-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathkissfft.hh
359 lines (313 loc) · 13.5 KB
/
kissfft.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
/*
* Copyright (c) 2003-2010, Mark Borgerding. All rights reserved.
* This file is part of KISS FFT - https://github.com/mborgerding/kissfft
*
* SPDX-License-Identifier: BSD-3-Clause
* See COPYING file for more information.
*/
#ifndef KISSFFT_CLASS_HH
#define KISSFFT_CLASS_HH
#include <complex>
#include <utility>
#include <vector>
template <typename scalar_t>
class kissfft
{
public:
using cpx_t = std::complex<scalar_t>;
kissfft( const std::size_t nfft,
const bool inverse )
:_nfft(nfft)
,_inverse(inverse)
{
// fill twiddle factors
_twiddles.resize(_nfft);
const scalar_t phinc = (_inverse?2:-2)* acos( (scalar_t) -1) / _nfft;
for (std::size_t i=0;i<_nfft;++i)
_twiddles[i] = exp( cpx_t(0,i*phinc) );
//factorize
//start factoring out 4's, then 2's, then 3,5,7,9,...
std::size_t n= _nfft;
std::size_t p=4;
do {
while (n % p) {
switch (p) {
case 4: p = 2; break;
case 2: p = 3; break;
default: p += 2; break;
}
if (p*p>n)
p = n;// no more factors
}
n /= p;
_stageRadix.push_back(p);
_stageRemainder.push_back(n);
}while(n>1);
}
/// Changes the FFT-length and/or the transform direction.
///
/// @post The @c kissfft object will be in the same state as if it
/// had been newly constructed with the passed arguments.
/// However, the implementation may be faster than constructing a
/// new fft object.
void assign( const std::size_t nfft,
const bool inverse )
{
if ( nfft != _nfft )
{
kissfft tmp( nfft, inverse ); // O(n) time.
std::swap( tmp, *this ); // this is O(1) in C++11, O(n) otherwise.
}
else if ( inverse != _inverse )
{
// conjugate the twiddle factors.
for ( typename std::vector<cpx_t>::iterator it = _twiddles.begin();
it != _twiddles.end(); ++it )
it->imag( -it->imag() );
}
}
/// Calculates the complex Discrete Fourier Transform.
///
/// The size of the passed arrays must be passed in the constructor.
/// The sum of the squares of the absolute values in the @c dst
/// array will be @c N times the sum of the squares of the absolute
/// values in the @c src array, where @c N is the size of the array.
/// In other words, the l_2 norm of the resulting array will be
/// @c sqrt(N) times as big as the l_2 norm of the input array.
/// This is also the case when the inverse flag is set in the
/// constructor. Hence when applying the same transform twice, but with
/// the inverse flag changed the second time, then the result will
/// be equal to the original input times @c N.
void transform(const cpx_t * fft_in, cpx_t * fft_out, const std::size_t stage = 0, const std::size_t fstride = 1, const std::size_t in_stride = 1) const
{
const std::size_t p = _stageRadix[stage];
const std::size_t m = _stageRemainder[stage];
cpx_t * const Fout_beg = fft_out;
cpx_t * const Fout_end = fft_out + p*m;
if (m==1) {
do{
*fft_out = *fft_in;
fft_in += fstride*in_stride;
}while(++fft_out != Fout_end );
}else{
do{
// recursive call:
// DFT of size m*p performed by doing
// p instances of smaller DFTs of size m,
// each one takes a decimated version of the input
transform(fft_in, fft_out, stage+1, fstride*p,in_stride);
fft_in += fstride*in_stride;
}while( (fft_out += m) != Fout_end );
}
fft_out=Fout_beg;
// recombine the p smaller DFTs
switch (p) {
case 2: kf_bfly2(fft_out,fstride,m); break;
case 3: kf_bfly3(fft_out,fstride,m); break;
case 4: kf_bfly4(fft_out,fstride,m); break;
case 5: kf_bfly5(fft_out,fstride,m); break;
default: kf_bfly_generic(fft_out,fstride,m,p); break;
}
}
/// Calculates the Discrete Fourier Transform (DFT) of a real input
/// of size @c 2*N.
///
/// The 0-th and N-th value of the DFT are real numbers. These are
/// stored in @c dst[0].real() and @c dst[1].imag() respectively.
