23FgOJTzuO44TpYh63PGnccCs8QAkXdHEnsPiI5a8itZP1eYJg5gY9Em6njE3o8UJ3Hp/ZnMc7wgpEAr2TE5S03QSc056MDfM6Zrv1NoGUt9W/mQgxQ+OfWcEfq+EzHwaym+vnJHFa6xptJzefWq9BgsgdQKEINOtymOu+9jrQCuJMOBvAtvRABRIO4ucQvMctN+83FQtCJwISwi1iaMCeETkJBpAyAjmMHMEpl7IqEIFdLpuXLfYUE1wnISGJIdr11Ya1BIeopVOFgMoWLgubOTn5WyYA3ilfDwFkxFriW+YCJCnNpHZVBkESGmbWkMVV29hom2BgMUqb0zk2cUNaEZKIvtlstIhb/OI2ecCKrd9woKeqZCCiJoi/7kFTeU1W4+wIl/sOvzY+ils3r+B+96pQHToH1kRnAwVYhZWIYEkDQJ3U4yZfBmseq2I8xwarj7sNOzKfE6Wkyc41NzFFfVb/NCAreGAVBDwRSxPkxuadHG9mvm6ddqHUPHf+HHKMWCUJpHuWqg944yqVkMI4jkJbmYHMJIx6BaSo7OmcZQtp09Zas2/a/sDCBjI3m81GNI6ikvM4ppmY7YY2jiPA5sOSPF8ozyxIWR/CxFSNUXh7DIwCMDFRW7OxNSm3YRRzVoa5+9MCjPNzme9u5yvrBSfjH9vG6TXlbAXH5mc97cRnZNVcJX4JYMIfb8ed/CSabxMcXuR78Jlru7itO8S+06agQU3kLLto2dlA1axTH2ruewBTISQ1fY/dI5vZSSWtrNwVSXxqclMmkMfmieED42D8GPboQXh3QTQkYyaQ2yfkmHZsr6O81QqigSFfxJgP8M2/59uwOroG76TA1gqmgYSETTmGZDpB75cBzlKlA9FkgKCTxLJRxhgLS/p8Mdv3JmTOOS1gjnCZEJTloWS85KxUlhI+8N4V6yClCIJQ/qcE+KBtEgEY07tz9dEZ4mrCM441f7ZlIrDzt4DRttHeX+vHztfTJF2zfXzN85cEC2kzeFp/EnidaXYMTEzSPP2xAD4Myd6xP1rycznG5ICWJiexzAO3h98I78C5o0/ga3afl87LAOCFwyYn7WehAgRuBBPHd6Z2kRvIUye9PmTWzSWLXVw/nxMYkiY4EQw1d1kPlFNWrZBxOH4MV+ITuDb+Om7d+X44OociCacYx3zKY29AyQpK9AoA4PHHHgbnqDWsAHOozHp5gNp8ci9kMb8EFwK8gjoW/4sxIo0R3XI5Mf/alLy2RtIEoWpSs6gks2UYBvR9L2CLBeNzLuTbhRqFhX0uEdCVGKD44NYodj5SGuGc1JeKeRuKRmy5XI+3ZdgedjpJ2Ow4xhfLzJPkALOCFCWBkXfNz3u98Ybyvn6pQyAGyQ1dLxJe3TmPj8T78RxuU1sRoq0aLlHgxn2AY+ed+ZpSMZGBHHHfvfcg8VWktEZOWQGP5mVpWmbC2J5OL+BKfAIXLlxA5Cu4tPoZMMdGS74O0798pIJN9odVegoAcOftNxf2biGRFqrJGC25ehRBSDV/VILi4htKAri95H7aOCNQfaSWi8YQVubK+DdZpFu0jcz9vOsXw5rpihBKa3OANcTD5bpbs7FtRTAhVG6E0oCfVujm5mpZA21WV6M5Y4wYhgHDMGCz2ZTjt1q1/Yzt39vdqe3j9VWJqGZhtD9bEN52itMtvsarql8poyPC2J3HJfdWPHtlB4xankMAgvMITUOYAo0fv9RTub4TPwOCNl65chk333IzEg7AtClHbP+ZepdTWC4k45A/jP39Pfyh7/k+3Hb7nSLYeX2d89c5tbk8DvLUSRexJC38XWPMr+Dhhx7CsFlrzV9GirlWOcSEmBLGmJFgnZOjMppr81fLkDHf0qkVkrk0Y7JGN64JLQAowmCaw54JM2vfyGmSQhs+EaGsc0GwRIsav3TOI4QebRfqnCWTxxIJLMCfGoLnuWC21SXtNbajNU1bbTuOI9br9eRYrY9pn20zmWxsE/6Txg3kvk5mrRGmaq7azyd7QbND2ntJNkcuS5uROSBSwsEO8LGDR3HhlYS33nIFxIcoolcAAqgvSeATziYmpby27YzlATCDiRAzkKIrjVyWyx45eaRY0d92FjSyAecIiV7EmC/iD3z7fwJCwksvPo+OboWj5evRj5NB5bRW6MsY00UkXuGd7/xaXLl2FUQ7iEn6LuaoKWRgdAuheFyyETox4jAihF7NQmFft05UwXvEJPWVBNYW5yOiEm6lpvC9nUMj43IuaGs4oFRMaJsDI+1iYgElLFoUhZdo0e2B04jgHMZhRMqAQ0DXS/qcSySk00OE8x4pA5QJoIDMQ7mmOal2e73A1M2x6paahidCZ2mXRqo1B3DmG0zXGWGYk34ntVnmqZ7xDWT0tOGDOuaRM3nvjQ37vMXcGEBM0KqEhJd3LuATB2dxx2qDe/wGo09IgAADx05MW3eFAglt2RlZF3kRTDDWQ8Q4RnztO78Wv/HxTyDhZewtH8MwitZhTdmSzwGSA3uAAS/gWvogfv93fgeWOx7Sd3PbaGfpRkS1bgB28av8WYQQ8Oijj2K9fhWHR0Lf6UCAIb6O0GnCQ2Sg75NoWSLEaHwyDp4I3nnpm5KlYW0I4kMGT9hsNqAQMIwMeC8NeqgG4Ivpx5aWVhFd42MlDwm5ALDec/YZgOB9D9CIxAlghzFrRo5jRC0Y2FkGIBNYS6SsSNs26jYuaWZrm1y/zUQFqmBZNo5McX3/Nm03B4Xa4/ngsaAFnCPE+AYLJZ/w/RsyWoS2nEAeYGLGZb+Pzy/uw51XDnD72SOgdMRV7djEN+aHmp5G/LBtyGur61PKWK3W2GyAYUj4ju/8A/iZf/0zOLe8BI8zWPq3ICLDuyVyXiPxCofxo1jlJ8GI+I7v/A7s7PW4evUybjrbzc4jC68112QtzcIirzVfOnJeY5W+gNvvvBVx3CCOEWN04DgId6qT/ibZSfZOy71aCnIhbkDf94BzcL6bFFnbrj/1n0SjpWwsAq4AKVItIfdp8cUQurLYQ6jCWls0RHjyYk1kIBNjE6PgC5GwWUfwwaCgiUNGQPAOC99JiSgqyZedtwIsllg+TW80bQhgMh+t/2la0Tac+symgtiGiloftP39G2++2sWoIirW7Lb13Yzrac0iQFslnpCZMKptc4VuxReGC7j72iu47wIjQJBF4gTnzDBQT2uy4Ise1km0tCxUQW7iU9KLI2G9jlivEw4PV7jrrrvwlgfuxxe+8IQeSRbA0t+DdXoOjAjvHX7X2x7H448/js3mAEfXLkvcrjk/Nzv5ZB5mD+y4L3nC/BGQ8hEYCQ888KAijwQfOiGYZgDOC1qdE1K0NDNL7lYCK5bMk5gyusToe2niajw2AAp6aIvM/pY1NGULty34rVoqlYawMUobBtY2eQAhJ0JODHaM4Hpshg186HA0bBSkchg2Dk65aX12WA8Oy0WHjoNszLlD5iCYBhtgZcLjRdATkFEJknOyNgdQP9UeF02+ti9LMW1DQib8reC2Qmvzddpxwxk9JpDmC7I5lZPVsvXbrW85Hr0xM5mk8gQeTBmXwxk81T+EPm2wO34et3UJQIBzIxAcyEwRrtjVHNp2Dcoq8mu7J9UbzBJmiWPGsIngnPHCC0/jm77pG/H1734XNpsBTzzxBMZhxOXLz+OWC+dw+x2342u+9mtw6eJLuHTxOTjr6EyE9Vpig7vu7ail0zXrZzqun6h+7N3MGPgpEAHv/Lp3YRhXOLu3EDM09CCgJLb75LWbGKQwOaZStpaVlIs4IW8GBU9q7LENe1RCbJSsmFYA1+s1cmbEsYYBYkwIQYL+h0dH4rPHmpdqIQ7nGANJuMFHh6NVRs7S9oIBJB4AR8jkMKYAnwIoAh0IGT3A1p6dAY4ABkA7LZv2FA2akZyUfjkTLqUckKQhKi8i2TBks4Yeb0q72YJK7bprY6Kn1ZLA60yzM4H8sg8iZPjiu13yS/yGvwsPrC7hvL+CzkWArf2dols8BZSnQlnjkySgo0xmEsQvRdkOiQDOrjRryTHimWeewjBGxMR45LHH4XzAHbffildeeRHjuMEXv/hZBAI8tH8lCCCPzVoQV+G1nVxZc43ys4UPTjuYI47Sb2KxWGB3/wzGow0WCzlP6Bo+WqBk1ci01sXilJO3nafKEO5Ku4E2FilM5UlKqFwtzdpsNliv1yK4qS2D41KFEccRDGstEIuVYkkAGQlDjPAckLQxbRcccnbI6I1lF2MK4AEYOWGHAU8BDNtElqAcxZ/XvELSLm9zZNbu08Y8waClMqnjeFjH7qHNDjLLYO6/vta4AfS1PrStLlm10iYmm/yJ2x/nh6sHsLcxIGSRuhODgJzAaQ+HuA/PrZ7Co91lnF1qX0cyHlHzK6utX5Cxct0S1HZgbbyqvUvgIekHqS6QnMVHG0fhi2H53OroED4EfPGL1+BYcksDkQiltbUjB/Ye2bJeoJQehU+1nYPWz7Fr3e6DkH2QAMIAxoDb77gLMQ7oul4XhZif4DTxb9oczAlqCNUUOpfMEmo4OlphsegnFB62+IpQMpX44Gq10oY+HcB1QQKCYJZi38zyfLOsDe8so8eE1WpdSdBL9WEZCuwwRGA3ETGKFrP08uA8nJKaEXVgHss8z12C4ss2Bd0n+Y1tLHzugbRC2WrLNgY7D5Fcb7w+OpDGZD12Gp79MHHw5h9obGIAxpnKjNLh3mx5MOGoIxAHfHa4HbcfbfB13QF6t9b+hSREvs0FHKevqFFMAhC87ohe2pVnJzur94T9vV0cHh4CnEAsYQHZdTPIRfRee3mQCkHw6LwDQWr24DzYBayi5DtZ/iazPzaZrc8ymZ2ZYModlBWGEc8j8Qbv/oZvwOboGnb3l9K8PHh4kpCBWA8Sl5QsF1ng3nd6TCHqYnYglq+2OcTIcD6BScrZQEJBmaNwurITEGUzDGDOGOIoBFo5g0jihQTR0nFMEGI9jzRI2ECS9AHfLcUqYRG6mIEAB3YeCRlMrhBcW3u9zFp9QgLGZZeFrtIJwbMjggtONK33oFjLu6woxNbHPK3u2KbVrGHbZLYBcnN01oTdLIZt1SXbxutuW3Ba6/W1dwjRT5z5GMUI60olhfWtquTp7k58eriGR9Zr3LyonCyiMY9X0rdAziRnVideOYTL3YXgcPOFcxACYODo6Eh8JV/7Y/SLXgnA5FPCwJbVF8nIIFy49Q78k596Hzq6CR3dJZtNlpbpkxkgQ2C3C2aZlBLHBZhHHPJvYGdnBw8++ADGzRH6Pui1eAWZcjGlBYwJsGRzm3vM0gYtPzUleW7rzQYh1ea1BialJIyD5D3G2PRepNoxzapLPMvzG3OWTYCFDoQo6G4k5i5z1jzbjBTqZlXCHXq8nEVQU0q1h0pH8Mzo5E3ybJ2TXiuEibZqtWL78/w97fy32lUE3xgG63tM67ZjLuynGV9aK7w3aJRYVsMunhto1rJaraL/yuIMPofb8bHDi/jaQLig6KJkt9AkVgVg6w44MUcmu4z4TF3f4dZbb8XOzg6uXLmC1WoFgKUnpH6WMjd5pRk5RwEYmJHhEJlw5coV3OR/N0B9uR9mq0Kp2rvm41Yz/jozhsivYpNfxDe84xtxcHCAM3sL3ZjEJMxZ+G8qqrwty4RUGKYJ5UbJQUQYh6HxlwipMLk5YSYMlTSqdHoGTRYxSLSlxD3FtLSN1HzLGKOQOxMQx4jBDeWhzGN/khdrXLDyuF1yiCkjKXgDAhw5JQE/PoPtPLQabh7eaM9v3x93P6Z/a9fXXDmcZvz2C6UBk1AjslqUMkzz2I/cJIET4DjBc8ahO4OPHdyMu/aBW+gVIG9A2SNr+hUgzWUsDxOok9KaEWaqmVliPltwDn7Row83YXe5UKGcCrg6ipJ3OQyIcRAoHox+sYdf+vcfA8Fh4R4UMAVZeW/n1oP4uSaY9bqmD7RaEhnsDoDMePChB9D1QNdrj0WtLyRQKWsjIqWu3M6Sxwp+1aRtubZxHJG4kkmFIKY3UW1j0ApXBTdSceJtfu2epBTLK3HDFLkcx1Gn1HpKdhOQhK2yBdDUPYZTvzbFjOQI0UcEkjI/73wjOFXA2rnfpgnnc9T60lXYJm+pVtcMKLKEhWl+7/XHb4tQlpuc3IgF/eXlQBMyLoIs+skEEcDkMFLAJu/j2f5hfOJqxAN7V7DfOcRhhLhIclsWQLYOwi0rm/29NeUIrnRHtg3Du4Au7GFnuZjGVHU/QWYM44hx2GCMgyZ7J+yeuQVf+MIX0dEtCP4mpKwZLZzhWBbL1MWYPrC5GVXewlI3ueJPI4SARx59CEerKwjBofKyis+WU0VRucmumVgKqgHn2kA4hSScIMkDkqFjWr1lSbB5Nf8p5VHzZsvWWrSvs45fejpLTBjHUbJ1tDWC9CFB0d52HKkWEYAvhA7eeQg3kPaGIQ+rfhG3SKfuNeSh3Rxa4StTT9UnNXTZPrdNsNtjtubxacaXVSivH5thKY8C1J/kAvK0WkHeWV0qhkOkJQ5Dh2GP8fHVBdx5sMK7zx/C01XklBD0wyaAlq8IYBIQb3c9AqRBqfwFcyEJfsr/0j60ftEh5yWkq5VUTAzscO3gGvb9vei6HXAUBnbzHevzocaXrCDCiRkgBGRcwzo+g3e9++sw5gFd5+H9lFWdwZOAP5zDoKEOC/brDyD1z0QboMxdR5027PFq1uqRi//YXBZVjlPZGJprYWjNpPj0YGGPM01pLQFSzq1z33ze8nzdBDTpFBUOwcM7oTLp+yUoJ3BK2MRBmhwpENV2sJ4LSCs8bTjEEGsrrC6cPfl4QfT0eqcJ+5YTe5pxA0I5RQExERqar+Hy9/kOPH1Lw3PDzZLkGq0zZ9/OTOwQsoMHMPoeLy3vxIevHuLBRcQt/Q44SYFvZkkwnleVlyM1mkLRENWSdr6TdjXbIlpE13wn8S37xRK/8KsfBQCc7d4K7xyCN1+v7YUiPqTdX2WH4+NWQjP3K3wOjIxv/n3fDOKE5bIXoizIOUilXNBI9dm5mlG2OGXhkYYgZBOQFDi9ruY+LUzUFg2DIaRXzSJkFr9biClEQ7rmPTElcMraCUxN/zEiKGk0OYlNbjOznaubSfAenQ+aLdOhCwTvxWUZ15LmZ12ykARc886euYJQhImJb+dpe1ZanNZ7L5Q0KpTe+ZI80YZUbB7sfW0mzxuuKRtQWBeM7ThOHkyDElqfD4Z01yo1FZOJFuSvAT0nI0+2YetcDIAYTBkJGSCHwZ3Bs/5u/PKlq/jP7o5AYORxAziHrg/ShhwkTG7aBwKKQGYNuWSw/l4EwsIIstdQ0ZvVN+MyJ9zmGxIjJcLC9Xj6mWf113uaKC3a1riNrPaSG5XCqKDENoBA6DgHHKXP4tZbb8X5s0swRvSO4V2Gh69CDWhdpZljuuizdUjWLB2qZrSYfwKgxFg3RHIOBPm9CwGlRCozgvOIYyw/b9Yjlju7GDcRQorswexKmts6DiDfIaaEDCoJCOQDOEuIqY35tTm4LgThTbL3eE2IUCDJ6i/N+mEFBin0iDnCw6nQR3kOELCLHCv1UkboHKTfrCaQk2gM0rUhvEIRMQ7Y2dlR2kwGcpZqGuWQmrOir9cnl+3Nxw20V7fFYo+vLqXpaBZZ1qrDrdrSFhqVn7bvIxoyMY0GiEZSvgOGx8rt4vOrM/jc0SEe3d+ANdE5QmzFDADe6PkVmVXBSOZXkgiVD7rJMCq1P8yX8KAJVEuoGUR2TUDo9vD88y8g4Cxy6jEgqgazhVIkb7LDbtWM5t9ANsAxPYvIB/ju7/pebFbXcObMDoL6kgSgul/WmSo3n1eNhfacwqhnJiJDFl0FKwjJNFlxC6pWqcnttWuxWRtOM2mGYQRnaDIBwWudZC4WEU1s+laTt6+yZ5GuCVTcAF39zHStVUum1PWIPgCcAwWnz7cB8OoRiskOEtS3WAQ51826sCNMGfDaOOjxY588bjh5wA47kS0VVAaAhqB3sgAx15TX8zdnpz4msbo7MoHhsHJ7eHbxEH7ucsZ9O69gvwuyiyYRTLvEnKdQ9STzv/HznCGVjuHZS+bkxPHn+oXkw4p3wnuPo6MNXnrpJezQY8jJIfOoWqg+mMliOzY3ekkN4CB+9ogVfw7eO7zjHW/D6vAS9vb3BNBhSxaQbJha0VEfkplVY0zwYQ5OVFKXdoMQf3KA9z2IpxUPOVdz1kIpdn9dFxBjKowA3olPNsYkIYvm3CVs07gY87Iqe08BhmLUTUgyrcbkgRSxRiUKZ7SuT6V/tGEmZt10pz5i+6xan7mdozac1KYLlpXKlbfoDed9rcCL6H2bWLAmJqsfw1MnEOVNMHOvHEXNw6nmnH+mfG4ixLbViVRkv8Aa5/BMugOfv/oZvO12guM1KCzgxkoQlbSy3hbSMXN65ifWOKbqcyJonZB+hMqGZC8iwr/7lV8DACzpIa3WSI0ymPWbnN1rOxe2SEk1Q84bbPKLuO8t92G58AAvsbOzg3FDSCljaIiiTLNklhCHda5OOUkOcErSiTjVcAeztGEPwWMYRvWdCMF7eOfgAGk3Z3M4DoCCLSklOF/vK8VpeVjJM6VpOGoe15tXVMw3ruKbRskxTimBKQuhdBwRY5KSNU3kSBo6ERZB6PP3wpAYFPWnKqAtm8CJYBvqhtlem3MOoeuwGWMRRnvPabN5gBvyKc3xYGX21n71SWzuqhMbvwit0Nlx2u+Px+vqJ+uPXBb97H1KlkUsN3KZLuDfXbsHi8UzeOjMBl3fAVGMFlaonVwofDL1cKLl2p1+OlzxwyRPtCHUajYiLg++mYAGzJKRGz8Uk4daTZ8qkEUoc8aAV5H4CO94x9swxiN0XdAwCGEYpEzMQg8xjvAkCdjeexgTnFjqWvHA0kgWOSHHChB5CkqAzQBnBE/Su5McHIQTtutCMZFFKDMsbzgq+TLP/m7aon2S3vuSAN8Kb300jdBypffImZFJgJzsHNIwIo4Dcg7glNA5wqJnjCkDQwZzgg89Ajk41tCXoA0gqmGdefJ5q83rxrLd2bLnRKi4gW0wXxY6kJm4FANBFlyLlk5P3Gq409rUp78a+Z5I4XXX4TP9w7jlKOOuPqNLI7rQK6jA6EKP3GjKYp7Mrn3bdba+ncTr6mdqHE39CJ5+ptmnjvnkcx/Izt0Gq1mBIudl8d52263o+oBetdQ4RozDAMD8OimL8sEfO4/5joWsuTEX2/pAuw77fVKWPmtDN44DCNVvsnUQQkCKEUyhnG+K+rL619O6zMl8obZCl/sbi99vceAsNWgwZDlHxhiTglkMCgSfGDGlsrFAfelsQAwgFoPz5frMPC49KlugybS+ugj27C1hHxC/GTNNyzovpx03wDwwXTxG+V4edvv3E8Afw1Mmf2mFeKYMafL32THV/jUzmOHAFHDobsZnDs7joc1FvP32gL1OSZ6U7j74mlhwUpbFMTi+Oo8qmMUmgMX8pGCXsVjs4tee+BAC7aEPtyFnB+sa1wrdtvPYaAGD2lMz41r8GMgR3vXOtyOEhE5pFIdhQNLAvAE73gmBdee6Y+dsQZS58IlpWBnfZO0bMAOQq13JiFzJSaXm+A2+osDScTOwrdFsr882hjbGut0Pb8x/Bsib7+3AnCQ317MCTk7YCkpfS+XtidI5uhR7H8vamW6Sdj3WvBZAOdYwDFgul+quVF+zfe6n1ZSnNnSVJ1sqt5GQyysjUSp/F9acXF+WpkOAhRwUdkGhMbRXQTDzbNK5ddsUVrGcWElUT84hUYDPPQ7dnfiVa+fw9NEOUmQEMECdhEeoZmbYuK7+Fuu8JJ/XTpGzrBaSsENGh5deehlAANEC1iqd9OJZG3+fBOy0i9DOj5xBuIJNegHf+O53o/OQPg8R2BxtwCMQEGTakhShhSbIbueyjSiOlUhKTLKMzEmflTzDmAap+s9J5heiYZz3AqIRKYNA1XLtedoGve3fzQxFTqCcEIeNpvVlUEMtWdeIXl+uwI6NVrvDObAjKYKGsNEnJpDvQD4ATvreGNt7jBFDjHomJyE4mgJOtnHkRjtbuCUzsB5GbIYRQ4xIDIwxIbOgynMf8kbM11MLZYa1R8/SP0RfGbnsXMcBC/MbG8R7Yo5PhVRomBOmLXvsOPZqd2aW5kDEkveoQrHpLuDl7g48+SphnXvRICeI3msWn27Bn07wKMCZcfHVK8g5Y+nuB8HDKjQsaK3O1omnK0LZnIDAOMwfR+YRf+T7/1NQysij9K/YrDd6D6RF3HxMCCfaIWfEJGReLfJsz6H9LMBTuN+RAlak37cXOdUEufm+jVObOQ/9PrMgwXUzNy1smrFpDdBo+cn1N8+prA7yIApwThLg4RzGVO/fkuCZWbRbu8HOBKqAVw1/LENdgIIjoPxuboW0xznNuCHztTV76u//w49sJqUjjOhw2e3iYO9h/OblV/HQ+ip2zzr0KSIhbDXdAAOlZMwnk/j45J7kd/76R34DYKCn+6UGkESntokB20arJefmZhc8nO7SXdeVFvAt16oc3JqWKllxSgVUqvFEt/U62ria/eydLzmzmPiGAciWa2ro4jR8YF/bGJ35syb80haimUvdtKag17Tjld2HGE/VdSrRAX2QgqZKSh8zAOcEFOq7kukzDiN40Vfh0g+bWZ5T1qT4On8t0XN7nbamWrKt+bM87Ti9+apB4ZI0rg+q2WS3v5r3Tl62SLe+mtAKb3kfmmPoSTIIiQijI2wc4dCfwTPuZnzmkkMcAhzUsedKNzgBP8qlVoGtGk7MzsxTRrO5xgxdj5/92Z8HENDRbaKdnWQBkTEkFJOhDjtPy/pu1wIkwF3BteFJvOc934q93QqgCB9OCyiIdqs7OsoCnCwiOk57MYf3TRjafFGgqTds3jcHq8THr/E7cNU+OQsPKkOYz1OSjBgHLUx20+uYH7v1KesfgDYJwmsig9Pi6JQdmD1S9sgcwNyDuUfKHjF7DJExpogxJSSWTK+Y5OuYspimKWvrwIRhjGVZGpF1SrloTelmbcRdMm9GdH2acWqhJPOn1KAmE1D9/bYXAdU9OEFg6aRXI4ykxmd5zY8JlD6JTAmgFRJFXFzcjk9fPosXXhzAWbhG1+s1NptNRQ3VFMnNA293QpQdVBa9dHJuL36aN2nz7r1XP1O6TjkLVJtfq+afLXxLeC4gAxicM7xzWOenEPMhur6Dc7VHxnJnt1Tbxxix3N3H7t4eljs7yjIA5MSFY7Vcpxn/zT1vMwmnGxNNOh0TpoJt72fmEoss2pJblNfmXUxU7wicojYGJtQ26ZheY3Nttnm1QBADhQWiFBYQkJmU68cD6JBzB+aFvLBAzB6JPWJijDEjZi6+odVnpsyIKWOISb6O4kNmlpWZGIhZCiyEJcGV33FDyLWlBcrWcQNpdqdHj46N633sxrX79Q9BTf5jt8Qr3e34yCsXsXN+xCKkYu4VcwrmuFczy8wu50SzzZHFShxgTqKZ91wWvAidwUKNhnEi3HYsARRoElTXA4II6BaMV4++CCLCz/z0+/HJj38S3/s93w0i4Dc/9Rns7e7i7rvvwnq9xk+998eRsoRkvvZrvgpf98534NxepxvQ1ExsQaqanF7Lr4qg2u9zBjWrhWgar7X3tddf56yat4AWV2dz9Vz5XUpZABuuNZRFw+uFtwUG7TWTphnCnltBdsWKyhqjZhWcDIIPC+TUgbXcLEnuOqTdKYGcx3ozlASE9nrajczM2rl8xBhBISBq89jWPbjeeN2t8Jo/nPyh2cM//efboEN5YzkmgOpD0FzmCaKnM3JY4nJ/K566eg73X34O953XMAhPy5zkEyS4aFlEDcAxu8zJ76ELLzPGNODBBx/Ahz70UWRew9NOAZjMarW+F6aByVBcrlatLELJwz0aP47D+Ft4+Ae/BTc/dic+8/d/Ef/bj/1tEWhtRZZjAjnC2cfvwNEXX0HOGT//y7+Cn/uFX8Kf/6EfxM1n+7pRqQUyr+7YFrOU1gJ+9h5fJ232dCY+pGNYJywi1qRvmcQWYW6FLHMCLAap89C2Rydf+1Ja3Wh5TkSAJsU7cshIoqHYIWehQsmZRZOp7eX8AoCHowBwr6ZtVA3oxG9W+tGUAFAnHENZ6j1TikoPI0Irexih9jbJSFmKMiIDQ3yDhdJW5RYw8sRBzULbNvJ1eyucYFnL07/eWcsre49Lu3v4GD2O3YOIW/g5LM9mOCxR0V77lNY1aq8LyrK7U643UXZGzpLxQipc2qVq2GzwTb/76/HEhz6M1fg09vqb0M4Yz+dQ2zATm3kM8dOdVCVkfgUvHf0ibv7dD+Gr/vg3Y2c/4MHfdw8+/s8+hrQBzj9yJ8ajDa4+8wp853Hv730rhvWAmCIuf/5F/Ob/8j78xD/9Kfw3f+EHcXD1lXJeSbKvNB5z07VWZwDIUTYsbdRLhNKrElmC9Z0XAfadVW0kBCebnPnkjhLYJaUNSsVPNwOBkZFThHT/AtI4wgXRYN73gLIAFyEnJ+mPTrqwOWN0kDuAeq1I2cF5Ebjlzo5sLpGQ0IPgJL2QCL7bAROBKSFmAlNA6Dx8JxxN5DskTnDssN40dZIswhkjMIzm4lTNOYwbbDZSGbNaDddZt3XcUJHztpjUacZJAfqTRKtqyRPeMRFMrm/j+jsiQnILJNrBZfT47NWLePDoZbztHLBHHdbjoZqN5rBXlPS1LOopACFCKZUV7SajmT5tXVRz3+Yni+msZq9qUwIDtMLFzc9i5+EL+Kq/8AcRegemjAv3ncFX/fFvxOYVu14gfz0XjckEeA647e3345U/+HY8+08+hIuXrmKnqz7e9YL5bZs774NcpxPLIucMFzqMY7SbEV+u8MKaOamVKUWAgJxHeO8QOZffyfts821NQs2lDVqOBaFYYc5aooXiR+qElXuTI2lsE05riRwyvHAIk0NGRIIv/Tij+ocxO2kslaTcLGuGlAumYUfE7BHZgaIAVomluxk5J1oxyaZkFSUAgcljGDNiOp3MfEX1p3yjBhEpJaGDd8AY9vD84l48wRfw0riE9wnsR9lNT7G5bNuAjiW0KwI3f09OSenxp3C6BNiTFBnqvg7OcCRyfGX8AEb/Kh74L78FN912QU/BQMiAB7LzYKW+8E5eloJm+5QF98cYJxvppFBZZqyYnra4rezLKmtKaqJdSQOKkc25+cglCI+JKRqCL7HUtjKk9SFtStvPFU1u23UrgBXirJs/l/8mw9L1CnrLjJgzYhKByYmQc4cUA3LuAF4ipx7gJTgvwHmhv+sQIyFGAmcHcj2ADqAOMRHGkTGOwDgAKZFkdWWHrt+9ziqr4yuCze6NHmoVyo6MBDjCerGPp/hefPKFK7j33g69D1gN0lvDe3fcLG8Ww0mWgT1cZhHucUx49JEH4b3HKn8Ki/AQcvaq86mxus0/phnIk5DwMl5ZfxAr9wze8kPvwR1f9aAuNg+mNVLWjBV2UrRLgDnWMWaly9zuyZfypKwhhHIfGZY3a+VJRp5sWVki9KKt5PsoPUp0AwjqJ3rnkTiJb9doNftKjjDGEX2/IyVdGnLJyYqxUT/DwgZBID1XrUkV3IgLiivtJiACSih+IyB8QCmL5bL0wnObmTCOA7rgRaOmLHFNMKBmatSNdjOI7xhZNvrQL8F5I6Ci8xU19x3CQoC7qC3VUxK3Bi6gX85Z8reP31FCOSEB0J8zAkCMte/xkn8cT66u4vOXn8NbzkvukPlyQRkK5uli87S8bVkahqQuFjv4N+//BdGIeBGX4/uwQ29FwJ2A6yAcfcZcwAAyHHlkHGCdnsW1+HHEfAXoCG/54W/HA+95J3xouA8oa+5pVhPXACLx+WJMMH+63UKMSMoEwMCbFoGeJ2RborggpQl9v0DajACkFCylBEfC7pCZEXwQ8IQEdWbv4ZrjmWbsQodh3Bybx6ymqQF43nvpkelCMe05J3EwNB5LzIXlApzh4JTrSQrbM0Org2pYI2UR2MzA0XrEcsEILPeAlECI6H2H9TCgZ8nSigbk5YzgHFzotFIqlXBXCAHOe+z0IqSH+VBK4zgiBEF6id5ojh6efqXmV5O/23gDQh2vZ5TLmMCrAsp4t4+LOw/jVw5XWJwdcMEfTsykdqGW4zUaszW5tp6blvjpf/Nv0d+yj3BmB0dPPY9Nfg6EDpQcFu5+dHSTXueAw/Rp9YdGMBLIE8584wO45w+/G3c8/iC6oCVUGqDu+x5g1u5ZHsRKPs3WSdnSxeTpTLDrGZjTVso4P00Ot0SGWtnRZuWYH1hLk0g1WhYHWTSnl0LzNo8056zMgii/b8METpsNtRk8LdpqFHLbEh3aa7fc4m0x2EmqnJqvnCS1k8YE8AgQYxgiOBOcC0g5I/OIMUZ02q4hUFBt7JDZIbMXpJYIvuvBWCOzQ0xAv9gRn5ZP5y3eUOlW5Qm23Ullr/l9qaHQHaupRX4dY3u45EZGSXJwDq47xKs7t+Gzq8dw78VLeNct2ixVs5VKuIXmRcjVx5kksgv4CuGiWeD/+efvxxhHvO2/+8PYv+c2XH3+El7+xU/iygeeRLqywnrzOazM73QEvys7596jd+P8u96CW979CPZuPod+sVA2cyk4dl4gftc5gFlCIE19K6vZ2Qbzx80Gl371SSyXC9xx2zlcu3yx9plMGUSu2YhqG7e+X2AYNlLxoOVLBv44p8CJARjN/JBOhglq1FisMbh1XZDCaXKlCa2jpvSLWUmsBHl2TrKRnBOzfFJxAQWJlFcHGk4h16EtjMiZFM2dMhHO46BiPQCRDQFWAC7LZ1sADBCT1hnXrXeaoCA20MgM5yWRIPge5BihWwovEJ9u7Z5aKN10263CyVPRKRFGhsDeTDjltUzHiZ95LQnXxZrrhiFVHgSmHaz6iFV3AR+49hbcd/BR3HuWwDAWu+1JxHMwogqmRDgzE+B38Mu/8ms4+1X34Pxb7gCcx/n778BN992O8fu+EXGMOPitl7B+8QocEbozO7jtHQ8gBI9uuUBYdNodWpU8mWnkpJjXjeh3MhADeLMDyk7T1VQbZDVpdd6RE4ZLB+idtIQHi4kr9+PgqaFLJDHTiJwGueOkzrHve+SUJQBPpMIiBMjVD1TO16QTr/Qii0WHYRiLf8rI8MTgNMJ7qZWUBT6Cpe5YNKOGWYQ0LQIk5F2kvnDcjHpdEaHrsEZCpoQxD/DUorbqc2oFTAtSkZPydc5G8kxg7ZOZEkshThQy77azm/ceiVlMYZLFlpiU9Y4QMwMUhAyMIpiE+Y63NH7cNm6wyLmaRdRQndPkfRJsrclpr28Un2k+XuOA1PwvWx6mzqaTGNSrdB8+ffAibjn/AnYpIScPIEyEsJxypjGPaVIGPvmpJzEMA+79fY+JIOlxPBFod4kuZyx/11tAbwP6vsNi0aPrgixWgjALjIOw7mnIwL5mTuh2HHyfsbmWkTYZHWpmEMASeNfJIUhHKmTG+fPnAIKk3cE6bglC2vKQhrArrOQ+YLlcwnuPvu+LdiVyYIX+YxwVaZ0mIJSi6uYZSUrciJq9YzWJYkmN44gAoQMFJG9U4qih0XIRzK6EnMRETRKSiCM68uVn0Zz2khhpe1FTk1Zcg4ikYSJhp5BzpslG3GraOTIsc9Ai0hZGasrwLHvkFON18L7y7Hu15VE36SIT5qDP1emXe3CNBdoQNBbFpD7cvYCPHj6MO9OAd+Aa2nKxk2Kw9QE0DYMA9Msd/NIv/yr8bo9zb71bNioNEdST2zUYe0GtZIcii8b+V+BjiGnMnLC3wyCXcHi1pgWSCmPOCdFih2pSP/vzn0Q+GvFHf/D7sVmvhLSpgFZewkUNCVTrQ4bOT1rEWZhjjJuGeIoLuhhCJ41hu77MlZi6TW5qY4WIKTjOFrUASlKMbM9CNJt0ZTZQLutil+dpoRuAMY5D8/npOrUNzICrbB3JtspJE26ZDYvhTt2Y45U9bd6wCfJrlgnqeF1CqSHrssilzE6kUZpOVTo/05onjhLw/dKHAuCqrTVpXh1fIkZQXC4xIXYJL3Rn8O+f3sOddwLn/TWEPGKgAMe89ZqPZb6w+BTke3z0ox/D3mN3YP+O8wUFm7rTddfOjOYhUVlcVjNIxAriiF8F5bwZosf6kIGsnK7qA6U8Ki8OYzzc4Llf+CSe/Ykn8IM/8Cdw87k95BwRCLAMuS70MOLnvhdBsm5iXdchdAHr9Vq0q5q1TkMTOSnDgc6z+J2dms4M7yTEtFwusdqsS7K9HRsAfPBw4wjRmgCQEYLTSiR5cY76VRHXnDSGK0kJcYwgZDiSYnlCVla/BKfxaWjmFUjjqzyCOQCqgR2R9pSd2FeT570t26kV1hasmofRWmG1kq7TjBvmfQUsDuZkkojKwtfngmSgIItDfhq1rSb99JynvbhyEIa1aK0CqhgZA51z8oCy7OKr5RK/tbobH7n6Er7lplexEw+wDmelfpJO1phyKjXjifChX/8EmIHb/8Db1fFv9ukJYCR3lGLEZmPoYs3tVGUgoRxmUMpIaYM8bLC6HLA+DNgcJlAeinbIKWKMEZujFfJ6xKd+9N/i2keexX/1p/4EHrj3DgCM0PdKeyHX23V9YZsrccJcOXRyYngXAKbSx5IVYV2vJZwhC1mE0EEaIhFYO59xqX4BROBjjFgsFmqmEpzXWJ4j8Qu9x5glE4cgwugcwJwU9InwLiCnKBQnYBVKCAFyltQ9UqH2qqESp7JJcx5B6GGEYV4CnCWhYdsztrkxjp05ANh2uZ4wIczGaQUSuBGgx9XdJBAhcG37wJQa/allW54EIi7I5m9PjMQCAiagTk+tPOnyMJVseaQFjvbvxSc3CY+vfgvnQkLgAQxrW4f6tZik050wM+NIO3K5zqu5jmK6msalWQwppYTNJhdNUhnn1XRlRspCv88p4erzRrXCgH7NKeLg4hWsXrqCz/yN9yMdrHHL2Qv4U3/+h3DHrecAzuj7Xky6NMA5lBikoyo4bdKAVeSbP2n3HGNlK7BNZFJy5qppHDXFrDWJLVHAzHoJsWZ0vWhl5wMoyYxJhY0IuGimXNoarNcrhOARgi9mqm1QJjApRQWsMqYPsrH2dI7tfsZx3JLpNC1utjFHnU8CB+dF46clzzq1UHprYU5AB2nOaZeSQEhUQQYGEFNCUgTONMZknGAytGO7ptryuRMVmpMaS1hAWXZShoQBmHoc9Ht4nhI+dPAU7r6ZQbyRmkw4DQGZdOl5Zw8hpVRaDwgSqtempr1k4ojqnDw7mppFE5+k1HNmcNTQQOb6GSQMBys89/99HE//gw+AU8b+/h5uvv0u/KW/8MNYrw7AOcni7WQBpyFLIkLj15ngbJvndnESkQpVN/EPSzOfnNH3S4wpoev6slvPW+TVBIVcPt827