/// The remaining DFT values up to the index N-1 are stored in
/// @c dst[1] to @c dst[N-1].
/// The other half of the DFT values can be calculated from the
/// symmetry relation
/// @code
/// DFT(src)[2*N-k] == conj( DFT(src)[k] );
/// @endcode
/// The same scaling factors as in @c transform() apply.
///
/// @note For this to work, the types @c scalar_t and @c cpx_t
/// must fulfill the following requirements:
///
/// For any object @c z of type @c cpx_t,
/// @c reinterpret_cast<scalar_t(&)[2]>(z)[0] is the real part of @c z and
/// @c reinterpret_cast<scalar_t(&)[2]>(z)[1] is the imaginary part of @c z.
/// For any pointer to an element of an array of @c cpx_t named @c p
/// and any valid array index @c i, @c reinterpret_cast<T*>(p)[2*i]
/// is the real part of the complex number @c p[i], and
/// @c reinterpret_cast<T*>(p)[2*i+1] is the imaginary part of the
/// complex number @c p[i].
///
/// Since C++11, these requirements are guaranteed to be satisfied for
/// @c scalar_ts being @c float, @c double or @c long @c double
/// together with @c cpx_t being @c std::complex<scalar_t>.
void transform_real( const scalar_t * const src,
cpx_t * const dst ) const
{
const std::size_t N = _nfft;
if ( N == 0 )
return;
// perform complex FFT
transform( reinterpret_cast<const cpx_t*>(src), dst );
// post processing for k = 0 and k = N
dst[0] = cpx_t( dst[0].real() + dst[0].imag(),
dst[0].real() - dst[0].imag() );
// post processing for all the other k = 1, 2, ..., N-1
const scalar_t pi = acos( (scalar_t) -1);
const scalar_t half_phi_inc = ( _inverse ? pi : -pi ) / N;
const cpx_t twiddle_mul = exp( cpx_t(0, half_phi_inc) );
for ( std::size_t k = 1; 2*k < N; ++k )
{
const cpx_t w = (scalar_t)0.5 * cpx_t(
dst[k].real() + dst[N-k].real(),
dst[k].imag() - dst[N-k].imag() );
const cpx_t z = (scalar_t)0.5 * cpx_t(
dst[k].imag() + dst[N-k].imag(),
-dst[k].real() + dst[N-k].real() );
const cpx_t twiddle =
k % 2 == 0 ?
_twiddles[k/2] :
_twiddles[k/2] * twiddle_mul;
dst[ k] = w + twiddle * z;
dst[N-k] = conj( w - twiddle * z );
}
if ( N % 2 == 0 )
dst[N/2] = conj( dst[N/2] );
}
private:
void kf_bfly2( cpx_t * Fout, const size_t fstride, const std::size_t m) const
{
for (std::size_t k=0;k<m;++k) {
const cpx_t t = Fout[m+k] * _twiddles[k*fstride];
Fout[m+k] = Fout[k] - t;
Fout[k] += t;
}
}
void kf_bfly3( cpx_t * Fout, const std::size_t fstride, const std::size_t m) const
{
std::size_t k=m;
const std::size_t m2 = 2*m;
const cpx_t *tw1,*tw2;
cpx_t scratch[5];
const cpx_t epi3 = _twiddles[fstride*m];
tw1=tw2=&_twiddles[0];
do{
scratch[1] = Fout[m] * *tw1;
scratch[2] = Fout[m2] * *tw2;
scratch[3] = scratch[1] + scratch[2];
scratch[0] = scratch[1] - scratch[2];
tw1 += fstride;
tw2 += fstride*2;
Fout[m] = Fout[0] - scratch[3]*scalar_t(0.5);
scratch[0] *= epi3.imag();
Fout[0] += scratch[3];
Fout[m2] = cpx_t( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
Fout[m] += cpx_t( -scratch[0].imag(),scratch[0].real() );
++Fout;
}while(--k);
}
void kf_bfly4( cpx_t * const Fout, const std::size_t fstride, const std::size_t m) const
{
cpx_t scratch[7];
const scalar_t negative_if_inverse = _inverse ? -1 : +1;
for (std::size_t k=0;k<m;++k) {
scratch[0] = Fout[k+ m] * _twiddles[k*fstride ];
scratch[1] = Fout[k+2*m] * _twiddles[k*fstride*2];
scratch[2] = Fout[k+3*m] * _twiddles[k*fstride*3];
scratch[5] = Fout[k] - scratch[1];
Fout[k] += scratch[1];
scratch[3] = scratch[0] + scratch[2];
scratch[4] = scratch[0] - scratch[2];
scratch[4] = cpx_t( scratch[4].imag()*negative_if_inverse ,
-scratch[4].real()*negative_if_inverse );
Fout[k+2*m] = Fout[k] - scratch[3];
Fout[k ]+= scratch[3];
Fout[k+ m] = scratch[5] + scratch[4];
Fout[k+3*m] = scratch[5] - scratch[4];
}
}
void kf_bfly5( cpx_t * const Fout, const std::size_t fstride, const std::size_t m) const
{
cpx_t *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
cpx_t scratch[13];
const cpx_t ya = _twiddles[fstride*m];
const cpx_t yb = _twiddles[fstride*2*m];
Fout0=Fout;
Fout1=Fout0+m;
Fout2=Fout0+2*m;
Fout3=Fout0+3*m;
Fout4=Fout0+4*m;
for ( std::size_t u=0; u<m; ++u ) {
scratch[0] = *Fout0;
scratch[1] = *Fout1 * _twiddles[ u*fstride];
scratch[2] = *Fout2 * _twiddles[2*u*fstride];
scratch[3] = *Fout3 * _twiddles[3*u*fstride];
scratch[4] = *Fout4 * _twiddles[4*u*fstride];
scratch[7] = scratch[1] + scratch[4];
scratch[10]= scratch[1] - scratch[4];
scratch[8] = scratch[2] + scratch[3];
scratch[9] = scratch[2] - scratch[3];
*Fout0 += scratch[7];
*Fout0 += scratch[8];
scratch[5] = scratch[0] + cpx_t(
scratch[7].real()*ya.real() + scratch[8].real()*yb.real(),
scratch[7].imag()*ya.real() + scratch[8].imag()*yb.real()
);
scratch[6] = cpx_t(
scratch[10].imag()*ya.imag() + scratch[9].imag()*yb.imag(),
-scratch[10].real()*ya.imag() - scratch[9].real()*yb.imag()
);
*Fout1 = scratch[5] - scratch[6];
*Fout4 = scratch[5] + scratch[6];
scratch[11] = scratch[0] +
cpx_t(
scratch[7].real()*yb.real() + scratch[8].real()*ya.real(),
scratch[7].imag()*yb.real() + scratch[8].imag()*ya.real()
);
scratch[12] = cpx_t(
-scratch[10].imag()*yb.imag() + scratch[9].imag()*ya.imag(),
scratch[10].real()*yb.imag() - scratch[9].real()*ya.imag()
);
*Fout2 = scratch[11] + scratch[12];
*Fout3 = scratch[11] - scratch[12];
++Fout0;
++Fout1;
++Fout2;
++Fout3;
++Fout4;
}
}
/* perform the butterfly for one stage of a mixed radix FFT */
void kf_bfly_generic(
cpx_t * const Fout,
const size_t fstride,
const std::size_t m,
const std::size_t p
) const
{
const cpx_t * twiddles = &_twiddles[0];
cpx_t scratchbuf[p];
for ( std::size_t u=0; u<m; ++u ) {
std::size_t k = u;
for ( std::size_t q1=0 ; q1<p ; ++q1 ) {
scratchbuf[q1] = Fout[ k ];
k += m;
}
k=u;
for ( std::size_t q1=0 ; q1<p ; ++q1 ) {
std::size_t twidx=0;
Fout[ k ] = scratchbuf[0];
for ( std::size_t q=1;q<p;++q ) {
twidx += fstride * k;
if (twidx>=_nfft)
twidx-=_nfft;
Fout[ k ] += scratchbuf[q] * twiddles[twidx];
}
k += m;
}
}
}
std::size_t _nfft;
bool _inverse;
std::vector<cpx_t> _twiddles;
std::vector<std::size_t> _stageRadix;
std::vector<std::size_t> _stageRemainder;
};
#endif