DkpVmrmb/Dh2LW2VSL2t5SSILN6vpRSs15sHrM8F0g2kwiqsdDp+5pzHAv/oGrNVju2PnJLDWIYwmnGqYWyY2HAFqJbDw+5NyYgExe0lFn8ncSExFrOskVqZOG+Hu3ZIEnHjkn1b6ax9P9sf6UAy4DhFJEd40p3Hh/1D+POw0/g6/YYoA0cd82naXZWS8fKEzBJvs06Tw4gFezGR20VJjffld8wmia0yowGBsOBY8LmaIUXf+nTeP69H0F+dY0H7r8fjz36CL7jPb8PDhnD+kCS7AkgJBB7IGEikJIWmCd1k1Yobe+xNLthGEorQaLKMmd9NOz9EiZQnwval9FXGslWmC3kYsc27W0a2nJU7TNd12Gz2QAhY7nTQ/swSRGAUxTVC/0JaYob5xHgCEfSt4S8JKAjRwQnVStgjVEGQ1ulqMAIvCRmmhVlThq3nHYCt2tsBbedF5vfNs75WuOG4pREgDeYv0CtECgZko4Uc8bIltdvqWxf3kGzr8fBo/ozqSFrTWKAhMwBh/l+PLV6AQ8uVji3k4GYUTcAmuy0zBJYll4ZKFaAmE4Zzou9YGh8Qae5FUzbpQltaAMMDWCLg766doTh2gqXPvgkjp66iCsfeRrxYI277rgT/8WP/ABuu+WsAkXrJh7MqBUrScqqmswcR1N01b5vuzGbf5RzLq0ETcCMPNlGbWYjWsp38p79nTPFJ6taSIqZF4vFxDowIMi+bjabYwgm0GZVYaoJ9ViiMVumPpRnI1+zhi+spUOevKzBkfzdl2ek2wCETb47dtx2mGlvfxvHEYvF4o1HX0s5LhnRh6jJDEYEY+QsAplzoSPkiV54gwZP9SQd++a4zX/SMB8ITFi5C3ia34LffPkyvubOiH3avp0wC6FSecjO4evf9Q78g3/4k3jlV57Ebd/wCMwvKgXMdn2sN1AEkgUJzFI/eO25V5DHiOff/3GkdQSnjMtPPIW0GiQPNATcesst+GM/8Efw4AN34+jwAI6shweqr6agjCyiacJD1pL/OfGT9Yhs817b8I8IKJe/tcIQQlCCYoeUIjxkYRoTvTXuHccRfb+YmKzt8zFhrARdfuL3mkC2rQXsvWbitsCV1X2aALeF63ZN5ivb9cj1xibTx6G1Jqq70Qr69G/HQz351FoSuBGhJC/kVEwS74KYgIlFKIecEHPW8lKt3P4yCCQAWP7/5E+q1OYCeT0EteyunpDcgMvxAj579TGcv/okvvrMC0jESBb4Q/UboQ95HCPgPLou4s/90J/Bj/3dv4fP/M3345ZvewwXHr0bXb+Acx6+C8gxas6qXOfBy5exevkKVs++iku/+iTyasDB51+eTJlzDrfffhvuevxO/P73fCvuuvMO7O12GIcVwAl7Oz1iioI8QjaYrLmnlj5HWtIVY0K/WCCloeSXtg1rSnpcSRaYpsDJzi+C3Pd90ar2ucPDIywWS7ATTZVzxuHhYXmvgT07OzsTv9aObVq0fS62oG0uWt/UvpYyuFmYYhrgr+DL3KxsAZgWZZ2DevZ9u0FYkXx7rDaxxITVNojrrcV2nFooszppOWckIg15qHZUTSm9Fxu/7sugKeXoc5FXfTQ71XwS2gdSH7wI2ugTruzs4PP0MPaHNR4ZLyL0GZm038bEhLXjA5QZ4zDg0YfuxA/94A/gb/7o38alX/oc+gt7IE9Y3HETbv2mR3Dtsy/gym88W845XtsgHW3Ksfb39/Hur38X9nZ38d3f9R2SjO4dzuxK3mRMIxwRgsvodxaCOHJGjB7jsEFMWarw1bzMzCDvZYPUPNeYMthIrVQLmKaIMZYFaT6daU5j/7ZhWnKxWKgpKxtBTgmd9xhVYA9XR4WbpiU3JhLB6fse6/UaIQRsNptJuKE1V4EqwNuEasIphGmyvWwsVO6v3Uwqw0JNnDdE2YSo1dhybGGLF1qU8dg1VYGtGnQcx0na4muNUwtlMntYtmEFdARhjSjFRLA3fTk9yTda5AmEwAQODkdL4Fk+j48f3YyHFgfYpSsAwskosXbkynHEY4/ei7/+1/9n/NzP/SJ+4Rd+GddevYrDS0e49hvPwDmPSh5FeOc7vhpveeB+PP7Yw3j44fulKn9ca0zVfFmJrYEEjCACAkleKGnAJwRCH4Bx1KSIqGhgA5TYQjHtEXzAZlyXEEjbos12+1YLmrloJtvcJaimYBP31HOagK/X60Zwpr02WnPWFq6Zlq1mbDWQAUUhBKxWq63hhiIEzeW2vjRQQx7z+5rTfdrciL9+vE50/tXmu9Wgb3jyQLSiWIa0HVNMMBZztQ4z9k5zCZOJOyZhtPXbLQd5TeE8eUIkEL4/CCyeKONauBmfPzyHm46u4YFd4Q6tm5yGPdoQhvrXcdgA3uPbvu0b8N3f9e1wLDmen/zNz+ChB+7H/s5SKSEJOQ8Y0yioaF4jZ8ARw5eyGpsXhvPUXK3cL2nM0TGDqYN3jMQe67J71+mcp4ClnCYCC0x7ZdiiN4GyTJy+77HZDGXBtgCRdwFmzuWcAa+sdEp0PEcqc0rwKkimiVr/rjVdWwFqj9Fqpfk9tD6jd93kGK3GMm0438DmAFP7fkvVk81k+8qbI7Stef5a49RCObrpAVmFU9DD+bsbn++0YY/ZMeg68jgPJNzI2LZzERw2XZAzccYhzuLpnftx7/oq3naWMSJjVALn6cgV0SW1D8wsXB3AqbH91ofvAjBiGEYAFbGd0FA6lF6JBgjZvLrJHFZiZLl+IX6Ck0qYnWWvmTDAqOl5bZlSSgmsfiZQY4nL5RJHR0fY2dnBMAxFW5pQWnC9FCt3neS2dgFHmzV2lh3YUSnZSpsNvCOkKKZbjiOWyx2sj46w3NnFZhyEvKsRFhEGQUa9F9Co70UjinZLajYKGGMpekBtALy1YABVOFoAattoO2iZ6dquHXsGOUedC2u3QJNnZue0OW4tgtcaN9RLxF7CIm37+UxkBAdqXrT1NRdWmr0MZa0G3/Szx7s7X3+0Tnu7Y5FuLCAPhvDeJMdYu9twKT2K34oLKcG5rj8gmskRJJ2tMANkgBKmlQtNF5YUhexK45H1mqB+FzQ1jsv3gPGmVtNofm9930kOazhe9WKC2RZsm0Asl8sicC21o5zTFUEtIZHms8M4TICitgax+lOiZXxj1rYopnPVP3RuirbOkxmMnMuC/e392fMmNRfmfuh8TbTacxJeKX5kNVdtLnOOyFkdN60BtXzwCdpBNRGitQSuN35HEmddb2yz7Q0RlXiiB6jHhs7jOfcIPnztNqxj7Yw8AZWuq6qPV7+3LxPCye+aC7LrbIGIuUlkC9Z+Z3w1snEBi8WiBOdb9JAb/pwQQokZWpJAK7CtQA/DUP1EoJy/PWYJl+SMftEjdJ2GJajEIVuzt1gDTpLeLRNnDoy02q/1j9tUQNOEpjFTSuJ/U93E5mEKa2HRZt+0Zn3LXL9tDRk4NH9P+14AN2S+nr6XyGzxbF1MX8Fju4Y8YXCH0Tm80nl8ke/Dk1cZRB5+ZFBytVUDlVQEFdKaHNB6hsdfrGAZF4thYknMrnlSdd9op1YrOa3OiHGEd2KGOwKWC8l97YKHIyD4SkRti2mxWJSf7Xm2aXh2Hqt5bNPaTMAyiyB1XSfC2EvssuulXrRep8MwbNB1AZvNGt47jMOA4L1WhAiq78zE13/B1/4gYEjc1nthUWgfXbM+bROQj4ht570rsdg2DlmLAmrSQSvkwDSu2nUdFosF+r6fbJpyvCnyP7dWXmu8Lk35H5MgTuoWt/z9+C8lbTD6hGt9wsXudnxm8wBeTQ7IAxABlyUk4xUDrVUIDCsRYRXS2nWzvlg1mQsePngJZRTgggosb7u0fQUwEVCL/Yn2GUuWkdUlpiRVGH3wOLO/h+Wix3LRY3dnB33fY3d3tyxK28lNGBeLRVmQ1t3LFqmBPG1z2UW/KBrReY/FTo+YI1xwGOIAEGG9Xuu8AwAjxhGOgDgOCN4hjmPxywugBYhAgtD5IACRc0qEraEdchMF0QqAmcJSrdT0GQEmubc2YoMdtPHQ1p/ehsrOc3zbz9k4bUbP73jz9SQT8KTBALIDBs8YPGPjA56mr8YnDs8hLjw8iT9Vuo+1n52Zp2wHnL8v1523FTpZJKEslrYW0Xbkdpe3BWVfmTMWi75ZDFXrhRBw5swZ7O/v4+xNZ7FcLrG3t1e0hAE+hrQSEYZhKCl25g8Z4GNxRTNf7RpMO/WLBVivbb1eA41vOAxD+azlutYA+/TZmXDZBlCzi2ThbzabMvd2fa1mml8j51pDavdduXfSREhb7Wdz2tKC2Nc2zFI/U0NLgjl8mTXlb9c4yVw+5p9tGe2EztHW+fHFRQey9pnIIGRySC5gcB0u9ufwxfEevLLZEfIqSCjCGtxsvS5UCkTKzYtZy8nqZjHfNEwwW7/PzMw2pmdfnXPFd7TfMXPRen3fI4SAvu/Lz7bAFkvRcPv7++VcphFDCA0tyDgRgvY8RKS9JlF8zs4HsJJjeecRulDS3kxwgVrcXWsS54kGlbhr/uxaRBVQd8LVxPrWT5yn6rUa7BgaP3Nz2uZErTVjG1XObXULo++DUr0QmCME4GKAT5dq9xUtlDZuxFzeNrmn0o6QzkxSTeIgdTALMO9goCVe6h/GJ4bb8Yo7A4KHzwmJRmkk07SUL0jeCQ6lY1JfVAqEF520BnBa0JtzhKWptb5Ma5oBKKCMCZFpjtLnA1zMSfmMXF/XSUih6z1AGWfP7qPrPXb3lqUCI3QOKY9Y7vTwgeCD09xWaChCBHpvb6+ipdS4CZlB2YEj4NjDO68sdrVQ2DSPJZ5XNNnDuaAMdh6bzWaSt2omcPusmQFkcR9aC6Zt3Npu0C3oZcdpXZwy7x6SuOEJoZMCeUPOhc4kApyEbcEBfeexXHQIHggO2Fn0IGQEJ758F04nbl+yUJ7GJJy8/xSvN+qatiFmWzUmuAn51CAMwyNTwBAIh+EmvEB34aVxH5l6uOzgMjXNeXI5mqVwbbtf5xyCakL7uetqz8kWpm8FrUVagQrKtLv+1C8NcMrebULUmlOLRQeD80MQ/3NnZwHngN3dJbwn7OwsFDAJCKq5d3d3tXDaS1qdbg4gTKpHOGf09jeu/tlqtTpWImbarc2B3Ww2RRvNk+fLOcq9T3NPbX5q7LMNp+HYsVokdfvxjw+vlUAxSvF4CA4hOHhP8J7gPEqjpq736DqH/TOna1tww+jr7+ihz8nir0yE5IAxEA76m/Di4u14Lt+JI95FyHvYjQt4toUwzYHclijd+oqtoNhnTNCSEkW1pl1LImyLuOVjZeYiLCF06HrRlsvlUoWxK+ag+aqtmRrjWFBY80FDCNjZWaLrAs6cPYOuFzPXOcJyuUAsn40IXhgEWqEQ1IzLxtIKwrVr18p9A1Wgzb9s/c556Mf8XdtkWp/WTPzWx7PPteh1q0Vb/7Asheb9bQjGrpn1WXjvBXFWF8F7j+VyqZsBFDTrsVwu4P0brClb3+4rdchOaIkFSuIFVNQTfJJV2RwEWrhtL/ET2DtcW5zHs+5OfHFzE9Z+geQ2AFn6hPmIVTvZaM1Q8//sAeacpdOydvsFA8OmLkhDPttypXbBmUnYgj7eOyx6oTSx0IIjoO9CIaDarNdY9B04J/R9p/1BUuHM6bsA7xzOn7sJwXvccvMF7O4ssb+/CwKjC5IPvFgsig9tAmRpdA7AsNmAWHiJ+tCVxWzPq41J2nyM44hxHAvC25qctpF0XTfJzNFHL4hzGypRASKQhF6caPg2OUUaJHm9J0HSg/cIXkzvnIT1QEjDSO4hSU8VTw47iyW6END5IFlcnOAdwClh0QX0XRBOoFlW3EnjhszXdmJuxGx9I03TE89h1+NI2qU5mgimgTna7Xr20idqn3Hyyo4q2yMPOETEc+5mfNHdhecp4KgbkQmlxTkAeO+KljGNOPdl7HoBM1O10WnKiKNoRANUzLybQ+5tUbLF5MzHHMcRnDO64LVFOwk9iPcYhwFdCEhRqk4cEXKMEMa4rPHCjJ3lUmObhEXfSdUKmW8UsLNcYne5U4L9k7ggEcZhBJgxbDZwIKQxSlewMZbNxLRsq40MPW1zYafhDdcALNXE7/sOlUxM4p1CzCWIa4pRWBaTCKgJqjMO3BAQfEDfdXDksOgX2lyoCi4B5fPeOQTn0XedCC+50lhJsv9s3qOQAmio5zTjPwqg50bGjW4Yxw8w+wrorioxyE1a4tLyTnw27eIAN4FV4Lw/ntkx92NbM8lerflq72kXazvmwW4zRVuN2Qpm9TWnGS32e0sKsMr49XpdTFgLGywWfdFCfd+h7zvsn9kriQIpJezu7iL4gN3d3aLFUkpSDK6dusZxFJPTTQuNd3d3J9QjtumUihYN/7SB/Tb+Z3m5ZllU6hKaHMtCF61ZOl83ZsW0KLcdwzYN0+bM1cw/ngElFCKG2qYk4N1pl+QNm6/lZ0zNvonjfMrjnRji+FJMZD45lDL5uTFl6zXVU7fvaWAaZLeHw+XNeMGfw8X1DqyQWFjHlT2Pa+jDqzYqsq7+p11PW98HCECSlS5jTtPRLuYWFDFBMpOunseeG5WMnFYIzHR0zhWfqNXwNUQj5rJc04j9/V0wEnZ2FkBOOLO3i+AJnSdFGqdMbpMNx3t4kGgWlm5nnBKQMlJDO9JmEllMtM20mQtXa863oRIjZy5AGlo/c7p0iKiEbJyT6/Mg6erN8iyRMgI5eCIsur6YsPLc6wvMSpvD4JQRxxHdKdnsTi2UUU0i12ghTQWtS5aMD/R0Jqu1JZ+/5hH362m9uVbkJue01Q6vBVRx42BypvrSMEmGQyJCRsJq7PHy8hvwmfFhpM0CoKzmXYTLGS4lUIygnOA4w7EcwSo4iDBZKG1Bba+aKTg3Eew+BPjGB7MiYwN4TEAN5JBzRAjnTMSi64Cc0XmPNI7lqyfCGIdC+U9OSsUYSUmeB+zuLQHKWC57OdaiA1HGTWf3sewDln1AHFYIngEe4bWXifHSjGMs2sR7qQyhLIs1OIccI5AT8jiWGG6b+gfU+KltIqYpW2vBtJnMkSChEl6SihKnyf2grCEOVhIubXmgX2MapI5Vm/oSZ/maMzyk4GDReRAnIMlzzuMI4owcBwRH4BRBzMhRjuOY4fgNNl9bBm8LuKtYADOTcW623bg5+dqaclvI45QfbQ4iL57/YnIpGi5R//OQPC5FwmV/E15Y3oMn421Y855eD0CcQVkeVooDUhpVOGQ3n5dAMXMpTRrHsfg3c9OLmdGr9rSOWG2ZEVCLja3S3QQ3KrLZputZMoFk8YSJVrKsoN3d3cLXGuOIrvfCGscRXR8Q4wBov0oiCQ8sFh28J+zt7TbgVJogmDGmiW8Irpk63tUwiF2nvKXGFufpa/Z3e08IFVk1jW/gmoSLCFZ+ZYEw72kSGBPUTZ5lIJQNNjhCIELX+brpcRRmPZL4JZEy65Fdt5jwpwVJT2++JmsJnsE3tPJvfMy12vVuhrZ9/0ZdHk+/z5AQSeINDsY1Xulvxa/nB3HZnUWODLiulJSpBaMEYnzMDC3FwfOSHqobjqW8lep/1DQ200JWyGtmbVs+ZfMY1BwbxxGbzeYYq0Df9VitVhOBbnNb50nZKSUEXzN0LKZoaXO2UZivB1TUVDaaGuppSZonUz9bAy2zQOtbF5Y+NmvNQBsBYdrv+67HousFuCFBiLsQsOh6MS0bRJa5ch214RAz9edhF0tHbOPM7Wizll5rnFoonSZbm0h+uQXzeqM1jUn9tfb7L8/ZnOb6aGVIzFiNHa70N+O3ru1h5Xswb5AJwsYQHNgD7FgQXCdEY7XBjJjpRCiCKUhqXfiWMWM7/jiONbe0MVktxmeLwntftO96vcai4cKxryZQKSX44BuNGCdf21KrNu9Vqjxqyp1tEiXNzdVi6DbtDQCgIIkt7DYWK37nlI+nBW3s9yUtTxPUg3NYdj0COYzrDQI5BPII5LHseng49D4gOI+gPqBjQuc8NquVZFoxyouT+Pa2sRRrRTeddvNrc3fngForpG+4piTpSoOsgvkfalTxACpTjQrK60VcX3MorSYTiD0SdgBeIucFBr/A85ub8cXDHpvESMxYxRHsSFo3EITsF6yZOyKYQkjsMY4DlstFWcCtb2jkxO0DtodrwXVDLG2BmHC3tY9J09N2d3cnIAiRtWWvXDjzQmcjt+q6DkdHR43ZKVk3fd9jGAbs7OyogDFWqxWyxljFbJ369wAmJjxQAS+QhJXsWZp2bVHVCacOSVgjOA8kVqEiUJb2Gr0P6JyAS0gZjhkehM4F6bmaGB5OP8e1jWUWcKaaxKEkBXSdxCzN4rB4qYFpbaE0UDfLN9581dxCOfhpP/X6xon+ov0M1BzHJtfxy3xVKKiWDmZglT2u+dvx+aMH8PL6PAZjLgPDqZbzXsqz5qimxRgtvGB/SykXU9J+X/2xabWGmcAmhCZAJYg/EwYAJQtovV6XoPiZM2dwdHRUmOVMM+7uSmqYLTxDhYFpwkLNMNKi4QYpTSmWeTA/2a7fNLvNARiACt7e3h4AYGdnp+TIthlM0ydjsUdg0feaDMHFpAWzxmx9qcU0VJwAZaUX8CnFKIkXzpUicEvM996DIaRxJoDm35rFYhpzotG3+MEnjdPTgeRUJpRPiSJ9qWMreIT683/wQQkjAg5xFlf9A7h4KBpvuVwWZre2gr6Nfdkua0njVsIk758mCtjf2kVpoI4dt9V+puHaEErfi98o1ybmqPmXYo52BfW0uOXR0VERwJLjCkw2gxZMMUEGMPGfLFRjPmy7SbTCCgDjrC9m+/zNb52XWDnnSouEdh7acIn5xiYYZt7b54HqA5svvVwuiy/blrTlVLuUtT6nWSztRmjXZH8/1bLi0+rUN8eb483x2zJ+x2X0vDneHP+xjzeF8s3x5vgKG28K5ZvjzfEVNt4UyjfHm+MrbLwplG+ON8dX2HhTKN8cb46vsPGmUL453hxfYeNNoXxzvDm+wsabQvnmeHN8hY3/H2M53/5tSGLEAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sav_dataset.visualize_annotation(\n", + " frames, manual_annot, auto_annot,\n", + " annotated_frame_id=0,\n", + " show_manual=False,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Masklet annotations and Metadata" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Manual annotations and metadata" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
video_idvideo_durationvideo_frame_countvideo_heightvideo_widthvideo_resolutionvideo_environmentvideo_splitmaskletmasklet_idmasklet_size_relmasklet_size_absmasklet_size_bucketmasklet_visibility_changesmasklet_first_appeared_framemasklet_frame_countmasklet_edited_frame_countmasklet_typemasklet_stability_scoremasklet_num
0sav_00000120.125483.0848.0480.0407040.0Indoortrain[[{'size': [848, 480], 'counts': 'i\\Y4<Qj05K4L...[0, 1, 2, 3, 4][0.0035249812, 0.0946159778, 0.011285757, 0.00...[1434.8083333333, 38512.4876033058, 4593.75454...[medium, large, medium, medium, medium][2, 0, 10, 0, 0][0.0, 0.0, 0.0, 113.0, 0.0][121, 121, 121, 121, 121][41, 11, 22, 4, 115][manual, manual, manual, manual, manual][None, None, None, None, None]5
\n", + "
" + ], + "text/plain": [ + " video_id video_duration video_frame_count video_height video_width \\\n", + "0 sav_000001 20.125 483.0 848.0 480.0 \n", + "\n", + " video_resolution video_environment video_split \\\n", + "0 407040.0 Indoor train \n", + "\n", + " masklet masklet_id \\\n", + "0 [[{'size': [848, 480], 'counts': 'i\\Y4\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
video_idvideo_durationvideo_frame_countvideo_heightvideo_widthvideo_resolutionvideo_environmentvideo_splitmaskletmasklet_idmasklet_size_relmasklet_size_absmasklet_size_bucketmasklet_visibility_changesmasklet_first_appeared_framemasklet_frame_countmasklet_edited_frame_countmasklet_typemasklet_stability_scoremasklet_num
0sav_00000120.125483.0848.0480.0407040.0Indoortrain[[{'size': [848, 480], 'counts': 'ka0e8ka001O1...[0, 1, 2, 3, 4, 5, 6, 7, 8][0.010841089678796047, 0.038489445267425544, 0...[4412.757142857143, 15666.743801652892, 7663.1...[medium, large, medium, large, medium, medium,...[5, 0, 0, 0, 0, 0, 10, 3, 12][0, 0, 0, 0, 0, 0, 0, 0, 0][121, 121, 121, 121, 121, 121, 121, 121, 121][0, 0, 0, 0, 0, 0, 0, 0, 0][auto, auto, auto, auto, auto, auto, auto, aut...[[1.0, 0.999616265296936, 1.0, 1.0, 1.0, 1.0, ...9
\n", + "" + ], + "text/plain": [ + " video_id video_duration video_frame_count video_height video_width \\\n", + "0 sav_000001 20.125 483.0 848.0 480.0 \n", + "\n", + " video_resolution video_environment video_split \\\n", + "0 407040.0 Indoor train \n", + "\n", + " masklet \\\n", + "0 [[{'size': [848, 480], 'counts': 'ka0e8ka001O1... \n", + "\n", + " masklet_id \\\n", + "0 [0, 1, 2, 3, 4, 5, 6, 7, 8] \n", + "\n", + " masklet_size_rel \\\n", + "0 [0.010841089678796047, 0.038489445267425544, 0... \n", + "\n", + " masklet_size_abs \\\n", + "0 [4412.757142857143, 15666.743801652892, 7663.1... \n", + "\n", + " masklet_size_bucket \\\n", + "0 [medium, large, medium, large, medium, medium,... \n", + "\n", + " masklet_visibility_changes masklet_first_appeared_frame \\\n", + "0 [5, 0, 0, 0, 0, 0, 10, 3, 12] [0, 0, 0, 0, 0, 0, 0, 0, 0] \n", + "\n", + " masklet_frame_count masklet_edited_frame_count \\\n", + "0 [121, 121, 121, 121, 121, 121, 121, 121, 121] [0, 0, 0, 0, 0, 0, 0, 0, 0] \n", + "\n", + " masklet_type \\\n", + "0 [auto, auto, auto, auto, auto, auto, auto, aut... \n", + "\n", + " masklet_stability_score masklet_num \n", + "0 [[1.0, 0.999616265296936, 1.0, 1.0, 1.0, 1.0, ... 9 " + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.DataFrame([auto_annot])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Video info" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "sav_000001 is 20.125 seconds long with 483.0 frames. The video resolution is 848.0 x 480.0.\n", + "This video is captured in Indoor environment.\n" + ] + } + ], + "source": [ + "video_id = manual_annot[\"video_id\"]\n", + "video_duration = manual_annot[\"video_duration\"]\n", + "video_frame_count = manual_annot[\"video_frame_count\"]\n", + "H = manual_annot[\"video_height\"]\n", + "W = manual_annot[\"video_width\"]\n", + "environment = manual_annot[\"video_environment\"]\n", + "print(\n", + " f\"{video_id} is {video_duration} seconds long with {video_frame_count} frames. The video resolution is {H} x {W}.\"\n", + ")\n", + "print(f\"This video is captured in {environment} environment.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Masklet info" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "There are 5 manually labeled masklets and 9 automatically generated masklets.\n", + "In SA-V, videos are annotated every 4 frames. Therefore, there are 121 frames being annotated.\n" + ] + } + ], + "source": [ + "print(\n", + " f\"There are {manual_annot['masklet_num']} manually labeled masklets and {auto_annot['masklet_num']} automatically generated masklets.\"\n", + ")\n", + "print(\n", + " f\"In SA-V, videos are annotated every 4 frames. Therefore, there are {manual_annot['masklet_frame_count'][0]} frames being annotated.\"\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'size': [848, 480],\n", + " 'counts': 'i\\\\Y40` to get the binary segmentation mask" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'size': [848, 480],\n", + " 'counts': 'Q_T6S1Xh0X1eNY1[Od0E;M4N10000O101O00000000000000O0100000000001M2O1O1N3N1M4H8B?@e0POc1jMfZ[5'}" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Get the rle of the masklet with masklet_id=5 in frame 100\n", + "masklet_id = 5\n", + "annotated_frame_id = 100\n", + "auto_annot[\"masklet\"][annotated_frame_id][masklet_id]\n", + "# decode the rle using `mask_util.decode(rle)>0` to get the binary segmentation mask" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "onevision_ta_2_pseudo_labeling", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/segment-anything-2/packages/sav_dataset/utils/sav_benchmark.py b/segment-anything-2/packages/sav_dataset/utils/sav_benchmark.py new file mode 100644 index 00000000..babb330e --- /dev/null +++ b/segment-anything-2/packages/sav_dataset/utils/sav_benchmark.py @@ -0,0 +1,488 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the sav_dataset directory of this source tree. + +# adapted from https://github.com/hkchengrex/vos-benchmark +# and https://github.com/davisvideochallenge/davis2017-evaluation +# with their licenses found in the LICENSE_VOS_BENCHMARK and LICENSE_DAVIS files +# in the sav_dataset directory. +import math +import os +import time +from collections import defaultdict +from multiprocessing import Pool +from os import path +from typing import Dict, List, Tuple + +import cv2 +import numpy as np +import tqdm +from PIL import Image +from skimage.morphology import disk + + +class VideoEvaluator: + def __init__(self, gt_root, pred_root, skip_first_and_last=True) -> None: + """ + gt_root: path to the folder storing the gt masks + pred_root: path to the folder storing the predicted masks + skip_first_and_last: whether we should skip the evaluation of the first and the last frame. + True for SA-V val and test, same as in DAVIS semi-supervised evaluation. + """ + self.gt_root = gt_root + self.pred_root = pred_root + self.skip_first_and_last = skip_first_and_last + + def __call__(self, vid_name: str) -> Tuple[str, Dict[str, float], Dict[str, float]]: + """ + vid_name: name of the video to evaluate + """ + + # scan the folder to find subfolders for evaluation and + # check if the folder structure is SA-V + to_evaluate, is_sav_format = self.scan_vid_folder(vid_name) + + # evaluate each (gt_path, pred_path) pair + eval_results = [] + for all_frames, obj_id, gt_path, pred_path in to_evaluate: + if self.skip_first_and_last: + # skip the first and the last frames + all_frames = all_frames[1:-1] + + evaluator = Evaluator(name=vid_name, obj_id=obj_id) + for frame in all_frames: + gt_array, pred_array = self.get_gt_and_pred( + gt_path, pred_path, frame, is_sav_format + ) + evaluator.feed_frame(mask=pred_array, gt=gt_array) + + iou, boundary_f = evaluator.conclude() + eval_results.append((obj_id, iou, boundary_f)) + + if is_sav_format: + iou_output, boundary_f_output = self.consolidate(eval_results) + else: + assert len(eval_results) == 1 + iou_output = eval_results[0][1] + boundary_f_output = eval_results[0][2] + + return vid_name, iou_output, boundary_f_output + + def get_gt_and_pred( + self, + gt_path: str, + pred_path: str, + f_name: str, + is_sav_format: bool, + ) -> Tuple[np.ndarray, np.ndarray]: + """ + Get the ground-truth and predicted masks for a single frame. + """ + gt_mask_path = path.join(gt_path, f_name) + pred_mask_path = path.join(pred_path, f_name) + assert os.path.exists(pred_mask_path), f"{pred_mask_path} not found" + + gt_array = np.array(Image.open(gt_mask_path)) + pred_array = np.array(Image.open(pred_mask_path)) + assert ( + gt_array.shape[-2:] == pred_array.shape[-2:] + ), f"shape mismatch: {gt_mask_path}, {pred_mask_path}" + + if is_sav_format: + assert len(np.unique(gt_array)) <= 2, ( + f"found more than 1 object in {gt_mask_path} " + "SA-V format assumes one object mask per png file." + ) + assert len(np.unique(pred_array)) <= 2, ( + f"found more than 1 object in {pred_mask_path} " + "SA-V format assumes one object mask per png file." + ) + gt_array = gt_array > 0 + pred_array = pred_array > 0 + + return gt_array, pred_array + + def scan_vid_folder(self, vid_name) -> Tuple[List, bool]: + """ + Scan the folder structure of the video and return a list of folders for evaluate. + """ + + vid_gt_path = path.join(self.gt_root, vid_name) + vid_pred_path = path.join(self.pred_root, vid_name) + all_files_and_dirs = sorted(os.listdir(vid_gt_path)) + to_evaluate = [] + if all(name.endswith(".png") for name in all_files_and_dirs): + # All files are png files, dataset structure similar to DAVIS + is_sav_format = False + frames = all_files_and_dirs + obj_dir = None + to_evaluate.append((frames, obj_dir, vid_gt_path, vid_pred_path)) + else: + # SA-V dataset structure, going one layer down into each subdirectory + is_sav_format = True + for obj_dir in all_files_and_dirs: + obj_gt_path = path.join(vid_gt_path, obj_dir) + obj_pred_path = path.join(vid_pred_path, obj_dir) + frames = sorted(os.listdir(obj_gt_path)) + to_evaluate.append((frames, obj_dir, obj_gt_path, obj_pred_path)) + return to_evaluate, is_sav_format + + def consolidate( + self, eval_results + ) -> Tuple[str, Dict[str, float], Dict[str, float]]: + """ + Consolidate the results of all the objects from the video into one dictionary. + """ + iou_output = {} + boundary_f_output = {} + for obj_id, iou, boundary_f in eval_results: + assert len(iou) == 1 + key = list(iou.keys())[0] + iou_output[obj_id] = iou[key] + boundary_f_output[obj_id] = boundary_f[key] + return iou_output, boundary_f_output + + +################################################################################################################# +# Functions below are from https://github.com/hkchengrex/vos-benchmark with minor modifications +# _seg2bmap from https://github.com/hkchengrex/vos-benchmark/blob/main/vos_benchmark/utils.py +# get_iou and Evaluator from https://github.com/hkchengrex/vos-benchmark/blob/main/vos_benchmark/evaluator.py +# benchmark from https://github.com/hkchengrex/vos-benchmark/blob/main/vos_benchmark/benchmark.py with slight mod +################################################################################################################# + + +def _seg2bmap(seg, width=None, height=None): + """ + From a segmentation, compute a binary boundary map with 1 pixel wide + boundaries. The boundary pixels are offset by 1/2 pixel towards the + origin from the actual segment boundary. + Arguments: + seg : Segments labeled from 1..k. + width : Width of desired bmap <= seg.shape[1] + height : Height of desired bmap <= seg.shape[0] + Returns: + bmap (ndarray): Binary boundary map. + David Martin + January 2003 + """ + + seg = seg.astype(bool) + seg[seg > 0] = 1 + + assert np.atleast_3d(seg).shape[2] == 1 + + width = seg.shape[1] if width is None else width + height = seg.shape[0] if height is None else height + + h, w = seg.shape[:2] + + ar1 = float(width) / float(height) + ar2 = float(w) / float(h) + + assert not ( + width > w | height > h | abs(ar1 - ar2) > 0.01 + ), "Can" "t convert %dx%d seg to %dx%d bmap." % (w, h, width, height) + + e = np.zeros_like(seg) + s = np.zeros_like(seg) + se = np.zeros_like(seg) + + e[:, :-1] = seg[:, 1:] + s[:-1, :] = seg[1:, :] + se[:-1, :-1] = seg[1:, 1:] + + b = seg ^ e | seg ^ s | seg ^ se + b[-1, :] = seg[-1, :] ^ e[-1, :] + b[:, -1] = seg[:, -1] ^ s[:, -1] + b[-1, -1] = 0 + + if w == width and h == height: + bmap = b + else: + bmap = np.zeros((height, width)) + for x in range(w): + for y in range(h): + if b[y, x]: + j = 1 + math.floor((y - 1) + height / h) + i = 1 + math.floor((x - 1) + width / h) + bmap[j, i] = 1 + + return bmap + + +def get_iou(intersection, pixel_sum): + # handle edge cases without resorting to epsilon + if intersection == pixel_sum: + # both mask and gt have zero pixels in them + assert intersection == 0 + return 1 + + return intersection / (pixel_sum - intersection) + + +class Evaluator: + def __init__(self, boundary=0.008, name=None, obj_id=None): + # boundary: used in computing boundary F-score + self.boundary = boundary + self.name = name + self.obj_id = obj_id + self.objects_in_gt = set() + self.objects_in_masks = set() + + self.object_iou = defaultdict(list) + self.boundary_f = defaultdict(list) + + def feed_frame(self, mask: np.ndarray, gt: np.ndarray): + """ + Compute and accumulate metrics for a single frame (mask/gt pair) + """ + + # get all objects in the ground-truth + gt_objects = np.unique(gt) + gt_objects = gt_objects[gt_objects != 0].tolist() + + # get all objects in the predicted mask + mask_objects = np.unique(mask) + mask_objects = mask_objects[mask_objects != 0].tolist() + + self.objects_in_gt.update(set(gt_objects)) + self.objects_in_masks.update(set(mask_objects)) + + all_objects = self.objects_in_gt.union(self.objects_in_masks) + + # boundary disk for boundary F-score. It is the same for all objects. + bound_pix = np.ceil(self.boundary * np.linalg.norm(mask.shape)) + boundary_disk = disk(bound_pix) + + for obj_idx in all_objects: + obj_mask = mask == obj_idx + obj_gt = gt == obj_idx + + # object iou + self.object_iou[obj_idx].append( + get_iou((obj_mask * obj_gt).sum(), obj_mask.sum() + obj_gt.sum()) + ) + """ + # boundary f-score + This part is copied from davis2017-evaluation + """ + mask_boundary = _seg2bmap(obj_mask) + gt_boundary = _seg2bmap(obj_gt) + mask_dilated = cv2.dilate(mask_boundary.astype(np.uint8), boundary_disk) + gt_dilated = cv2.dilate(gt_boundary.astype(np.uint8), boundary_disk) + + # Get the intersection + gt_match = gt_boundary * mask_dilated + fg_match = mask_boundary * gt_dilated + + # Area of the intersection + n_fg = np.sum(mask_boundary) + n_gt = np.sum(gt_boundary) + + # Compute precision and recall + if n_fg == 0 and n_gt > 0: + precision = 1 + recall = 0 + elif n_fg > 0 and n_gt == 0: + precision = 0 + recall = 1 + elif n_fg == 0 and n_gt == 0: + precision = 1 + recall = 1 + else: + precision = np.sum(fg_match) / float(n_fg) + recall = np.sum(gt_match) / float(n_gt) + + # Compute F measure + if precision + recall == 0: + F = 0 + else: + F = 2 * precision * recall / (precision + recall) + self.boundary_f[obj_idx].append(F) + + def conclude(self): + all_iou = {} + all_boundary_f = {} + + for object_id in self.objects_in_gt: + all_iou[object_id] = np.mean(self.object_iou[object_id]) * 100 + all_boundary_f[object_id] = np.mean(self.boundary_f[object_id]) * 100 + + return all_iou, all_boundary_f + + +def benchmark( + gt_roots, + mask_roots, + strict=True, + num_processes=None, + *, + verbose=True, + skip_first_and_last=True, +): + """ + gt_roots: a list of paths to datasets, i.e., [path_to_DatasetA, path_to_DatasetB, ...] + mask_roots: same as above, but the .png are masks predicted by the model + strict: when True, all videos in the dataset must have corresponding predictions. + Setting it to False is useful in cases where the ground-truth contains both train/val + sets, but the model only predicts the val subset. + Either way, if a video is predicted (i.e., the corresponding folder exists), + then it must at least contain all the masks in the ground truth annotations. + Masks that are in the prediction but not in the ground-truth + (i.e., sparse annotations) are ignored. + skip_first_and_last: whether we should skip the first and the last frame in evaluation. + This is used by DAVIS 2017 in their semi-supervised evaluation. + It should be disabled for unsupervised evaluation. + """ + + assert len(gt_roots) == len(mask_roots) + single_dataset = len(gt_roots) == 1 + + if verbose: + if skip_first_and_last: + print( + "We are *SKIPPING* the evaluation of the first and the last frame (standard for semi-supervised video object segmentation)." + ) + else: + print( + "We are *NOT SKIPPING* the evaluation of the first and the last frame (*NOT STANDARD* for semi-supervised video object segmentation)." + ) + + pool = Pool(num_processes) + start = time.time() + to_wait = [] + for gt_root, mask_root in zip(gt_roots, mask_roots): + # Validate folders + validated = True + gt_videos = os.listdir(gt_root) + mask_videos = os.listdir(mask_root) + + # if the user passed the root directory instead of Annotations + if len(gt_videos) != len(mask_videos): + if "Annotations" in gt_videos: + if ".png" not in os.listdir(path.join(gt_root, "Annotations"))[0]: + gt_root = path.join(gt_root, "Annotations") + gt_videos = os.listdir(gt_root) + + # remove non-folder items + gt_videos = list(filter(lambda x: path.isdir(path.join(gt_root, x)), gt_videos)) + mask_videos = list( + filter(lambda x: path.isdir(path.join(mask_root, x)), mask_videos) + ) + + if not strict: + videos = sorted(list(set(gt_videos) & set(mask_videos))) + else: + gt_extras = set(gt_videos) - set(mask_videos) + mask_extras = set(mask_videos) - set(gt_videos) + + if len(gt_extras) > 0: + print( + f"Videos that are in {gt_root} but not in {mask_root}: {gt_extras}" + ) + validated = False + if len(mask_extras) > 0: + print( + f"Videos that are in {mask_root} but not in {gt_root}: {mask_extras}" + ) + validated = False + if not validated: + print("Validation failed. Exiting.") + exit(1) + + videos = sorted(gt_videos) + + if verbose: + print( + f"In dataset {gt_root}, we are evaluating on {len(videos)} videos: {videos}" + ) + + if single_dataset: + if verbose: + results = tqdm.tqdm( + pool.imap( + VideoEvaluator( + gt_root, mask_root, skip_first_and_last=skip_first_and_last + ), + videos, + ), + total=len(videos), + ) + else: + results = pool.map( + VideoEvaluator( + gt_root, mask_root, skip_first_and_last=skip_first_and_last + ), + videos, + ) + else: + to_wait.append( + pool.map_async( + VideoEvaluator( + gt_root, mask_root, skip_first_and_last=skip_first_and_last + ), + videos, + ) + ) + + pool.close() + + all_global_jf, all_global_j, all_global_f = [], [], [] + all_object_metrics = [] + for i, mask_root in enumerate(mask_roots): + if not single_dataset: + results = to_wait[i].get() + + all_iou = [] + all_boundary_f = [] + object_metrics = {} + for name, iou, boundary_f in results: + all_iou.extend(list(iou.values())) + all_boundary_f.extend(list(boundary_f.values())) + object_metrics[name] = (iou, boundary_f) + + global_j = np.array(all_iou).mean() + global_f = np.array(all_boundary_f).mean() + global_jf = (global_j + global_f) / 2 + + time_taken = time.time() - start + """ + Build string for reporting results + """ + # find max length for padding + ml = max(*[len(n) for n in object_metrics.keys()], len("Global score")) + # build header + out_string = f'{"sequence":<{ml}},{"obj":>3}, {"J&F":>4}, {"J":>4}, {"F":>4}\n' + out_string += f'{"Global score":<{ml}},{"":>3}, {global_jf:.1f}, {global_j:.1f}, {global_f:.1f}\n' + # append one line for each object + for name, (iou, boundary_f) in object_metrics.items(): + for object_idx in iou.keys(): + j, f = iou[object_idx], boundary_f[object_idx] + jf = (j + f) / 2 + out_string += ( + f"{name:<{ml}},{object_idx:03}, {jf:>4.1f}, {j:>4.1f}, {f:>4.1f}\n" + ) + + # print to console + if verbose: + print(out_string.replace(",", " "), end="") + print("\nSummary:") + print( + f"Global score: J&F: {global_jf:.1f} J: {global_j:.1f} F: {global_f:.1f}" + ) + print(f"Time taken: {time_taken:.2f}s") + + # print to file + result_path = path.join(mask_root, "results.csv") + print(f"Saving the results to {result_path}") + with open(result_path, "w") as f: + f.write(out_string) + + all_global_jf.append(global_jf) + all_global_j.append(global_j) + all_global_f.append(global_f) + all_object_metrics.append(object_metrics) + + return all_global_jf, all_global_j, all_global_f, all_object_metrics diff --git a/segment-anything-2/packages/sav_dataset/utils/sav_utils.py b/segment-anything-2/packages/sav_dataset/utils/sav_utils.py new file mode 100644 index 00000000..2c61099f --- /dev/null +++ b/segment-anything-2/packages/sav_dataset/utils/sav_utils.py @@ -0,0 +1,175 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the sav_dataset directory of this source tree. +import json +import os +from typing import Dict, List, Optional, Tuple + +import cv2 +import matplotlib.pyplot as plt +import numpy as np +import pycocotools.mask as mask_util + + +def decode_video(video_path: str) -> List[np.ndarray]: + """ + Decode the video and return the RGB frames + """ + video = cv2.VideoCapture(video_path) + video_frames = [] + while video.isOpened(): + ret, frame = video.read() + if ret: + frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) + video_frames.append(frame) + else: + break + return video_frames + + +def show_anns(masks, colors: List, borders=True) -> None: + """ + show the annotations + """ + # return if no masks + if len(masks) == 0: + return + + # sort masks by size + sorted_annot_and_color = sorted( + zip(masks, colors), key=(lambda x: x[0].sum()), reverse=True + ) + H, W = sorted_annot_and_color[0][0].shape[0], sorted_annot_and_color[0][0].shape[1] + + canvas = np.ones((H, W, 4)) + canvas[:, :, 3] = 0 # set the alpha channel + contour_thickness = max(1, int(min(5, 0.01 * min(H, W)))) + for mask, color in sorted_annot_and_color: + canvas[mask] = np.concatenate([color, [0.55]]) + if borders: + contours, _ = cv2.findContours( + np.array(mask, dtype=np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE + ) + cv2.drawContours( + canvas, contours, -1, (0.05, 0.05, 0.05, 1), thickness=contour_thickness + ) + + ax = plt.gca() + ax.imshow(canvas) + + +class SAVDataset: + """ + SAVDataset is a class to load the SAV dataset and visualize the annotations. + """ + + def __init__(self, sav_dir, annot_sample_rate=4): + """ + Args: + sav_dir: the directory of the SAV dataset + annot_sample_rate: the sampling rate of the annotations. + The annotations are aligned with the videos at 6 fps. + """ + self.sav_dir = sav_dir + self.annot_sample_rate = annot_sample_rate + self.manual_mask_colors = np.random.random((256, 3)) + self.auto_mask_colors = np.random.random((256, 3)) + + def read_frames(self, mp4_path: str) -> None: + """ + Read the frames and downsample them to align with the annotations. + """ + if not os.path.exists(mp4_path): + print(f"{mp4_path} doesn't exist.") + return None + else: + # decode the video + frames = decode_video(mp4_path) + print(f"There are {len(frames)} frames decoded from {mp4_path} (24fps).") + + # downsample the frames to align with the annotations + frames = frames[:: self.annot_sample_rate] + print( + f"Videos are annotated every {self.annot_sample_rate} frames. " + "To align with the annotations, " + f"downsample the video to {len(frames)} frames." + ) + return frames + + def get_frames_and_annotations( + self, video_id: str + ) -> Tuple[List | None, Dict | None, Dict | None]: + """ + Get the frames and annotations for video. + """ + # load the video + mp4_path = os.path.join(self.sav_dir, video_id + ".mp4") + frames = self.read_frames(mp4_path) + if frames is None: + return None, None, None + + # load the manual annotations + manual_annot_path = os.path.join(self.sav_dir, video_id + "_manual.json") + if not os.path.exists(manual_annot_path): + print(f"{manual_annot_path} doesn't exist. Something might be wrong.") + manual_annot = None + else: + manual_annot = json.load(open(manual_annot_path)) + + # load the manual annotations + auto_annot_path = os.path.join(self.sav_dir, video_id + "_auto.json") + if not os.path.exists(auto_annot_path): + print(f"{auto_annot_path} doesn't exist.") + auto_annot = None + else: + auto_annot = json.load(open(auto_annot_path)) + + return frames, manual_annot, auto_annot + + def visualize_annotation( + self, + frames: List[np.ndarray], + auto_annot: Optional[Dict], + manual_annot: Optional[Dict], + annotated_frame_id: int, + show_auto=True, + show_manual=True, + ) -> None: + """ + Visualize the annotations on the annotated_frame_id. + If show_manual is True, show the manual annotations. + If show_auto is True, show the auto annotations. + By default, show both auto and manual annotations. + """ + + if annotated_frame_id >= len(frames): + print("invalid annotated_frame_id") + return + + rles = [] + colors = [] + if show_manual and manual_annot is not None: + rles.extend(manual_annot["masklet"][annotated_frame_id]) + colors.extend( + self.manual_mask_colors[ + : len(manual_annot["masklet"][annotated_frame_id]) + ] + ) + if show_auto and auto_annot is not None: + rles.extend(auto_annot["masklet"][annotated_frame_id]) + colors.extend( + self.auto_mask_colors[: len(auto_annot["masklet"][annotated_frame_id])] + ) + + plt.imshow(frames[annotated_frame_id]) + + if len(rles) > 0: + masks = [mask_util.decode(rle) > 0 for rle in rles] + show_anns(masks, colors) + else: + print("No annotation will be shown") + + plt.axis("off") + plt.show() diff --git a/segment-anything-2/packages/setup.py b/segment-anything-2/packages/setup.py new file mode 100644 index 00000000..85ae842f --- /dev/null +++ b/segment-anything-2/packages/setup.py @@ -0,0 +1,72 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +from setuptools import find_packages, setup +from torch.utils.cpp_extension import BuildExtension, CUDAExtension + +# Package metadata +NAME = "SAM 2" +VERSION = "1.0" +DESCRIPTION = "SAM 2: Segment Anything in Images and Videos" +URL = "https://github.com/facebookresearch/segment-anything-2" +AUTHOR = "Meta AI" +AUTHOR_EMAIL = "segment-anything@meta.com" +LICENSE = "Apache 2.0" + +# Read the contents of README file +with open("README.md", "r") as f: + LONG_DESCRIPTION = f.read() + +# Required dependencies +REQUIRED_PACKAGES = [ + "torch>=2.3.1", + "torchvision>=0.18.1", + "numpy>=1.24.4", + "tqdm>=4.66.1", + "hydra-core>=1.3.2", + "iopath>=0.1.10", + "pillow>=9.4.0", +] + +EXTRA_PACKAGES = { + "demo": ["matplotlib>=3.9.1", "jupyter>=1.0.0", "opencv-python>=4.7.0"], + "dev": ["black==24.2.0", "usort==1.0.2", "ufmt==2.0.0b2"], +} + + +def get_extensions(): + srcs = ["sam2/csrc/connected_components.cu"] + compile_args = { + "cxx": [], + "nvcc": [ + "-DCUDA_HAS_FP16=1", + "-D__CUDA_NO_HALF_OPERATORS__", + "-D__CUDA_NO_HALF_CONVERSIONS__", + "-D__CUDA_NO_HALF2_OPERATORS__", + ], + } + ext_modules = [CUDAExtension("sam2._C", srcs, extra_compile_args=compile_args)] + return ext_modules + + +# Setup configuration +setup( + name=NAME, + version=VERSION, + description=DESCRIPTION, + long_description=LONG_DESCRIPTION, + long_description_content_type="text/markdown", + url=URL, + author=AUTHOR, + author_email=AUTHOR_EMAIL, + license=LICENSE, + packages=find_packages(exclude="notebooks"), + install_requires=REQUIRED_PACKAGES, + extras_require=EXTRA_PACKAGES, + python_requires=">=3.10.0", + ext_modules=get_extensions(), + cmdclass={"build_ext": BuildExtension.with_options(no_python_abi_suffix=True)}, +) diff --git a/segment-anything-2/packages/tools/README.md b/segment-anything-2/packages/tools/README.md new file mode 100644 index 00000000..a8ad2d65 --- /dev/null +++ b/segment-anything-2/packages/tools/README.md @@ -0,0 +1,36 @@ +## SAM 2 toolkits + +This directory provides toolkits for additional SAM 2 use cases. + +### Semi-supervised VOS inference + +The `vos_inference.py` script can be used to generate predictions for semi-supervised video object segmentation (VOS) evaluation on datasets such as [DAVIS](https://davischallenge.org/index.html), [MOSE](https://henghuiding.github.io/MOSE/) or the SA-V dataset. + +After installing SAM 2 and its dependencies, it can be used as follows ([DAVIS 2017 dataset](https://davischallenge.org/davis2017/code.html) as an example). This script saves the prediction PNG files to the `--output_mask_dir`. +```bash +python ./tools/vos_inference.py \ + --sam2_cfg sam2_hiera_b+.yaml \ + --sam2_checkpoint ./checkpoints/sam2_hiera_base_plus.pt \ + --base_video_dir /path-to-davis-2017/JPEGImages/480p \ + --input_mask_dir /path-to-davis-2017/Annotations/480p \ + --video_list_file /path-to-davis-2017/ImageSets/2017/val.txt \ + --output_mask_dir ./outputs/davis_2017_pred_pngs +``` +(replace `/path-to-davis-2017` with the path to DAVIS 2017 dataset) + +To evaluate on the SA-V dataset with per-object PNG files for the object masks, we need to **add the `--per_obj_png_file` flag** as follows (using SA-V val as an example). This script will also save per-object PNG files for the output masks under the `--per_obj_png_file` flag. +```bash +python ./tools/vos_inference.py \ + --sam2_cfg sam2_hiera_b+.yaml \ + --sam2_checkpoint ./checkpoints/sam2_hiera_base_plus.pt \ + --base_video_dir /path-to-sav-val/JPEGImages_24fps \ + --input_mask_dir /path-to-sav-val/Annotations_6fps \ + --video_list_file /path-to-sav-val/sav_val.txt \ + --per_obj_png_file \ + --output_mask_dir ./outputs/sav_val_pred_pngs +``` +(replace `/path-to-sav-val` with the path to SA-V val) + +Then, we can use the evaluation tools or servers for each dataset to get the performance of the prediction PNG files above. + +**Note: a limitation of the `vos_inference.py` script above is that currently it only supports VOS datasets where all objects to track already appear on frame 0 in each video** (and therefore it doesn't apply to some datasets such as [LVOS](https://lingyihongfd.github.io/lvos.github.io/) that have objects only appearing in the middle of a video). diff --git a/segment-anything-2/packages/tools/vos_inference.py b/segment-anything-2/packages/tools/vos_inference.py new file mode 100644 index 00000000..6348f4bf --- /dev/null +++ b/segment-anything-2/packages/tools/vos_inference.py @@ -0,0 +1,320 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. + +import argparse +import os + +import numpy as np +import torch +from PIL import Image +from sam2.build_sam import build_sam2_video_predictor + + +# the PNG palette for DAVIS 2017 dataset +DAVIS_PALETTE = b"\x00\x00\x00\x80\x00\x00\x00\x80\x00\x80\x80\x00\x00\x00\x80\x80\x00\x80\x00\x80\x80\x80\x80\x80@\x00\x00\xc0\x00\x00@\x80\x00\xc0\x80\x00@\x00\x80\xc0\x00\x80@\x80\x80\xc0\x80\x80\x00@\x00\x80@\x00\x00\xc0\x00\x80\xc0\x00\x00@\x80\x80@\x80\x00\xc0\x80\x80\xc0\x80@@\x00\xc0@\x00@\xc0\x00\xc0\xc0\x00@@\x80\xc0@\x80@\xc0\x80\xc0\xc0\x80\x00\x00@\x80\x00@\x00\x80@\x80\x80@\x00\x00\xc0\x80\x00\xc0\x00\x80\xc0\x80\x80\xc0@\x00@\xc0\x00@@\x80@\xc0\x80@@\x00\xc0\xc0\x00\xc0@\x80\xc0\xc0\x80\xc0\x00@@\x80@@\x00\xc0@\x80\xc0@\x00@\xc0\x80@\xc0\x00\xc0\xc0\x80\xc0\xc0@@@\xc0@@@\xc0@\xc0\xc0@@@\xc0\xc0@\xc0@\xc0\xc0\xc0\xc0\xc0 \x00\x00\xa0\x00\x00 \x80\x00\xa0\x80\x00 \x00\x80\xa0\x00\x80 \x80\x80\xa0\x80\x80`\x00\x00\xe0\x00\x00`\x80\x00\xe0\x80\x00`\x00\x80\xe0\x00\x80`\x80\x80\xe0\x80\x80 @\x00\xa0@\x00 \xc0\x00\xa0\xc0\x00 @\x80\xa0@\x80 \xc0\x80\xa0\xc0\x80`@\x00\xe0@\x00`\xc0\x00\xe0\xc0\x00`@\x80\xe0@\x80`\xc0\x80\xe0\xc0\x80 \x00@\xa0\x00@ \x80@\xa0\x80@ \x00\xc0\xa0\x00\xc0 \x80\xc0\xa0\x80\xc0`\x00@\xe0\x00@`\x80@\xe0\x80@`\x00\xc0\xe0\x00\xc0`\x80\xc0\xe0\x80\xc0 @@\xa0@@ \xc0@\xa0\xc0@ @\xc0\xa0@\xc0 \xc0\xc0\xa0\xc0\xc0`@@\xe0@@`\xc0@\xe0\xc0@`@\xc0\xe0@\xc0`\xc0\xc0\xe0\xc0\xc0\x00 \x00\x80 \x00\x00\xa0\x00\x80\xa0\x00\x00 \x80\x80 \x80\x00\xa0\x80\x80\xa0\x80@ \x00\xc0 \x00@\xa0\x00\xc0\xa0\x00@ \x80\xc0 \x80@\xa0\x80\xc0\xa0\x80\x00`\x00\x80`\x00\x00\xe0\x00\x80\xe0\x00\x00`\x80\x80`\x80\x00\xe0\x80\x80\xe0\x80@`\x00\xc0`\x00@\xe0\x00\xc0\xe0\x00@`\x80\xc0`\x80@\xe0\x80\xc0\xe0\x80\x00 @\x80 @\x00\xa0@\x80\xa0@\x00 \xc0\x80 \xc0\x00\xa0\xc0\x80\xa0\xc0@ @\xc0 @@\xa0@\xc0\xa0@@ \xc0\xc0 \xc0@\xa0\xc0\xc0\xa0\xc0\x00`@\x80`@\x00\xe0@\x80\xe0@\x00`\xc0\x80`\xc0\x00\xe0\xc0\x80\xe0\xc0@`@\xc0`@@\xe0@\xc0\xe0@@`\xc0\xc0`\xc0@\xe0\xc0\xc0\xe0\xc0 \x00\xa0 \x00 \xa0\x00\xa0\xa0\x00 \x80\xa0 \x80 \xa0\x80\xa0\xa0\x80` \x00\xe0 \x00`\xa0\x00\xe0\xa0\x00` \x80\xe0 \x80`\xa0\x80\xe0\xa0\x80 `\x00\xa0`\x00 \xe0\x00\xa0\xe0\x00 `\x80\xa0`\x80 \xe0\x80\xa0\xe0\x80``\x00\xe0`\x00`\xe0\x00\xe0\xe0\x00``\x80\xe0`\x80`\xe0\x80\xe0\xe0\x80 @\xa0 @ \xa0@\xa0\xa0@ \xc0\xa0 \xc0 \xa0\xc0\xa0\xa0\xc0` @\xe0 @`\xa0@\xe0\xa0@` \xc0\xe0 \xc0`\xa0\xc0\xe0\xa0\xc0 `@\xa0`@ \xe0@\xa0\xe0@ `\xc0\xa0`\xc0 \xe0\xc0\xa0\xe0\xc0``@\xe0`@`\xe0@\xe0\xe0@``\xc0\xe0`\xc0`\xe0\xc0\xe0\xe0\xc0" + + +def load_ann_png(path): + """Load a PNG file as a mask and its palette.""" + mask = Image.open(path) + palette = mask.getpalette() + mask = np.array(mask).astype(np.uint8) + return mask, palette + + +def save_ann_png(path, mask, palette): + """Save a mask as a PNG file with the given palette.""" + assert mask.dtype == np.uint8 + assert mask.ndim == 2 + output_mask = Image.fromarray(mask) + output_mask.putpalette(palette) + output_mask.save(path) + + +def get_per_obj_mask(mask): + """Split a mask into per-object masks.""" + object_ids = np.unique(mask) + object_ids = object_ids[object_ids > 0].tolist() + per_obj_mask = {object_id: (mask == object_id) for object_id in object_ids} + return per_obj_mask + + +def put_per_obj_mask(per_obj_mask, height, width): + """Combine per-object masks into a single mask.""" + mask = np.zeros((height, width), dtype=np.uint8) + object_ids = sorted(per_obj_mask)[::-1] + for object_id in object_ids: + object_mask = per_obj_mask[object_id] + object_mask = object_mask.reshape(height, width) + mask[object_mask] = object_id + return mask + + +def load_masks_from_dir(input_mask_dir, video_name, frame_name, per_obj_png_file): + """Load masks from a directory as a dict of per-object masks.""" + if not per_obj_png_file: + input_mask_path = os.path.join(input_mask_dir, video_name, f"{frame_name}.png") + input_mask, input_palette = load_ann_png(input_mask_path) + per_obj_input_mask = get_per_obj_mask(input_mask) + else: + per_obj_input_mask = {} + # each object is a directory in "{object_id:%03d}" format + for object_name in os.listdir(os.path.join(input_mask_dir, video_name)): + object_id = int(object_name) + input_mask_path = os.path.join( + input_mask_dir, video_name, object_name, f"{frame_name}.png" + ) + input_mask, input_palette = load_ann_png(input_mask_path) + per_obj_input_mask[object_id] = input_mask > 0 + + return per_obj_input_mask, input_palette + + +def save_masks_to_dir( + output_mask_dir, + video_name, + frame_name, + per_obj_output_mask, + height, + width, + per_obj_png_file, + output_palette, +): + """Save masks to a directory as PNG files.""" + os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True) + if not per_obj_png_file: + output_mask = put_per_obj_mask(per_obj_output_mask, height, width) + output_mask_path = os.path.join( + output_mask_dir, video_name, f"{frame_name}.png" + ) + save_ann_png(output_mask_path, output_mask, output_palette) + else: + for object_id, object_mask in per_obj_output_mask.items(): + object_name = f"{object_id:03d}" + os.makedirs( + os.path.join(output_mask_dir, video_name, object_name), + exist_ok=True, + ) + output_mask = object_mask.reshape(height, width).astype(np.uint8) + output_mask_path = os.path.join( + output_mask_dir, video_name, object_name, f"{frame_name}.png" + ) + save_ann_png(output_mask_path, output_mask, output_palette) + + +@torch.inference_mode() +@torch.autocast(device_type="cuda", dtype=torch.bfloat16) +def vos_inference( + predictor, + base_video_dir, + input_mask_dir, + output_mask_dir, + video_name, + score_thresh=0.0, + use_all_masks=False, + per_obj_png_file=False, +): + """Run VOS inference on a single video with the given predictor.""" + # load the video frames and initialize the inference state on this video + video_dir = os.path.join(base_video_dir, video_name) + frame_names = [ + os.path.splitext(p)[0] + for p in os.listdir(video_dir) + if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"] + ] + frame_names.sort(key=lambda p: int(os.path.splitext(p)[0])) + inference_state = predictor.init_state( + video_path=video_dir, async_loading_frames=False + ) + height = inference_state["video_height"] + width = inference_state["video_width"] + input_palette = None + + # fetch mask inputs from input_mask_dir (either only mask for the first frame, or all available masks) + if not use_all_masks: + # use only the first video's ground-truth mask as the input mask + input_frame_inds = [0] + else: + # use all mask files available in the input_mask_dir as the input masks + if not per_obj_png_file: + input_frame_inds = [ + idx + for idx, name in enumerate(frame_names) + if os.path.exists( + os.path.join(input_mask_dir, video_name, f"{name}.png") + ) + ] + else: + input_frame_inds = [ + idx + for object_name in os.listdir(os.path.join(input_mask_dir, video_name)) + for idx, name in enumerate(frame_names) + if os.path.exists( + os.path.join(input_mask_dir, video_name, object_name, f"{name}.png") + ) + ] + input_frame_inds = sorted(set(input_frame_inds)) + + # add those input masks to SAM 2 inference state before propagation + for input_frame_idx in input_frame_inds: + per_obj_input_mask, input_palette = load_masks_from_dir( + input_mask_dir=input_mask_dir, + video_name=video_name, + frame_name=frame_names[input_frame_idx], + per_obj_png_file=per_obj_png_file, + ) + for object_id, object_mask in per_obj_input_mask.items(): + predictor.add_new_mask( + inference_state=inference_state, + frame_idx=input_frame_idx, + obj_id=object_id, + mask=object_mask, + ) + + # run propagation throughout the video and collect the results in a dict + os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True) + output_palette = input_palette or DAVIS_PALETTE + video_segments = {} # video_segments contains the per-frame segmentation results + for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video( + inference_state + ): + per_obj_output_mask = { + out_obj_id: (out_mask_logits[i] > score_thresh).cpu().numpy() + for i, out_obj_id in enumerate(out_obj_ids) + } + video_segments[out_frame_idx] = per_obj_output_mask + + # write the output masks as palette PNG files to output_mask_dir + for out_frame_idx, per_obj_output_mask in video_segments.items(): + save_masks_to_dir( + output_mask_dir=output_mask_dir, + video_name=video_name, + frame_name=frame_names[out_frame_idx], + per_obj_output_mask=per_obj_output_mask, + height=height, + width=width, + per_obj_png_file=per_obj_png_file, + output_palette=output_palette, + ) + + +def main(): + parser = argparse.ArgumentParser() + parser.add_argument( + "--sam2_cfg", + type=str, + default="sam2_hiera_b+.yaml", + help="SAM 2 model configuration file", + ) + parser.add_argument( + "--sam2_checkpoint", + type=str, + default="./checkpoints/sam2_hiera_b+.pt", + help="path to the SAM 2 model checkpoint", + ) + parser.add_argument( + "--base_video_dir", + type=str, + required=True, + help="directory containing videos (as JPEG files) to run VOS prediction on", + ) + parser.add_argument( + "--input_mask_dir", + type=str, + required=True, + help="directory containing input masks (as PNG files) of each video", + ) + parser.add_argument( + "--video_list_file", + type=str, + default=None, + help="text file containing the list of video names to run VOS prediction on", + ) + parser.add_argument( + "--output_mask_dir", + type=str, + required=True, + help="directory to save the output masks (as PNG files)", + ) + parser.add_argument( + "--score_thresh", + type=float, + default=0.0, + help="threshold for the output mask logits (default: 0.0)", + ) + parser.add_argument( + "--use_all_masks", + action="store_true", + help="whether to use all available PNG files in input_mask_dir " + "(default without this flag: just the first PNG file as input to the SAM 2 model; " + "usually we don't need this flag, since semi-supervised VOS evaluation usually takes input from the first frame only)", + ) + parser.add_argument( + "--per_obj_png_file", + action="store_true", + help="whether use separate per-object PNG files for input and output masks " + "(default without this flag: all object masks are packed into a single PNG file on each frame following DAVIS format; " + "note that the SA-V dataset stores each object mask as an individual PNG file and requires this flag)", + ) + parser.add_argument( + "--apply_postprocessing", + action="store_true", + help="whether to apply postprocessing (e.g. hole-filling) to the output masks " + "(we don't apply such post-processing in the SAM 2 model evaluation)", + ) + args = parser.parse_args() + + # if we use per-object PNG files, they could possibly overlap in inputs and outputs + hydra_overrides_extra = [ + "++model.non_overlap_masks=" + ("false" if args.per_obj_png_file else "true") + ] + predictor = build_sam2_video_predictor( + config_file=args.sam2_cfg, + ckpt_path=args.sam2_checkpoint, + apply_postprocessing=args.apply_postprocessing, + hydra_overrides_extra=hydra_overrides_extra, + ) + + if args.use_all_masks: + print("using all available masks in input_mask_dir as input to the SAM 2 model") + else: + print( + "using only the first frame's mask in input_mask_dir as input to the SAM 2 model" + ) + # if a video list file is provided, read the video names from the file + # (otherwise, we use all subdirectories in base_video_dir) + if args.video_list_file is not None: + with open(args.video_list_file, "r") as f: + video_names = [v.strip() for v in f.readlines()] + else: + video_names = [ + p + for p in os.listdir(args.base_video_dir) + if os.path.isdir(os.path.join(args.base_video_dir, p)) + ] + print(f"running VOS prediction on {len(video_names)} videos:\n{video_names}") + + for n_video, video_name in enumerate(video_names): + print(f"\n{n_video + 1}/{len(video_names)} - running on {video_name}") + vos_inference( + predictor=predictor, + base_video_dir=args.base_video_dir, + input_mask_dir=args.input_mask_dir, + output_mask_dir=args.output_mask_dir, + video_name=video_name, + score_thresh=args.score_thresh, + use_all_masks=args.use_all_masks, + per_obj_png_file=args.per_obj_png_file, + ) + + print( + f"completed VOS prediction on {len(video_names)} videos -- " + f"output masks saved to {args.output_mask_dir}" + ) + + +if __name__ == "__main__": + main()